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EXPONENTIAL DECAY AND ERGODICITY OF COMPLETELY
ASYMMETRIC LÉVY PROCESSES IN A FINITE INTERVAL

By Jean Bertoin

Université Pierre et Marie Curie

Consider a completely asymmetric Lévy process which has absolutely
continuous transition probabilities. We determine the exponential decay
parameter ρ and the quasistationary distribution for the transition prob-
abilities of the Lévy process killed as it exits from a finite interval, prove
that the killed process is ρ-positive and specify the ρ-invariant function
and measure.

1. Introduction. A completely asymmetric Lévy process is a real-valued
random process with stationary and independent increments, which has ei-
ther no positive or no negative jumps. Such processes have been considered
frequently in applied probability, in connection with theories of dams, queues,
insurance risks, continuous branching processes and so on (see [3], [4], [5],
[12] and [18], and references therein). A further motivation for their study
has been provided by recently by Le Gall and Le Jan [11], who discovered a
remarkable link with random trees and superprocesses.

One of the most interesting aspects of the theory concerns the so-called
two-sided exit problem, which consists of specifying the distribution of certain
variables related to the first exit-time from a finite interval (see, in particular,
[18], [8], [14] and [16]). The purpose of this paper is to investigate ergodic
properties of a completely asymmetric Lévy process killed as it exits from some
finite interval. Typically, provided that the one-dimensional distributions of X
are absolutely continuous, we determine the (exponential) decay parameter ρ
of the semigroup and the quasistationary distribution, prove that the process
is ρ-positive in the classification of Tuominen and Tweedie [20] and specify
the ρ-invariant function and measure. Section 6 contains the main results in
that direction.

Our approach relies on special properties of fluctuation theory for com-
pletely asymmetric Lévy processes, elementary features of entire functions,
Tauberian theorems and, finally, the R-theory developed by Tuominen and
Tweedie [20] for a general irreducible Markov process. It should be clear
that the method also applies in discrete time to study upward-skip-free (or
downward-skip-free) random walks in a finite interval, now using the Perron–
Frobenius theorem; we refer to [15], Chapter V, and the references therein
for more on this topic, in particular, the connection with Toeplitz matrices.
The method does not seem to apply to general Lévy processes, partly due to
the lack of explicit formulas for the resolvent densities (to this end, compare,
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e.g., with the asymptotic results of Pruitt and Taylor [13] in the case of an
asymmetric Cauchy process).

2. Preliminaries. This section introduces the notation and reviews stan-
dard material on completely asymmetric Lévy processes that can be found for
instance in [3] or in [1], Chapter VII.

2.1. Notation. For the sake of simplicity, we will focus on a Lévy process
X = �Xt; t ≥ 0� with no positive jumps (one also says that X is spectrally
negative). The case when X is the negative of a subordinator is degenerate
for our purpose and will be implicitly excluded in the sequel. The law of the
Lévy process started at x ∈ R will be denoted by Px; its Laplace transform is
given by

E0�exp�λXt�� = exp tψ�λ�; λ; t ≥ 0:

The function ψx �0;∞� → �−∞;∞� is convex with limλ→∞ψ�λ� = ∞. We
denote its right-inverse function by 8x �0;∞� → �0;∞�, so that

ψ�8�λ�� = λ for all λ ≥ 0:

Let I stand for the infimum process,

It = inf�Xs; s ≤ t�;
and let τ�q� stand for an exponential time with parameter q > 0 which is
independent of X. It is well known that

Xτ�q� − Iτ�q� and Iτ�q� are independent,(1)

that Xτ�q� − Iτ�q� has an exponential distribution,

P0�Xτ�q� − Iτ�q� ∈ dx� = 8�q� exp�−8�q�x�dx; x ≥ 0;(2)

and that the Laplace transform of Iτ�q� is given by

E0�exp�λIτ�q��� =
q�8�q� − λ�

8�q��q− ψ�λ�� ; λ ≥ 0:(3)

Writing Xτ�q� = �X − I�τ�q� + Iτ�q�, one observes from (1) and (2) that Xτ�q�
has an absolutely continuous distribution. That is to say that the resolvent
kernels of the Lévy process are absolutely continuous.

2.2. Exit from a finite interval and the scale function. We now turn our
attention to the two-sided exit problem. Fix a > 0 and denote the first exit
time from �0; a� by

T = inf�tx Xt 6∈ �0; a��:
According to a fundamental result essentially due to Takács, the probability
that the process started at x ∈ �0; a� exits from �0; a� at the upper boundary
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point can be expressed as follows (see [1], Theorem VII.8, or [14]). There exists
a unique continuous function Wx �0;∞� → �0;∞� with Laplace transform

∫ ∞
0
e−λxW�x�dx = 1

ψ�λ� ; λ > 8�0�;(4)

such that, for every x ∈ �0; a�,

Px�XT = a� =W�x�/W�a�:(5)

The functionW is strictly increasing, it will be referred to as the scale function.
More precisely, one can refine (5) and calculate the Laplace transform of the
exit time T on the event that the exit occurs at the upper boundary point:

Ex�exp�−qT�;XT = a� =W�q��x�/W�q��a�; q > 0;(6)

where W�q�x �0;∞� → �0;∞� is the continuous function with Laplace trans-
form

∫ ∞
0
e−λxW�q��x�dx = 1

ψ�λ� − q; λ > 8�q�:(7)

Formally, (6) reduces to (5) applied to the Lévy process killed at rate q, and
one can easily make this informal argument rigorous. See also Theorem 3 in
[16] for an alternative approach.

The function W�q� is strictly increasing. The corresponding Stieltjes mea-
sure on �0;∞� is denoted by W�q��dx�; in particular, its mass at 0 is W�q��0�.
Observe that, by (3) and Laplace inversion, the distribution of −Iτ�q� is given
in terms of W�q� by

P0�−Iτ�q� ∈ dx� =
q

8�q�W
�q��dx� − qW�q��x�dx; x ≥ 0:(8)

The simple identity

1
ψ�λ� − q =

∞∑
k=0

qkψ�λ�−k−1; λ > 8�q�;

together with (4) and (7) yields the following expression for W�q��x� as a power
series:

W�q��x� =
∞∑
k=0

qkW∗k+1�x�;(9)

where W∗n =W∗ · · ·∗W denotes the nth convolution power of the function W.
More precisely, the fact that the scale function increases entails, by induction,

W∗k+1�x� ≤ x
kW�x�k+1

k!
; x ≥ 0; k ∈ N;(10)

and this justifies (9). Equation (9) also appears as (6) in [10].



COMPLETELY ASYMMETRIC LÉVY PROCESS 159

3. Resolvent density. The Lévy process killed when it exits from �0; a�
has the strong Markov property. We denote its transition probabilities by
�Pt; t ≥ 0�, that is,

Pt�x;A� = Px�Xt ∈ A; t < T� for x ∈ �0; a�
[where A ⊆ �0; a� stands for a generic Borel set], and its q-resolvent kernel
by

Uq�x;A� =
∫ ∞

0
Pt�x;A�e−qt dt = Ex

(∫ T
0
e−qt1�Xt∈A� dt

)
; q ≥ 0:

Since the Lévy process has absolutely continuous resolvent kernels, it follows
immediately from the Radon–Nikodym theorem and the foregoing equality
that

Uq�x;A� =
∫
A
uq�x;y�dy;

where uq is known as the q-resolvent density for the killed process. The pur-
pose of this section is to express these densities in terms of our data. The
result is due to Suprun (see [16], Theorem 2; a less simple expression was
given previously by Emery [8]).

Theorem 1 [16]. For every x;y ∈ �0; a�, set

uq�x;y� = W
�q��x�W�q��a− y�

W�q��a� − 1�x≥y�W
�q��x− y�:

Then uq is a version of the q-resolvent kernel Uq.

We stress that Theorem 1 holds in particular for q = 0, where U0 = U is
the potential kernel and W�0� =W the scale function.

Suprun’s proof relies heavily on analytic arguments; we present here a prob-
abilistic proof based on the following formula for the resolvent of X killed as it
enters the nonpositive half-line, which is due again to Suprun (see [16], The-
orem 1). Recall that τ�q� is an independent exponential time with parameter
q > 0.

Lemma 1 [16]. We have, for every x;y > 0 and q > 0,

q−1Px
(
Xτ�q� ∈ dy; Iτ�q� > 0

)
/dy = exp�−8�q�y�W�q��x� − 1�x≥y�W

�q��x− y�:

Proof. Using (1), (2) and (8), we obtain

q−1Px�Xτ�q� ∈ dy; Iτ�q� > 0�

=
(∫
�x−y;x�

8�q� exp�−8�q��y+ t− x��
(

1
8�q�W

�q��dt� −W�q��t�dt
))

dy;

where we agree that W�q� ≡ 0 on �−∞;0�.
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By an integration by parts,
∫ x
x−y

8�q� exp�−8�q��y+ t− x��W�q��t�dt

=
∫
�x−y;x�

exp�−8�q��y+ t− x��W�q��dt�

−
[
exp�−8�q��y+ t− x��W�q��t�

]x
t=x−y:

The statement follows. 2

Proof of Theorem 1. Applying the strong Markov property at timeT and
the lack-of-memory of the exponential law, we get

quq�x;y�dy = Px
(
Xτ�q� ∈ dy; τ�q� < T

)

= Px
(
Xτ�q� ∈ dy; Iτ�q� > 0

)

− Px
(
XT = a; T < τ�q�

)
Pa
(
Xτ�q� ∈ dy; Iτ�q� > 0

)

= α− βγ:
The quantities α and γ are given by Lemma 1, and β by (6). This entails
the formula stated in Theorem 1 for q > 0. The limit case q = 0 follows by
approximation, using (9), for example. 2

Specializing Theorem 1 to the case A = �0; a� yields the following formula
for the Laplace transform of the first exit time T.

Corollary 1. Denote the indefinite integral of W�q� by W
�q�

; that is,

W
�q��x� =

∫ x
0
W�q��t�dt; x ≥ 0:

For every q > 0, we have

Ex �exp�−qT�� = 1+W�q��x� −W�q��x�W�q��a�/W�q��a�:

Corollary 1 extends Theorem 1 in [2], which was proven in the stable case.
We also point out that Theorem 1 enables us to determine the joint distribution
of �T;XT−; 1T�, where 1T = XT − XT− stands for the (possible) jump at
time T.

Corollary 2. For every x;y ∈ �0; a� and z ≤ −y, we have

Ex�exp�−qT�; XT− ∈ dy; 1T ∈ dz� = uq�x;y�dy3�−y+ dz�;
where 3 denotes the Lévy measure of X.

Proof. The jump process 1 = �1t; t ≥ 0� of the Lévy process is a Poisson
point process with characteristic measure 3. The statement follows from the
compensation formula for Poisson point processes. 2
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The quantity

Ex�exp�−qT�; XT = a; 1T = 0� = Ex�exp�−qT�; XT = a�
is given by (6); the value of

Ex�exp�−qT�; XT = 0; 1T = 0� = Ex�exp�−qT�; XT = 0�
then follows from Corollaries 1 and 2. This solves completely the two-sided
exit problem (see [8], [14] and [17]).

4. Irreducibility. The purpose of this section is to investigate the irre-
ducibility of the killed Lévy process. The necessary and sufficient condition
stated in Proposition 1 below is intuitively obvious, although the rigorous
proof is perhaps less simple than one might have expected.

It is well known that limλ→∞ λ
−2ψ�λ� exists; we call this limit the Brownian

coefficient of X. We also say that X has no jumps of absolute length less than
a if the Lévy measure ofX gives zero mass to �−a;0�. This terminology should
be clear.

Proposition 1. If the Brownian coefficient ofX is zero andX has no jumps
of absolute length less than a, then

Px
(
Xt = y for some t < T

)
= 0 for all 0 < y < x < a:

Otherwise

Px
(
Xt = y for some t < T

)
> 0 for all x;y ∈ �0; a�:

Proof. The first assertion is obvious. If the Brownian coefficient of X is
zero and X has no jumps of absolute length less than a, then X is a compound
Poisson process with drift. The typical sample path of the Lévy process killed
as it exits from �0; a� is that of a uniform motion to the right in �0; a�, killed
both at some deterministic rate [this corresponds to the first jump that nec-
essarily takes X out of �0; a�] and when the motion reaches a. In particular,
such a process started at x never visits any y < x.

Next, we observe that, since X has no positive jumps,

Px
(
Xt = y for some t < T

)
=W�x�/W�y� > 0; 0 < x ≤ y < a(11)

[by (5) and because W is strictly increasing]. Applying the strong Markov
property, we see that the second assertion reduces to showing that

Px
(
Xt < y for some t < T

)
> 0; 0 < y < x < a:(12)

Suppose first that X has a nonzero Brownian coefficient and no jumps of
absolute length less than a. The process �Xt; t < T� can then be thought of
as a Brownian motion with a possible drift, killed both at some deterministic
rate (which is zero iff X has no jumps at all) and as it exits from �0; a�. It is
easy to check that (12) holds in that case.
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Second, suppose that the support of the Lévy measure contains some −` ∈
�−a;0�. For any arbitrarily small ε > 0, consider

δ` = inf�tx Xt −Xt− ∈ �−`− ε;−`+ ε��
the instant of the first jump of absolute length between ` − ε and ` + ε. It is
well known that δ` has an exponential distribution with finite parameter and
is independent of the process X` obtained from X by discarding the jumps of
absolute length in �`− ε; `+ ε�. Using the right-continuity of X` and the fact
that P�δ` < η� > 0 for every η > 0, one deduces readily that

Px
(
Xt < x− `+ ε for some t < T

)
> 0 whenever x > `:(13)

Next, combining (11), the strong Markov property at the first passage time
at ` + ε and (13), we see that (12) holds provided that x < `. Finally, the
case when x > ` can be reduced to the preceding, applying n times the strong
Markov property and (13), where n = �x/`� is the integer part of x/`. 2

One says that the transition probabilities Pt are Lebesgue irreducible if,
for every Borel set A ⊆ �0; a� with positive Lebesgue measure, the potential
U�x;A� of A is positive for every x ∈ �0; a�. Recall that a simple version of the
potential density u�x;y� has been given in Theorem 1 in terms of the scale
function.

Corollary 3. Suppose that the Brownian coefficient is positive, or that X
has jumps of absolute length less than a. Then u�x;y� > 0 for every x;y ∈
�0; a�, and as a consequence Pt is Lebesgue irreducible.

Proof. It follows from (5) that, for 0 < y ≤ x < a,

Px
(
Xt ≤ y for some t < T;Xt = a

)
≤ Px

(
Xt ≤ y for some t < T; XT = a

)

= W�x�
W�a� −

W�x− y�
W�a− y�

and we know from Proposition 1 and the Markov property that the left-hand
side is positive. Then, by Theorem 1,

u�x;y� = W�x�W�a− y�
W�a� − 1�x≥y�W�x− y� > 0: 2

We next turn our attention to the continuity of the transition probabilities
Pt in the space and time variables. In this direction, we say that absolute
continuity (AC) holds if the one-dimensional distributions of the Lévy process
are absolutely continuous, that is,

�AC� P0�Xt ∈ dx� � dx for every t > 0:

It is known that (AC) holds whenever the Brownian coefficient is positive,
or when the mass of the absolutely continuous part of the Lévy measure is
infinite (see [19]). It should also be clear that (AC) implies that the conditions
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of Corollary 3 are satisfied [otherwise X would be a compound Poisson process
with drift and (AC) plainly fails in that case].

Proposition 2. Suppose that (AC) holds. Then the following hold:

(i) The mapping t→ Pt�x;A� is continuous on �0;∞� for every x ∈ �0; a�
and Borel set A ⊆ �0; a�.

(ii) For every t > 0, Pt has the strong Feller property. That is, for every Borel
bounded function f, Ptf is a continuous function on �0; a�.

Here we use the standard notation Ptf�x� =
∫
�0;a� f�y�Pt�x;dy�.

The proof of Proposition 2 relies on two lemmas.

Lemma 2. If (AC) holds, then for every x ∈ �−∞;∞� and Borel set A ⊆ R,
the mapping t→ Px�Xt ∈ A� is continuous on �0;∞�.

Proof. According to Hawkes ([9], Theorem 2.2), there is a version �t; x� →
pt�x� of the density of the one-dimensional distributions of X such that, for
every Borel bounded function f and x ∈ R,

Ex�f�Xt�� = pt ∗ f�−x�

and pt+s = pt ∗ps for every s; t > 0. Moreover, x→ pt ∗f�−x� is a continuous
function. Because the probability measure pε�y�dy converges weakly to the
Dirac point mass at 0 as ε → 0+, we deduce that pt+ε ∗ f = pε ∗ �pt ∗ f�
converges pointwise to pt ∗f as ε→ 0+. This establishes the right-continuity
in the lemma.

To prove the left-continuity, we take 0 < η < ε < t and write

pt−η ∗ f = pε−η ∗ �pt−ε ∗ f� :

As η→ 0+, the probability measure pε−η�y�dy converges weakly to pε�y�dy
(because the sample paths of a Lévy process are continuous at time ε, a.s.),
and therefore pt−η ∗ f converges pointwise to pε ∗ �pt−ε ∗ f� = pt ∗ f. 2

Lemma 3. Suppose that (AC) holds. The distribution of the exit time T has
no atom, that is,

Px�T = t� = 0 for every x ∈ �0; a� and t ≥ 0:

Proof. Because the sample paths of a Lévy process are continuous at each
fixed time, a.s., we have

Px�T = t� ≤ Px�Xt = 0 or Xt = a�

and the right-hand-side is zero by (AC). 2

We are now able to prove Proposition 2.
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Proof of Proposition 2. (i) We have, by an application of the strong
Markov property at time T,

Px�Xt ∈ A� = Pt�x;A� +
∫ t

0

∫
R
Px�T ∈ ds; XT ∈ dy�Py�Xt−s ∈ A�:

The left-hand side is continuous in the variable t > 0 by Lemma 2. The same
holds for the integral on the right-hand side, because the distribution of T has
no atom.

(ii) A Lévy process has the Feller property. By Theorem 2.2 in [9], it also
has the strong Feller property when (AC) holds. One says that it is a doubly
Feller process. By a general result of Chung [7], a doubly Feller process killed
upon hitting an open set remains doubly Feller. 2

Remark. The argument in the proof of Lemma 2 applies under the sole
condition that, for each t > 0 and Borel bounded function f, the mapping

x→ Ex�f�Xt��(14)

is both finely and cofinely continuous, and this condition seems weaker than
(AC). However, the single points are not polar for the Lévy process, and 0 is
regular for �0;∞�. According to Bretagnolle [6], either X has bounded varia-
tion and then the fine and co-fine topologies are the right and left topologies,
respectively, or X has unbounded variation and then the right and the left
topologies are simply the usual Euclidean topology. In other words, a function
that is both finely and cofinely continuous is in fact continuous in the Eu-
clidean sense in any case. However, according to Hawkes ([9], Theorem 2.2),
the mapping (14) is continuous for every t > 0 and Borel bounded function
f if and only if (AC) holds. In conclusion, the apparently weaker condition
involving fine and co-fine continuity reduces to (AC).

5. Analytic continuation. Loosely speaking, we show in this section
that Theorem 1 can be extended to some negative q’s. To start with, we observe
that for every x ≥ 0 the function q → W�q��x� can be extended analytically
to q ∈ �−∞;∞�. More precisely, from (9), (10) and the continuity of the scale
function, the following lemma is immediate.

Lemma 4. (i) The mapping �x; q� → W�q��x� is continuous on �0;∞� ×
�−∞;∞�.

(ii) For every x ≥ 0, q→W�q��x� is an entire function.
(iii) For every x ≥ 0 and r > 0, we have

�W�q��y�� ≤W�r��x� for �q� ≤ r; 0 ≤ y ≤ x:

Next, we introduce the first positive root ρ of q→W�−q��a�:

ρ = inf�q ≥ 0x W�−q��a� = 0�(15)
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with the convention that inf \ = ∞. We observe the following simple lower
bound for ρ in terms of the indefinite integral of the scale function W�x� =∫ x

0 W�t�dt:

Lemma 5. For every x > 0 and q < 1/W�x�, W�−q��x� > 0. As a conse-

quence, one has ρ ≥ 1/W�a�.

Proof. The obvious inequality W∗k+1�x� ≤ W�x�W∗k�x� entails that, for
every 0 ≤ q < 1/W�x�, the series �−q�kW∗k+1�x� is alternating and therefore

W�−q��x� ≥W�x� − qW∗2�x� ≥W�x� − qW�x�W�x� > 0:

This shows our claim. 2

We then arrive at the main result of this section.

Proposition 3. For every x ∈ �0; a�, q < ρ and Borel set A ⊆ �0; a�, we
have
∫ ∞

0
eqtPt�x;A�dt =

∫
A

{
W�−q��x�W�−q��a− y�

W�−q��a� − 1�x≥y�W
�−q��x− y�

}
dy:

Proof. For q ≤ 0, the formula merely rephrases Theorem 1. Using Lemma
4(iii), we can extend analytically the right-hand side for q < ρ. For every
integer n, the coefficient cn of qn in the corresponding expansion as a power
series is given in terms of the nth (left-)derivative at 0 of the left-hand side;
specifically

cn =
∫ ∞

0

tn

n!
Pt�x;A�dt:

This quantity is nonnegative, and we know that the series
∑
cnq

n converges
for q < ρ. This establishes the statement. 2

Corollary 4. Suppose that (AC) holds. For every q < ρ and x ∈ �0; a�, we
have W�−q��x� > 0.

Proof. We know from Lemma 5 [or (9) and Lemma 4(i)] that W�−q��x� > 0
whenever x > 0 is sufficiently small. Consider x0 = inf�x ≥ 0x W�−q��x� =
0�. If we had x0 < a, then we would have

∫∞
0 eqtPt�x0; �0; x0��dt = 0 by

Proposition 3, and this is absurd since Pt is Lebesgue irreducible. 2

6. Exponential decay and ergodic properties. We now state the main
result of this paper on the decay and ergodic properties of the transition prob-
abilities Pt under condition (AC). By Corollary 1, Proposition 2 and Theorem 1
in [20], we are entitled to apply the R-theory of irreducible Markov processes
developed by Tuominen and Tweedie, to the transition probabilities Pt. We
refer to [20] for the terminology used in the next statement, and we recall
that ρ has been defined in (15).
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Theorem 2. Suppose that (AC) holds. Then the following hold:

(i) ρ ∈ �0;∞� and ρ is a simple root of the entire function q→W�−q��a�;
(ii) Pt is ρ-recurrent and, more precisely, ρ-positive;

(iii) the function W�−ρ� is positive on �0; a� and is ρ-invariant for Pt; that is,

PtW�−ρ��x� = e−ρtW�−ρ��x� for every x ∈ �0; a�y
(iv) the measure 5�dx� = W�−ρ��a − x�dx on �0; a� is ρ-invariant for Pt;

that is,

5Pt = e−ρt5y
(v) there is a constant c > 0 such that, for every x ∈ �0; a�,

lim
t→∞

eρtPt�x; ·� = cW�−ρ��x�5�·�

in the sense of weak convergence.

Before proving this theorem, we first specify the quantities it involves in
the stable case. Take α ∈ �1;2� and ψ�λ� = λα, so that X is a standard stable
process of index α. Then

W�q��x� = αxα−1E′α�qxα�; x ≥ 0;

where E′α is the derivative of the Mittag–Leffler function of parameter α,

Eα�y� =
∞∑
n=0

yn

0�1+ αn� ; y ∈ R

(see [2] for the detailed calculation). The root that appears in (15) is thus given
by ρ = a−αρ�α�, where −ρ�α� is the first negative root of E′α. The mapping
α→ ρ�α� is depicted in [2]. Specifying (v) gives, in particular,

Px�T > t� ∼ c′W�−ρ��x�e−ρt as t→∞
(where c′ > 0 is some constant), which improves Corollary 1 in [2].

In the special case α = 2, X/
√

2 is a standard Brownian motion and

E′2�−x� =
sin
√
x

2
√
x
; x > 0:

In particular, ρ�2� = π2, and, in the notation of Theorem 2, we have

ρ = a−2π2; W�−ρ��x� = a

π
sin

(
π

a
x

)
:

We now proceed to the proof of Theorem 2.

Proof of Theorem 2. [(i) and (ii)] If ρ were infinite, then according to
Proposition 3,

∫∞
0 eqtPt�x;A�dt would be finite for every x ∈ �0; a� and every

q > 0; this would not agree with Theorem 2 in [20]. Thus ρ < ∞, and we
already knew from Lemma 5 that ρ > 0.
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We then identify ρ as the decay parameter and show that Pt is ρ-recurrent.
Take any xρ ∈ �0; a/2� such that ρW�xρ� < 1. Making use of Lemma 5, we
see that W�−ρ��x� > 0 provided that x ∈ �0; xρ�. It follows from the continuity
of the mapping �x; q� →W�q��x� stated in Lemma 4(i) that, for every x < xρ
and y ∈ �a− xρ; a�,

lim
q→ρ−

W�−q��x�W�−q��a− y�
W�−q��a� = ∞:(16)

Then take any Borel set A ⊆ �a− xρ; a� with positive Lebesgue measure. We
deduce by the Fatou lemma, Proposition 3 and monotone convergence that

∫ ∞
0
eρtPt�x;A�dt = ∞ for every x ∈ �0; xρ�:

Again by Theorem 2 in [20], we deduce that ρ coincides with the decay pa-
rameter and that Pt must be ρ-recurrent.

Finally, we prove that the entire function q → W�−q��a� has a simple root
at ρ and that Pt is ρ-positive. Let n > 0 be the multiplicity of the root ρ.
We know that there is a positive number c such that W�−ρ+ε��a� ∼ εn/c as
ε→ 0+. We can then refine (16) as

W�−ρ+ε��x�W�−ρ+ε��a− y�
W�−ρ+ε��a� ∼W�−ρ��x�W�−ρ��a− y�cε−n(17)

for every x < xρ and y ∈ �a−xρ; a�. Making use of Lemma 4(iii) and dominated
convergence in Proposition 3, we deduce that, for any Borel set A ⊆ �a−xρ; a�
with positive Lebesgue measure,

∫ ∞
0
e−εteρtPt�x;A�dt ∼ c�A�ε−n

for some c�A� > 0. It then follows from a Tauberian theorem that
∫ s

0
eρtPt�x;A�dt ∼ c′�A�sn as s→∞:

Comparing first with Theorem 6(ii) in [20], we see that Pt cannot be ρ-null;
and then with Theorem 5(i) in [20], that we must have n = 1. In conclusion,
ρ is a simple root and Pt is ρ-positive.

[(iii) and (iv)] Now that we know that ρ is a simple root, the same argument
as above based on a Tauberian theorem shows that, for every Borel set A ⊆
�0; a� and x ∈ �0; a�,

∫ s
0
eρtPt�x;A�dt ∼ δW�−ρ��x�

(∫
A
W�−ρ��a− y�dy

)
s as s→∞;(18)

where δ > 0 is the derivative at q = −ρ of the function q→W�q��a�. On the
other hand, we know from Corollary 4 and Lemma 4 that W�−ρ� is nonnega-
tive on �0; a�. Applying Theorems 5 and 3 of [20], (18) thus implies that the
measure 5�dy� =W�−ρ��a− y�dy on �0; a� is ρ-invariant for Pt, and that

PtW�−ρ��x� = e−ρtW�−ρ��x� for almost-every x ∈ �0; a�:
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According to Proposition 2(ii), the left-hand side is a continuous function in the
variable x. Applying Lemma 4(i), we deduce that W�−ρ� is ρ-invariant for Pt.

Finally, suppose that W�−ρ��x0� = 0 for some x0 ∈ �0; a�. Then we would
have

lim
q→ρ−

W�−q��x0�/W�−q��a� <∞;

because q → W�−q��x0� is an entire function and q → W�−q��a� has a
simple root at ρ. Then (applying, e.g., Proposition 3) we would have also
Ex0
�exp�ρT�� < ∞, and this would not agree with the fact that Pt is

ρ-recurrent. Hence W�−ρ� is positive on �0; a�.
(v) Because the ρ-invariant measure 5 has a finite mass (it has a bounded

density) and Pt1 converges pointwise to 0 as t→∞, we deduce from Theorem
7 in [20] that, for every Borel set A ⊆ �0; a� and almost every x ∈ �0; a�,

lim
t→∞

Pt�x;A�/Pt�x; �0; a�� = 5�A�/5��0; a��:

Comparing with Theorem 5(i) in [20], this proves our claim for almost every
x ∈ �0; a�. However, (AC) entails that the transition probabilities Pt are abso-
lutely continuous (by the Radon–Nikodym theorem) and a standard argument
based on the Markov property enables us to remove the “almost” in the last
statement. 2

Remark. The noticeable link between the ρ-invariant function W�−ρ� and
the density of the ρ-invariant measure5 is plain from the duality (with respect
to the Lebesgue measure) that relates a Lévy process and its negative.
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