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OPTIMAL LONG TERM GROWTH RATE OF
EXPECTED UTILITY OF WEALTH

By Wendell H. Fleming1 and Shuenn-Jyi Sheu2

Brown University and Academia Sinica

An optimal investment policy model for the long term growth of ex-
pected utility of wealth is considered. The utility function is HARA with
exponent −∞ < γ < 1. The problem can be reformulated as an infinite time
horizon, risk sensitive control problem. Then the dynamic programming
equations for different HARA exponents and different policy constraints
are studied. We obtain some estimates for the solution of each equation.
This can be used to derive an optimal policy with some interesting proper-
ties.

1. Introduction. In this paper we consider an optimal investment policy
model, in which the goal is to maximize the long term growth rate of ex-
pected utility of wealth. For simplicity, only one risky and one riskless asset
are considered, and transactions costs are ignored. In the traditional Mer-
ton model, the stock price Pt is a logarithmic Brownian motion with drift.
However, we consider a model introduced by Platen and Rebolledo (1996) in
which Lt = logPt is subject to Ornstein–Uhlenbeck type random fluctuations
about a deterministic trend. See (2.3). We consider a HARA utility function of
wealth, with exponent −∞ < γ < 1. The case γ = 0 corresponds to log utility
function. In Section 2, when γ �= 0, we reformulate the problem as an infinite
time horizon, risk sensitive stochastic control problem of the kind considered
in Fleming and McEneaney (1995). The control ut at time t is the fraction of
wealth invested in the risky asset. We assume that the deterministic log stock
price trend L̄t is linear in t and that stock price volatility σ is constant. The
state yt is Lt − L̄t plus a suitable constant; it satisfies the linear stochastic
differential equation (2.9). The problem is then to choose a control which max-
imizes or minimizes, according to γ > 0 or γ < 0, the long term growth rate
of the expectation of an exponential-of-integral cost criterion

E exp
∫ T

0
l�yt ut�dt

where l�yu� is as in (2.10). Dynamic programming leads to a differential
equation (2.13) for � and W�y�, where � is the optimal long term growth rate
and W�y� has the role of a cost potential function.

In Sections 3, 4 and 5, we study the case with 0 < γ < 1 in detail. In
Section 3, we consider the case of no control constraints, that is, −∞ < ut <∞.

Received February 1998; revised October 1998.
1Supported in part by NSF Grant DMS-95-31276.
2Supported in part by NSC Grant 86-2115-001-008.
AMS 1991 subject classifications. Primary 90A09, 93E20; secondary 60H30, 90A19.
Key words and phrases. Long term growth rate, Ornstein–Uhlenbeck process, risk sensitive

control, dynamical programming equation, optimal policy.

871



872 W. H. FLEMING AND S.-J. SHEU

In this case the problem has an explicit solution, with W�y� a quadratic. The
corresponding optimal investment policy is a linear, decreasing function of
y. See (3.4). In Sections 4 and 5 we consider the problem with the control
constraint ut ∈ U, where U is either a finite interval or U = 	0∞�. Section 4
is concerned with bounds on the derivatives Wy�y� and Wyy�y� which do not
depend on U. Then in Section 5 we consider U = 	0∞�, corresponding to a
no short-selling constraint. It is shown that a solution �W�y� to the dynamic
programming equation (5.1) exists and satisfies the required bounds (5.2). The
corresponding optimal control policy u∗�y� in (5.3) is no longer explicit, but is
expressed in terms ofWy�y�. Theorem 5.1 verifies that � is indeed the optimal
growth rate and u∗�y� an optimal policy.

In Section 6, we consider the case γ < 0. The dynamic programming equa-
tion is interpreted as the dynamic programming equation of a differential
game. The analysis developed in the previous sections can no longer be ap-
plied. For the case with no control constraints, the equation again has an
explicit solution, with W�y� a quadratic. We also have the result that � is the
minimal long term growth rate. However, it is worth mentioning the follow-
ing. When 0 > γ > −3, u∗�y� defined by (3.4) is an optimal investment policy.
However, if γ ≤ −3, u∗�·� is no longer optimal. In fact, if γ < −3, the invest-
ment policy u∗�·� gives infinite HARA expected utility of wealth in finite time
T, if T is sufficiently large. However, if γ ≤ −3, suitable truncation of u∗�·�
gives a nearly optimal investment policy. For the case with no short-selling
constraint, the dynamic programming equation can be suitably transformed
to an equation of the type in Sections 3, 4 and 5. From this a solution with
proper estimates can be obtained. This analysis can also be applied to the
cases with other type of constraints.

In Section 7, we discuss the asymptotics of � = �̃�γ�, W�y� = W̃�γ��y� as
γ → 0. We show that after suitable normalization they converge to the limit
which relates to the investment problem with log utility function.

Similar long term growth rate problems with transactions costs were con-
sidered in Taksar, Klass and Assaf (1988), Fleming, Grossman, Vila and Za-
riphopoulou (1990). In those papers log Brownian motion price fluctuations
were considered, and the problem was reduced to a one-dimensional singu-
lar stochastic control problem. It would be interesting to include transactions
costs in the model which we consider. Other models for optimizing long term
growth rates of expected utility of wealth were considered in Bielecki and
Pliska (1997), Cvitanic and Karatzas (1995), Konno, Pliska and Suzuki (1993)
and references cited there. Further perspective on optimal investment models
in the context of risk sensitive stochastic control is given in Fleming (1995).

2. Problem formulation. We consider an infinite time horizon optimal
investment model, with one risky and one riskless asset. Let xt denote the
investor’s wealth at time t ≥ 0 and ut the fraction of wealth in the risky
asset. Then utxt is the amount in the risky asset and �1 − ut�xt the amount
in the riskless asset. We require that ut ∈ U, where U is some given interval.
Different U are considered in Sections 3, 4 and 5 for 0 < γ < 1. In Section 3,
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we take U = �−∞∞�, corresponding to no investment control constraints.
Later we will take for U a finite interval, or U = 	0∞� corresponding to a no
short-selling constraint. Let Pt denote the price per share of the risky asset
and r the riskless interest rate. Then

�2�1� dxt = xt	r�1 − ut�dt+ utP−1
t dPt�

with given initial wealth x0 > 0. The model for the dynamics of Pt will be
given below.

We shall first consider a HARA parameter γ, with 0 < γ < 1. At the end
of this section and in Sections 6, 7, we will consider the necessary changes
for other HARA parameters. We wish to maximize the long term exponential
growth rate of the expectation of γ−1x

γ
T as T → ∞. In the classical Merton

model,

�2�2� P−1
t dPt = Rdt+ σ dwt

where R > r and wt is a Brownian motion. For the Merton model, an explicit
calculation using dynamic programming gives the optimal growth rate,

�m = γ�R− r�2

2σ2�1 − γ� + γr�

The optimal fraction u∗
m invested in the risky asset is

u∗
m = R− r

σ2�1 − γ� �

Instead of (2.2) we consider the following model, which belongs to a class
considered by Platen and Rebolledo (1996). Let

Lt = logPt

and assume that

�2�3� dLt = c�L̄t −Lt�dt+ σt dw̃t c > 0

where L̄t σt are deterministic and w̃t is a Brownian motion under some prob-
ability measure P̃. Then

P−1
t dPt = dLt + 1

2σ
2
t dt�

Let us rewrite the expectation ẼxγT in terms of an expected exponential-of-
integral criterion, which involves only Lt and ut. We apply the Itô differential
rule to log xγt = γ log xt and obtain, after a routine calculation,

Ẽx
γ
T = xγ0Ẽ exp

{
γ
∫ T

0

[
r�1 − ut� + 1

2�ut − u2
t �σ2

t + cut�L̄t −Lt�
]
dt

+γ
∫ T

0
σtut dw̃t

}
�
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We get rid of the stochastic integral term by writing

γ
∫ T

0
σtut dw̃t =

∫ T
0

[
γσtut dw̃t − 1

2γ
2σ2
t u

2
t dt

]+ 1
2

∫ T
0
γ2σ2

t u
2
t dt

and using a Girsanov transformation. This changes the stochastic differential
equation (2.3) to

�2�4� dLt = c�L̄t −Lt�dt+ γσ2
t ut dt+ σt dwt

where wt is a Brownian motion under the transformed probability measure P

and

�2�5� Ẽx
γ
T = xγ0E exp

∫ T
0
lt dt

�2�6� lt = 1
2σ

2
t γ�γ − 1�u2

t + γ
{
r�1 − ut� +

[
c�L̄t −Lt� + 1

2σ
2
t

]
ut
}
�

Here E is expectation under P. This change of probability measure argument
is valid provided σt is bounded and

�2�7� Ẽ exp θu2
t ≤ C

for some positive constants θC. See Liptser and Shiryayev [(1977), page 220].
We interpret the stochastic differential equation (2.4) as the dynamics of a

stochastic control problem, in which Lt is the state and ut the control at time
t. We require that ut is �t progressively measurable, for some wt-adapted
increasing family of σ-algebras �t [see, e.g., Fleming and Soner (1992), Chap-
ter 4], and that (2.7) holds. In particular, ut may be obtained from a Lipschitz-
continuous control policy u,

ut = u�tLt��
For fixed finite T, one can consider the problem of choosing ut on 0 ≤ t ≤ T
to maximize the expectation on the right side of (2.5). Let

� �LT� = log sup
u•
EL exp

∫ T
0
lt dt

where the subscript L indicates the initial data L0 = L.
We anticipate that, under suitable assumptions on L̄t and σt, T−1� �LT�

tends to a limit � as T → ∞, and that � can be interpreted as the optimal
long term growth rate of expected utility of wealth. In this paper, the analysis
is carried out only under the assumptions

�2�8�
σt = σ is constant,

L̄t = µt+ L̄0 µ L̄0 constant�

[It would also be interesting to allow σt and L̄t to vary periodically, as in
Platen (1996).]
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It is convenient to replace Lt by an equivalent state variable yt, obtained
by subtracting the linear trend L̄t in the log price dynamics, plus a suitable
constant,

yt = Lt − L̄t + c−1µ�

Then by (2.4),

�2�9� dyt = −cyt dt+ γσ2ut dt+ σ dwt�
If ut ≡ 0, then yt is an Ornstein–Uhlenbeck process. Moreover, by (2.6), lt =
l�yt ut� where

�2�10� l�yu� = −a
2
u2 + γ�b− cy�u+ γr

�2�11�
a = σ2γ�1 − γ�
b = 1

2σ
2 + µ− r�

Let

�2�12� V�yT� = log sup
u�

Ey exp
∫ T

0
l�yt ut�dt

which equals � �LT� above. We use as in Fleming and McEneaney (1995) the
heuristic

V�yT� ∼ �T+W�y� as T→ ∞
where �W�y� satisfy the dynamic programming equation

�2�13�
� = σ2

2
Wyy +

σ2

2
W2
y − cyWy + γr

+ max
u∈U

[
−a

2
u2 + γu�b− cy+ σ2Wy�

]
�

If U is a finite interval, then results in Fleming and McEneaney [(1995),
Section 7] ensure that (2.13) has a solution and the � is the optimal long term
growth rate. Therefore, we shall focus on the case U = �−∞∞�, for which �
andW�y� are found explicitly in Section 3, and the caseU = 	0∞� considered
in Section 5.

The function W�y� has a role similar to a cost potential function for ergodic
stochastic control. Once W is known, an optimal investment control policy
u∗�y� can be obtained by taking arg max over U in (2.13).

For the HARA parameter γ in γ < 0, we change sup to inf in (2.12). Then
we change max to min in (2.13) for the dynamic programming equation.

For γ = 0, this is the case of the logarithmic utility (Kelly) criterion; we
consider

V�yT� = sup
u
Ey

[∫ T
0

(
−σ

2

2
u2
t + �b− cyt� + r

)
dt

]
�
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Here yt satisfies

dyt = −cyt dt+ σ dwt�
The dynamic programming equation is

�2�14� � = σ2

2
Wyy − cyWy + sup

u∈U

[
−σ

2

2
u2 + �b− cy�u+ r

]
�

Note that when γ = 0, the optimal u∗ in (2.14) can be found directly without
knowing W. See Section 7.

3. Unconstrained case. In this section we assume that 0 < γ < 1 and
U = �−∞∞�. Thus both short selling �u < 0� and borrowing at rate r�u > 1�
are allowed. An explicit solution to the dynamic programming solution (2.13)
is readily obtained as follows. With no investment control constraints, (2.13)
becomes

�3�1� � = σ2

2
Wyy +

σ2

2
W2
y − cyWy + γr+

γ2�b− cy+ σ2Wy�2

2a

with a b as in (2.11). We look for a quadratic solution

�3�2� W�y� = 1
2Ay

2 +By�
After a routine calculation we find that (3.1) holds for

�3�3��a� A = c

σ2
	1 − �1 − γ�1/2�

�3�3��b� B = −γb
σ2


�3�3��c� � = c

2
	1 − �1 − γ�1/2� + γr+ γb2

2σ2
�

By taking arg max over U = �−∞∞� in (2.13), we obtain the following can-
didate u∗�y� for an optimal investment policy:

u∗�y� = b− cy+ σ2Wy�y�
σ2�1 − γ� �

Since Wy�y� = Ay+B

�3�4� u∗�y� = −c�1 − γ�−1/2

σ2
y+ b

σ2
�

The corresponding solution y∗
t to (2.9), with ut = u∗

t = u∗�y∗
t � is

�3�5� dy∗
t = −c�1 + γ�1 − γ�−1/2�y∗

t dt+ γbdt+ σ dwt�
For any initial state y∗

0 = y, the process y∗
t is an ergodic, Gaussian, Markov

process.
Theorem 3.1 justifies calling � the optimal long term growth rate and u∗�y�

an optimal investment policy. At the end of the section we will also verify
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that T−1V�yT� → � as T → ∞, where V�yT� solves the finite horizon
dynamic programming equation. There is another quadratic solution to (3.1),
with A = cσ−2	1 + �1 − γ�1/2�. However, the corresponding solution to (3.5) is
not ergodic, and this solution to (3.1) is irrelevant.

Theorem 3.1 (Verification theorem). Let U = �−∞∞�.
(a) For every admissible control process ut,

� ≥ lim sup
T→∞

1
T

logEy exp
∫ T

0
l�yt ut�dt�

(b) If u∗
t = u∗�y∗

t � as in (3.4), (3.5), then

� = lim
T→∞

1
T

logEy exp
∫ T

0
l�y∗

t  u
∗
t �dt�

Proof. We rewrite (2.13) in exponentiated form. Let ψ = eW. Then

�3�6� �ψ = max
u∈U

	� uψ+ l�yu�ψ�

where l�yu� is as in (2.10) and

�3�7� � uψ = σ2

2
ψyy + �−cy+ γσ2u�ψy

is the generator of the controlled process yt in (2.9) in case of constant control
�ut ≡ u�.

To prove (a), let l̃ = l− �. The Itô differential rule gives

d

[
ψ�yt� exp

∫ t
0
l̃�ys us�ds

]

= [
� utψ�yt� + l̃�yt ut�ψ�yt�

]
exp

∫ t
0
l̃�ys us�ds+ dMt

where Mt is a local martingale. By (3.6), � uψ�y� + l̃�yu�ψ�y� ≤ 0 for all
yu.

Let τR denote the exit time of yt from the ball ��y� ≤ R�. Then for every
T <∞,

Eyψ�yT∧τR� exp
∫ T∧τR

0
l̃�yt ut�dt ≤ ψ�y��

Let R→ ∞ and use Fatou’s lemma to get

Eyψ�yT� exp
∫ T

0
l̃�yt ut�dt ≤ ψ�y��

Since A > 0 in (3.2), ψ�y� ≥ exp�−K� for some K. Hence

exp�−K� exp�−�T�Ey exp
∫ T

0
l�yt ut�dt ≤ exp�W�y���

This implies (a).
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To prove (b), we argue as in the proof of Fleming and McEneaney [(1995),
Theorem 3.5] (see also the proof of Theorem 5.1 below). We make a Girsanov
change of probability measure from P to P

0 corresponding to adding a term
σ2Wy�y∗

t �dt on the right side of (3.5):

dy∗
t = −c�1 + γ�1 − γ�−1/2�y∗

t dt+ γbdt
+ σ2Wy�y∗

t �dt+ σ dw0
t 

with w0
t a P

0-Brownian motion. Since Wy�y� = Ay+B, with A, B as in (3.3),
we obtain

�3�8� dy∗
t = −c�1 − γ�−1/2y∗

t dt+ σ dw0
t �

Thus, y∗
t is a Gaussian, Markov ergodic process under P

0. Since E exp θ�y∗
t �2

is bounded for θ > 0 small enough, the Girsanov transformation is justified.
From (3.6),

�ψ�y� = � u∗�y�ψ�y� + l�yu∗�y��ψ�y��
We then have [Fleming and McEneaney (1995), page 1889]

�3�9� Ey exp
∫ T

0
l�y∗

t  u
∗
t �dt = exp��T+W�y��E0

y exp	−W�y∗
T���

Moreover, as T→ ∞ E0
y exp	−W�y∗

T�� tends to the expectation of exp�−W�
under the equilibrium probability measure. This implies (b). ✷

Remark 3.1. From (3.4), u∗�y� is a decreasing function of y. This property
remains true if investment control constraints are imposed, although one no
longer has such an explicit formula for u∗�y�. See Sections 4, 5. Since yt =
Lt− L̄t+ c−1µ and Lt = logPt, with this model the optimal fraction of wealth
in the risky asset decreases as the price Pt increases.

Finite time horizon. For T < ∞, the function V�yT� in (2.12) can be
shown by a similar analysis to be quadratic in y:

�3�10� V�yT� = 1
2A�T�y2 +B�T�y+C�T��

The coefficients satisfy differential equations obtained from the time-
dependent version of (3.1),

VT = σ2

2
Vyy +

σ2

2
V2
y − cyVy + γr+

γ2�b− cy+ σ2Vy�2

2a


with initial data V�y0� = 0. An elementary analysis shows that A�T� → A,
B�T� → B and �dC/dT��T� → � as T → ∞, with AB� as in (3.3). This
implies that, for every y,

�3�11� � = lim
T→∞

V�yT�
T

�
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4. Finite control interval. In this section we assume that 0 < γ < 1 and
U is a closed finite interval with 0 ∈ U. In particular, we may consider U =
UM = 	0M�, corresponding to no short-selling and borrowing constraints. By
Fleming and McEneaney [(1995), Theorem 7.1], there exists a solution �W�y�
to (2.13), such that Wy�y� is bounded. Moreover, by Fleming and McEneaney
(1995), Theorem 7.2, � is the optimal growth rate in the sense described in
Theorem 3.1.

The main purpose of this section is to derive bounds for � andWy�y� which
do not depend on U. We also find that W�y� is convex and W�y�− �2σ2�−1cy2

is concave. First,

�4�1� γr ≤ � ≤ �0

where �0 is the unconstrained optimal growth rate when U = �−∞∞�. The
left inequality is immediate from considering ut ≡ 0, and the right inequality
follows, since imposing control constraints cannot increase the optimal growth
rate.

Let us rewrite (2.13) as the dynamic programming equation of an ergodic
stochastic control problem, with two controls u ∈ U, v ∈ R

1. For this purpose,
note that

σ2

2
W2
y = max

v∈R
1

[
σvWy − 1

2v
2]�

Since Wy is bounded, it suffices to replace the max over R
1 by the max over

��v� ≤ B� for some B. As in Fleming and McEneaney [(1995), Section 7],
consider the discounted cost criterion

Jρ�y�u• v•� = Ey
∫ ∞

0
e−ρt

[
l�yt ut� − 1

2v
2
t

]
dt

where yt satisfies

�4�2� dyt = �−cyt + γσ2ut + σvt�dt+ σ dwt
with y0 = y, and wt a �t-adapted Brownian motion on some fixed probability
space �+ ��t�P�. By differentiating with respect to the initial data y in(4.2)
and using the fact that ly = −cγu in (2.10), we have that

Jρy = Ey
∫ ∞

0
exp�−�ρ+ c�t�ly�yt ut�dt

does not in fact depend on y. Thus, Jρ�y�u• v•� is linear in y for each pair
u•v• of �t-progressively measurable processes �ut ∈ U �vt� ≤ B��

Since the supremum of any family of linear functions is convex,

Wρ�y� = sup
u• v•

Jρ�y�u• v•�

is convex. As ρ→ 0 (through a sequence),

W�y� = lim
ρ→0

	Wρ�y� −Wρ�0���

We have proved the following lemma.
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Lemma 4.1. W�y� is convex.

Let us next obtain bounds for Wy which do not depend on U.

Lemma 4.2. (a) �Wy�y�� ≤ c1�y� + c2, where c1 c2 do not depend on U.
(b) If U = 	0M�, then Wy�y� ≤ 0 for all y. Moreover, for y ≥ 0, −c3 ≤

Wy�y� where c3 does not depend on M.

Proof. By taking u = 0 in (2.13) and using Lemma 4.1, we have

�4�3� � ≥ σ2

2
W2
y − cyWy + γr�

By (4.1), � ≤ �0. This implies (a). To obtain (b), note that ly = −cγu ≤ 0 for
u ≥ 0. Then Jρy ≤ 0 for all u• v•, which implies that W�y� is a nonincreasing
function of y. Then (b) follows from this and (4.3). ✷

Lemma 4.3. W�y� − c�2σ2�−1y2 is concave.

Proof. In (4.2) we make the change of variable

ṽt = − c
σ
yt + vt�

Then

�4�4� dyt = �γσ2ut + σṽt�dt+ σ dwt
and

l�yu� − 1
2
v2 = l�yu� − 1

2

(
ṽ+ c

σ
y

)2

= −a
2
u2 + γbu− 1

2
ṽ2 − c2

2σ2
y2 − c

σ2
�γσ2u+ σṽ�y�

From (4.4) and Itô’s rule,

d
c

2σ2
y2
t =

[
c

σ2
�γσ2ut + σṽt�yt +

1
2
c

]
dt+ dMt

where Mt is a martingale (recall that ut and vt are bounded in this section).
Then

d

[
c

2σ2
y2
t e

−ρt
]
=

[
c

σ2
�γσ2ut + σṽt�yt +

1
2
c− c

2σ2
ρy2

t

]
e−ρtdt+ e−ρtdMt

Ey

∫ T
0
e−ρt

c

σ2
�γσ2ut + σṽt�yt dt

= Ey
∫ T

0
e−ρt

(
c

2σ2
ρy2

t −
1
2
c

)
dt+Ey

[
c

2σ2
y2
Te

−ρT
]
− c

2σ2
y2�
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Therefore,

�4�5�

Ey

∫ T
0
e−ρt

(
l�yt ut� −

1
2
v2
t

)
dt

= Ey
∫ T

0
e−ρt�l̃�yt ut� −

1
2
ṽ2
t �dt−Ey

[
c

2σ2
y2
Te

−ρT
]
+ c

2σ2
y2

l̃�yt ut� = −a
2
u2 + γbu− c

2σ2
�c+ ρ�y2 + γr�

Since ut and vt are bounded and (4.2) holds,

Ey

∫ ∞

0
e−ρt�u2

t + ṽ2
t �dt <∞

lim
T→∞

e−ρTEyy
2
T = 0�

Therefore, (4.5) implies (with Jρ as above)

�4�6�
Jρ�y�u• v•� = J̃ρ�y�u• ṽ•� +

c

2σ2
y2

J̃ρ�y�u• ṽ•� = Ey
∫ ∞

0
e−ρt

(
l̃�yt ut� −

1
2
ṽ2
t

)
dt�

Since l̃�yu� is concave, (4.4) is linear, J̃ρ is a concave function of �yu• ṽ•�. By
(4.6) and Fleming and Rishel [(1975), page 196],Wρ�y�−c�2σ2�−1y2 is concave.
Since W�y� is the limit of Wρ�y� −Wρ�0� as ρ → 0 through a subsequence,
we obtain Lemma 4.3. ✷

From Lemma 4.1 and Lemma 4.3 we have

�4�7� 0 ≤Wyy�y� ≤
c

σ2
�

5. No short-selling constraint. Let us now assume that U = 	0∞�.
Again we consider 0 < γ < 1. The first step of the analysis is to find � and
W�y� satisfying (2.13) with suitable growth behavior of Wy�y� as y → ±∞.
Let UM = 	0M� and let �MWM�y� be the solution to (2.13) considered
in Section 4 when U is replaced by UM. Then �M is nondecreasing as M
increases, and satisfies the uniform bounds (4.1). Moreover, WMy and WMyy

satisfy the uniform bounds in Lemma 4.2 and (4.7).
We normalize WM�y� by taking WM�0� = 0. Then we let M→ ∞ (through

some sequence) to obtain � and W�y� satisfying

�5�1�
� = σ2

2
Wyy +

σ2

2
W2
y − cyWy + γr

+ max
u≥0

[
−a

2
u2 + γu�b− cy+ σ2Wy�

]
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�5�2��a� Wy�y� ≤ 0

�5�2��b� Wy�y� ≥ −C for y ≥ 0

�5�2��c� 0 ≤Wyy�y� ≤
c

σ2
�

In the Appendix we add some remarks about the behavior of � and W�·�. The
maximum in (5.1) is attained at u = u∗�y�, where u∗�y� = 0 if and only if
b− cy+ σ2Wy�y� ≤ 0. By (4.7), b− cy+ σ2Wy�y� is nonincreasing. Hence

I = {
y� b− cy+ σ2Wy�y� ≤ 0

}
is an interval. Let us show that I = 	y∗∞� for some y∗. Since Wy�y� is
bounded for y ≥ 0, y ∈ I for all y sufficiently large. Suppose that I = �−∞∞�.
Then

b

y
− c+ σ2Wy�y�

y
≥ 0 for y < 0

lim inf
y→−∞

Wy�y�
y

≥ c

σ2
�

Together with (5.2)(c), y−1Wy�y� → σ−2c as y → −∞. If I = �−∞∞�, the
last term in (5.1) is always 0. We divide (5.1) by y2 and let y→ −∞ to obtain

0 = σ2

2

(
c

σ2

)2

− c2

σ2
= − c2

2σ2
�= 0

a contradiction. Thus I = 	y∗∞�.
Since a = σ2γ�1− γ�, we then have the following candidate for the optimal

investment control policy:

�5�3� u∗�y� =



b− cy+ σ2Wy�y�

σ2�1 − γ�  if y < y∗

0 if y ≥ y∗�

Note that u∗ is a nonincreasing function of y since b − cy + σ2Wy is nonin-
creasing by (5.2)(c). It remains to verify that u∗�y� is indeed optimal. Let y∗

t

be the solution to

�5�4� dy∗
t = 	−cy∗

t + γσ2u∗�y∗
t ��dt+ σ dwt

with y∗
0 = y. For y < y∗,

−cy+ γσ2u∗�y� ≥ −cy
and equality holds for y ≥ y∗. This implies that y∗

t is an ergodic Markov
process. See the results in Khasminskii [(1980), Chapter IV, Section 4]. As in
Section 3, we shall need to make a change of probability measure from P to
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P
0 such that

�5�5� dy∗
t = 	−cy∗

t + γσ2u∗�y∗
t � + σ2Wy�y∗

t ��dt+ σ dw0
t 

where w0
t is a P

0-Brownian motion. Then

−cy+ γσ2u∗�y� + σ2Wy�y� ≤ −cy if y ≥ y∗�

For y < y∗, (5.3) implies that

−cy+ γσ2u∗�y� + σ2Wy�y� =
σ2Wy�y� − cy

1 − γ + γb

1 − γ �

For y < y∗, (3.1) holds. We divide by y2 and let y→ −∞ (through a sequence).
Then by (5.2)(c)

Wy�y�
y

→ Ā ≤ c

σ2


0 = σ2

2
Ā2 − cĀ+ γ2

2a
�−c+ σ2Ā�2�

This implies

0 = σ2

2
Ā2 − cĀ+ γc2

2σ2


Ā = c

σ2
�1 −

√
1 − γ��

[Note that Ā = A in (3.3)(a).] Then as y→ −∞,

−cy+ γσ2u∗�y� + σ2Wy�y� ∼ −c�1 − γ�1/2y�

This implies that, under P
0, y∗

t is an ergodic Markov process and E0
y�y∗

T�β is
bounded independent of T for any β > 0.

It remains to verify that � is the optimal growth rate and that u∗�y� is an
optimal control policy. Unlike the unconstrained case in Section 3, we do not
know thatW�y� is bounded below. Hence the proof of Theorem 3.1(a) cannot be
used when U = �0∞�. However, (5.1) and (5.2) imply �yWy�y�� ≤ c1 if y ≥ 0,
for some c1. This implies a logarithmically growing upper bound for −W�y�,
which will be used in the proof of Theorem 5.1(a). Unlike the situation in
Section 4, U = 	0∞� is not compact. In defining admissible control processes
ut, we must ensure that the Girsanov transformations used in the proof of
Theorem 5.1 are valid. To avoid technicalities in this regard, let us admit only
those ut which arise via some control policy,

ut = u�t yt�
where u�t y� is locally Lipschitz and satisfies for suitable α1�T� α2�T�,

�u�t y�� ≤ α1�T��y� + σ2�T� for 0 ≤ t ≤ T�
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Theorem 5.1 (Verification theorem). Let U = 	0∞� and let �W�y� sat-
isfy (5.1) and (5.2).

(a) For every admissible control process ut,

� ≥ lim sup
T→∞

1
T

logEy exp
∫ T

0
l�yt ut�dt�

(b) If u∗
t = u∗�y∗

t � as in (5.3), (5.4), then

� = lim
T→∞

1
T

logEy exp
∫ T

0
l�y∗

t  u
∗
t �dt�

Proof. Let

H∗�y� = γr+ max
u≥0

[
−a

2
u2 + γu�b− cy+ σ2Wy�y��

]


h∗�yu� = γr− a
2
u2 + γu�b− cy+ σ2Wy�y�� −H∗�y��

As in (2.9),

�5�6� dyt = �−cyt + γσ2ut�dt+ σ dwt
with y0 = y andwt a P-Brownian motion. From the Itô differential rule applied
to W�yt� and (5.1),
∫ T

0
l�yt ut�dt = �T+

∫ T
0

[
l�yt ut� −H∗�yt� −

σ2

2
W2
y�yt� + γσ2utWy�yt�

]
dt

+
∫ T

0
σWy�yt�dwt +W�y� −W�yT��

We change probability measure, from P to P̂, corresponding to adding
σ2Wy�yt� to the drift in (5.6),

�5�7� dyt = 	−cyt + γσ2ut + σ2Wy�yt��dt+ σ dŵt
with ŵt a P̂-Brownian motion. Then

�5�8� Ey exp
∫ T

0
l�yt ut�dt= exp��T�ψ�y�Êy

[
exp

∫ T
0
h∗�yt ut�dtψ−1�yT�

]


where ψ = expW. We make another change in probability measure, from P̂ to
P̃, corresponding to adding γσ2�u∗�yt� − ut� to the drift in (5.7),

�5�9� dyt = 	−cyt + γσ2u∗�yt� + σWy�yt��dt+ σ dw̃t
with w̃t a P̃-Brownian motion. Note that under P̃ yt is identical in probability
law to the solution y∗

t to (5.5) under P
0. Moreover, by (5.8),

�5�10�
Ey exp

∫ T
0
l�yt ut�dt

= exp��T�ψ�y�Ẽy
[
exp ζT · exp

∫ T
0
h∗�yt ut�dtψ−1�yT�

]
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ζT =
∫ T

0

[
γσ�ut − u∗

t �dw̃t − 1
2γ

2σ2�ut − u∗
t �2 dt

]
�

We use Hölder’s inequality, with p−1+q−1 = 1 and q sufficiently large, together
with

Ẽy

[
exp

∫ T
0
pγσ�ut − u∗

t �dw̃t − 1
2p

2γ2σ2�ut − u∗
t �2 dt

]
≤ 1

to obtain

�5�11�

Ey exp
∫ T

0
l�yt ut�dt

≤ exp��T�ψ�y�
{
Ẽy

[
exp

∫ T
0
qh∗�yt ut�

+ p
2
γ2σ2�ut − u∗

t �2 dtψ−q�yT�
]}1/q

�

From (5.3) and the fact that b− cy+ σ2Wy�y� ≤ 0 for y ≥ y∗, we have

h∗�yu� ≤ −a
2
u2 = −a

2
�u− u∗�y��2 if y ≥ y∗

h∗�yu� = −a
2
�u− u∗�y��2 if y < y∗�

Therefore, for q large enough,

qh∗�yt ut� +
p

2
γ2σ2�ut − u∗

t �2 ≤ 0

and by (5.11),

�5�12� Ey exp
∫ T

0
l�yt ut�dt ≤ exp��T�ψ�y��Ẽyψ−q�yT��1/q�

However, (5.1) and (5.2) imply that ψ−q�yT� ≤ K�1 + �yT��β for suitable con-
stants Kβ. As noted in the remarks following (5.5), Ẽ�yT�β is bounded in-
dependent of T. This implies (a). When ut = u∗

t  h
∗�yt ut� = 0. Moreover,

P̂ = P̃ and Ẽyψ−1�yT� tends to its equilibrium value (positive) as T → ∞.
This implies (b). ✷

6. Results for � < 0. In this section we wish to consider the maximal
long term exponential growth rate of γ−1Ex

γ
T for γ < 0. This is equivalent to

minimize ExγT. In this case, a < 0 [see (2.11)]. We change sup to inf in (2.12)
and max to min in (2.13). In particular, we have the dynamic programming
equation

�6�1�
� = σ2

2
Wyy +

σ2

2
W2
y − cyWy + γr

+ min
u∈U

[
−a

2
u2 + γu�b− cy+ σ2Wy�

]
�
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If there is no investment constraint, the same calculation as in Section 3 gives
a solution �W�y� to (6.1) withW�y� quadratic as in (3.2) and (3.3). Note that
A < 0 in the case γ < 0. We may conjecture that the investment policy u∗�y� in
(3.4) is optimal. It is surprising that this is no longer true unless 0 > γ > −3.
To see this, by (3.9),

Ey

[
exp

(∫ T
0
l�yt ut�dt

)]
= exp��T+W�y��E0

y	exp�−W�y∗
T����

For 0 > γ > −3,

E0
y	exp�−W�y∗

t ��� →
∫

exp�−W�y��dµ∗�y� T→ ∞

where µ∗ is the equilibrium distribution of y∗
t satisfying (3.8),

dµ∗�y� = 1√
2πσ2∞

exp
(
− 1

2σ2∞
y2

)


σ2
∞ = σ2

2c

√
1 − γ�

For γ = −3,

1
T

logE0
y	exp�−W�y∗

T��� → ∞ T→ ∞�

For γ < −3, E0
y	exp�−W�y∗

T��� = ∞ when T is large enough �T ≥ T1�. By
(2.5) this is equivalent to Ẽx∗γT = ∞ for T ≥ T1. Here x∗t is the solution to
(2.1) when ut = u∗

t = u∗�yt� where

dyt = −cyt dt+ σ dw̃t�
However, we will show that � is still the minimal cost for the control prob-

lem. The verification theorem stated in the following indicates that the optimal
policy may not exist for γ < −3. The results also show that u∗�y� can be used
to construct a nearly optimal policy if this happens.

Theorem 6.1 (Verification theorem). Let U = �−∞∞� γ < 0��W�y�
and u∗�y� be defined by (3.3) and (3.4); u∗

t = u∗�y∗
t � with y∗

t defined by (3.5).

(a) For every admissible control process ut,

� ≤ lim inf
T→∞

1
T

logEy exp
∫ T

0
l�yt ut�dt�

(b) If 0 > γ > −3, then

� = lim
T→∞

1
T

logEy exp
∫ T

0
l�y∗

t  u
∗
t �dt�
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(c) If γ ≤ −3, there exist u�n��y�, n = 123 � � � such that

� = lim
n→∞ lim

T→∞
1
T

logEy exp
∫ T

0
l�y�n�

t  u
�n�
t �dt�

We may take u�n��y� = ϕ�n��y�u∗�y� with ϕ�n��y� = ϕ��1/n�y�, ϕ�y� is smooth
and has compact support, 0 ≤ ϕ ≤ 1, ϕ�y� = 1 in a neighborhood of 0. Alter-
atively, we may take u�n��y� = min�nmax�−nu∗�y���.

Note that in (c), the order of limits as n → ∞ and T → ∞ cannot be
reversed. Indeed, if γ < −3, for fixed T ≥ T1 the limit as n→ ∞ is +∞.

Proof. For (a), the proof is similar to that of Theorem 3.1(a); just change
max to min and reverse inequalities to get

Ey

[
ψ�yT� exp

∫ T
0
l̃�yt ut�dt

]
≥ ψ�y��

Since ψ�y� ≤ exp�K� for some constant K,

exp�K� exp�−�T�Ey exp
∫ T

0
l�yt ut�dt ≥ ψ�y��

Then (a) follows from this.
For (b), no change in the proof is needed.
Now to prove (c). We take u�n��y� = ϕ�n��y�u∗�y� with ϕ�n��y� given above.

The proof works for other cases as well. We know that �W�y� defined in (3.2)
and (3.3) satisfy, by (6.1),

� = σ2

2
Wyy�y� +

σ2

2
W2
y�y� + �−cy+ γσ2u∗�y��Wy�y� + lu

∗�y�

lu�y� = −a
2
u2 + γu�b− cy� + γr�

Let

ϕ∗�y� = exp�W�y���
Then ϕ∗ is the function constructed as follows. Denote

L∗ϕ�y� = σ2

2
ϕyy�y� + �−cy+ γσ2u∗�y��ϕy�y� + lu

∗�y�ϕ�y��
Then L∗ϕ∗ = �ϕ∗. Let

G�y� = 1
σ2

∫ y
0
�−cv+ γσ2u∗�v��dv�

The transformation

ϕ→ f = ϕeG

induces L̂∗f by the rule

L̂∗f = L∗ϕeG�
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By an easy calculation,

L̂∗f�y� = σ2

2
fyy�y� + l̂∗�y�f�y�

l̂∗�y� = − c2

2σ2
y2 − σ

2

2
γu∗�y�2 + γbu∗�y� + γr− σ

2

2
Gyy�y��

After simplification,

l̂∗�y� = − c2

2σ2

1
1 − γy

2 − bc

2σ2

γ√
1 − γy+ b2

2σ2
γ + c

2

(
1 + γ√

1 − γ

)
+ γr�

Then L̂∗ can be regarded as a self-adjoint operator on L2�Rdy� such that it
has a compact resolvent. See Reed and Simon [(1978), Theorem XIII.67]. We
see that � is precisely the principal eigenvalue of this operator and ϕ∗eG is
the corresponding normalized eigenfunction.

Similarly, we consider the operator

L�n�ϕ�y� = σ2

2
ϕyy�y� + �−cy+ γσ2u�n��y��ϕy�y� + lu

�n� �y�ϕ�y�

G�n��y� = 1
σ2

∫ y
0
�−cv+ γσ2u�n��v��dv

and the transformation

ϕ→ f = ϕ exp�G�n��
which induces L̂�n�f by the rule

L̂�n�f = L�n�ϕ exp�G�n���
Again, we have

L̂�n�f�y� = σ2

2
fyy�y� + l̂�n��y�f�y�

l̂�n��y� = − c2

2σ2
y2 − σ

2

2
γu�n��y�2 + γbu�n��y� + γr− σ

2

2
G

�n�
yy �y��

We note that there are a1 > 0 b1 such that for all n,

l̂�n��y� ≤ −a1y
2 + b1�

The operator L̂�n� is self-adjoint on L2�Rdy� and has compact resolvent. De-
note ��n� f�n� the principal eigenvalue and the corresponding eigenfunction
with f�n��0� = 1. Then it is easy to see that f�n� n = 123 � � �  is a compact
family of functions in L2�Rdy�. From this we can show that

��n� → � f�n� → f∗ = ϕ∗eG in L2�Rdy�
as n→ ∞. Since

��n� = lim
T→∞

1
T

logEy exp
∫ T

0
l�y�n�

t  u
�n�
t �dt

with u�n�
t = u�n��y�n�

t �, (c) follows from this. ✷
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If investment control constraints are imposed, we no longer have an explicit
solution for (6.1). However, by using the relation

σ2

2
W2
y = max

v∈R
1

[
σvWy −

1
2
v2

]


the equation now can be interpreted as the dynamic programming equa-
tion of a stochastic differential game of the kind considered in Fleming and
McEneaney (1995). Assume that U = UM = 	0M� as considered in Section 4.
By Fleming and McEneaney [(1995), Theorem 7.1], there exist �W�y� sat-
isfying (6.1) with Wy�y� bounded. But the proof for the uniform estimates in
Lemma 4.2 cannot be applied here. We should not expect Lemmas 4.1 and 4.3
to be correct. Therefore, for γ < 0, the results in Section 5 are not immedi-
ately valid. In the rest we shall show that similar results hold here by using a
different argument. The analysis is given only for U = 	0∞�. A similar argu-
ment can be applied to the cases U = UM, 0 < M < ∞. We leave the details
of the latter cases to the interested reader. This analysis is based on carefully
examining (6.1), which will provide a solution �W�y� with properties similar
to those in Section 5. The verification theorem, as Theorem 5.1, shows that �
is the maximal exponential growth rate for γ−1Ex

γ
T. We note that forU = UM,

0 < M < ∞; this argument also gives some uniform estimates for W = WM

similar to those in Lemma 4.2.
In the rest we assume γ < 0 U = 	0∞�.
Equation (6.1) can be written as

�6�2�

� = σ2

2
Wyy +

σ2

2
W2
y − cyWy + γr

+ min
u≥0

[
−a

2
u2 + γu�b− cy+ σ2Wy�

]

= σ2

2
Wyy +

σ2

2
W2
y − cyWy + γr

+ γ�1 − γ�F
(

1
1 − γ �b− cy+ σ2Wy�

)
�

Here

F�v� = max
u≥0

[
−σ

2

2
u2 + uv

]

=



1
2σ2

v2 if v ≥ 0

0 if v < 0�

Therefore, if b− cy+ σ2Wy > 0, then

� = σ2

2
Wyy +

σ2

2
W2
y − cyWy + γr

+ 1
2σ2

γ

1 − γ �b− cy+ σ2Wy�2
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= σ2

2
Wyy +

σ2

2
1

1 − γW
2
y −

(
c

1
1 − γy− γ

1 − γb
)
Wy

+ 1
2σ2

γ

1 − γ �b− cy�
2 + γr�

If b− cy+ σ2Wy ≤ 0, then

� = σ2

2
Wyy +

σ2

2
W2
y − cyWy + γr

= σ2

2
Wyy +

σ2

2
1

1 − γW
2
y −

(
c

1
1 − γy− γ

1 − γb
)
Wy +

1
2σ2

γ

1 − γ �b− cy�
2

+ γr− σ
2

2
γ

1 − γW
2
y −

γ

1 − γ �b− cy�Wy −
1

2σ2

γ

1 − γ �b− cy�
2

= σ2

2
Wyy +

σ2

2
1

1 − γW
2
y −

(
c

1
1 − γy− γ

1 − γb
)
Wy +

1
2σ2

γ

1 − γ �b− cy�
2

+ γr− 1
2σ2

γ

1 − γ �b− cy+ σ2Wy�2�

That is,

� = σ2

2
Wyy +

σ2

2
1

1 − γW
2
y −

(
c

1
1 − γy− γ

1 − γb
)
Wy +

1
2σ2

γ

1 − γ �b− cy�
2

+ γr+ max
u≥0

[
σ2

2
γ�1 − γ�u2 + γu�b− cy+ σ2Wy�

]
�

Denote

W̃�y� = 1
1 − γW�y� �̃ = 1

1 − γ��

Then

�̃ = σ2

2
W̃yy+

σ2

2
W̃2
y −

(
c

1
1 − γy−

γ

1 − γb
)
W̃y+

1
2σ2

γ

�1 − γ�2
�b− cy�2

+ γr

1 − γ + max
u≥0

[
σ2

2
γu2 + γ

1 − γu�b− cy+σ
2�1−γ�W̃y�

]
�

(6.3)

We further define

�6�4� ˜̃Wy = W̃y − αy− β
with

α = c

σ2

1
1 − γ − c

σ2

1√
1 − γ  β = − 1

σ2

γ

1 − γb�
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Note that �1 − γ�α = A with A as in (3.3). Then

�6�5�
�̃ = σ2

2
˜̃Wyy +

σ2

2
˜̃W

2

y −
c√

1 − γy
˜̃Wy +

(
σ2

2
α+ γr

1 − γ + 1
2σ2

b2 γ

1 − γ
)

+ max
u≥0

[
σ2

2
γu2 + γu�b− c 1√

1 − γy+ σ2 ˜̃Wy�
]
�

Comparing with (5.1), we can apply the same argument as in Section 5 to ob-
tain a solution �̃ ˜̃W for (6.5) [hence a solution �W for (6.2) through relations
(6.3) and (6.4)] with the following estimates:

1. ˜̃W is convex;
2. ˜̃W− �1/2σ2��c/√1 − γ�y2 is concave;

3. ˜̃Wy ≥ 0 for all y;

4. ˜̃Wy�y� ≤ c1 for all y ≤ 0 for some c1.

The results for W�y� are summarized in the following theorem.

Theorem 6.2. Equation (6.2) has a solution �W with W�0� = 0. This
solution satisfies the following properties:

(i) W�y� − 1
2Ay

2 is convex;

(ii) W�y� − �c/2σ2�y2 is concave;
(iii) Wy�y� −Ay ≥ B for all y [see (3.3) for B];
(iv) Wy�y� −Ay ≤ c1 for all y ≤ 0 for some c1.

Given a solution �W of (6.2) in Theorem 6.2, we define u∗�y� to be the
arg min	· · ·� in the right-hand side of (6.2). That is,

u∗�y� =




0 if b− cy+ σ2Wy�y� < 0

1
σ2

1
1 − γ �b− cy+ σ2Wy�y�� if b− cy+ σ2Wy�y� ≥ 0�

Theorem 6.2(ii) implies that σ2Wy�y�−cy+b is a nonincreasing function. The
argument after (5.2) can be applied to

σ2 ˜̃Wy −
c√

1 − γy+ b = 1
1 − γ 	σ

2Wy�y� − cy+ b�

and shows that there is y∗−∞ < y∗ <∞ such that{
y� σ2Wy�y� − cy+ b ≥ 0

} = �−∞ y∗��
Therefore,

�6�6� u∗�y� =




0 if y > y∗

1
σ2

1
1 − γ �b− cy+ σ2Wy�y�� if y ≤ y∗�
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We shall prove that � is the optimal growth rate. However, u∗�·� is an
optimal control policy only when 0 > γ > −3. As in Section 5, we admit only
those ut as a control policy which arise via

ut = u�t yt�
with u�t yt� being locally Lipschitz and satisfying, for suitable α1 α2,

0 ≤ u�t y� < α1�y� + α2

for all t and y.

Theorem 6.3 (Verification theorem). Let �W be the solution given in The-
orem 6.2 and u∗ be defined in (6.6). Then the following hold.

(a) For every admissible control process ut,

� ≤ lim inf
T→∞

1
T

logEy exp
∫ T

0
l�yt ut�dt�

(b) Let 0 > γ > −3. If u∗
t = u∗�y∗

t �, then

� = lim
T→∞

1
T

logEy exp
∫ T

0
l�y∗

t  u
∗
t �dt�

(c) Let γ ≤ −3. Then there are u�n��y� such that

� = lim
n→∞ lim

T→∞
1
T

logEy exp
∫ T

0
l�y�n�

t  u
�n��y�n�

t �dt�

Here u�n��y� can be chosen as in Theorem 6.1(c) by using u∗�y�.

Proof. The argument is similar to that in Theorem 5.1. We give only a
sketch.

Let

H∗�y� = γr+ min
u≥0

[
−a

2
u2 + γu�b− cy+ σ2Wy�y��

]


h∗�yu� = γr−
a

2
u2 + γu�b− cy+ σ2Wy�y�� −H∗�y��

As in (5.8), we have

�6�7�
Ey exp

∫ T
0
l�yt ut�dt

= exp��T�ψ�y�Ẽy
[

exp ζT exp
∫ T

0
h∗�yt ut�dtψ−1�yT�

]


See the notation there.
By (6.1) with U = 	0∞� and the fact that the min is 0 when y ≥ y∗, then

using the argument after (5.5) we can show

�6�8� Wy�y�
y

→ 0 as y→ ∞�
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On the other hand, Theorem 6.2(iii) and 6.2(iv) imply

�6�9� Wy�y�
y

→ A as y→ −∞�

Equation (6.8) implies that for any δ > 0 there is b such that

�W�y�� ≤ δy2 + b y ≥ 0�

Then (6.9) implies that for any a1 a2 > 0 with −2a1 < �1 − γ�α < −2a2
there are b1 b2 such that

−a1y
2 + b1 ≤W�y� ≤ −a2y

2 + b2 for all y < 0�

Therefore,

ψ−1�y� = exp�−W�y�� ≥ c1 exp�−δ�y�2� for all y

for some c1 > 0.
We use Hölder’s inequality with p−1 + q−1 = 1 and p sufficiently large,

Ẽyψ
−1/p�yT� ≤

(
Ẽy

[
exp ζT exp

∫ T
0
h∗�yt ut�dtψ−1�yT�

])1/p

×
(
Ẽy

[
exp−q

p
ζT exp−q

p

∫ T
0
h∗�yt ut�dt

])1/q

�

Similar to h∗�yu� in the proof of Theorem 5.1, we have

h∗�yu� ≥ −a
2
�u− u∗�y��2 = −σ

2γ�1 − γ�
2

�u− u∗�2�

Then

Ẽy

[
exp−q

p
ζT exp−q

p

∫ T
0
h∗�yt ut�dt

]
≤ 1

by using

Ẽy

[
exp

∫ T
0

−q
p
γσ�ut − u∗

t �dw̃t −
1
2
q2

p2
γ2σ2�ut − u∗

t �2 dt

]
≤ 1

and

1
2
γ2σ2

(
q

p
+ q2

p2

)
− σ

2γ�1 − γ�
2

q

p
≤ 0

when qp−1 is small enough. On the other hand, by the argument at the end
of the proof, Ẽyψ−1/p�yT� converges as T tends to ∞. Then (a) follows from
these.

To prove (b), using the relations (6.7) for ut = u∗
t = u∗�y∗

t �, yt = y∗
t , we have

�6�10� Ey exp
∫ T

0
l�y∗

t  u
∗
t �dt = exp��T�ψ�y�Eyψ−1�y∗

T��
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We will show that y∗
t has the invariant measure µ∗�·� and Eyψ−1�yT� con-

verges to
∫
ψ−1�y�dµ∗�y�. Thus (b) follows.

The drift for the diffusion y∗
t is given by

b∗�y� = −cy+ γσ2u∗�y� + σ2Wy�y��

If y ≥ y∗, then

�6�11�
b∗�y� = −cy+ σ2Wy�y�
b∗�y�
y

→ −c as y→ ∞

by (6.8). If y < y∗, then

�6�12�
b∗�y� = 1

1 − γ �σ
2Wy�y� − cy� +

γ

1 − γb

b∗�y�
y

→ − c√
1 − γ as y→ −∞

by (6.9).
From (6.11) and (6.12), the process y∗

t is ergodic and has unique invariant
measure µ∗�·�. Let θ be a number satisfying

θ <
c√

1 − γ
1
σ2
�

Then by Itô’s rule applied to the function f�y� = exp θy2 and using the proper-
ties (6.11) and (6.12), we can show thatEyf�y∗

T� is bounded inT and converges
to

∫
f�y�dµ∗�y�. The same holds for Eyψ−1�y∗

T�.
The statement (c) can be proved as Theorem 6.1(c) by using the properties

(6.8) and (6.9) and the results in Theorem 6.2. We omit the details. ✷

Remark 6.4. As γ→ −∞, one is concerned with totally risk-averse limits.
Let us consider the unconstrained case U = �−∞∞� and write ��γ� = γ−1�,
u∗ = u∗�γ�. By (3.3)(c) and (3.4), as γ→ −∞,

��γ� → r+ b2

2σ2
 u∗�γ� → b

σ2
�

A direct calculation shows that the constant control ū = σ−2b gives the growth
rate γ�r + �2σ2�−1b2� for the expected utility of wealth in (2.5). Thus, ū is
approximately optimal for γ < 0, �γ� large. This is a different result from the
Merton model, for which the optimal fraction u∗�γ�

m of wealth in the risky asset
tends to 0 as γ→ −∞.
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7. Limit as � → 0. Let �W�y� u∗�y� be defined either in Sections 3, 4 or
5. It is convenient to introduce the following notations. To indicate dependence
on γ, we write � = �̃�γ�, W = W̃�γ�, u∗ = u∗�γ� and l = l̃�γ�. Moreover, let

�̃�γ� = γ��γ�

W̃�γ��y� = γW�γ��y�
l̃�γ��yu� = γl�γ��yu��

We consider the limiting behavior of ��γ�W�γ� and u∗�γ� as γ→ 0.
For the unconstrained case, by (3.3)(c),

��γ� → ��0� = c

4
+ r+ b2

2σ2


W�γ��y� →W�y��0� = c

4σ2
y2 − b

σ2
y

u∗�γ��y� → u∗�0��y� = b− cy
σ2

as γ → 0 with γ > 0. Similar result holds for γ → 0, γ < 0. We see that
��0� u∗�0��y� are the optimal growth rate and optimal investment policy for
the investment problem with log utility function. Moreover,

��0� = σ2

2
W

�0�
yy − cyW�0�

y + r+ 1
2σ2

�b− cy�2�

We remark that it is easy to get the optimal policy directly for the investment
problem with log utility function. In this case, the control ut disappears from
(2.9) and in (2.10) l�yu� is replaced by

l�0��yu� = −σ
2

2
u2 + �b− cy�u+ r

optimal policy is to take arg maxu of l�0��yu�, which gives u∗�0��y� (if there
are investment control constraints, we take arg maxu∈U).

This result also holds for the cases with other constraints. However, the
proof will require more argument. For example, (5.2)(c) or Theorem 6.1 says
that in general �W�γ�

y �y�� is bounded by �γ�−1. This is not good when γ→ 0. We
expect a bound independent of γ. See (7.7) below which provides an interesting
bound for W�γ�

y �y�. In the following, we shall consider only the case with no
short-selling constraint studied in Section 5 and Section 6 [U = 	0∞�].

Denote

F�v� = max
u≥0

[
−σ

2

2
u2 + uv

]
�

Then

F�v� =



1
2σ2

v2 if v > 0

0 if v ≤ 0�
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By (5.1) and (6.2), the following equation holds for all γ:

�7�1�
��γ� = σ2

2
W

�γ�
yy + σ

2

2
γ�W�γ�

y �2 − cyW�γ�
y

+ r+ �1 − γ�F
(

1
1 − γ �b− cy+ σ2γW

�γ�
y �

)
�

In the rest we shall assume 0 < γ < 1 . The argument for γ < 0 is similar.
To see that ��γ� → ��0�, first by Jensen’s inequality,

1
γ

logEy exp
∫ T

0
l�yt ut�dt ≥

1
γ
Ey

∫ T
0
l�yt ut�dt = Ey

∫ T
0
l�γ��yt ut�dt

holds for any T and admissible control u, process yt in (2.9). Since

l�γ��yu� ≥ l�0��yu�
we have ��γ� ≥ ��0�. On the other hand, with ut = u∗

t = u∗�y∗
t �, u∗ as in (5.3),

we have the expansion

1
γ

logEy exp
∫ T

0
l�y∗

t  u
∗
t �dt

=
∫ T

0
l�γ��y∗

t  u
∗
t �dt+ γ vary

(∫ T
0
l�γ��y∗

t  u
∗
t �dt

)
+ · · · �

Here vary�· · ·� denote the variance of a random variable with respect to Py.

The last term should be negligible if a bound for W�γ�
y such as (7.7) is known.

Since ��γ� is the limit of the left-hand side divided by T as T→ ∞, this would
imply

lim sup
γ→0

��γ� ≤ ��0��

Then

lim
γ→0

��γ� = ��0��

In the following, we shall give more details of the analysis. We can obtain the
finer asymptotics for ��γ� and also prove the convergence of W�γ�.

By dividing (4.1) by γ and using (3.3)(c), we have

�7�2� r ≤ ��γ� ≤ c

2γ
�1 − �1 − γ�1/2� + r+ b2

2σ2
�

Then use (5.2), F ≥ 0 and (7.1) to get

�7�3� �W�γ�
y �y�� ≤ c1

1
y
 y > 0

for some c1 > 0.
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To estimate W�γ�
y for y < 0, we use W�γ�

yy ≥ 0 [see (5.2)(c)], F ≥ 0 and (7.1)
to get

σ2

2
W

�γ�
yy − cyW�γ�

y ≤ c2

c2 = �c/2γ��1 − �1 − γ�1/2� + r + �b2/2σ2�. We integrate this equation from y
to ∞,

−W�γ�
y �y� exp

(
− c

σ2
y2

)
≤ c2

∫ ∞

y
exp

(
− c

σ2
x2

)
dx ≤ c3

with c3 = c2σ
√
π/c. Together with (5.2)(a), we have

�7�4� �W�γ�
y �y�� ≤ c3 exp

(
c

σ2
y2

)

for all y.
We need to improve the estimate in (7.4). We consider �̃�γ� W̃�γ��y� instead

of ��γ�W�γ��y�. Denote

V�γ��y� = �1 − γ�F
(

1
1 − γ �b− cy+ σ2W̃

�γ�
y �

)
+ r− ��γ��

Then

�7�5�
σ2

2
W̃

�γ�
yy + σ

2

2
�W̃�γ�

y �2 − cyW̃�γ�
y + γV�γ��y� = 0

σ2

2

(
W̃

�γ�
y �y� − c

σ2
y

)2

= c2

2σ2
y2 − σ

2

2
W̃

�γ�
yy − γV�γ��y��

By (5.2),

�V�γ��y�� ≤ c1�1 + �y�2� 0 ≤ W̃�γ�
yy ≤ c

σ2

for some c1. Let γ be small and y < 0, �y� be large enough. Here (7.5) implies

�7�6�

σ√
2

(
W̃

�γ�
y �y� − c

σ2
y

)

= ±1√
2

c

σ
y

(
1 + 2σ2

c2y2

(
−σ

2

2
W̃

�γ�
yy �y� − γV�γ��y�

))1/2

�

We cannot have a + sign in (7.6). Otherwise,

σ√
2
W̃

�γ�
y �y� =

√
2
c

σ
y+ γ O��y�� +O

(
1
�y�

)
�
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Then W
�γ�
y �y� = γ−1W̃

�γ�
y �y� cannot be bounded in γ as γ → 0. See (7.4).

Therefore,

σ√
2

(
W̃

�γ�
y �y� − c

σ2
y

)

= −1√
2

c

σ
y

(
1 − 2σ2

c2y2

(
−σ

2

2
W̃

�γ�
yy �y� − γV�γ��y�

))1/2

= −1√
2

c

σ
y+ W̃�γ�

yy

[
σ3

2
√

2c

1
y
+O

(
1

�y�3
)
+ γ O

(
1
�y�

)]
+O�γ�y���

The last step is by expansion,

�1 + α�1/2 = 1 + 1
2α+O�α2�

with

α = − 2σ2

c2y2

(
−σ

2

2
W̃

�γ�
yy �y� − γV�γ��y�

)
�

Then we can write

W̃
�γ�
yy �y� − f�γ��y�W̃�γ�

y �y� = g�γ��y�
where

f�γ��y� = 2
c

σ2
y

[
1 +O

(
1
y2

)
+O�γ�

]
 g�γ��y� = O�γy2��

By integrating this equation from −∞ to y < 0, we have

W̃
�γ�
y �y� exp�−h�γ��y�� = γ O

(∫ y
−∞
x2 exp�−h�γ��x��dx

)
�

Here �d/dy�h�γ��y� = f�γ��y�,

h�γ��y� = c

σ2
y2

(
1 +O

(
1
�y�

)
+O�γ�

)
�

From this, (7.3) and (7.4), we can deduce

�W̃�γ�
y �y�� ≤ c1γ�1 + �y��

for some c1 > 0. This is equivalent to

�7�7� �W�γ�
y �y�� ≤ c1�1 + �y�� for all y�

This is an improvement of the estimate in (7.4) that we need. These estimates
imply the following result.
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Theorem 7.1. Consider the case with no short-selling constraint studied in
Section 5. Then

��γ� → ��0� W�γ��y� →W�0��y�
uniformly for y in compact sets as γ→ 0. We have the equation

�7�8� ��0� = σ2

2
W

�0�
yy − cyW�0�

y + r+F�b− cy��

��0� is the long term optimal growth rate for the investment problem with log
utility function. Moreover,

�7�9��a� 0 ≤W�0�
yy 

�7�9��b� 0 ≤ −W�0�
y �y� ≤ c1�1 + �y�� for all y

0 ≤ −W�0�
y �y� ≤ c1

1
y

if y > 0�

As γ→ 0, we have the expansion

�7�10�

��γ� = r+
√
c

π

1
σ

∫ ∞

−∞
F�b− cy� exp

(
− c

σ2
y2

)
dy

+ γ
(
σ2

2

√
c

π

1
σ

∫ ∞

−∞
�W�0�

y �y��2 exp
(
− c

σ2
y2

)
dy

+
√
c

π

1
σ

∫ ∞

−∞
�−F�b− cy� +F′�b− cy�

× �b− cy+ σ2W
�0�
y �y��� exp

(
− c

σ2
y2

)
dy

)
+ o�γ�

Proof. By (7.2), (7.3) and (7.7), ��γ�W�γ� converges through a subse-
quence to ��0�W�0�. It is clear that (7.8) holds.

Integrating (7.8) from −∞ to ∞,

��0� = r+
√
c√
πσ

∫ ∞

−∞
F�b− cy� exp

(
− c

σ2
y2

)
dy�

Then integrate (7.8) again to get

−σ
2

2
W

�0�
y �y� exp

(
− c

σ2
y2

)
= ���0� − r�

∫ ∞

y
exp

(
− c

σ2
x2

)
dx

−
∫ ∞

y
F�b− cx� exp

(
− c

σ2
x2

)
dx�

Therefore, ��0�W�0� are uniquely determined from (7.8) and (7.9). This also
shows the convergence of ��γ�W�γ� as γ→ 0.

We know (7.8) is the same as (2.14) for U = 	0∞�, which is the dynamic
programming equation for the investment problem with log utility function.
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A verification theorem (similar to Theorem 3.1) shows that �0 is the optimal
growth rate for this investment problem.

Properties in (7.9) are consequences of (5.2), (7.3) and (7.7).
We now prove (7.10). By integrating (7.1) from −∞ to ∞,

��γ� = r+
√
c√
πσ

∫ ∞

−∞
σ2

2
γ�W�γ�

y �y��2 exp
(
− c

σ2
y2

)
dy

+
√
c√
πσ

∫ ∞

−∞
�1 − γ�F

(
1

1 − γ �b− cy+ σ2γW
�γ�
y �y��

)
exp

(
− c

σ2
y2

)
dy�

Equation (7.10) follows from the expansion of this at γ = 0. This completes
the proof. ✷

APPENDIX

In this Appendix, we add a few remarks about the behavior of W and � for
the case considered in Section 5. These are stated in the following.

Theorem A.1. Assume 0 < γ < 1 U = 	0∞�. Then we have � ≥ γ�r +
�2σ2�−1b2� if b > 0. In general, we have � > γr. Moreover, we have the following
upper bound for �:

(a) If b ≤ 0, then � ≤ γr+ c/2.
(b) If b > 0, then � ≤ γr+ �c/2� + �γb2/2σ2�.

Theorem A.2. Assume 0 < γ < 1, U = 	0∞�. When y→ ∞,

W�y� = −�− γr
c

lny+O�1��

Proof of Theorem A.1. We first derive the upper bound for � in (a) and
(b). Note that (b) follows from the fact that (3.3)(c) gives an upper bound for
� for any b, in particular for b > 0. We now assume that b ≤ 0 and prove (a).

Let u• be an admissible control process in Theorem 5.1, yt be the process
defined by (2.9). Then by Itô’s differential rule,

dy2
t = �−2cy2

t + 2γσ2utyt + σ2�dt+ 2σyt dwt�

Then

−γc
∫ T

0
utyt dt =

c

2σ2

[
−y2

T + y2
0 + σ2T− 2c

∫ T
0
y2
t dt+ 2σ

∫ T
0
yt dwt

]


∫ T
0
l�yt ut�dt =

c

2σ2
	−y2

T + y2
0� +

(
γr+ c

2

)
T

+
∫ T

0

(
−a

2
u2
t −

c2

2σ2
y2
t + γbut

)
dt

+ c

σ

∫ T
0
yt dwt −

c2

2σ2

∫ T
0
y2
t dt
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E exp
∫ T

0
l�yt ut�dt = Ê

[
exp

(
c

2σ2
	−y2

T + y2
0� +

(
γr+ c

2

)
T

+
∫ T

0

(
−a

2
u2
t −

c2

2σ2
y2
t + γbut

)
dt

)]
�

Here Ê	· · ·� is the expectation with respect to the probability measure P̂ under
which

dyt = γσ2ut dt+ σ dŵt

ŵt is a Brownian motion. We change the probability measure by applying the
Girsanov theorem. Since b ≤ 0, the term

∫ T
0 �· · ·�dt on the right-hand side is

negative, the last expectation has an upper bound

exp
(
γr+ c

2

)
T exp

c

2σ2
y2

0�

From this,

� ≤ γr+ c

2

as asserted.
If b > 0, then � ≥ γ�r + �2σ2�−1b2� by Remark 6.4. In the rest, we prove

� > γr holds in general. For this, we choose a particular u = u�y� as follows.
Let

u�y� =


γ

a
�b− cy� if b− cy ≥ 0

0 otherwise�

Denote

b̂�y� = −cy+ γσ2u�y� l̂�y� = l�yu�y���

That is,

b̂�y� =


− c

1 − γy+ γ

1 − γb if b− cy ≥ 0

−cy if b− cy < 0

l̂�y� =



γr+ γ2

2a
�b− cy�2 if b− cy ≥ 0

γr if b− cy < 0�

We denote ŷt the diffusion satisfying the equation

dŷt = b̂�ŷt�dt+ σ dwt�
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Then ŷt is ergodic with the invariant density p̂�·�,

p̂�y� =




α1 exp
(
− c

σ2

1
1 − γy

2 + 2b
σ2

γ

1 − γy
)
 if b− cy ≥ 0

α2 exp
(
− c

σ2
y2

)
 if b− cy < 0

where α1 α2 are chosen such that p̂�·� is a continuous function and satisfies∫∞
−∞ p̂�y�dy = 1. That is, α1 α2 satisfy the relation

α2 = α1 exp
b2

cσ2

γ

1 − γ 

1 = α1

∫ b/c
−∞

exp
(
− c

σ2

1
1 − γy

2 + 2b
σ2

γ

1 − γy
)
dy+ α2

∫ ∞

b/c
exp

(
− c

σ2
y2

)
dy

which determine α1 α2 uniquely.
By Jensen’s inequality,

E exp
∫ T

0
l̂�ŷt�dt ≥ exp

(
E

∫ T
0
l̂�ŷt�dt

)
�

By the ergodic theorem,

lim
T→∞

1
T
E

∫ T
0
l̂�ŷt�dt =

∫ ∞

−∞
l̂�y�p̂�y�dy

= γr+
∫ b/c
−∞

γ2

2a
�b− cy�2p̂�y�dy�

From Theorem 5.1(a),

�A�1� � ≥ lim sup
T→∞

1
T
E

∫ T
0
l̂�ŷt�dt = γr+

∫ b/c
−∞

γ2

2a
�b− cy�2p̂�y�dy�

This implies � > γr. ✷

We remark that, although (A.1) provides a lower bound for �, this is smaller
compared with the upper bound in Theorem A.1(a) and (b). We are not sure
which gives a better estimate for �.

Proof of Theorem A.2. By (5.1), for some c1 > 0, we have

y�Wy�y�� ≤ c1 if y ≥ 0�

Therefore,

�− γr = σ2

2
Wyy − cyWy +

σ2

2
W2
y

= σ2

2
Wyy − cyWy +O

(
1
y2

)
�



OPTIMAL LONG TERM GROWTH RATE 903

We integrate this relation to get

−Wy�y� exp
(
− c

σ2
y2

)
= 2

�− γr
σ2

∫ ∞

y
x exp

(
− c

σ2
x2

)
dx

+O
(∫ ∞

y

1
x2

exp
(
− c

σ2
x2

)
dx

)

for y > 0. From this,

Wy�y� = −1
c
��− γr� 1

y
+O

(
1
y2

)


then

W�y� = −1
c
��− γr� lny+O�1�

as y→ ∞. This completes the proof. ✷
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