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HOW MISLEADING CAN SAMPLE ACFs OF STABLE
MAs BE? (VERY!)1

By Sidney Resnick,2 Gennady Samorodnitsky2 and Fang Xue

Cornell University

For the stable moving average process

Xt =
∫ ∞

−∞
f�t+ x�M�dx�� t = 1�2� � � � �

we find the weak limit of its sample autocorrelation function as the sample
size n increases to ∞. It turns out that, as a rule, this limit is random! This
shows how dangerous it is to rely on sample correlation as a model fitting
tool in the heavy tailed case. We discuss for what functions f this limit is
nonrandom for all (or only some—this can be the case, too!) lags.

1. Introduction. The sample autocorrelation function (acf) of a station-
ary process �Xt�1≤t<∞ has played a central statistical role in traditional time
series analysis, where the assumption is made that the marginal distribu-
tion has a second moment [see, e.g., Brockwell and Davis (1991)]. However,
more and more data sets from fields like telecommunications, economics, in-
surance and finance exhibit infinite variance [see Duffy, McIntosh, Rosenstein
and Willinger (1993, 1994), Meier–Hellstern, Wirth, Yan and Hoeflin (1991),
Resnick (1997), Willinger, Taqqu, Sherman and Wilson (1997)]. It is therefore
natural to question whether the classical methods based on acf ’s are still ap-
plicable in heavy tailed modeling, where the corresponding version of the acf
is often defined by

ρ̂n�h� �= γ̂n�h�/γ̂n�0�� h = 0�1�2� � � �,(1.1)

and

γ̂n�h� �=
1
n

n∑
t=1

XtXt+h� h = 0�1�2� � � �(1.2)

are the sample covariance functions.
Continuing interest in the sample acf for the heavy tailed case seems to

be based on the relative success of the acf for analyzing data from an infinite
order moving average process [MA(∞)]. Consider the process

Xt =
∞∑

j=−∞
cjZt−j� t = 1�2� � � �,
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where �Zk� are iid random variables in the domain of attraction of an α-stable
law, 0 < α < 2. Davis and Resnick (1985) have shown under appropriate
summability conditions on the coefficients �cj� that for all h > 0,

ρ̂n�h� →P ρ�h�
where →P denotes convergence in probability and

ρ�h� =
∑∞

j=−∞ cjcj+h∑∞
j=−∞ c2

j

is a constant.
However, if for some heavy tailed processes, the sample acf loses this desir-

able feature of converging to a constant, the usual model fitting and diagnostic
tools such as the Akaike Information Criterion or Yule–Walker estimators will
be of questionable applicability. In this case, the mischief potential for mis-
specifying a model is great, and more care must be taken in using the sample
correlations for model fitting and estimation [see, e.g., Resnick (1998)].

Recent studies seem to indicate that processes with asymptotically degener-
ate sample acf [like MA(∞)] form a very limited class in the heavy tailed world.
For bilinear time series and some variations of MA(∞) [sum of two MA(∞)’s,
coefficient permutation with reset], it is shown that the finite-dimensional dis-
tributions of the sample acf as a function of the lag converge to a random limit
[Davis and Resnick (1996), Resnick and Van Den Berg (1998), Cohen, Resnick
and Samorodnitsky (1998)].

In order to understand what happens to sample correlations in heavy tailed
cases, it is natural to look at stationary α-stable processes, 0 < α < 2. This
class of processes can be viewed as a heavy tailed analog of Gaussian pro-
cesses, and its structure is relatively well understood. Cohen, Resnick and
Samorodnitsky (1998) conducted empirical studies on two examples of ergodic
symmetric α-stable �SαS� processes of the form

Xt =
∫
E
ft�x�M�dx�� t = 1�2� � � �,

where M is a SαS random measure on a space E with σ-finite control measure
m, ft ∈ Lα�E�m� for all t, and 0 < α < 2 [see Samorodnitsky and Taqqu
(1994)]. Simulation evidence was found in both cases that the limit of the
sample acf as the sample size n goes to ∞ is random .

This article focuses on the class of α-stable moving average processes

Xt =
∫ ∞

−∞
f�t+ x�M�dx�� t = 1�2� � � �,(1.3)

where f ∈ Lα�R1�, M is a SαS random measure on R
1 with Lebesgue control

measure, and 0 < α < 2. Moving average processes (and not only α-stable mov-
ing averages) are commonly used as models in a variety of situations (because
of their intuitively simple structure) and many of their mathematical prop-
erties are well understood. Furthermore, α-stable moving average processes
are representative of one of the two main known classes of mixing stationary
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symmetric α-stable processes [see, e.g., Rosiński (1998)]. Although one might
think this class is quite close to the MA(∞) class, that is not the case. We
will evaluate for these processes the weak limits of the sample acf ’s, using the
series representation of �Xt� and certain results on tetrahedral multilinear
forms provided by Samorodnitsky and Szulga (1989). Despite �Xt�’s kinship
with MA(∞), these limits are usually (with notable exceptions) random, thus
confirming the empirical results. The limits, of course, depend on the lag h
and the function f. Besides demonstrating how rarely sample correlations
converge to nonrandom limits in the heavy tailed case, our results actually
establish the limiting distribution of the former, which may potentially be
useful in statistical estimation procedures.

We remark that the α-stable moving average processes we are considering
can be naturally viewed as evenly spaced observations of a continuous time
process. Changing the frequency of the observations leads to a simple change
in the kernel f. Since our main interest is in understanding heavy tailed time
series, we do not consider in the present paper the possible limit theorems one
could obtain if it were possible to process a continuum of observations.

In Section 2, we give the series representation of the sample covariance
γ̂n�h� and write it as a sum of “diagonal” and “off-diagonal” parts; Section 3
finds the weak limit of the diagonal part under suitable normalization; Sec-
tion 4 shows that the off-diagonal part, when compared with the diagonal part,
can be neglected. In Section 5, we summarize our findings and discuss when
the weak limit of ρ̂n�h� is degenerate. Examples are used to demonstrate the
arbitrary limit behavior of acf ’s when different lags are studied. In particular,
we construct examples which show that the sample acf may be asymptotically
constant for some lags but asymptotically random for other lags. This empha-
sizes the point that the sample acf may have large sample behavior which is
quite arbitrary and very different from the finite variance or MA(∞) cases.

A simulation result is presented in Figure 1 for one particular stable moving
average process which can be written as sum of two MA(∞) processes. The
sample acf ’s of eight independent copies are drawn in the first eight plots
and overlaid in the last. For this process, the sample acf ’s appear to have
a degenerate limit for lags no bigger then 10, but randomness takes over
afterwards, as indicated by the fuzziness in the last plot. Evidence continues
to accumulate which casts doubt on the appropriateness of the acf as a tool
for model fitting and parameter estimation in heavy tailed models.

2. Decomposition of the series representation of covariance func-
tions. Let q�x� be any density function that is strictly positive on R

1. A
change of variable [Samorodnitsky and Taqqu (1994)] in (1.3) gives

�Xt� t = 1�2� � � �� =d

{∫ ∞

−∞
f�t+ x�q�x�−1/αM1�dx�� t = 1�2� � � �

}
(2.1)

(the equality is in the sense of finite-dimensional distributions), where M1 is a
symmetric α-stable random measure on R

1 whose control measure has density
q�x� with respect to the Lebesgue measure. Unlike M, M1 has a finite control
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Fig. 1. Stable moving average: sample correlation functions.
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measure, hence has the following series representation [Samorodnitsky and
Taqqu (1994)]:

{
M1�A��A ∈ �

} =d

{
C1/α
α

∞∑
i=1

εi 
−1/α
i 1�Vi ∈ A��A ∈ �

}
�

where � is the Borel σ-algebra on R
1,

Cα �=
(∫ ∞

−∞
x−α sinxdx

)−1

=



1 − α

 �2 − α� cos�πα/2� � if α �= 1�

2/π� if α = 1
(2.2)

is a constant, and

(2.3) �εj� are iid Rademacher random variables with

P�εi = 1� = P�εi = −1� = 1/2�
(2.4) � j� are arrival times of a Poisson process with unit rate on �0�∞�;
(2.5) �Vj� are iid random variables with the density q�x��
All of the above three sequences are independent.

We now write down the series representation of Xt. Define

St �= C1/α
α

∞∑
i=1

εi 
−1/α
i f�Vi + t�q�Vi�−1/α� t = 1�2� � � � �(2.6)

Then the series in (2.6) converges almost surely [Samorodnitsky and Taqqu
(1994)], and

�Xt� t ≥ 1� =d �St� t ≥ 1��
With γ̂n�h� defined by (1.2), we have, for all H ≥ 0,

{
nγ̂n�h�� h = 0�1� � � � �H

} =d

{ n∑
t=1

StSt+h� h = 0�1� � � � �H
}
�(2.7)

From (2.6), the following holds almost surely:
n∑
t=1

StSt+h =
n∑
t=1

(
C1/α
α

∞∑
i=1

(
εi 

−1/α
i f�Vi + t�q�Vi�−1/αSt+h

))

=
n∑
t=1

(
C1/α
α

∞∑
i=1

(
εi 

−1/α
i f�Vi + t�q�Vi�−1/αC1/α

α

×
(
εi 

−1/α
i f�Vi + t+ h�q�Vi�−1/α

+ ∑
j �=i

εj 
−1/α
j f�Vj + t+ h�q�Vj�−1/α

)))
(2.8)
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= C2/α
α

∞∑
i=1

 
−2/α
i

n∑
t=1

f�Vi + t�f�Vi + t+ h�q�Vi�−2/α

+C2/α
α

∞∑
i=1

∑
j �=i

εiεj 
−1/α
i  

−1/α
j

×
n∑
t=1

f�Vi+ t�f�Vj+ t+h�q�Vi�−1/αq�Vj�−1/α

=� Y′
n�h� +Y′′

n�h��
where

Y′
n�h� =

(
Cα

Cα/2

)2/α

C
2/α
α/2

∞∑
i=1

 
−2/α
i

n∑
t=1

f�Vi + t�f�Vi + t+ h�q�Vi�−2/α(2.9)

is the sum of the “diagonal” terms where i = j in the double sum
∑∞

i=1
∑∞

j=1
and Y′′

n�h� is the sum of the “off-diagonal” terms. We will see that both series
converge almost surely. As a matter of fact, for all H ≥ 0,{

Y′
n�h�� h = 0�1� � � � �H

}
=d

{(
Cα

Cα/2

)2/α ∫ ∞

−∞

n∑
t=1

f�t+ x�f�t+ h+ x�q�x�−2/α(2.10)

× M̃1�dx�� h = 0�1� � � � �H
}
�

where M̃1 is a positive strictly α/2-stable random measure on R
1, whose con-

trol measure has density q�x� with respect to Lebesgue measure [Samorodnit-
sky and Taqqu (1994)]. Being the series representation of the stable integrals
in (2.10), the series of the diagonal terms (2.9) converges almost surely to
Y′

n�h�. So the series of the off-diagonal terms also converges almost surely.
But a Rademacher series converges unconditionally whenever it converges
almost surely [Samorodnitsky and Szulga (1989)]. Hence the convergence to
Y′′

n�h� is unconditional. This will enable us to rewrite this sum with an arbi-
trary deterministic change of order.

With (2.7), (2.8) and a change of variable in (2.10), we have the following.

Proposition 2.1. For any H ≥ 0 and any n > 0,(
nγ̂n�h�� h = 0�1� � � � �H

) =d

(
Y′

n�h� +Y′′
n�h�� h = 0�1� � � � �H

)
�

with {
Y′

n�h�� h = 0�1� � � � �H
}

=d

{(
Cα

Cα/2

)2/α ∫ ∞

−∞

n∑
t=1

f�t+ x�f�t+ h+ x�M̃�dx�� h = 0�1� � � � �H
}
�

(2.11)
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and

Y′′
n�h� = Cα/2

α

∑
1<i� j<∞

i�=j

εiεj i
−1/α j

−1/α

×
n∑
t=1

f�t+Vi�f�t+ h+Vj�q�Vi�−1/αq�Vj�−1/α�

(2.12)

and where M̃ is a positive strictly stable random measure on R
1 with index α/2

and Lebesgue control measure, q�x� is any density function that is strictly posi-
tive on R

1, �εj�, � j� and �Vj� are independent sequences of random variables
defined by (2.3), (2.4) and (2.5), and the constant Cα is defined by (2.2).

Remark 2.1. Here we are only interested in the distributions of Y′
n�h� and

Y′′
n�h� and will not care about the dependence structure between them. As

we will see later, Y′′
n�h� is dominated asymptotically by Y′

n�h�, and Slutsky’s
theorem [see, e.g., Durrett (1996)] will be used to deduce the limit behavior of
γ̂n�h� based on the limit behavior of Y′

n�h�.

Remark 2.2. Although the density q�x� appears in (2.12), it is not involved
in (2.11). Thus the distribution of Y′

n�h� does not depend on q�x�, and it turns
out that neither does the distribution of Y′′

n�h�. This is because Y′′
n�h� has the

same distribution as the stable integral of f̃�x�y� on R
2 with respect to the

product measure M×M, if we let

f̃�x�y� =




n∑
t=1

f�t+ x�f�t+ h+ y�� if x �= y;

0� if x = y.

Note that, if desired, q could be chosen to depend on n.

3. The diagonal part. We begin with several lemmas used in the deriva-
tion of the weak limit of Y′

n when normalized by n−2/α.
First a notation: a�p� �= �a�p sign�a�.

Lemma 3.1. If 0 < β < 1, then for any real number a� b and c,∣∣�a+ b��β� − �a+ c��β�∣∣ ≤ 2
(�b�β + �c�β)�

Proof. If �a+ b��a+ c� ≥ 0, then the triangle inequality gives∣∣�a+ b��β� − �a+ c��β�∣∣ ≤ ∣∣�a+ b� − �a+ c�∣∣β ≤ (�b�β + �c�β)�
If �a+ b��a+ c� < 0, then either a�a+ b� ≤ 0 or a�a+ c� ≤ 0. Without loss

of generality, assume a�a+ b� ≤ 0, which means ab ≤ 0 and �a� ≤ �b�; thus∣∣�a+ b��β� − �a+ c��β�∣∣ = �a+ b�β + �a+ c�β
≤ �b�β + (�a�β + �c�β) ≤ 2�b�β + �c�β� ✷
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Lemma 3.2. If 0 < β < 1 and φ�x� ∈ Lβ�−∞�∞�, then

1
n

∫ ∞

−∞

∣∣∣∣
n∑
t=1

φ�t+ x�
∣∣∣∣
β

dx →
∫ 1

0

∣∣∣∣
∞∑

t=−∞
φ�t+ x�

∣∣∣∣
β

dx(3.1)

and

1
n

∫ ∞

−∞

( n∑
t=1

φ�t+ x�
)�β�

dx →
∫ 1

0

( ∞∑
t=−∞

φ�t+ x�
)�β�

dx�(3.2)

Proof. First note that φ�x� ∈ Lβ guarantees that all the above integrals
are finite. We will only prove (3.2) when n takes just even values. The odd case
can be treated exactly the same, and the proof of (3.1) is similar and actually
easier.

Let

An = 1
2n

∫ ∞

−∞

( 2n∑
t=1

φ�t+ x�
)�β�

dx�

Bn = 1
2n

∫ n

−n

( n−1∑
t=−n

φ�t+ x�
)�β�

dx�

Cn =
∫ 1

0

( n−1∑
t=−n

φ�t+ x�
)�β�

dx�

D =
∫ 1

0

( ∞∑
t=−∞

φ�t+ x�
)�β�

dx�

Since ∣∣∣∣
( n−1∑
t=−n

φ�t+ x�
)�β�∣∣∣∣ ≤

∞∑
t=−∞

�φ�t+ x��β

and ∫ 1

0

∞∑
t=−∞

∣∣φ�t+ x�∣∣β dx =
∫ ∞

−∞

∣∣φ�x�∣∣β dx < ∞�

from the dominated convergence theorem,

lim
n→∞Cn = D�(3.3)

Moreover,

An = 1
2n

∫ ∞

−∞

( n−1∑
t=−n

φ�t+ x�
)�β�

dx
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and

∣∣An −Bn

∣∣ = 1
2n

∣∣∣∣
∫
�x�>n

( n−1∑
t=−n

φ�t+ x�
)�β�

dx

∣∣∣∣
≤ 1

2n

∫
�x�>n

n−1∑
t=−n

�φ�t+ x��β dx

= 1
2n

( n−1∑
t=−n

∫ ∞

n+t
�φ�x��β dx+

n−1∑
t=−n

∫ t−n

−∞
�φ�x��β dx

)

= 1
2n

( 2n∑
t=1

∫ ∞

t−1
�φ�x��β dx+

2n∑
t=1

∫ −t

−∞
�φ�x��β dx

)

≤ 1
2n

2n∑
t=1

∫
�x�>t−1

�φ�x��β dx�

But this is the Cesaro mean of the sequence
∫
�x�>n �φ�x��β dx, which goes to

zero as n goes to ∞, so

lim
n→∞ �An −Bn� = 0�(3.4)

Next we estimate the distance between Bn and Cn,

�Bn −Cn� =
∣∣∣∣ 1
2n

n−1∑
j=−n

∫ j+1

j

( n−1∑
t=−n

φ�t+ x�
)�β�

dx−Cn

∣∣∣∣
= 1

2n

∣∣∣∣
n−1∑
j=−n

∫ 1

0

( n−1∑
t=−n

φ�t+ j+ x�
)�β�

dx− 2nCn

∣∣∣∣
= 1

2n

∣∣∣∣
n−1∑
j=−n

∫ 1

0

( n+j−1∑
t=−n+j

φ�t+ x�
)�β�

dx

−
n−1∑
j=−n

∫ 1

0

( n−1∑
t=−n

φ�t+ x�
)�β�

dx

∣∣∣∣
≤ 1

2n

n∑
j=−n

∫ 1

0

∣∣∣∣
( n+j−1∑
t=−n+j

φ�t+ x�
)�β�

−
( n−1∑
t=−n

φ�t+ x�
)�β�∣∣∣∣dx�

Applying Lemma 3.1, the above can be bounded by

1
n

n∑
j=1

∫ 1

0

(∣∣∣∣
n+j−1∑
t=n

φ�t+ x�
∣∣∣∣
β

+
∣∣∣∣
−n+j−1∑
t=−n

φ�t+ x�
∣∣∣∣
β)

dx

+ 1
n

−1∑
j=−n

∫ 1

0

(∣∣∣∣
−n−1∑

t=−n+j
φ�t+ x�

∣∣∣∣
β

+
∣∣∣∣
n−1∑

t=n+j
φ�t+ x�

∣∣∣∣
β)

dx
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≤ 1
n

n∑
j=1

∫ 1

0

(n+j−1∑
t=n

�φ�t+ x��β +
−n+j−1∑
t=−n

�φ�t+ x��β
)
dx

+ 1
n

−1∑
j=−n

∫ 1

0

( −n−1∑
t=−n+j

∣∣φ�t+ x�∣∣β +
n−1∑

t=n+j
�φ�t+ x��β

)
dx

≤ 1
n

n∑
j=1

∫ 1

0

( ∞∑
t=n

�φ�t+ x��β +
−n+j−1∑
t=−∞

�φ�t+ x��β
)
dx

+ 1
n

−1∑
j=−n

∫ 1

0

(−n−1∑
t=−∞

�φ�t+ x��β +
∞∑

t=n+j
�φ�t+ x��β

)
dx

=
∫ ∞

n
�φ�x��β dx+ 1

n

n∑
j=1

∫ −n+j

−∞
�φ�x��β dx+

∫ −n

−∞
�φ�x��β dx

+ 1
n

−1∑
j=−n

∫ ∞

n+j
�φ�x��β dx

=
∫
�x�>n

�φ�x��β dx+ 1
n

n−1∑
j=0

∫
�x�>j

�φ�x��β dx�

With the same reasoning as applied to (3.4),

lim
n→∞ �Bn −Cn� = 0�(3.5)

From (3.3), (3.4) and (3.5), An → D as n → ∞. ✷

Proposition 3.3. Suppose M̃ is a positive strictly stable random measure
on R

1 with index α/2 and Lebesgue control measure, and

γ̂�h� �=
(
Cα

Cα/2

)2/α ∫ 1

0

∞∑
t=−∞

f�t+ x�f�t+ x+ h�M̃�dx��(3.6)

Then for all H ≥ 0�{
n−2/αY′

n�h�� h = 0�1� � � � �H
} ⇒ �γ̂�h�� h = 0�1� � � � �H� as n → ∞�(3.7)

where ⇒ denotes weak convergence.

Proof. For any real θ0� θ1� � � � � θH, if we take φ�x� = f�x�∑H
h=0 f�x+h�θh

in Lemma 3.2, then (2.11) shows that both the scale parameter and skewness
parameter of the strictly α/2-stable random variable n−2/α∑H

h=0 θhY
′
n�h� con-

verge to the corresponding parameters of
∑H

h=0 θhγ̂�h�, which is also a strictly
α/2-stable random variable. So

n−2/α
H∑
h=0

θhY
′
n�h� ⇒

H∑
h=0

θhγ̂�h� as n → ∞�(3.8)
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Thus (3.7) follows from the Cramér–Wold device [see, e.g., Billingsley
(1995)]. ✷

4. The off-diagonal part. In this section, we need the following notation:

ln+ x �=
{

lnx� if x > 1�

0� otherwise�

Lemma 4.1 [Samorodnitsky and Szulga (1989), Proposition 5.1]. If

�εj�1≤j<∞ and � j�1≤j<∞

are independent sequences that are defined by (2.3) and (2.4), then:

(a) There exist constants m2, C and β < α, such that for any m ≥ m2 and
any identically distributed random variables Wij that are independent of �εj�
and � j�,

E
∣∣∣∣ ∑
m<i<j<∞

εiεj 
−1/α
i  

−1/α
j Wij1��Wij�α≤ij�

∣∣∣∣
α

≤ C
(
E
(�Wij�α�1 + ln+ �Wij��

))β
�

E
∣∣∣∣ ∑
m<i<j<∞

εiεj 
−1/α
i  

−1/α
j Wij1��Wij�α>ij�

∣∣∣∣
α

≤ CE
(�Wij�α�1 + ln2

+ �Wij��
)
�

(b) There exist constants m1, C and β < α, such that for any m ≥ m1 and
any identically distributed random variables Wj that are independent of �εj�
and � j�,

E
∣∣∣∣

∞∑
j=m+1

εj 
−1/α
j Wj1��Wj�α≤j�

∣∣∣∣
α

≤ C�E�Wj�α�β�

E
∣∣∣∣

∞∑
j=m+1

εj 
−1/α
j Wi1��Wj�α>j�

∣∣∣∣
α

≤ CE
(�Wj�α�1 + ln+ �Wj��

)
�

Lemma 4.2. Using the notation of Section 2, define

U
�n�
ij �= n−2/α

n∑
t=1

f�t+Vi�f�t+ h+Vj�q�Vi�−1/αq�Vj�−1/α�(4.1)

Then for all i �= j, E�U�n�
ij �α → 0, as n → ∞.

Proof.

E
∣∣U�n�

ij

∣∣α = n−2
∫ ∞

−∞

∫ ∞

−∞

∣∣∣∣
n∑
t=1

f�t+ x�f�t+ h+ y�
∣∣∣∣
α

dxdy�
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If α ≤ 1, then from the triangle inequality,

E
∣∣U�n�

ij

∣∣α ≤ n−2
∫ ∞

−∞

∫ ∞

−∞

n∑
t=1

�f�t+ x�f�t+ h+ y��α dxdy

= 1
n

(∫ ∞

−∞
�f�x��α dx

)2

→ 0�

If α > 1, then from the convexity of �x�α,

E
∣∣U�n�

ij

∣∣α = nα−2
∫ ∞

−∞

∫ ∞

−∞

∣∣∣∣ 1
n

n∑
t=1

f�t+ x�f�t+ h+ y�
∣∣∣∣
α

dxdy

≤ nα−2 1
n

n∑
t=1

∫ ∞

−∞

∫ ∞

−∞

∣∣f�t+ x�f�t+ h+ y�∣∣α dxdy
≤ nα−2

(∫ ∞

−∞
�f�x��α dx

)2

→ 0� ✷

We are now ready to prove that the off-diagonal part Y′′
n�h� does not grow

as fast as the diagonal part Y′
n�h�.

Proposition 4.3. For all h ≥ 0, n−2/αY′′
n�h� →P 0.

Proof. From (4.1), we write

n−2/αY′′
n�h� = C2/α

α

∑
1<i� j<∞

i�=j

εiεj 
−1/α
i  

−1/α
j U

�n�
ij

= C2/α
α

∑
1<i� j<∞

i�=j

Ũ
�n�
ij �

(4.2)

where

Ũ
�n�
ij �= εiεj 

−1/α
i  

−1/α
j U

�n�
ij �(4.3)

Due to symmetry and the unconditional convergence of the series in (4.2) (cf.
comments before Proposition 2.1), it is enough to show

∑
i<j Ũ

�n�
ij → 0. For m1

and m2 specified by Lemma 4.1, we can always assume m1 > m2. Since

∑
i<j

Ũ
�n�
ij =

m2∑
i=1

∞∑
j=i+1

Ũ
�n�
ij + ∑

m2<i<j<∞
Ũ

�n�
ij

=
m2∑
i=1

m1∑
j=i+1

Ũ
�n�
ij +

m2∑
i=1

∞∑
j=m1+1

Ũ
�n�
ij + ∑

m2<i<j<∞
Ũ

�n�
ij �

we need only prove:

(i) Ũ�n�
ij →P 0 for all i, j;

(ii)
∑∞

j=m1+1 Ũ
�n�
ij → 0 in Lα for all i;

(iii)
∑

m2<i<j<∞ Ũ
�n�
ij → 0 in Lα.
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From Lemma 4.2, U�n�
ij → 0 in Lα, thus in probability, so Ũ

�n�
ij → 0 in

probability, yielding (i).
To prove (ii), we observe that

∞∑
j=m1+1

Ũ
�n�
ij = εi 

−1/α
i

∞∑
j=m1+1

εj 
−1/α
j U

�n�
ij �

Because of Lemma 4.1, it will be enough to prove E�U�n�
ij �α�1+ ln+ �U�n�

ij �� → 0.

For (iii), Lemma 4.1 says that E�U�n�
ij �α�1 + lnk

+ �U�n�
ij �� → 0, k = 1�2 will

suffice.
With the help of Lemma 4.2, though, all of (i), (ii) and (iii) will follow if

ln+ �U�n�
ij � are uniformly bounded; that is, for any fixed h ≥ 0, the functions

B
�n�
h �x�y� �= n−2/α

n∑
t=1

f�t+ x�f�t+ h+ y�q�x�−1/αq�y�−1/α

are bounded uniformly in �x�y� ∈ R
2 and n ≥ 1.

Now recall that for each n the density q�x� can be chosen arbitrarily without
affecting the distribution of Y′′

n (cf. Remark 2.2). To suit our need, let q�x� =
Q�x�/ ∫∞

−∞Q�u�du with

Q�x� �= max
{
q0�x��

(n+h∑
t=1

f�x+ t�2
)α/2}

�

where q0�x� is any density that is strictly positive on �−∞�∞�. With this
choice, by the Cauchy–Schwarz inequality,

∣∣B�n�
h �x�y�∣∣ = n−2/α

∣∣∣∣
n∑
t=1

f�t+ x�f�t+ h+ y�
∣∣∣∣�Q�x�Q�y��−1/α

×
(∫ ∞

−∞
Q�u�du

)2/α

≤ n−2/α
( n∑
t=1

f�t+ x�2
n∑
t=1

f�t+ h+ y�2
)1/2

× (
Q�x�Q�y�)−1/α

(∫ ∞

−∞

(
q0�u� +

(n+h∑
t=1

f�u+ t�2
)α/2)

du

)2/α

≤ n−2/α(Q�x�2/αQ�y�2/α)1/2�Q�x�Q�y��−1/α

×
(

1 +
∫ ∞

−∞

n+h∑
t=1

�f�u+ t��α du
)2/α

= n−2/α
(

1 + �n+ h�
∫ ∞

−∞
�f�u��α du

)2/α

�

This only depends on n and has a finite limit and is thus uniformly bounded. ✷



810 S. RESNICK, G. SAMORODNITSKY AND F. XUE

5. Sample correlation functions. Proposition 4.3 and Proposition 3.3
have established the asymptotic dominance of the diagonal part over the off-
diagonal part. Together with Proposition 2.1, they yield the following theorem.

Theorem 5.1. Let Xt, γ̂n�h� and ρ̂n�h� be defined by (1.3), (1.2) and (1.1).
For all H ≥ 0,(

n1−2/αγ̂n�h�� h = 0�1� � � � �H
) ⇒ (

γ̂�h�� h = 0�1� � � � �H
)

and ρ̂n�h� ⇒ ρ̂�h�, as n → ∞, where γ̂�h� is defined by (3.6) and ρ̂�h� =
γ̂�h�/γ̂�0�.

What Theorem 5.1 indicates is that ρ̂n�h� usually has a random weak limit.
The following corollary specifies when this limit is nonrandom.

Corollary 5.2. For ρ̂n�h� to have a constant limit, it is necessary and
sufficient that there exists a constant ρ, such that

∑∞
t=−∞ f�x+ t�f�x+ t+h� =

ρ
∑∞

t=−∞ f�x+ t�2 almost everywhere in �0�1�. In this case, ρ̂n�h� →P ρ̂�h� = ρ.

Proof. Sufficiency follows from Theorem 5.1, using the definition (3.6).
Conversely, suppose the distribution of ρ̂�h� concentrates on one point ρ.

Then γ̂�h�/γ̂�0� = ρ and

0 = γ̂�h� − ργ̂�0�

=
(
Cα

Cα/2

)2/α ∫ 1

0

( ∞∑
t=−∞

f�x+ t�f�x+ t+ h� − ρ
∞∑

t=−∞
f�x+ t�2

)
M̃�dx��

But the right-hand side is a stable random variable, and it is zero only if its
scale parameter is zero [Samorodnitsky and Taqqu (1994), page 5]. Hence

0 =
∫ 1

0

∣∣∣∣
∞∑

t=−∞
f�x+ t�f�x+ t+ h� − ρ

∞∑
t=−∞

f�x+ t�2

∣∣∣∣
α/2

dx

and
∞∑

t=−∞
f�x+ t�f�x+ t+ h� = ρ

∞∑
t=−∞

f�x+ t�2 almost everywhere. ✷

Before we present some examples that illustrate Corollary 5.2, we define
for all f ∈ Lα�−∞�∞� the following periodic function:

gh�f�x� =
∞∑

t=−∞
f�x+ t�f�x+ t+ h��(5.1)

usually abbreviated as gh�x� when there is no ambiguity. With this notation,
what Corollary 5.2 says is that ρ̂n�h� has a nonrandom limit ρ if and only if
gh�x� = ρg0�x� almost everywhere.
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Example 5.1. Suppose f�x� = ∑∞
k=−∞ ck1�0�1��x−k�, with �ck� ∈ Lα�Z� =�

lα. In this case, gh�x� = ∑∞
t=−∞ ctct+h are constants, therefore ρ̂n�h� have

degenerate limits gh�x�/g0�x�. Actually, if we let Z−k = M��k� k + 1��, then
�Zk� are iid stable (thus with regularly varying tails) with index α and Xt =∑∞

k=−∞ ckZt−k is a traditional moving average process MA(∞) [see Davis and
Resnick (1985)].

Example 5.2. Set f�x� = ∑m
i=1

∑∞
k=−∞ c

�i�
k 1Ai

�x − k�, where �c�i�k � k ∈ Z� ∈
lα, i = 1�2� � � � �m, and A1�A2� � � � �Am are Borel sets with

⋃m
i=1 Ai = �0�1�,

Ai′ ∩Ai′′ = � if i′ �= i′′. This time gh�x� =
∑m

i=1
∑∞

k=−∞ c
�i�
k c

�i�
k+h1Ai

�x�, and

ρ̂n�h� ⇒
∫∞
−∞ gh�x�M̃�dx�∫∞
−∞ g0�x�M̃�dx� =

∑m
i=1 ξi

∑∞
k=−∞ c

�i�
k c

�i�
k+h∑m

i=1 ξi
∑∞

k=−∞�c�i�k �2
�

where ξ�i� = M̃�Ai� are positive strictly stable random variables with index
α/2. This limit is usually random unless

∑
c
�i�
k c

�i�
k+h/

∑�c�i�k �2 does not depend

on i. If we let Z�i�
−k = M�Ai + k�, then �Z�i�

k � are independent sequences of

iid stable random variables with index α, and Xt = ∑m
i=1

∑∞
k=−∞ c

�i�
k Z

�i�
t−k is

a sum of m independent moving average processes [see Cohen, Resnick and
Samorodnitsky (1998)].

Besides the MA(∞) process in Example 5.1, are there any other stable
moving average processes with the same property that the limits ρ̂�h� are
degenerate for all lags h? We will see from examples later that the answer
is yes. However, we have the following conditions which guarantee that the
process must be a finite order classical moving average.

Corollary 5.3. Suppose gh�f�x� is defined by (5.1), and:

(i) There exists q > 0 such that f�x� = 0 whenever x < 0 or x > q+ 1.
(ii) f�x� is continuous on �k� k+ 1� for all k ∈ Z.

(iii) g0�f�x� > 0 for all x ∈ �0�1�.
(iv) There exist constants ρh, h ≥ 0, such that ρ̂�h� = ρh almost surely.

Then there exist constants c0, c1� � � � � cq and a sequence of iid SαS random

variables �Zk�−∞<k<∞, such that Xt =
∑q

k=0 ckZt−k, t = 1�2� � � � �

Proof. Let g�x� = �g0�f�x��1/2. Then for any k ∈ Z, we have on �k� k+1�
that g�x� > 0 and is continuous, thanks to assumptions (i), (ii) and (iii). So
we can define on R\Z a function f̃�x� = f�x�/g�x�, which is also continuous
on �k� k+ 1� for all k ∈ Z, and satisfies for all x ∈ �0�1� and h ≥ 0,

q−h∑
t=0

f̃�x+ t�f̃�x+ t+ h� =
∞∑

t=−∞

f�x+ t�f�x+ t+ h�
g0�f�x�

= gh�f�x�
g0�f�x�

= ρh�(5.2)

where the infinite sum has actually only q+ 1−h nonzero terms, since f has
a compact support.
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We now proceed by introducing the following polynomials. Let

Fx�z� �=
q∑

k=0

f̃�x+ k�zk

and

H�z� �= zq +
q∑

k=1

ρk
(
zq−k + zq+k

)

= ρq + ρq−1z+ · · · + ρ1z
q−1 + zq + ρ1z

q+1 + ρ2z
q+2 + · · · + ρqz

2q�

(5.3)

By (5.2),

H�z� =
( q∑
k=0

f̃�x+ k�zq−k
)( q∑

k=0

f̃�x+ k�zk
)

= zqFx�z−1�Fx�z��
(5.4)

For each x ∈ �0�1�, there exist K ∈ C, r ∈ �0�1� � � � � q�, and bi ∈ C\�0�,
i = 1�2� � � � � r, such that

Fx�z� = Kzq−r
r∏
i=1

�z− bi��(5.5)

Substituting (5.5) into (5.4), we have

H�z� = zqK2
r∏
i=1

�z−1 − bi��z− bi�

= zq−r
(
K2

r∏
i=1

�−bi�
)( r∏

i=1

(
z− b−1

i

)�z− bi�
)
�

(5.6)

Comparing (5.3) with (5.6), we observe:

(a) r = max�h� ρh �= 0�0 ≤ h ≤ q� is completely determined by the ρ’s and
does not depend on x.

(b) b1, b−1
1 , b2, b−1

2 � � � � � br, b−1
r are all the nonzero roots of H�z�. So given

H�z�, there are at most 2r possible choices for the set �b1� b2� � � � � br� [the
number of choices can be less than 2r if H�z� has repeated nonzero roots].

(c) K2 ∏r
i=1�−bi� = ρr. So given �b1� b2� � � � � br�, there are at most two

choices for K.

To sum up, given H�z�, there are at most 2 ·2r polynomials Fx�z� that satisfy
(5.4). Consequently, for each k, f̃�x+k� can take at most 2 ·2r possible values.
Therefore, from the continuity assumption, for every fixed k, f̃�x+ k� has to
be a constant for all x ∈ �0�1�. Call this constant ck, and we have f�x+ k� =
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ckg�x� for all x ∈ �0�1�. If Z−k = ∫ k+1
k g�x�M�dx�, then �Zk� are iid and

Xt =
∫ ∞

−∞
f�x+ t�M�dx� =

∞∑
k=−∞

ck+t
∫ k+1

k
g�x�M�dx� =

q∑
k=0

ckZt−k�

since ck = 0 when k < 0 or k > q. ✷

The following examples indicate that assumptions (ii) and (iii) are necessary
in Corollary 5.3.

Example 5.3. In the setting of Example 5.2, let m = 2, A1 = �0�1/2�,
A2 = �1/2�1�, and

c′k = c′′k = 0� if k < 0 or k > 2,

c′0 = 2� c′1 = 9� c′2 = 4�

c′′0 = 1� c′′1 = 6� c′′2 = 8�

where c′k denotes c
�1�
k and c′′k denotes c

�2�
k for every k ∈ Z. In this case, (ii)

of Corollary 5.3 fails. But since g0�x� = 101, g1�x� = 54, g2�x� = 8 are all
constants and gk�x� = 0 if k < 0 or k > 2, ρ̂�h� is nonrandom for all h.
However, this process is not a classical finite moving average.

Example 5.4. The process of Example 5.3 has, up to a multiplicative con-
stant, another representation. In the notation of that example, let

f�x� =
{
c′�x��x�� if �x� ≤ 0�

c′′�x��x�� if �x� > 0�

where �x� �= max�Z ∩ �0� x��, �x� �= x − �x� − 1/2, and c′k and c′′k are defined
in Example 5.3. Here f is continuous on �k� k + 1� for all k ∈ Z, but (iii) of
Corollary 5.3 fails as gh�f�1/2� = 0.

The next example shows that without assumption (i) in Corollary 5.3, as-
sumptions (ii), (iii) and (iv) are not enough to guarantee that the process is a
classical moving average of finite or infinite order.

Example 5.5. Let φ� �0�1� �→ �0�1� be any continuous function. For all
x ∈ �0�1�, the function Fx�z� �= exp�φ�x��z−z−1�� is analytic on �z� 0 < �z� <
∞�, thus has Laurent expansion [see, e.g., Ahlfors (1979)],

Fx�z� =
∞∑

k=−∞
ak�x�zk�(5.7)

where

ak�x� =
1

2πi

∫
�z�=1

Fx�z�
zk

dz =




∞∑
j=0

�−1�jφ�x�2j+k

j!�j+ k�! � if k ≥ 0;

�−1�ka�k��x�� if k < 0.
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Let f�x+k� = ak�x� for all x ∈ �0�1� and k ∈ Z. Then f�x� satisfies (ii) and
(iii) of Corollary 5.3, and is in Lα�R�, since

∫ ∞

−∞
�f�x��α dx =

∞∑
k=−∞

∫ 1

0
�ak�x��α dx

≤
∞∑

k=−∞

∫ 1

0

( ∞∑
j=0

φ�x�2j+�k�

j!�j+ �k��!
)α

dx

≤
∞∑

k=−∞

( ∞∑
j=0

1
j!�j+ �k��!

)α

< ∞�

Moreover, for all x ∈ �0�1�, the Laurent series Fx�z−1� = ∑∞
k=−∞ ak�x�z−k

and (5.7) both converge absolutely on �z� 0 < �z� < ∞�, so

1 = Fx�z−1�Fx�z�

=
( ∞∑
k=−∞

ak�x�z−k
)( ∞∑

k=−∞
ak�x�zk

)

=
∞∑

h=−∞

∞∑
k=−∞

ak�x�ak+h�x�zh

=
∞∑

h=−∞

∞∑
k=−∞

f�x+ k�f�x+ k+ h�zh

=
∞∑

h=−∞
gh�f�x�zh�

From the uniqueness of the Laurent series of the constant function 1, we have
g0�f�x� = 1 and gh�f�x� = 0 for all h > 0. So ρ̂�0� = 1 almost surely, and for
all h > 0, ρ̂�h� = 0 almost surely. However, �Xt� is rarely a classical moving
average process [not, e.g., if φ�x� = x, since the spectral measure of �X1�X2�
is not discrete].

Remark 5.1. This example shows that one classical method of testing
whether data comes from an iid model, namely testing if ρ̂�h� ≈ 0, h > 0,
is extremely unreliable. The process in Example 5.5 is far from iid.

Our final result considers special cases of Example 5.2. It is significant
because it shows the variety of the asymptotic behavior of acf ’s, which seri-
ously questions the viability of the sample correlation function as an appro-
priate tool for statistical estimation or model fitting of heavy tailed time series
models.

Proposition 5.4. Under the setting of Example 5.2 with m = 2, let N be
the set of positive integers and A, B subsets of N. If A and B satisfy any one
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of the following three conditions, then we can choose c′k and c′′k, such that ρ̂�h�
is degenerate when h ∈ A and random when h ∈ B:

(i) A = �H�H+ 1� � � ���B = N\A�H ∈ N.
(ii) B = �H�H+ 1� � � ���A = N\B�H ∈ N.

(iii) A, B are finite and A ∩B = �.

Proof. As we have seen in Example 5.2, ρ̂�h� is degenerate if and only if∑∞
k=−∞ c′kc

′
k+h∑∞

k=−∞ c′k
2 =

∑∞
k=−∞ c′′kc

′′
k+h∑∞

k=−∞ c′′k
2 �(5.8)

where c′k denotes c�1�k and c′′k denotes c�2�k for every k ∈ Z. There are many ways
to choose c′k and c′′k to make (5.8) hold when h ∈ A and fail when h ∈ B. We
will show just one example.

(i) If c′k = c′′k = 0 whenever k > H or k ≤ 0, then (5.8) holds for all h ∈ A.
Most choices of c′k and c′′k will fail (5.8) when h ∈ B.

(ii) Let c′k = c′′k �= 0 if k = 0�−1�−2� � � � �−H + 1, and c′0 �= −5/3, c′0 �= 5;
c′H = 2, c′′H = 3; c′kH = 23−k, c′′kH = 21−k, if k = 2�3� � � �; c′k = c′′k = 0, otherwise.
With these c′k and c′′k,

∞∑
k=−∞

c′k
2 =

0∑
k=1−H

c′k
2 + 4 +

∞∑
k=2

26−2k =
0∑

k=1−H
c′′k

2 + 9 +
∞∑
k=2

22−2k

=
∞∑

k=−∞
c′′k

2
�

If h < H,

∞∑
k=−∞

c′kc
′
k+h =

−h∑
k=1−H

c′kc
′
k+h =

−h∑
k=1−H

c′′kc
′′
k+h =

∞∑
k=−∞

c′′kc
′′
k+h�

If h = k1H+ k2, k1 ≥ 1, k2 = 1�2� � � � �H− 1�

∞∑
k=−∞

c′kc
′
k+h = c′−k2

c′k1H
�= c′′−k2

c′′k1H
=

∞∑
k=−∞

c′′kc
′′
k+h�

since c′−k2
= c′′−k2

�= 0 and c′k1H
�= c′′k1H

. If h = k1H, k1 ≥ 1, it can be similarly
checked that

∑∞
k=−∞ c′kc

′
k+h �= ∑∞

k=−∞ c′′kc
′′
k+h.

(iii) Suppose l = max�A ∪ B�. Pick c′k, such that c′k = 0 if k < 0 or k > l

and c′0
2 + c′l

2
> 0. Define a′

h = ∑l−h
t=0 c′tc

′
t+h and

a′′
h =

{
a′
h + ε� if h ∈ B�

a′
h� otherwise�

(5.9)



816 S. RESNICK, G. SAMORODNITSKY AND F. XUE

where ε awaits to be decided. Let A′ = �a′ �j−k��lj� k=0 and A′′ = �a′′ �j−k��lj� k=0 be
two �l+1�×�l+1� matrices. Linear algebra shows that A′ is positive definite.
Since all the main subdeterminants of A′′ are continuous functions of ε, we
can find an ε �= 0 to keep A′′ positive definite. This achieved, there must exist
c′′0� c

′′
1� � � � � c

′′
l such that a′′

h = ∑l−H
t=0 c′′t c

′′
t+h, h = 0�1� � � � � l. The last assertion can

be proved via linear algebra or through a probability approach [see Brockwell
and Davis (1991), Theorem 1.5.1, Proposition 3.2.1, Theorem 3.2.1].

With c′k and c′′k chosen this way, (5.8) becomes

a′
h

a′
0
= a′′

h

a′′
0
�(5.10)

From (5.9), we have that (5.10) fails if and only if h ∈ B. ✷
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