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PROBABILISTIC METHODS FOR A LINEAR
REACTION-HYPERBOLIC SYSTEM WITH

CONSTANT COEFFICIENTS

By Elizabeth A. Brooks

National Institute of Environmental Health Sciences

Linear reaction-hyperbolic systems of partial differential equations in
one space dimension arise in the study of the physiological process by which
materials are transported in nerve cell axons. Probabilistic methods are de-
veloped to derive a closed form approximate solution for an initial-boundary
value problem of such a system. The approximate solution obtained is
a translating solution of a heat equation. An estimate is proved giving
the deviation of this approximate traveling wave solution from the exact
solution.

1. Introduction. In this paper we show how a probabilistic model can
be used to derive an approximate closed-form solution to an initial-boundary
value problem for a simple linear, constant-coefficient hyperbolic system of
equations in one space dimension. Subsequent papers will detail how these
probabilistic techniques have been extended to more general linear hyperbolic
systems with both constant and nonconstant coefficients.

While other papers have concentrated on connecting Markovian random
processes with corresponding governing hyperbolic equations [Goldstein
(1951), Kac (1974), Bartlett (1957, 1978), Cane (1967, 1975), Kaplan (1964),
Orsingher (1985, 1990), Orsingher and Bassan (1992), Kolesnik (1998)], the
significance of the work presented here is the actual obtaining of the approx-
imate solution for the hyperbolic system by using its related random process.

The equations investigated are motivated by a biological problem; hence,
we first describe how this class of equations arises in modeling transport pro-
cesses in nerve cells. In nerve cells, protein synthesis occurs only in the cell
body (soma); thus, the proteins, membrane-bound neurotransmitters and other
essential structural elements must be transported down the axon. Since the
mid-1980’s, Reed and Blum have been formulating mathematical models of
fast axonal transport [Blum and Reed (1985), Reed and Blum (1986)]. Each
of their models is of the form Lu = f�u� where u�x� t� is a vector of chemical
concentrations, x represents distance along the axon, t represents time, L is a
linear hyperbolic operator and f is a linear or nonlinear mapping representing
the interactions of the various chemical constituents.

An important special class of equations arises when a single species is
transported into a spatially homogeneous axon. The resulting linear, constant-
coefficient equations do not have traveling wave solutions which approach
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constant states as x→ ∞ and x→ −∞; however, Reed, Venakides and Blum
(1990) showed through a nonrigorous singular perturbation analysis that as
the rates of the chemical reactions approach ∞, the solutions of this general
class of hyperbolic equations approach traveling wave solutions of a parabolic
heat equation. The probabilistic methods developed here allow us to show
rigorously this interesting result for the simplest linear model addressed in
Reed, Venakides and Blum (1990) and to give the deviation of the approximate
traveling wave solution from the exact solution. Furthermore, the probabilis-
tic techniques provide an intuitive and elegant explanation of why solutions
of a general class of hyperbolic equations look like “spreading” normal density
curves.

In Section 2 we present the intuition for the probabilistic methods developed
for the hyperbolic system describing a simple transport model. A homogeneous
stochastic process is defined which evolves according to the partial differen-
tial equations. The approximate solution obtained is an approximate mass
density of this stochastic process. We derive the approximate mass density
using techniques similar to (but distinct from) renewal theory as discussed in
Feller (1968), Karlin and Taylor (1975) and Cox (1967).

In Section 3, we present the local central limit theorem and large deviation
estimates necessary for the proofs of the results discussed intuitively in the
previous section. Finally, in Section 4 we prove that the approximate solu-
tion of our simple transport model is actually a translating solution of a heat
equation and we determine its deviation from the exact solution.

The idea of the probabilistic approach for hyperbolic equations of this kind
is due to Gregory F. Lawler [Example 5 on pages 110 and 111 of Lawler (1995)].

2. The idea of the probabilistic methods. Consider the following ini-
tial-boundary value problem:

∂p

∂t
= −k1p+ k2q�(1)

∂q

∂t
+ v

∂q

∂x
= k1p− k2q(2)

with initial conditions

p�x�0� = q�x�0� = 0� x > 0(3)

and boundary condition

q�0� t� = q0� t ≥ 0�(4)

where q0, v, k1, and k2 are positive constants.
This system of equations describes a simple transport model in which par-

ticles of type p change to particles of type q at rate k1, and particles of type
q change to type p at rate k2. Particles of type p are stationary while those
of type q move with velocity v. We can think of p�x� t� and q�x� t� as repre-
senting the concentration of particles of type p and q, respectively, at position
x at time t. From the initial and boundary conditions, we see that the initial
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concentration of p and q particles is 0 for all x > 0 and there is a continual
influx of q particles at x = 0.

To formulate this system of PDE’s probabilistically, first note that since the
system is linear, the particles evolve independently. We begin by considering
the evolution of a single particle as described by (1)–(4).

The evolution of a single particle can be described by a stochastic process
Zt = �Xt�Ct�, where Xt is the position of the particle at time t, and Ct is the
state of the particle (p or q) at time t. As dictated by the boundary condition
(4), Z0 = �0� q�. Furthermore, note that Xt = vYt where Yt is the amount of
time spent in state q up through time t.

We give here an intuitive argument [Lawler (1995)] to show that Yt is
approximately normal with mean µt and variance σ2t, where µ = k1�k1+k2�−1

and σ2 = 2k1k2�k1 + k2�−3.
If we define random variables

Q1 ≡ inf
t > 0� Ct �= q�
P1 ≡ inf
t > 0� CQ�1�+t = q�
T1 = Q1 +P1�

and for i > 1�

Qi ≡ inf
t > 0� CT�1�+···+T�i−1�+t �= q�(5)

Pi ≡ inf
{
t > 0� CT�1�+···+T�i−1�+Q�i�+t = q

}
�(6)

Ti = Qi +Pi�(7)

then Qi and Pi give the amount of time spent in states q and p, respectively,
upon the ith visit to those states. Furthermore, Q1� � � � �Qn are independent,
exponential random variables with rate parameter k2 and hence have mean
µq = k−1

2 and standard deviation σq = k−1
2 . Similarly, P1� � � � �Pn are inde-

pendent, exponential random variables with mean µp = k−1
1 and standard

deviation σp = k−1
1 . Notice that

Yt = Q1 + · · · +QN�t� + min
(
QN�t�+1� t− �T1 + · · · +TN�t��

)
�(8)

where N�t� = sup
n > 0� T1 + · · · +Tn ≤ t counts the number of transitions
of the particle from state p to state q in time t.

By the central limit theorem, we know that Q1 + · · · +Qn is approximately
normal with mean and variance nµq; similarly, for P1+· · ·+Pn. Furthermore,
we expect N�t� to be approximately t�µp + µq�−1. Finally, for large s� the
amount of time spent in state q in �s� s+�s� is approximately µq�µq+µp�−1�s;
therefore, we can approximate min�Qn+1� t − �T1 + · · · +Tn��, the amount of
time spent in state q between times T1 + · · · +Tn and t, by µq�µp+µq�−1�t−
�T1 + · · · +Tn��.

Using the above approximations in (8) it is straightforward that

Yt ≈ µt+ σ
√
tB�
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where µ = k1�k1 + k2�−1, σ2 = 2k1k2�k1 + k2�−3, and B is a standard normal
random variable. The following result, which will be proved in Section 4, gives
the deviation of the density of this normal approximation from the actual
density of Yt.

Theorem 2.1. For x ∈ �µt/2� �µ + 1�t/2�, fY�t��x� = �d/dx�P
Yt ≤ x is
given by

fY�t��x� =
(
1 +O

(
t−1/2)) 1

σ
√
t
η

(
x− µt

σ
√
t

)

+ 1√
k1�t− x� + k2x�

O
(
t−1/2)∣∣∣∣ k1�t− x� − k2x√

k2x+ k1�t− x�

∣∣∣∣
4

× η

(
k1�t− x� − k2x√
k2x+ k1�t− x�

)
+ o�t−3/2��

(9)

where η is the density of a standard normal random variable,

µ = k1

k1 + k2
(10)

and

σ2 = 2k1k2

�k1 + k2�3
�(11)

Since Xt = vYt, the density of Xt follows immediately from Theorem 2.1.

Corollary 2.2. For x ∈ �µvt/2� �µ+1�vt/2�, fX�t��x� = �d/dx�P
Xt ≤ x
is given by

fX�t��x� = v−1(1 +O
(
t−1/2)) 1

σ
√
t
η

(
xv−1 − µt

σ
√
t

)

+ v−1 1√
k1�t− xv−1� + k2xv

−1�O
(
t−1/2)∣∣∣∣ k1�t− xv−1� − k2xv

−1√
k2xv

−1 + k1�t− xv−1�

∣∣∣∣
4

(12)

× η

(
k1�t− xv−1� − k2xv

−1√
k2xv

−1 + k1�t− xv−1�

)

+ v−1o�t−3/2��
where η, µ and σ2 are as defined in Theorem 2.1.

Finally, to make the correspondence with initial-boundary value problem
(1)–(4), let us suppose that q0v particles per unit time enter at x = 0 in state
q from time t = 0 until the present time T. Since the equations are linear,



PROBABILISTIC METHODS FOR PDEs 723

the particles behave independently; thus, to find the mass density p�x�T� +
q�x�T�, we simply add the individual densities to conclude that

p�x�T� + q�x�T� = q0v
∫ T

0
fX�t��x�dt�(13)

In Section 4 we will use Corollary 2.2 and probabilistic large deviation
estimates to obtain the following theorem from (13).

Theorem 2.3.

p�x�T� + q�x�T� = q0µ
−1H�v−1�x− µvT��T� +O

(
T−1/2)�(14)

where

H�s� t� =
∫ 0

−∞
1√

2πσ2t
exp

(−�s− y�2

2σ2t

)
dy

is the solution of the following initial value problem for the heat equation

∂H

∂t
= 1

2
σ2 ∂

2H

∂s2
�

H�s�0� =
{

1� for s ≤ 0,

0� for s > 0

and where µ and σ2 are given by (10) and (11), respectively.

Parenthetically, u�x�T� = p�x�T�+q�x�T� is also the solution of the equa-
tion

∂2u

∂T2
+ v

∂2u

∂x∂T
+ k1v

∂u

∂x
+ �k1 + k2�

∂u

∂T
= 0�

which is the governing second-order PDE of a one-dimensional model of ran-
dom evolution discussed in Kolesnik (1998).

3. Central limit theorem and large deviation estimates. In this sec-
tion we present local central limit theorem and large deviation estimates that
will be needed in the proofs of the following section. We begin with some nec-
essary definitions.

Suppose X1�X2� � � � are independent random variables with the same lat-
tice distribution with step 1; that is, P
Xi ∈ Z = 1, but P
Xi ∈ jZ < 1 for
all j > 1. We shall denote by F the probability distribution of Xi. The kth
moment of Xi will be denoted by µ̄k = E�Xk

i �. We will suppose µ̄1 = 0 and
put µ̄2 = σ̄2. Finally, we will denote the density function of a standard normal
random variable by η. The density function of a random variable X will be
denoted by fX.

We will use the following result given in Section 4.5 of Ibragimov and Linnik
(1971).



724 E. A. BROOKS

Theorem 3.1. Let X1�X2� � � � be independent, identically distributed lat-
tice random variables with step 1. If µ̄k <∞ for some k ≥ 3,

P

{
X1 + · · · +Xn

σ̄
√
n

= j

}
= 1
σ̄
√
n

[
η�j�+

k−2∑
i=1

n�−1/2�i Pi�j�η�j�+o
(
n�−1/2��k−1�)]�

Here Pi is a real polynomial of degree i depending only on µ̄1� � � � � µ̄k but not
on n and k (or otherwise on F).

We will only need to use the following corollary.

Corollary 3.2. Under the conditions of Theorem 3.1, if µ̄5 <∞,

P

{
X1 + · · · +Xn

σ̄
√
n

= j

}
= 1
σ̄
√
n

[
η�j� +O

(
n−1/2)�j�4η�j� + o

(
n−2)]�

Recall that if Y is a Poisson random variable with parameter m, then

P
Y = n = e−m
mn

n!
�

We can easily see thatY has meanm, variancem, and that the fifth moment of
Y is finite. Recognizing that a Poisson random variable with integer parameter
m is the sum of m Poisson random variables with parameter 1, the following
lemma can be obtained from Corollary 3.2. (For noninteger m, we can rewrite
Y as Y = Y1 + Y2, where Y1 has parameter �m� and Y2 has parameter
m− �m�.)

Lemma 3.3. SupposeX,Z are independent Poisson random variables with
parameter a ≥ b. Then

P
X−Z = n = 1√
a+ b

[
η

(
n− �a− b�√

a+ b

)
+O

(
b−1/2)∣∣∣∣n− �a− b�√

a+ b

∣∣∣∣
4

×η
(
n− �a− b�√

a+ b

)
+ o

(
b−2)]�

The following are easy corollaries of Chernoff ’s theorem [see Section 9 of
Billingsley (1995)].

Lemma 3.4. For every ε > 0, there exist positive constants c1 and c2 such
that if X is a Poisson random variable with parameter m�

P
�X−m� ≥ εm ≤ c1 exp�−c2m��

The following result is straightforward from Lemma 3.4.
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Corollary 3.5. There exist positive constants c1 and c2, such that if Y is
Poisson with parameter a, Z is Poisson with parameter b and Y and Z are
independent,

P
Y−Z = 0 ≤ c1 exp�−c2�a− b��
and

P
Y−Z = 1 ≤ c1 exp�−c2�a− b��

4. Proofs of Theorems 2.1 and 2.3. In this section we will prove The-
orems 2.1 and 2.3 as stated in Section 2. Before commencing with these
proofs we must define several additional random variables and then state and
prove two necessary lemmas.

First, we define two Poisson processes, Nq�x� and Np�x�, as follows:

Nq�x� = sup
n > 0� Q1 + · · · +Qn ≤ x
and

Np�x� = sup
n > 0� P1 + · · · +Pn ≤ x�

where Qi and Pi are as defined by (5) and (6), respectively. Note that for fixed
x, Nq�x� and Np�x� are Poisson random variables with rates k2x and k1x,
respectively. Now if we let Y−1

x be the amount of time needed for a particle to
spend time x in state q, then Y−1

x is the inverse process of Yt as defined in
Section 2. Furthermore, Y−1

x = x+P1 + · · · +PNq�x�.

Lemma 4.1.

fY�t��x� =
d

dx
P
Yt ≤ x

= k1P
{
Nq�x� −Np�t− x� = 1 + k2P
Nq�x� −Np�t− x� = 0

}
�

Proof. By definition,

fY�t��x� = lim
�x→0

P
Y−1
x ≤ t −P
Y−1

x+�x ≤ t
�x

�(15)

Notice that

P
Y−1
x ≤ t −P
Y−1

x+�x ≤ t

=
∞∑
n=0

P
P1 + · · · +Pn ≤ t− xP
Nq�x� = n

−
∞∑
n=0

P
{
P1 + · · · +Pn ≤ t− �x+ �x�}P
Nq�x+ �x� = n�
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After adding and subtracting
∑∞
n=0P
P1+· · ·+Pn ≤ t−�x+�x�P
Nq�x� = n

from the above equation, it is then straightforward to show that

P
Y−1
x ≤ t −P
Y−1

x+�x ≤ t

=
∞∑
n=0

P
Nq�x� = n(P
P1 + · · · +Pn ≤ t− x

−P
P1 + · · · +Pn ≤ t− �x+ �x�)
+

∞∑
n=0

(
P
P1 + · · · +Pn ≤ t− �x+ �x� ≤ P1 + · · · +Pn+1

×P
Nq�x� = n�Nq�x+ �x� = n+ 1)
+O

(��x�2)�

(16)

Since Nq is a Poisson process with parameter k2, it is easy to show that

P
Nq�x� = n�Nq�x+ �x� = n+ 1 = k2�x exp�−k2�x�P
Nq�x� = n�(17)

Recognizing that

P
P1 + · · · +Pn ≤ t− �x+ �x� ≤ P1 + · · · +Pn+1
= P
Np�t− �x+ �x�� = n

and using (17) and (16) in (15), we find

fY�t��x� =
∞∑
n=0

�fP�1�+···+P�n��t− x� + k2P
Np�t− x� = n�P
Nq�x� = n�

Finally, noticing that

fP�1�+···+P�n��t−x�=
k1 exp�−k1�t−x���k1�t−x��n

n!
=k1P
Np�t− x�=n−1

completes the proof of Lemma 4.1. ✷

Lemma 4.2. For any x > 0�

k1 + k2√
k1�t− x� + k2x

η

(
k1�t− x� − k2x√
k1�t− x� + k2x

)

= (
1 +O

(
t−1/2)) 1

σ
√
t
η

(
x− µt

σ
√
t

)
�

(18)

where µ = k1�k1 + k2�−1 and σ2 = 2k1k2�k1 + k2�−3.

Proof. Assume x = µt+ b
√
t, where b is a constant.

Case 1 �b = 0�. First we suppose b = 0, and thus x = µt. Then

k1 + k2√
k1�t− x� + k2x

η

(
k1�t− x� − k2x√
k1�t− x� + k2x

)
= k1 + k2√

2π2k1k2�k1 + k2�−1t

= 1

σ
√
t
η

(
x− µt

σ
√
t

)
�
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Case 2 �b �= 0�. Now suppose that x = µt + b
√
t, where b �= 0. We can

easily show that

η

(
k1�t− x� − k2x√
k1�t− x� + k2x

)
= η

(
x− µt

σ
√
t

)
exp

(
O
(
t−1/2))

= η

(
x− µt

σ
√
t

)(
1 +O

(
t−1/2))�(19)

It is also easy to show that

k1 + k2√
k1�t− x� + k2x

= k1 + k2√
2k1k2t�k1 + k2�−1

+O
(
t−1)

= 1

σ
√
t
+O

(
t−1)�(20)

Using (19) and (20) we find that

k1 + k2√
k1�t− x� + k2x

η

(
k1�t− x� − k2x√
k1�t− x� + k2x

)

=
(

1

σ
√
t
+O

(
t−1))η(x− µt

σ
√
t

)(
1 +O�t−1/2�)

= (
1 +O�t−1/2�) 1

σ
√
t
η

(
x− µt

σ
√
t

)
�

This completes the proof of Lemma 4.2. ✷

We now have the tools to prove our main results.

Proof of Theorem 2�1. Assume x ∈ �µt/2� �µ + 1�t/2�. We need to show
that

fY�t��x� =
(
1 +O�t−1/2�) 1

σ
√
t
η

(
x− µt

σ
√
t

)
+ 1√

k1�t− x� + k2x�
O�t−1/2�

×
∣∣∣∣ k1�t− x� − k2x√
k2x+ k1�t− x�

∣∣∣∣
4

η

(
k1�t− x� − k2x√
k2x+ k1�t− x�

)

+ o�t−3/2��

By Lemma 4.1 we know that

fY�t��x�=k1P
Nq�x�−Np�t−x�=1+k2P
Nq�x�−Np�t−x�=0�(21)

Recall that Nq�x� and Np�t − x� are Poisson r.v.’s with parameters k2x and
k1�t − x�, respectively. Hence, we may use Lemma 3.3, the local central
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limit theorem estimate for differences of Poisson r.v.’s, to conclude that for
x ∈ �µt/2� �µ+ 1�t/2�,

k1P
Nq�x� −Np�t− x� = 1

= k1√
k1�t− x� + k2x

[
η

(
1 − �k2x− k1�t− x��√

k1�t− x� + k2x

)

+O
(
t−1/2)∣∣∣∣1 − �k2x− k1�t− x��√

k1�t− x� + k2x

∣∣∣∣
4

× η

(
1 − �k2x− k1�t− x��√

k1�t− x� + k2x

)
+ o

(
t−2)]

(22)
= k1√

k1�t− x� + k2x

[
η

(
k1�t− x� − k2x√
k1�t− x� + k2x

)

+O
(
t−1/2)∣∣∣∣ k1�t− x� − k2x√

k1�t− x� + k2x

∣∣∣∣
4

× η

(
k1�t− x� − k2x√
k1�t− x� + k2x

)
+ o

(
t−2)]

+ o
(
t−3/2)�

Similarly, for x ∈ �µt/2� �µ+ 1�t/2�,
k2P
Nq�x� −Np�t− x� = 0

= k2√
k1�t− x� + k2x

[
η

(
k1�t− x� − k2x√
k1�t− x� + k2x

)
(23)

+O
(
t−1/2)∣∣∣∣ k1�t− x� − k2x√

k1�t− x� + k2x

∣∣∣∣
4

× η

(
k1�t− x� − k2x√
k1�t− x� + k2x

)
+ o

(
t−2)]�

Adding (22) and (23) and using Lemma 4.2, we find that

fY�t��x� =
(
1 +O

(
t−1/2)) 1

σ
√
t
η

(
x− µt

σ
√
t

)

+ 1√
k1�t− x� + k2x�

O
(
t−1/2)∣∣∣∣ k1�t− x� − k2x√

k2x+ k1�t− x�

∣∣∣∣
4

× η

(
k1�t− x� − k2x√
k2x+ k1�t− x�

)

+o�t−3/2��
This completes the proof of Theorem 2.1. ✷
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Since Xt = vYt, Corollary 2.2 follows immediately.

Proof of Theorem 2�3. Let x = µvT+ a
√
T. Recall from Section 2 that

p�x�T� + q�x�T� = q0v
∫ T

0
fX�t��x�dt�(24)

For x ∈ �µvt/2� �µ+1�vt/2�, fX�t��x� is given by Corollary 2.2. Since Xt = vYt

and

fY�t��x� = k1P
Nq�x� −Np�t− x� = 1 + k2P
Nq�x� −Np�t− x� = 0�
we can apply the large deviation estimate given in Corollary 3.5 to conclude
that

fY�t��x� ≤
{
c1 exp�−c3t�� if x < µt/2,

c1 exp�−c4t�� if x > �µ+ 1�t/2(25)

for some positive constants c1, c3, and c4.
Letting b = 2x��µ + 1�v�−1, c = min�2x�µv�−1�T� and applying (25) and

Corollary 2.2 to (24), we find that

p�x�T� + q�x�T� = q0
(
1 +O

(
T−1/2)) ∫ c

b

1

σ
√
t
η

(
xv−1 − µt

σ
√
t

)
dt

+O
(
T−1) ∫ c

b

∣∣∣∣ k1�t− xv−1� − k2xv
−1√

k2xv
−1 + k1�t− xv−1�

∣∣∣∣
4

(26)

× η

(
k1�t− xv−1� − k2xv

−1√
k2xv

−1 + k1�t− xv−1�

)
dt+ o

(
T−1/2)�

Using standard analysis techniques it can be shown that

O
(
T−1) ∫ c

b

∣∣∣∣ k1�t− xv−1� − k2xv
−1√

k2xv
−1 + k1�t− xv−1�

∣∣∣∣
4

η

(
k1�t− xv−1� − k2xv

−1√
k2xv

−1 + k1�t− xv−1�

)
dt

(27)
= O

(
T−1/2)

and that

q0

∫ c

b

1

σ
√
t
η

(
xv−1 − µt

σ
√
t

)
dt

= q0µ
−1

∫ 0

−∞
1√

2πσ2T
exp

(−�xv−1 − µT− y�2

2σ2T

)
(28)

+O
(
T−1)�

Substituting (27) and (28) into (26), we find that

p�x�T� + q�x�T� = q0µ
−1

∫ 0

−∞
1√

2πσ2T
exp

(−�xv−1 − µT− y�2

2σ2T

)
dy

+O
(
T−1/2)

= q0µ
−1H�v−1�x− µvT��T� +O

(
T−1/2)�
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where

H�s� t� =
∫ 0

−∞
1√

2πσ2t
exp

(−�s− y�2

2σ2t

)
dy

is the solution of the following initial value problem for the heat equation

∂H

∂t
= 1

2
σ2 ∂

2H

∂s2
�

H�s�0� =
{

1� for s ≤ 0,

0� for s > 0.

This completes the proof of Theorem 2.3. ✷
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