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TURBULENT DIFFUSION IN MARKOVIAN FLOWS

By Albert Fannjiang1 and Tomasz Komorowski

University of California, Davis and ETH

We prove turbulent diffusion theorems for Markovian velocity fields
which either are mixing in time or have stationary vector potentials.

1. Introduction. One of the central questions about the motion in ran-
dom flows described by

dx�t� = b�t�x�t��dt+
√

2κdw�t�� x�0� = 0�(1)

with the molecular diffusivity κ ≥ 0, the standard Brownian motion �w�t��t≥0
and a zero mean, jointly stationary, incompressible (i.e., ∇·b�t�x� = 0) velocity
field b�t�x�, is whether and when the motion has a long time diffusive limit
which remains valid in the absence of molecular diffusion (κ = 0) or in the
limit of vanishing molecular diffusion (κ→ 0). More specifically, one wants to
find conditions under which the rescaled processes

xε�t� = εx�t/ε2�� ε > 0(2)

converge in law, as ε→ 0, to a Brownian motion with an enhanced diffusivity
D�κ� called the effective diffusivity, which has a nonzero limit as κ tends
to zero. The limit limκ→0 D�κ� = D�0� is known as the eddy diffusivity or
turbulent diffusivity for it is mainly a result of turbulent eddies. This question
is referred to as the turbulent diffusion problem.

Diffusive limit exits in the presense of molecular diffusion (κ > 0) when
the velocity field b has a jointly stationary vector potential [see Fannjiang
and Komorowski (1997)]. Stationarity of velocity vector potential requires cer-
tain velocity decorrelations in space but not in time. Nonstationary vector
potentials may result in nondiffusive limits [see Fannjiang (1998), Fannjiang
and Komorowski (1998)]. Although previous numerical simulations [Kraich-
nan (1970)] suggests positive eddy diffusivity for three-dimensional Gaussian
flows with fast decorrelation in space, an invariance principle, however, is
unlikely to hold in this case with κ = 0 due to possible trapping by flow-
invariant domains unless there is also sufficient velocity decorrelation in time.
It remains open if the effective diffusivity has a positive limit as κ tends to
zero for three-dimensional steady flows. In this connection, Komorowski and
Papanicolaou (1997) have proved the diffusive limit for κ = 0 and stationary
Gaussian velocity fields which become independent after a finite time. Concep-
tually this is a generalization of the corresponding turbulent diffusion result
for white-noise velocity fields, but technically it is much more involved.
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Generalizing in another direction, one may consider the turbulent diffusion
problem for time-mixing flows, in particular, for time-mixing Markovian ve-
locities for which time-mixing property can be conveniently characterized by
a spectral gap. Markovian fields have been commonly used in fluid dynamics
to model turbulent fluid velocity [McComb (1990), Frisch (1996)]. A turbu-
lent diffusion theorem was obtained by Carmona and Xu (1997) for Ornstein–
Uhlenbeck velocities with finite Fourier modes.

In this paper, we prove an invariance principle for deterministic motion
(κ = 0) as well as diffusive motion (κ > 0) in a general class of time-mixing,
Markovian velocity fields with no decorrelation in space (Theorem A). More-
over, we show that small molecular diffusion acts as a regular perturbation to
the positive eddy diffusity.

Theorem A. Let b�t�x� be a stationary Markovian field that is square
integrable and �-mixing in t. Then xε�t�, t ≥ 0 converge in law, as ε ↓ 0, to a
Brownian motion with the effective diffusivity D�κ� > 0, κ ≥ 0. Moreover, the
limit exists,

lim
κ↓0

D�κ� = D�0� > 0	(3)

The mixing property of the Markovian field b enables us to construct a
stationary “corrector” as contrary to the usual nonstationary correctors in ho-
mogenization theory possessing stationary derivatives.

For our second result, we relax the time-mixing condition to the ellipticity
condition (see Section 2), which allows velocity modes of small wave numbers
to have long correlation time but we compensate the lack of time decorrela-
tion with decorrelation in space by assuming a stationary vector potential for
velocity.

Theorem B. Let b�t�x� be a bounded velocity field with a bounded, sta-
tionary Markovian vector potential and satisfy the ellipticity condition (L2)
(Section 2). Then xε�t� converge in law, as ε ↓ 0, to a Brownian motion with
the effective diffusivity D�κ� > 0 for any κ ≥ 0 and (3) holds.

In proving Theorem B, we adopt the approach of Kipnis and Varadhan
(1986) who established the central limit theorem for additive functionals of
reversible, ergodic Markov processes.

The key object in our problem is the environment process viewed from the
particle which is irreversible. Because of irreversibility of the process we can-
not apply the argument of Kipnis and Vardhan. To overcome this problem,
we construct a family of “asymptotic correctors” which converges in the norm
generated by the symmetric part of the Dirichlet form associated with the en-
vironment process. To control the antisymmetric part of the process requires
the boundedness of the velocity and the stream matrix. With that, using a
perturbation argument, we then show that the crucial elements of Kipnis and
Varadhan’s approach remain valid in this case.

Theorems A and B are independent of dimension and, to a certain degree,
tight, except the boundedness assumption in Theorem B for technical reasons
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[Fannjiang and Komorowski (1998)]. These two theorems are stated precisely
as Theorems 1 and 2 below.

2. Formulation and results. Let �� �� �P0� be a probability space. Let
τx, x ∈ Rd be a stochastically continuous, jointly measurable group of measure
preserving transformations of � with the following properties.

(T1) τ0 = Id� and τx+y = τxτy, for all x, y ∈ Rd.
(T2) The mapping �x�x� �→ τx�x� is jointly measurable.
(T3) P0�τx�A�� = P0�A�� for x ∈ Rd� A ∈ � .
(T4) limx↓0 P0�x� � f ◦ τx�x� − f�x� �≥ η� = 0, ∀f ∈ L2�� � and ∀η > 0.
(T5) If P0�A�τx�A�� = 0, for all x ∈ Rd then A is a trivial event, that is,

P0�A� is either 0 or 1.

It is well known that τx induces a strongly continuous group of unitary
mappings Ux on L2�� �,

Uxf�x� = f�τx�x��� f ∈ L2�� �� x ∈ Rd	(4)

The group has d independent, skew-adjoint generators Dk� �k → L2�� � cor-
responding to the directions ek, k = 1� 	 	 	 � d.

Let Cm
b �� �, m = 1� 	 	 	 �∞ be the space of functions f in the intersection of

the domains of Dn
k with �Dn

kf�L∞�� � < +∞, k = 1� 	 	 	 � d, n = 1� 	 	 	 �m	 It is
well known that C∞b �� � =

⋂
m≥1 C

m
b �� � is dense in Lp�� �, 1 ≤ p < +∞ [cf.

Dedik and Šubin (1982)].
Let L2

0�� � be the space of functions f ∈ L2�� � such that
∫
fdP0 = 0 and

let H̃1
0�� � be the space

⋂d
k=1 �k ∩L2

0�� � equipped with the scalar product

�f�g�H̃1
0�� � =

d∑
k=1

∫
DkfDkgdP0� f� g ∈ H̃1

0�� �	

Here H̃1
0�� � is a pre-Hilbert space and can be completed under the scalar

product �f�g�H̃1�� �. Denote that completion by H1
0�� �.

Let � be the space of � -valued continuous functions C��0�+∞��� � and
let � be its Borel σ-algebra. Let Pt, t ≥ 0� be a strongly continuous Markov
semigroup on L2�� � with the following properties.

(P1) Pt1 = 1 and Ptf ≥ 0, if f ≥ 0.
(P2)

∫
PtfdP0 =

∫
fdP0� for all f ∈ L2�� �, t ≥ 0	

(P3) Ex�f�θt+h�ω����≤t� = PhF�ω�t��, with F�x� �= Exf� for any f ∈ L1���, t,
h ≥ 0, x ∈ � .

Here Ex is the expectation associated with the probability measures Px� �≤t
are the σ-algebras generated by events measurable up to time t, and θt�ω��·�
�= ω�· + t�, t ≥ 0 is the standard shift operator on the path space ���� �.

Remark 1. Conditions (P1), (P2) imply that all Pt, t ≥ 0 are contractions
in any Lp�� �, for all 1 ≤ p ≤ +∞.
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Let P be a Markovian measure on the path space ���� � such that

P�A� =
∫
Px�A�P0�dx�� A ∈ �(5)

and let E be the corresponding expectation.

As a direct consequence of (T3) and (P2), P is stationary. That is,

(S) P is invariant under the action of θt and τx for any �t�x� ∈ R+ ×Rd.

Denote the space–time translates of a path by Tt�x�ω� = θt�τx�ω�� =
τx�θt�ω��, ∀ t� x.

Following condition (S), Propositions 1 and 2 are well known.

Proposition 1. Let Pt and Ux commute, for all t ≥ 0, x ∈ Rd.

Proposition 2. Exf�T0�x�ω�� = Eτx�x�f�ω�� for any bounded, � -measur-
able f.

We assume the time relaxation properties (L1) and (L2) for Theorem 1 and
Theorem 2, respectively.

(L1) Spectral gap: −�Lf�f�L2�� � ≥ c1�f�2
L2�� � for some constant c1 > 0 and

for all f ∈ � �L� ∩L2
0�� �	

(L2) Ellipticity: −�Lf�f�L2�� � ≥ c2�f�2
H1

0�� �
for some constant c2 > 0 and all

f ∈ � �L� ∩H1
0�� �	

Remark 2. Condition (L1) is equivalent to the exponential decay property∥∥Ptf
∥∥
L2�� � ≤ e−ct�f�L2�� � for any f ∈ L2

0�� �(6)

[Rosenblatt (1971)]. Inequality (6) is in fact equivalent to �-mixing of the
process X�t�, t ≥ 0 [Doukhan (1994), page 3]; that is, limh↑∞ ��h� = 0, where

��h� = sup
{
Cor�X�Y�� X is �≥t+h-measurable, Y is �≤t-measurable

}
with Cor�X�Y� being the correlation of X, Y.

For Theorem 2 we also assume a reasonably general condition (L3) that the
symmetric part of the Dirichlet form controls the antisymmetric part [Ma and
Röckner (1992)].

(L3) The sector condition

∣∣�Lf�g�L2�� �
∣∣ ≤K

∣∣�Lf�f�L2�� �
∣∣1/2∣∣�Lg�g�L2�� �

∣∣1/2(7)
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for some constant K > 0 and all f, g ∈ � �L�	 Here L� � �L� → L2�� �
is the generator of semigroup Pt, t ≥ 0.

Remark 3. All reversible measures P0, such as stationary Ornstein–
Uhlenbeck processes, satisfy (L3) (see Example 1 below).

(B1) The random field b = �b1� 	 	 	 � bd� ∈ �L2�� ��d is jointly continuous in
�t�x�, locally Lipschitzian in x, with finite second moments and of diver-
gence free (i.e.,

∑d
i=1

∫
biDiϕdP0 = 0, ∀ϕ ∈ C∞b �� �).

Here and in the sequel we denote a random vector f on � by f�t�x�ω� =
f�Tt�x�ω��0��, �t�x� ∈ R+ ×Rd.

For technical reasons in proving Theorem 2 we need the stronger assump-
tion, (B2).

(B2) b and its stream matrix + are stationary and bounded, that is, �b�L∞�� �+
�+�L∞�� �
< +∞.

A stream matrix of b is a real, d×d skew-symmetric matrix-valued process
+ = �+i�j� with +i�j ∈ H1

0�� � such that bi =
∑d

j=1 Dj+i�j. In three dimen-
sions, + is related to the vector potential v = �v1� v2� v3� in the following way:

+ =




0 v3 −v2

−v3 0 v1

v2 −v1 0


 	

Due to skew symmetry of +, b is divergence free.
Let xs�x�t� be the process given by

dxs�x�t� = b
(
t�xs�x�t�)dt+√2κdw�t− s��

xs�x�s� = x�
(8)

where w�t�, t ≥ 0 is a standard Brownian motion starting at the origin. Its
underlying probability space is denoted by �/���Q� with the corresponding
expectations M, Mx. Denote the corresponding filtration by �t, t ≥ 0. Thanks
to the stationarity (S); (B1) implies the global existence and uniqueness of
xs�x�t�ω�w�, t ≥ s for P a.s. ω and Q a.s. w without the usual linear growth
condition at far fields [Fannjiang and Komorowski (1997)].

The main results of this article are the following two theorems.

Theorem 1. In addition to the general assumptions (T1)–(T4), (P1)–(P3),
(S) and (B1), we assume (L1). Then the processes xε�t�, t ≥ 0 converge weakly
as ε ↓ 0 to a Brownian motion. Moreover,

lim
κ↓0

D�κ� = D�0� > 0	(9)

Theorem 2. In addition to the general assumptions (T1)–(T5), (P1)–(P3),
(S), (L3) and (B1), we assume (L2) and (B2). Then the processes xε�t�, t ≥ 0
converge weakly as ε ↓ 0 to a Brownian motion and (9) holds.
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Example 1. An example of velocity satisfying assumptions of Theorem 1
is the stationary, divergence free, Ornstein–Uhlenbeck vector field b�t�x�ω�
with the spectral measure

exp �−r�k��t��2�k�
(

I− k ⊗ k
�k�2

)
�

where 2�k� is integrable and decays fast for large k. For this velocity field
�-mixing is equivalent to α-mixing [Rosenblatt (1971), Doukhan (1994)] and
amounts to

r�k� > c0 ∀k ∈ Rd

for some positive constant c0.
Particularly interesting is the power-law spectral measure with r�k� =

�k�2β, 2�k� = 1/�k�2α+d−2 with ultraviolet cutoff �k� ≤ K < ∞. The integra-
bility of 2 requires α < 1 and the spectral gap condition (L1) now becomes
β ≤ 0.

The boundedness requirement in (B2) already rules this class of velocity
fields out of the scope of Theorem 2. Strictly speaking, to apply Theorem 2,
we need to make smooth truncation on the velocity and its stream matrix.
However, this is only due to the limitation of current techniques. The essential
part of (B2) is the existence of a stationary stream matrix which requires∫

Rd

1
�k�22�k�dk <∞

or, equivalently, α < 0. The ellipticity condition (L2), which is weaker than
(L1), is satisfied for β ≤ 1. We believe that Theorem 2 holds for the above
Ornstein–Uhlenbeck velocity with α < 0 and β ≤ 1.

Example 2 (Diffusion-driven random fields). Suppose that τx, x ∈ Rd sat-
isfies the assumptions (T1)–(T5). Assume also that ai� j� � → R, i� j =
1� 	 	 	 � d are sufficiently regular random variables on certain probability space
� ; for example, we may require that all ai� j, i� j = 1� 	 	 	 � d are inC3

b�� �, sym-
metric and uniformly positive definite, that is, ai� j = aj� i� for all i� j = 1� 	 	 	 � d
and there exists λ > 0 such that for all � = �ξ1� 	 	 	 � ξd� ∈ Rd we have∑d

i� j=1 ai� jξiξj ≥ λ���2	 Let y�t�w� x�, t ∈ R, w ∈ C��0�+∞��Rd� be a d-
dimensional random diffusion originating at 0 with the generator Lxu�x� =∑d

i� j=1 ∂i�ai� j�x� x�∂ju�x�� for u� Rd → R twice differentiable. Then, as is easy
to see, process X�t�w� = τy�t�w�x��x� is Markovian with respect to the canonical
filtration C��0�+∞��Rd�. Its semigroup Pt, t ≥ 0 on L2�� �� �P0� is given by
the formula Ptf�x� = M0f�τy�t�w�x��x�� and it generates in an obvious way the
configuration measures on ���� �. Here M0 denotes the expectation computed
with respect to the measure given by the diffusion.

Suppose that + = �+i�j� is a stream matrix whose entries belong to C2
b�� �.

Then +�t�x�w� = +�τx�X�t�w��� defines a random field which is Markovian.
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We can easily check that this field generates a canonical Markov process on
��� ��t�t≥0� which satisfies the assumptions of Theorem 2.

3. Preliminaries. Consider the environment process as viewed from the
particle at any instant of time η� �0�+∞� ×�× /→ � given by

η�t�ω�w� = τx�t�ω�w��ω�t��� t ≥ 0	(10)

The rescaled process xε�t�, given by (2), induces a probability measure Qε on
a Frechét space C��0�+∞��Rd�. Then xε�t� is said to converge weakly to a
Brownian motion if Qε converge weakly to a certain Wiener measure. Denote
the covariance matrix of the limiting Brownian motion by D�κ�, κ ≥ 0.

Set

Stf�x� = MExf�η�t��� t ≥ 0 for f ∈ L∞�� ��(11)

where η is given by (10).

Proposition 3. If (T1)–(T4), (P1)–(P3), (S) and (B1) hold, then:

(i) St, t ≥ 0 is a strongly continuous, Markov semigroup of contractions on
L2�� �.

(ii) St, t ≥ 0 is measure-preserving, that is,

∫
StfdP0 =

∫
fdP0� t ≥ 0� f ∈ L2�� �	(12)

Set

D1 = � �L� ∩C2
b�� �	(13)

Denote the generator of the semigroup St, t ≥ 0 by � ,

� f = Lf+ κ;f+ �b�∇f� for f ∈ D1	(14)

The following results are standard.

Proposition 4. Suppose that (T1)–(T4), (P1)–(P3), (S) and (B1) hold. We
have:

(i) D1 is dense in L2�� � and is invariant under the semigroup Pt, t ≥ 0
[i.e., Pt�D1� ⊆ D1 for all t ≥ 0].

(ii) If (L2) and (L3) hold, then � �L� ⊆H1
0�� �.

(iii) Assume that the velocity field is bounded. Then D1 is invariant under
the semigroup St, t ≥ 0 [i.e., St�D1� ⊆ D1 for all t ≥ 0].

Define

St
0f�x�x� = MExf�ω�t��w�t�tx� ∀f ∈ L2�� ×Rd�	(15)
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Proposition 5.

(i) St
0, t ≥ 0 is a strongly continuous, Markov semigroup on L2�� ×Rd�.

(ii) The semigroup St
0 is measure preserving, that is,∫ ∫

St
0fdP0 dm =

∫ ∫
fdP0 dm for all f ∈ L2�� ×Rd�� t ≥ 0�(16)

where dm is the Lebesgue measure.
(iii) Suppose that, in addition, either (L1) or all three conditions (L2), (L3)

and (T5) holds. Then any f ∈ L2�� × Rd� such that St
0f = f for a certain

t > 0 is constant.

Proof. We only sketch the proof of (iii). Equation (16) is a consequence of
the invariance of the Lebesgue measure under Brownian motion.

Suppose that (L2), (L3) and (T5) hold. Then (L3) implies that the semigroup
Pt is holomorphic [Ma and Röckner (1992) Corollary 2.21, page 25], hence

d

ds

∥∥Psf̃A�B
∥∥2
L2�� � = 2�−LPsf̃A�B�P

sf̃A�B�L2�� �

≤ −2c2

∥∥Psf̃A�B
∥∥2
H̃1�� ��

(17)

where f̃A�B = fA�B−
∫
fA�B dP0. Since �Ptf̃A�B�L2�� � = �f̃A�B�L2�� � we have

�Psf̃A�B�H̃1�� � = 0 for all 0 < s < t. This, along with (T5), implies that f̃A�B
is constant for any Borel set B ⊆ Pd. Thus χA must be constant.

Suppose that (L1) holds. By Remark 2,

�Ptf̃A�B�L2�� � ≤ exp�−c1t��f̃A�B�L2�� ��

which clearly implies that any f̃A�B and thus, in consequence, χA must be
constant. ✷

Propositions 3 and 5 are standard for κ > 0 and can be extended easily
to the case κ = 0. The reason is that, under either (L1) or (L2), (L3), the
molecular diffusion term κ; in � , is negligible for small κ, compared to L.

4. Proof of Theorem 1.

Proposition 6. Under the same assumptions as in Theorem 1, we have

�Stf�L2�� � ≤ exp�−c1t��f�L2�� �� t ≥ 0(18)

for any f ∈ L2
0�� �.

Proof. First assume that b is bounded and f ∈ D1 ⊆ � �� �. Then we
have

�−� f�f�L2
0�� � ≥ �−Lf�f�L2

0�� � ≥ c2�f�2
H1

0�� �(19)
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for all f ∈ D1 ∩ L2
0�� �. By Proposition 4, Stf ∈ D1, t ≥ 0 for any f ∈ D1.

Consequently,

d

dt

∥∥Stf
∥∥2
L2�� � = −

(
� Stf�Stf

)
L2�� � ≤ −c1�Stf�2

L2�� ��

thus

�Stf�L2�� � ≤ exp�−c1t��f�L2�� � ∀ t ≥ 0(20)

and f ∈ D1 ∩ L2
0�� �. Equation (20) is then extended to L2

0�� � by using an
approximation argument. Likewise the boundedness of the velocity is removed
by another approximation argument. ✷

Thanks to Proposition 6 we can define

ψk =
∫ +∞

0
Stbk dt	(21)

The following lemma is quite elementary.

Lemma 1. The expression (21) ψk ∈ � �� � is the unique solution of the
equation

−� ψk = bk� k = 1� 	 	 	 � d	(22)

First observe that

�v�xε�t�� =Nε�ψv
�t�ω�w� +Rε�t�ω�w�

for any v = �v1� 	 	 	 � vd� ∈ Rd where ψv =
∑d

i=1 ψivi, Rε�t�ω�w� = −εψv ·
�η�t/ε2�ω�w�� + εψv�η�0�ω�w�� and

Nε�ψv
�t�ω�w� = ε

√
2κ

(
v�w

(
t

ε2

))
+ εMψv

(
t

ε2
�η

)
�(23)

with

Mψv
�t�η� = ψv�η�t�� − ψv�η�0�� −

∫ t

0
� ψv�η�s��ds	(24)

By the stationarity of η�t� we have that

P⊗Q

[
sup

0≤t≤T
�Rε�t�� ≥ δ

]
≤

(
1
ε2
+ 1

)
P⊗Q

[
sup

0≤t≤ε2T

�Rε�t�� ≤ δ

]

≤
(

1
ε2
+ 1

)
P⊗Q

[
sup

0≤t≤T
�N1� ψv

�t�� ≥ δ

ε

]
	

Since sup0≤t≤T �N1� ψv
�t�� has finite second moment, the last expression tends

to zero as ε ↓ 0, that is,

lim
ε↓0

sup
0≤t≤T

�Rε�t�� = 0(25)

in probability w.r.t. P⊗Q	
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Define Sε�t�ω�w� = ε
∑�t/ε2�

k=1 ξk�ω�w�, for t ≥ 0� where ξk�ω�w� = N1� ψv
·

��k + 1�t1�ω�w� −N1� ψv
�kt1�ω�w�. We prove in Lemma 2 that ξn, n ≥ 0 is

stationary and ergodic. Hence, the processes Sε�t�, t ≥ 0 converge weakly in
the Skorochod space D�0�+∞� to a Brownian motion with diffusion coefficient
�v�2 + �−� ψv� ψv�L2�� � [Billingsley (1968), Theorem 23.1, page 206]. By (25),

lim
ε↓0

sup
0≤t≤T

∣∣Nε�ψv
�t� − �v�xε�t��

∣∣ = 0(26)

in probability.
Equation (26) implies that limε↓0 sup0≤t≤T �Sε�t� −Nε�ψv

�t�� = 0 in proba-
bility, which shows the weak convergence of xε�t�, t ≥ 0 in D�0�+∞� [Helland
(1982), Theorem 5.1 and (5.9)]. Since xε are continuous processes, this in turn
implies weak convergence in C�0�+∞�.

Lemma 2. The sequence ξn, n ≥ 0 is stationary and ergodic.

Proof. First assume κ = 0. Suppose that A ∈ � is invariant, θ−1
t �A� = A.

We now prove that g�x� = ExχA�η�, x ∈ � satisfying Stg = g is constant by
showing that �i, the σ-algebra of invariant sets, is trivial [cf. Foguel (1969)].

If χC is not the constant 1, then, by Proposition 6,

�χC�L2�� � = �StχC�L2�� � ≤ exp�−c1t��χC�L2�� �� C ∈ �i�(27)

and χC = 0 since t is arbitrary. Or else χC is the constant 1. Hence C has
measure 0 or 1.

For κ > 0, stationarity of �ξp�ω�w��p≥0 follows from the divergence free
property of the velocity [Port and Stone (1976), Theorem 3, page 500].

We turn to the proof of ergodicity. Suppose that χA��ξk+1�k≥0� = χA��ξk�k≥0�
for some A in the σ-algebra of cylindrical sets in the space of real-valued se-
quences �xn�n≥0. We have St

0g = g, where g�x�x� = MxExχA��ξp�p≥0�, which,
by Proposition 5, implies that g is a constant c. For any n ≥ 1 and a Borel-
measurable and bounded function h� Rn → R we write

MEχA
(�ξp�p≥0

)
h�ξ1� f� 	 	 	 � ξn�f� = MEχA

(�ξp+n+1� f�p≥0
)
h�ξ1� f� 	 	 	 � ξn�f�

= MEg
(
ω�nt1��w�nt1�

)
h�ξ1� f� 	 	 	 � ξn�f�

= cMEh�ξ1� f� 	 	 	 � ξn�f�	
Hence χA must be a constant. ✷

5. Proof of Theorem 2.

Proposition 7.∣∣�� f�g�L2�� �
∣∣ ≤K′∣∣�� f�f�L2�� �

∣∣1/2∣∣�� g�g�L2�� �
∣∣1/2(28)

and

�−� f�f�L2�� � ≥ �−Lf�f�L2�� � ≥ c2�f�2
H̃1�� �(29)

for some constant K′ > 0 and any f, g ∈ � �� �.
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Proof. From (14), we know that (29) holds for all f ∈ D1. The sector
condition (28) holds therefore for the operator ��D1

for all κ ≥ 0. Indeed, for
f, g ∈ D1�

�−� f�g�L2�� � = �−Lf�g�L2�� � + κ�f�g�H̃1�� � −
d∑

p�q=1

(
+p�qDqf�Dpg

)
L2�� �	

The condition (L2) and formula (29), used for f, g ∈ D1 imply that

∣∣κ�f�g�H̃1�� �
∣∣ ≤ κ

c2

∣∣�Lf�f�L2�� �
∣∣1/2∣∣�Lg�g�L2�� �

∣∣1/2
≤ κ

c2

∣∣�� f�f�L2�� �
∣∣1/2∣∣�� g�g�L2�� �

∣∣1/2(30)

and likewise ∣∣∣∣ d∑
p�q=1

�+p�qDqf�Dpg�L2�� �

∣∣∣∣
(31)

≤ �+�L∞�� �
c2

∣∣�Lf�f�L2�� �
∣∣1/2∣∣�Lg�g�L2�� �

∣∣1/2
≤ �+�L∞�� �

c2

∣∣�� f�f�L2�� �
∣∣1/2∣∣�� g�g�L2�� �

∣∣1/2	(32)

The sector condition (L3) for L together with (30) and (31) imply that (28)
holds for f, g ∈ D1.

Both (28) and (29) can be extended from D1 to the entire � �� � via a stan-
dard Dirichlet form argument [see, e.g., Ma and Röckner (1992)]. ✷

Define

H1
0�� s� =

{
f ∈ L2

0�� ��
∫ +∞

0
λef�dλ� < +∞

}
�

H−1
0 �� s� =

{
f ∈ L2

0�� ��
∫ +∞

0

1
λ
ef�dλ� < +∞

}
�

where

ef�A� = �E�A�f�f�L2�� ��(33)

with E�A� being the spectral resolution of −� s, the symmetric part of � cor-
responding to the asymmetric form � s�f�g� �= 1

2 �� �f�g� + � �g�f��. Observe
that � �� � =H1

0�� s� ⊕R, that is, f ∈ � �� � iff f̃ ∈H1
0�� s�, where

f̃ = f− f� f =
∫
fdP0	
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Denote by H1�� s� and H−1�� s� the completions of H1
0�� s� and H−1

0 �� s�
in the norms

�f�1�� s = � s�f�f�1/2 =
(∫ +∞

0
λef�dλ�

)1/2

� f ∈H1
0�� s��

�f�−1�� s =
(∫ +∞

0

1
λ
ef�dλ�

)1/2

= sup
{�f�ϕ�L2�� �� ϕ ∈H1

0�� s�� �ϕ�1�� s = 1
}
�

respectively.
We can identify H−1�� s� with the dual space of H1�� s� via the standard

identification of any element f ∈H−1
0 �� s� with a continuous linear functional

on H1�� s� given as the unique continuous extension to H1�� s� of

f�ϕ� = �f�ϕ�L2�� � if ϕ ∈H1
0�� s�	(34)

The proof of the weak convergence of the family �xε�t��t≥0 is divided into
the proof of tightness and the proof of the uniqueness of the weak limit.

Proof of tightness. Following Olla (1994), we introduce the following linear
space:

� =
{
E ∈ L∞�� �P0�� ��

∣∣∣∣∫ Ef2dP0

∣∣∣∣ ≤ CE�f̃�1�� s�f�L2�� ��

for a certain CE > 0 and all f for which f̃ ∈H1
0�� s�

}
	

(35)

Remark 4. It is elementary to check that � ⊆H−1
0 �� s�. Consider the test

function f = c+ g where c is any constant and g ∈H1
0�� s�. Letting c ↑ +∞�

we have that
∫
EdP0 = 0 and � ∫ EgdP0� ≤ CE�g�1�� s .

The following proposition has been proved by Olla (1994).

Proposition 8. For any E ∈ � , α ∈ R� we have

ME
[
exp

{
α
∫ t

s
E�η�s��ds

}]
≤ exp

{
α2C2

E

4
�t− s�

}

where the constant CE is the same as in (35).

We now show b ∈ � .

Proposition 9. Dp+q�r ∈ � for any p�q� r ∈ �1� 	 	 	 � d�.

Proof. Fix p�q� r. For any f such that f̃ ∈H1
0�� s� ∩L∞�� �, we write∫

Dp+q�rf
2dP0 = −2

∫
+q�rDpffdP0	
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By the homogeneity of P0 and the Lebesgue dominant convergence theorem
we get ∫

Dp+q�rf
2 dP0 = lim

h↓0

∫
+q�r

f ◦ τ−hep − f
h

�f ◦ τ−hep + f�dP0

= −2
∫
+q�rDpffdP0	

Consequently we get∣∣∣∣∫ Dp+q�rf
2 dP0

∣∣∣∣ ≤ 2�+�L∞�� ��f�H̃1�� ��f�L2�� ��(36)

which, by Proposition 7, implies that∣∣∣∣∫ Dp+q�rf
2 dP0

∣∣∣∣ ≤ 2�+�L∞�� �
c2

�f�1�� s�f�L2�� �	(37)

Since � s�·� ·� is a symmetric Dirichlet form f̃n ∈H1
0�� s� and

lim
n↑+∞

[�fn − f�2
L2�� � + � s�fn − f�fn − f�

] = 0

for any f ∈H1
0�� s�, where fn = −n∨�f∧n� [see Fukushima (1980), page 25].

This allows us to extend (37) to the entire H1
0�� s�. ✷

To prove tightness of �xε�t��t≥0, ε > 0 it suffices to show tightness of

ε
∫ t/ε2

0
bk�η�s��ds� t ≥ 0� ε > 0(38)

on C��0�+∞��Rd�.
By Proposition 9,

ME
[(

ε√
t− s

∫ t/ε2

s/ε2
bk�η����d�

)4]

≤ 24ME
[
exp

{∣∣∣∣ ε√
t− s

∫ t/ε2

s/ε2
bk�η����d�

∣∣∣∣
}](39)

for s < t, ε > 0.
Choosing α = ±ε/√t− s in Proposition 8, we get that the left-hand side of

(39) is less than or equal to exp�C2
bk
/4�. Thus,

ME
[(
ε
∫ t/ε2

s/ε2
bk�η����d�

)4]
≤ C�t− s�2�

which implies tightness of the laws of (38) on C��0�+∞��Rd� by Kolmogorov’s
criterion [Billingsley (1968), page 95, Theorem 12.3].

The uniqueness of the law of a weak limit. The following lemma is crucial
in establishing the uniqueness property.
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Lemma 3. Suppose that f ∈H−1
0 �� s� and λ > 0. Then:

(i) The equation

�λ−� �hλ = f(40)

has a unique solution hλ ∈H1
0�� s�. In addition

lim
λ↓0

λ�hλ�2
L2�� � = 0	(41)

(ii) The family �hλ�λ>0 ⊆H1
0�� s� converges strongly in H1�� s� as λ ↓ 0.

We show first how to apply the lemma to establish the uniqueness of the
weak limit. We denote by Qx, x ∈ � the configuration measures on ���� �
corresponding to St. Let Q̃, Q̃x be the measures induced from P⊗Q and Qx,
x ∈ � by the mapping 	� � × /→ �, where 	�ω�w��·� = η�·�ω�w�. Denote
by Ẽ, Ẽx the respective expectations.

Let 
2 be the space of all square integrable martingalesM�t�, t ≥ 0 over the
probability space ��×/�� ⊗��P⊗Q� with respect to the filtration �t, t ≥ 0
and such that M�0� = 0. Without loss of generality all martingales involved
are assumed to be cadlags, that is, right continuous with the left-hand side
limits. For any f ∈ � �� � define

Mf�t�η� = f�η�t�� − f�η�0�� −
∫ t

0
� f�η�s��ds	(42)

Let

M̃f�t�ω�w� �=Mf�t�	�ω�w���
t ≥ 0. We have

MEM̃2
f�t� = t�f�2

1�� s(43)

and, hence, M̃f ∈
2.
Set fv = �v�b� ∈ H−1

0 �� s� for any v ∈ Rd, by Remark 4. Let hλ, λ > 0 be
the solutions of (40) with f = fv. Then hλ converge as λ→ 0 to ψv ∈H1�� s�.
We show (�v�xε�t1��� 	 	 	 � �v�xε�tN��

)
�(44)

with tk = kt1, k = 1� 	 	 	 �N, converges as ε ↓ 0 the Brownian motion with
variance at t = 1 being �v�2 + �ψv�2

1�� s . We write

�v�xε�t�ω�w�� = ε�v�w�t/ε2�� + ε
∫ t/ε2

0

(
v�b�η�s�ω�w��)ds

=Nε�hε2
�t�ω�w� +Rε�t�	�ω�w���

where

Nε�hε2
�t�ω�w� = ε

√
2κ�v�w�t/ε2�� + εM̃hε2

(
t

ε2
�ω�w

)
(45)
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and

Rε�t�η� = −εhε2�η�t/ε2�� + εhε2�η�0�� + ε3
∫ t/ε2

0
hε2�η�s��ds	

By (i) of Lemma 3 and (43), it immediately follows that limε↓0 MER2
ε�t� = 0.

Then the proof reduces to establishing weak convergence of finite-dimensional
distributions of Nε�hε2

, as ε ↓ 0. By part (ii) of Lemma 3, for any σ > 0, there
exists ε0 > 0 such that for 0 < ε < ε0�

ME
[
Nε�hε2

�t� −Nε�h
ε2
0

�t�]2 ≤ �hε2 − hε2
0
�2

1�� s t < σt	

Consequently, for any uniformly continuous function ϕ� Rd → R and σ > 0�
there exists ε0 > such that

ME
∣∣ϕ(Nε�hε2

�t1�� 	 	 	 �Nε�hε2
�Nt1�

)− ϕ(Nε�h
ε2
0

�t1�� 	 	 	 �Nε�h
ε2
0

�Nt1�
)∣∣ < σ	

Define the partial sum process Sf�ε�t� = ε
∑�t/ε2�

p=0 ξp�f, where

ξp�f = M̃f��p+ 1�t1� − M̃f�pt1� +
(
v�w��p+ 1�t1�

)− �v�w�pt1��	
By Theorem 23.1, page 206 of Billingsley (1968) and Lemma 4 below, Sε�h

ε2
0

tend weakly in the Skorohod space D�0�+∞�, as ε ↓ 0, to a Brownian motion
with variance at t = 1 being �v�2 + �hε2

0
�2

1�� s . Hence

lim sup
ε↓0

∣∣MEϕ
(
Nε�hε2

�t1�� 	 	 	 �Nε�hε2
�Nt1�

)−Wε0
ϕ
(
η�t1�� 	 	 	 � η�Nt1�

)∣∣ ≤ σ�

where Wε0
is the expectation with respect to the Wiener measure on C�0�+∞�

corresponding to the limit Brownian motion. Convergence in finite-dimen-
sional distributions follows as ε0 → 0. We now prove the following.

Lemma 4. For any fixed f the sequence ξp�f� p ≥ 0 is stationary and
ergodic.

Proof. The case κ > 0 can be proved in Lemma 2.
For κ = 0, it suffices to prove that the transformation θt of the probability

space ���� � Q̃� is measure-preserving and ergodic for an arbitrary t > 0.
Suppose A ∈ � and

θ−1
t �A� = A	(46)

Hence Stg = g for g�x� = ẼxχA�η�, x ∈ � ,
We show now that the only invariant functions for St, where t > 0 are

constants. Suppose Stχ̃C = χ̃C, where χ̃C = χC −
∫
χC dP0. By Proposition 7

the semigroupSt, t ≥ 0 is holomorphic [Ma and Röckner (1992), Corollary 2.21,
page 25]. Thus Ssχ̃C ∈ � �� �, for all s > 0 and

d

ds

∥∥Ssχ̃C
∥∥2
L2�� � = 2

(−� Ssχ̃C�S
sχ̃C

)
L2�� � ≤ −2c2

∥∥Ssχ̃C
∥∥2
H̃1�� �	(47)
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It follows that �Ssχ̃C�H̃1�� � = 0, 0 < s < t and, by (T5), χ̃C, 0 < s < t and g�x�
are constants. ✷

Proof of Lemma 3. Proof of (i). Since λ > 0 is in the resolvent set of � ,
(40) can be uniquely solved in hλ� �� � ⊆ � �� �. Since hλ = 0, we have that
hλ ∈H1

0�� s�.
We construct the solutions hλ in two steps. First we solve, by spectral cal-

culus, for hsλ, the solutions of the resolvent equation for � s with the desired
properties as in Lemma 3. This is a standard argument essentially due to Kip-
nis and Varadhan (1986). Then by a perturbation argument we solve for hλ.

Denote by Mλf ∈H1
0�� s�, for f ∈H−1�� s� and λ > 0, the unique element

in the Hilbert space �H1
0�� s��� λ�·� ·�� such that

f�ϕ� = � λ�Mλf�ϕ�� ϕ ∈H1
0�� s��(48)

where � λ�·� ·� �= λ�·� ·�L2�� � + � �·� ·�. Then M0f ∈H1�� s�. Moreover,

f�ϕ� = �M0f�ϕ�1�� s � ϕ ∈H1�� s�	(49)

Then hsλ �=Mλf solves the resolvent equation

�λ−� s�hsλ = f	(50)

Now we show that hsλ �= Mλf have the desired properties. We state it as a
lemma.

Lemma 5. Suppose λ ≥ 0 and f ∈H−1�� s�. Then:

(i)

�Mλf�1�� s ≤ �f�−1�� s(51)

and

Mλf =
∫ +∞

0

1
λ+ µE�dµ�f	(52)

Suppose, additionally, that the family �fλ�λ>0 ⊆H−1�� s� satisfies

lim
λ↓0
�f− fλ�−1�� s = 0	

Then

lim
λ↓0

λ
∥∥Mλfλ

∥∥2
L2�� � = 0	(53)

(ii)

lim
λ↓0
�Mλf−M0f�1�� s = 0	(54)
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(iii) For λ > 0 and �fn�n≥1 ⊆H−1�� s� satisfying

lim
n↑+∞

�fn − f�−1�� s = 0(55)

we have

lim
n↑+∞

∥∥Mλfn −Mλf
∥∥
L2�� � = 0	(56)

Proof. (i) Let λ > 0. Substituting ϕ =Mλf into (48) we obtain

�Mλf�2
1�� s ≤ f�Mλf� ≤ �f�−1�� s�Mλf�1�� s �

which proves (51). This argument works for the case λ = 0 also. By (34) and
(48) we have that Mλf = �λ − � s�−1f. Then (52) and (53) follow from the
spectral theorem.

(ii) First we show that the family �Mλf�λ>0 is strongly compact inH1�� s�.
It is weakly compact since it is bounded in �·�1�� s norm. We show now that any
weakly convergent �Mλ′f�λ′>0 to a limit f∗ ∈ H1�� s� is strongly convergent
to f∗. Then (48) implies that

f�ϕ� = λ′�Mλ′f�ϕ�L2�� � + � s�Mλ′f�ϕ�� ϕ ∈H1
0�� s�	(57)

Letting λ′ ↓ 0 and using (53), we conclude from (57) that

f�ϕ� = �f∗� ϕ�1�� s for all ϕ ∈H1�� s�	(58)

Substituting ϕ =Mλ′f in (57) and letting λ′ ↓ 0 we get by (i) that

�f∗�2
1�� s = f�f∗� = lim

λ′↓0
�Mλ′f�2

1�� s �

which clearly proves the strong convergence of �M′
λf�λ′>0. Now (58) implies

that f∗ =M0f. This completes the proof of (ii).
(iii) By (48) we have

λ
∥∥Mλfn −Mλf

∥∥2
L2�� � ≤ �fn − f��Mλfn −Mλf�

≤ �f− fn�−1�� s�Mλfn −Mλf�1�� s ≤ �f− fn�2
−1�� s

for fn − f ∈H−1�� s� and λ > 0. This concludes the proof of the lemma. ✷

Finally we use a perturbation technique to solve for hλ.
Let Mλ�δf ∈H1

0�� s� be the unique element of H1
0�� s� such that

f�ϕ� = � λ� δ�Mλ�δf�ϕ�� ϕ ∈H1
0�� s�(59)

where � λ�δ�·� ·� �= � λ�·� ·� + δ� a�·� ·� with � a�·� ·� = 1
2 �� �f�g� − � �g�f��, the

antisymmetric part of the form � �f�g�. The existence and uniqueness of Mλ�δ

follows from the Lax–Millgram lemma. Again, for λ = 0, M0� δf ∈ H1�� s�.
Note that Mλ�0f =Mλf�= hsλ�, for all λ ≥ 0 and Mλ�1f = hλ.
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Let Kλ�δf ∈H−1�� s� be the unique continuous extension of

Kλ�δf�ϕ� = � a�Mλ�δf�ϕ�� ϕ ∈H1
0�� s�(60)

to the entire H1�� s�.
The following lemma holds.

Lemma 6.

(i)

�Mλ�δf�1�� s ≤ �f�−1�� s(61)

for λ ≥ 0, δ ∈ R.

sup
λ≥0� δ

�Kλ�δ� ≤K′�(62)

where K′ is the same constant as in (28). Moreover,

Mλ�δ0+δ =Mλ�δ0
�I+ δKλ�δ0

�−1(63)

for �δ� < 1/K′, λ ≥ 0 and δ ∈ R.
(ii) Suppose that f ∈H−1�� s�. Then

lim
λ↓0

Kλ�δf =K0� δf ∈H−1�� s� ∀ δ	(64)

(iii) Suppose that the family �fλ�λ>0 ⊆H−1�� s�with limλ↓0 �f−fλ�−1�� s =
0. Then

lim
λ↓0

∥∥Mλ�δfλ −M0� δf
∥∥

1�� s = 0(65)

and

lim
λ↓0

λ
∥∥Mλ�δfλ

∥∥2
L2�� � = 0(66)

for ∀ δ	

Proof. (i) The proof of (61) is the same as that of (i) of Lemma 5 and is
left to the reader.

By (28) we have that∥∥Kλ�δf
∥∥
−1�� s = sup

�ϕ�1�� s=1

∣∣� a�Mλ�δf�ϕ�
∣∣ ≤K′∥∥Mλ�δf

∥∥
1�� s ≤K′�f�−1�� s 	

Let us observe that for any ϕ ∈H1
0�� s�,

� λ� δ0+δ�Mλ�δ0
�I+ δKλ�δ0

�−1f�ϕ�
= (

I+ δKλ�δ0

)−1
f�ϕ� + δ� a

(
Mλ�δ0

�I+ δKλ�δ0
�−1f�ϕ

)
= �I+ δKλ�δ0

�−1f�ϕ� + δKλ�δ0
�I+ δKλ�δ0

�−1f�ϕ�
= f�ϕ��

which proves (i).
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(ii) We first note that (64) holds for δ = 0. Indeed∥∥Kλ�0f−K0�0f
∥∥
−1�� s = sup

�ϕ�1�� s=1

∣∣ ˜� a�Mλf−M0f�ϕ�
∣∣

≤K′∥∥Mλf−M0f
∥∥

1�� s 	
(67)

Here ˜� a�·� ·� denotes the unique continuous extension of � a�·� ·� to H1�� s� ×
H1�� s�. Then (64) follows from (52). We next show that if (ii) holds for a
certain δ0� then it also holds for all δ� �δ − δ0� < 1/K′. The proof is complete
in view of the result for δ0 = 0.

(iii) By (63), (65) and (66) immediately extend to the 1/K′ neighborhood
of δ0. By the same calculation as (67), with δ in place of 0, we have the result.

The proof of (i) of Lemma 3 follows from (66) with δ = 1.
Part (ii) of Lemma 3 follows from (iii) of Lemma 6 since hλ = Mλ�1f and

(65). ✷

Proof of (9). By (L2), H1�� s
κ � are continuously embedded in H̃1�� �, for

any κ ≥ 0. More specifically,

�ϕ�2
H̃1�� � ≤

1
c2
�ϕ�2

1�� s
κ
� ∀ϕ ∈H1�� s

κ �	(68)

By restoring the subscript κ of the generator, we highlight its dependence
on that parameter. For f ∈ H−1�� s

κ �� define Tf ∈ H−1�� s
κ � as the unique

continuous extension to H1�� s
κ � of the functional Tf�ϕ� = �M0�1f�ϕ�H̃1�� �,

ϕ ∈ H̃1�� �. Then (61) and (68) imply that

�Tf�−1�� s
κ
≤ 1
c2
�f�−1�� s

κ
∀f ∈H−1�� s

κ �	

The limit ψv ∈H1�� s
κ � of hλ, as λ ↓ 0, is given by

ψv�κ� =M0�1�I+ κT�−1fv for �κ� < c2	(69)

Now (9) follows from the Neumann series expansion of �I + κT�−1 and (i) of
Lemma 6. ✷
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