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For a simulated annealing process Xt on S with transition rates
qij�t� = pij exp�−�U�i; j��/T�t�� where i; j ∈ S and T�t� ↓ 0 in a suitable
way, we study the exit distribution Pt; i�Xτ = a� and mean exit time
Et; i�τ� of Xt from a cycle c as t→∞. A cycle is a particular subset of S
whose precise definition will be given in Section 1. Here τ is the exit time
of the process from c containing i and a is an arbitrary state not in c.
We consider the differential (backward) equation of Pt; i�Xτ = a� and
Et; i�τ� and show that limt→∞Pt; i�Xτ = a�/ exp�−�U�c; a� −V�c��/T�t��
and limt→∞Et; i�τ�/ exp�V�c�/T�t�� exist and are independent of i ∈ c.
The constant U�c; a� is usually referred to as the cost from c to a and V�c�,
�≤ U�c; a�� is the minimal cost coming out of c. We also obtain estimates
of �Pt; i�Xτ = a� − Pt; j�Xτ = a�� and �Et; i�τ� − Et; j�τ�� for i 6= j as
t→∞. As an application, we shall show that similar results hold for the
family of Markov processes with transition rates qεij = pij exp�−U�i; j�/ε�
where ε > 0 is small.

1. Introduction. On a finite set S = �1;2; : : : ;M�, consider a (time) in-
homogeneous Markov chain Xt with the following transition rates:

�1:1� qij�t� =





pij exp
(
−U�i; j�

T�t�

)
; for j 6= i;

−
∑
k6=i
qik�t�; for j = i;

where P = �pij� is an irreducible neighborhood choosing matrix with non-
negative entries, U�i; j� is an arbitrary (cost) function from S × S to �0;∞�
and T�t� > 0 is a suitable temperature function converging to 0. Originally,
U�i; j� = �U�j� −U�i��+ in (1.1) and such a chain is called a simulated an-
nealing process ([7], [8], [9] and [11]). We shall, however, abuse the name and
call any Markov process of the form (1.1) a simulated annealing process. For
convenience, we always assume pij = 0 if and only if U�i; j� = ∞. We refer
readers to [7], [11] and [16] for some of their applications and motivation.

In [3] and [4], the asymptotic behavior of processes (1.1) was obtained by
solving the associated forward equation. Indeed, if Fi�t� = P�Xt = i� and
λ�t� = exp�−1/T�t��, then the forward equation of Xt takes the following
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form:

�1:2� Ḟ�t� = QT�t�F�t�;
whereQT�t� is the transpose of �qij�t�� in (1.1), and there are constants βi > 0
and a certain function h such that

�1:3� lim
t→∞

Fi�t�/λ�t�h�i� = βi
for any initial distribution X0. The function h depends only on U and h�i� =
U�i� −minU in the potential case, that is, U�i; j� = �U�j� −U�i��+ for some
potential function U. For a more probabilistic approach, see [1], [9] and [10].
In this paper we shall study, by solving backward equations, the behavior of
(1.1) before the limit (1.3) is reached for low temperatures. This method is
new and powerful in the sense that it can solve both the exit distribution and
mean exit time problems simultaneously. Moreover, it yields finer estimates
than the probabilistic methods ([2] and [13]). To describe our method, let c be
a subset of S and “a” an (absorbing) state not in c. Later, we shall consider
only cycles which are in some sense “nice” subsets of S and its definition will
be given below. Let xi�t� = Pt; i�Xτ = a� and yi�t� = Et; i�τ� where τ in the
first exit time from c, Pt; i is the distribution and Et; i is the expectation of
a simulated annealing process starting at time t from i ∈ c. The differential
(backward) equations associated with xi�t� and yi�t� take the following forms,
respectively:

�1:4� ẋi�t� = −
∑
j∈c
qij�t�xj�t� − qia�t�; i ∈ c;

�1:4�′ ẏi�t� = −
∑
j∈c
qij�t�yj�t� − 1; i ∈ c:

In matrix notation, we have

ẋc�t� = −Qc�t�xc�t� −Qc; a�t�;
ẏc�t� = −Qc�t�yc�t� − 1;

where xc and yc are the column vectors of xi and yi, i ∈ c; Qc is the submatrix
of Q restricted to c and Qc; a is the column vector of qia; i ∈ c. In Sections 2
and 3, we shall use (1.4) and (1.4)′ to establish results of the following type:
there exist some positive constants α; α′; θ; θ′ and γ, such that for any i; j ∈ c;

lim
t→∞

xi�t�
λα�t� = θ > 0; �xi�t� − xj�t�� = O�λα+γ�t��

and

lim
t→∞

yi�t�
λ−α′�t� = θ

′ > 0; �yi�t� − yj�t�� = O�λ−α
′+γ�t��:

To precisely describe our results, we shall briefly recall the definition of cy-
cles and state some technical assumptions on (1.1). Please see [3] and [9] for
their origins and necessity. Let U be a cost function on S as in (1.1). Let
V�i� = minj6=iU�i; j�. We start with such a triplet �S0;U0;V0� = �S;U;V�.
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For two different states i; j ∈ S0, we say that i → j if there exists a path
i = i0; i1; : : : ; in = j such that U�ik; ik+1� = V�ik� for each 0 ≤ k ≤ n − 1. A
state i ∈ S0 is called minimal if j→ i whenever i→ j. It follows that if i is
minimal and i→ j, then j is also minimal and j→ i. Two states i and j in
S0 are said to be equivalent �i ↔ j� if either i = j or if i → j and j → i.
It is easy to see that “↔” is an equivalence relation and if an equivalence
class has one minimal state, all the states in this class are minimal. We shall
call equivalence classes that consist of minimal states a (nontrivial) cycle. A
state which is not minimal will also be called a (trivial) cycle. Hence a cycle is
either an equivalence class under “↔” consisting of all minimal states or only
nominal and consisting of only one nonminimal state. Let S1 be the collection
of all the cycles thus formed. We next define U1�·; ·� and V1 on S1 as follows.
For c and c̃ in S1, let

�1:5� d1�c� = max
i∈c

V0�i�;

�1:6� U1�c; c̃ �=d1�c�+ min
i∈c
j∈c̃

�U0�i; j�−V0�i�� and V1�c�= min
c′ 6=c

U1�c; c′�:

Finally, let

�1:7� J1�c� = V1�c� − d1�c�:
We thus have a new triplet �S1;U1;V1� and �Sn;Un;Vn� can then be de-

fined inductively until SN+1 becomes a singleton for some N. An example is
given to illustrate the process to form �Sk;Uk�, k = 1;2; : : : ;N in the Ap-
pendix. Elements in Sn shall be called nth order cycles in the sequel but the
0th order cycles will still be called “states.” In theory, elements in Sn, n ≥ 1,
can be equivalence classes of equivalence classes and the statement that a
state i ∈ cn where cn ∈ Sn does not necessarily make sense. However, we shall
abuse the notation and say that a state i belongs to cn if there are kth order
cycles ck ∈ Sk, k = 1; : : : ; n − 1 such that i ∈ c1 ∈ · · · ∈ cn. Such a chain of
cycles is unique if it exists. The functions dn and Jn for nth order cycles in
Sn are similar: For c ∈ Sn,

dn�c� = max
c̃∈c
�Vn−1�c̃ ��(1.8)

and

Jn�c� = Vn�c� − dn�c�:(1.9)

For convenience, we inductively define the cost between a cycle and a state:
for c ∈ Sn and i ∈ S, i /∈ c,

Un�c; i� = dn�c� +min
c̃∈c
�Un−1�c̃; i� −Vn−1�c̃ ��:

A technical condition we shall always assume throughout the paper on
λ�t� = exp�−1/T�t�� is the following:

�1:10� λ̇�t�/λ�t� = o�λ�t�dN+1�SN+1�� and λ�t� → 0 as t→∞:
(See [4] or [8] for a reason.)
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The results can now be described as follows.

Theorem 1.1. Let Xt be a simulated annealing process on S satisfying
(1.10). For any states i; j in an nth order cycle c ∈ Sn, 0 ≤ n ≤ N, and a /∈ c,
we have the following:

�i� lim
t→∞

Pt; i�Xτ =a�/λα�t�= θ where θ is a positive constant

independent of i;

�ii� �Pt; i�Xτ = a� −Pt; j�Xτ = a�� = O�λγ�i; j�+α�t�� as t→∞:
Here τ is the exit time from c, α = Un�c; a� − Vn�c� and γ�i; j� =∑n
r=k�i; j�J

r�cr� where ck�i; j� ∈ Sk�i; j� is the cycle of the lowest order that

contains both i and j and ck�i; j� ∈ ck�i; j�+1 ∈ · · · ∈ cn = c:

Remark. The above statement (i) precisely describes the exit distribution
from cycles when t is large. It is also obvious that from (i) with overwhelming
probability, the process will exit to those states a ∈ S where Un�c; a� = Vn�c�.

Theorem 1.1′. Let Xt; c; τ; γ and α be as in Theorem 1.1. Then for any
i; j ∈ c; we have the following:

�i� lim
t→∞

Et; i�τ�/λ−V
n�c��t�= δ where δ is a positive constant in-

dependent of i;

�ii� �Et; i�τ� −Et; j�τ�� = O�λ−V
n�c�+γ�i; j��t�� as t→∞:

If c is an arbitrary set of S, our method is still valid but the expression of
h will be much more complicated and it will also depend on the starting state
i. We shall only concentrate on the cycle case. Our analysis actually asserts
that the first-order approximation of the asymptotic behaviors of xi�t� and
yi�t� can be obtained by first equating ẋc�t� and ẏc�t� to 0 in (1.4) and (1.4)′,
respectively, and then by solving the systems of linear (variable coefficient)
inhomogeneous equations: for i ∈ c and a 6∈ c,
�1:11� 0 = −

∑
j∈c
qij�t�xj�t� − qia�t� as t→∞;

�1:11�′ 0 = −
∑
j∈c
qij�t�yj�t� − 1 as t→∞:

Equations (1.11) and (1.11)′ are actually the equations corresponding to the
same problem for a family of homogeneous Markov chains Xε

t with transition
rates

�1:12� qεij =





pij exp
(
−U�i; j�

ε

)
; for j 6= i;

−
∑
k6=i
qεik; for j = i;
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where ε > 0 is fixed. Indeed, let xεi = Pεi �Xτ = a� and yεi = Eε
i �τ�. Then we

have

�1:13� 0 = −
∑
j∈c
qεijx

ε
j − qεia;

�1:13�′ 0 = −
∑
j∈c
qεijy

ε
j − 1:

Theorems 1.1 and 1.1′ can then be translated to processes (1.12) without any
change.

Theorem 1.2. Let Xε
t be the family of Markov chains with transition rates

(1.12). For any states i; j in an nth order cycle c ∈ Sn, 0 ≤ n ≤ N, and a /∈ c,
we have:

�i� lim
ε→0

Pεi �Xτ = a�/ exp�−α/ε� = θ > 0y

�ii� �Pεi �Xτ = a� −Pεj�Xτ = a�� = O�exp�−�γ�i; j� + α�/ε�� as ε→ 0:

Here ε; α; θ and γ are defined in Theorem 1.1.

Theorem 1.2′. Let Xε
t ; c and τ be as in Theorem 1.2. Then for any i; j ∈ c;

we have the following:

�i� lim
ε→0

Eε
i �τ�/ exp�Vn�c�/ε�= δ where δ is the same as in Theorem 1.1′;

�ii� �Eε
i �τ� −Eε

j�τ�� = O�exp�Vn�c� − γ�i; j��/ε� as ε→ 0:

Processes of the form (1.12) have been studied extensively in [6]. In the con-
text of metastability, this form was studied more recently in [12] and [14] for
the case where U is the positive part of the Hamiltonian difference of stochas-
tic Ising models with a small external field. LetH�σ�=− 1

2

∑
�x−y�=1 σ�x�σ�y�−

�h/2�∑x σ�x� where σ is a configuration on 3N=�1; : : : ;N2�, σ�x�=1 or −1
for x ∈ 3N and h is assumed positive. At a fixed temperature T, the Gibbs
state is given by µT�σ� = �1/z� exp�−H�σ�/T�. For any fixed N and T → 0,
µT concentrates its mass on the configuration with all positive spins, which
will be denoted by +1. The Metropolis algorithm in this set-up is a continuous
time Markov chain on the space of all configurations where the transition is
only possible between configurations which differ at only one site:

q�η;ηx� = exp−
(
H�ηx� −H�η�

T

)+
;

where

ηx�y� =
{
η�y�; if x 6= y;
−η�y�; if x = y:
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Obviously, the Metropolis algorithm is reversible with respect to µT, and start-
ing from any configuration (particularly −1) will thus result in a neighborhood
of +1 for T small. The physical interest in this phenomenon is the behavior
of the process from −1 to +1. It was shown in [12] that for small h and T, if
the Metropolis algorithm starts from −1, it stays close to −1 for a long time
while small rectangles of +1’s appear and disappear at various places in the
lattice. Then all of a sudden a big rectangle (critical droplet) appears and, in a
relatively short period of time, nucleates to the configuration with all +1’s. The
precise size of the critical droplet and time needed to form a critical droplet
were also calculated in [12]. In the language of cycles, we shall describe the
process as follows.

Let S0 be the space of all configurations and U�η;ηx� = �H�ηx� −H�η��+.
Let −1 = c0

− ∈ c1
− ∈ · · · ∈ ck− and +1 = c0 + 0 ∈ c1

+ ∈ · · · ∈ ck+ be the unique
sequences of cycles containing −1 and +1 respectively such that ck−; c

k
+ will be

the first cycles to be included in the same cycle in Sk+1. Starting from −1, the
process will spend some time in ck− whose expected value is given in Theorem
1.2’. A critical droplet then corresponds to a state in ck+ and its exact shape is
predicted by Theorem 1.2. The fact that the time the process stays close to +1
will be much longer than−1 is be predicted by the inequalityVk�ck+� > Vk�ck−�.
Actually, their ratio is exp��Vk�ck+� −Vk�ck−��/T�, which is not contained in
[12]. Moreover, the appearance of small droplet of+1’s corresponds to the lower
order cycles c1

−; c
2
−; : : : and the lengths of their duration are also predicted in

Theorem 1.2.
We remark that solving the backward equations (1.4) and (1.4)′ is very

different from the forward equation (1.2). First, (1.4) is not an initial value
problem and we can only study its positive bounded solutions. Equation (1.4)′

is similar to (1.4) but it does not have bounded positive solutions. Actually,
an a priori estimate of Et; i�τ� is necessary to distinguish Et; i�τ� from other
solutions of (1.4)′. This estimate will be pointed out in Section 2. Once this
is done, the asymptotic behavior of (1.4)′ can be obtained similarly to (1.4).
Our method is complicated but, we think, worthwhile because it can treat two
different problems simultaneously and yield precise estimates.

2. Case I. First order cycles. All of our techniques in this paper can
actually be traced to a simple observation of a first-order ordinary differential
equation. This is the content of the following three lemmas and will be used
repeatedly throughout.

Let λ�t� be a positive function converging to 0 with λ′�t�/λ�t� = o�λk�t�� as
t→∞. The following lemma will be useful for (1.4).

Lemma 2.1. Let f�t� be a bounded complex function. If f′�t� = �bλk�t� +
o�λk�t���f�t� − cλk+d�t� + o�λk+d�t�� where Re b > 0, then f�t� = −cλd�t�/b+
o�λd�t�� as t→∞.

Remark. The lemma implies that we can equate f′�t� to 0 and solve an
algebraic equation to obtain a first-order approximation of f�t�.
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Proof. Multiplying both sides of the equation by an integration factor, we
have

f�t�·exp
∫ t
t0

�−bλk+o�λk�� = f�t0�+
∫ t
t0

�−cλk+d+o�λk+d�� exp
∫ u
t0

�−bλk+o�λk��:

Under the assumptions on λ it is easy to show that
∫∞
t0
λk�s�ds = ∞ and for

any L > 0, exp
∫ t
t0
�Re b�λk�s�ds ≥ λ−L�t� holds for t large. Since f is bounded,

the right-hand side of the above equation must converge to 0 as t → ∞. If
c 6= 0, then by l’Hospital’s rule,

lim
t→∞

f�t�
c
b
λd�t�

= lim
t→∞

[
f�t� exp

∫ t
t0

�−bλk + o�λk��
]/[

c

b
λd�t� exp

∫ t
t0

�−bλk + o�λk��
]

= lim
t→∞

[
−cλk+d + o�λk+d�

]/[
�cd/b�λdo�λk� − cλd+k + o�λd+k�

]
= 1:

Hence f�t� = cλd�t�/b+ o�λd�t��. The case c = 0 can be treated similarly. 2

Since solutions of (1.4)′ are never bounded, we need the following two lem-
mas in place of Lemma 2.1 for (1.4)′.

Lemma 2.1′. Let f�t� be a complex function satisfying f�t� = O�λ−N�t�� for
some N > 0. If f′�t� = �bλk�t� + o�λk�t���f�t� − 1+O�λ� where Re b > 0; then
f�t� = λ−k�t�/b+ o�λ−k�t��.

Proof. It is routine as in Lemma 2.1 to show

f�t� = exp
∫ t
t0

bλk�1+ o�1��
{
f�t0� +

∫ t
t0

�−1+O�λ�� exp
∫ u
t0

−bλk�1+ o�1��
}
:

Because of the a priori estimate f = O�λ−N�, the right-hand side of the above
equation can be of order λ−N only if the sum inside the parenthesis converges
to 0 as t → ∞. Hence f�t0� = −

∫∞
t0
�−1 + O�λ�� exp

∫ u
t0
−bλk�1 + O�1�� and

then

f�t� exp
∫ t
t0

−bλk�1+ o�1�� = −
∫ ∞
t
�−1+O�λ�� exp

∫ u
t0

−bλk�1+ o�1��:

The conclusion follows by applying the l’Hospital’s rule as in Lemma 2.1. 2

Lemma 2.1′′. Let f be in Lemma 2.1′ and satisfy ḟ�t� = �bλk�t� +
o�λk�t���f�t� +O�λ�: Then f = O�λ−k+1�.

The proof is similar to that of Lemma 2.1′ and will be omitted. The a priori
estimate f = O�λ−N� in Lemmas 2.1′ and 2.1′′ is not trivial. Actually, Lemmas
2.1′ and 2.2′′ are false without such a condition. This, however, does not pose
a problem to our case. It is known ([4], Theorem 0.2) that Pt; i�τ > s� ≤
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exp
∫ s
t �−δλV

n�c� +O�λVn�c�+1�� for some δ > 0 and s large. In fact, by adopting
the method used in [5], there is a constant N > 0 such that the estimate above
holds for s and t large with s ≥ t+ λ−N�t�. Hence for t large,

Et; i�τ� =
∫ ∞
t
Pt; i�τ > s�ds

≤
∫ t+λ−N�t�
t

1+
∫ ∞
t+λ−N�t�

exp
∫ s
t
�−δλVn�c� +O�λVn�c�+1��

≤ λ−N�t� +
∫ ∞
t

exp
∫ s
t
�−δλVn�c� +O�λVn�c�+1��

≤ λ−N�t� + 2λ−V
n�c��t�/δ;

where an integration by parts and (1.10) have been used in the last inequality.
Let c be a first-order cycle and a ∈ S but a /∈ c. Let d1�c� =m,V1�c� =m+r

and U1�c; a� = m + r + s for some r ≥ 1 and s ≥ 0. For two disjoint sets
A;B contained in c, let QA;B�t� be the transition between A, and B, that
is, QA;B�t� = �qij�t��i∈A;j∈B. We define a diagonal matrix DA;B�t� of size
�A�× �A� whose �i; i� position is −∑j∈B qij. Defined in this way, the row sums
of QA;B�t� and DA;Bc�t� are equal but opposite in sign. Hence DA;Bc�t�1 +
QA;B�t�1 = 0 where 1 is the column vector of suitable size whose entries
are all 1’s. Similarly, let QA�t� be the transitions among the states in A,
that is, QA�t� = �qAij�t��i; j∈A. Here qAij = qij if i 6= j but on the diagonal,
qAii �t� = −

∑
j6=i; j∈A qij�t� which is different from qii�t� defined in (1.1). QA�t�

is defined in such a way that the row sums of QA�t� are 0.
If we use ẋA for the column vector �ẋiy i ∈ A� and let c�k� = �i ∈ cy V1�c� =

k�, then the master equation (1.4) and (1.4)′ can be grouped in the following
forms, respectively:

�2:1�
ẋc�k� = −Qc�k�xc�k� −Dc�k�; c\c�k�xc�k� −Qc�k�;c\c�k�xc�k�

−Dc�k�; S\cxc�k� −Qc�k�; a for 0 ≤ k ≤m;

�2:1�′
ẏc�k� = −Qc�k�yc�k� −Dc�k�; c\c�k�yc�k� −Qc�k�; c\c�k�yc�k�

−Dc�k�; S\cyc�k� − 1 for 0 ≤ k ≤m:
To make (2.1) shorter and easier to handle, we shall abbreviate c�k� and

c\c�k� to k and k̂, respectively, when there is no confusion. Since Qc�k��t�
and Dc�k��t� and Dc�k�; c\c�k��t� are polynomials in λ�t� with lowest term
degree k, we can write −Qc�k��t�−Dc�k�;c\c�k��t�= −Qk�t�−Dk; k̂�t�=Mk�1+
O�λ�t���λk�t�. Similarly, −Qc�k�; c\c�k��t�=Nk�1+O�λ�t���λk�t�, −Dc�k�; S\c�t�=
− Rk�1 + O�λ�t���λk+r�t� and −Qc�k�; a�t� = Sk�1 + O�λ�t���λk+r+s�t� where
r; s are defined above. Hence we arrive at the following: for 0 ≤ k ≤m,

�2:2�
ẋk =Mk�1+O�λ��λkxk +Nk�1+O�λ��λkxk̂

+Rk�1+O�λ��λk+rxk +Sk�1+O�λ��λk+r+s;

�2:2�′ ẏk=Mk�1+O�λ��λkyk+Nk�1+O�λ��λkyk+Rk�1+O�λ��λk+ryk−1;
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where Mk, Nk, Rk and Sk are constant matrices satisfying the following char-
acteristic properties:

�2:3� Mk�1+O�λ�t�� is the negative of a transition rate matrix,

that is, its off-diagonal elements are negative and all its row sums are positive
for each t. Note that this implies Mk is also the negative of a transition rate
matrix:

�2:4� Nk�1+O�λ�� has all negative entries and Mk�1+O�λ��1+
Nk�1+O�λ��1 = 0;

�2:5�
Rk�1+O�λ�� is a positive, diagonal matrix and Sk�1+O�λ��
is a negative column vector such thatRk�1+O�λ��1+Sk�1+
O�λ��λs ≥ 0:

The reason that we prefer (2.2) rather than (1.4) is that we can eliminate
c�0�; : : : ; c�m−1� successfully from (2.2). By first showing ẋ0 is O�λr+s+1�, we
then can express x0 in terms of xk’s, k ≥ 1. Substituting this expression into
(2.2) for k ≥ 1, we thus obtain a system similar to (2.2) [i.e., satisfying (2.3)–
(2.5) but without x0]. Repeating this elimination process until there is only one
equation left, Lemma 2.1 then yields the desired result. In the process showing
that ẋk = O�λk+r+s+1�, we also have to show that all the terms involving
O�λ� in (2.2) do not really matter and can be absorbed into an error term
O�λk+r+s+1�. We want to remark that (2.2)′ can be treated similarly. Actually,
the exact same proof for xk can be used for yk except that one uses Lemmas
2.1′ and 2.1′′ instead of Lemma 2.1 and keeps in mind the a priori estimate
yk = O�λ−m−r� in (2.2)′ compared with xk = O�λ0� in (2.2). Hence for the
sake of brevity, we shall only work on (2.2) and omit the obvious translation
to (2.2)′. This scheme will be carried out in Steps 1–3 and Lemmas 2.2–2.4.

Step 1. Treat Rk and Sk as error terms and (2.2) becomes

�2:6� ẋk =Mk�1+O�λ��λkxk +Nk�1+O�λ��λkxk̂ +O�λk+r�; k ≥ 0:

Since xk is a bounded function, we shall start the induction from the following
weaker form (2.7) and trivial estimate (2.8):

ẋk =Mkλ
kxk +Nkλ

kxk̂ +O�λk+1�;(2.7)

ẋk = O�λk� and xi − xj = O�λ0� for i; j ∈ S:(2.8)

The next lemma shows that we can improve the error terms in (2.7) from
O�λk+1� to O�λk+r� and in (2.8) from O�λk�, O�λ0� to O�k+r�, O�λr�, respec-
tively.

Lemma 2.2. In (2.6), we have ẋ0 =M0x0 +N0x0̂ +O�λ�.
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Proof. By (2.7), ẋ0 =M0x0 +N0x0̂ +O�λ�. Since −M0 is a subtransition
rate matrix, all the eigenvalues of M0 have positive real parts by the Perron–
Frobenius theorem [15]. Let µ be an eigenvalue of M0 and v a corresponding
left eigenvector. Multiplying (2.7) by v, we have

�2:9� vẋ0 = µvx0 + vN0x0̂ +O�λ�:
Let g = vx0 + �1/µ��vN0x0̂�: Since, ẋ0̂ = O�λ1� from (2.8), we have ġ =
µg +O�λ�. Hence by Lemma 2.1, g = O�λ� and vẋ0 = O�λ�. If w is a gener-
alized eigenvector corresponding to µ, that is, wM0 = µw + v where v is an
eigenvector, then

wẋ0 = µwx0 + vx0 +wN0x0̂ +O�λ�:
Let g = wx0 + �vx0 + wN0x0̂�/µ + O�λ�. Then ġ = µg + O�λ� by (2.8) and
(2.9) and g = O�λ� by Lemma 2.1. Thus wẋc0

= O�λ�. Since all such v’s and
w’s form a basis of R�C0� by Jordan’s theorem, we thus conclude ẋ0 is actually
O�λ�, which improves the first statement in (2.8) for k = 0. Solving (2.7) for
k = 0, we have

�2:10� x0= −M−1
0 N0x0̂+O�λ�= −M−1

0 �Q0; k�0�xk+Q0; 0̂; k�0�x0̂; k�+O�λ�:
Here x0̂; k is the column vector of �xi; i ∈ c\c0∪ck�;Q0; k and Q0; 0̂; k are abbre-
viation of Qc0; ck

and Qc0; c\c0∪ck , respectively. Note that M−1
0 is a nonnegative

matrix and M01+N01 = 0 in (3.9) implies −M−1
0 N01 = 1, that is, −M−1

0 N0
is a usual Markov chain transition matrix. Substituting (2.10) into (2.7) for
k ≥ 1, we have

ẋk =Mkλ
kxk +Qk;0�k�λkx0 +Qk; 0̂; k�k�λkx0̂; k +O�λk+1�

=Mkλ
kxk +Qk;0�k�λk�−M−1

0 ��Q0; k�0�xk +Q0; 0̂; k�0�x0̂; k�
+Qk; 0̂; k�k�λkx0̂; k +O�λk+1�

= �Mk +Qk;0�k��−M−1
0 �Q0; k�0��λkxk + �Q0; 0̂; k�k�

+ �Qk;0�k��−M−1
0 �Q

�0�
0; 0̂; k
�λkx0̂; k +O�λk+1�

=M′kλkxk +N′kλkxk̂ +O�λk+1�; k = 1;2; : : : ;m:

Since M−1
0 is a positive matrix and

M′k1+N′k1 =Mk1+Qk; 0̂; k�k�1+Qk;0�k��−M−1
0 �N01

=Mk1+Qk; 0̂; k�k�1+Qk;0�k�1
=Mk1+Qk; k̂�k�1 =Mk1+Nk1 = 0;

properties (2.3)–(2.5) can easily be checked for M′k and N′k. We thus have
successfully eliminated x0 from the system (2.2). An obvious induction then
follows to establish

�2:11� ẋk = O�λk+1�; 0 ≤ k ≤m− 1
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and we finally obtain

�2:12� ẋm =Mmλ
mxm +O�λm+1�;

where −Mm is a transition rate matrix because c is a cycle. The same argu-
ments establishing (2.10) can now be applied to show that

�2:13� ẋm = O�λm+1�:

Hence Mmxm = O�λ�. By the Perron–Frobenius theorem, there are v1; v2; : : : ;
v�cm�−1 generalized left eigenvectors corresponding to nonzero eigenvalues of
Mm. Then, for each i, vi is orthogonal to 1, which is the unique right eigen-
vector corresponding to eigenvalue 0. Thus span�v1; : : : ; v�cm�−1� = �1�⊥ =
span�ei− ei+1y i=1; : : : ; �cm� −1�: Since vxm=O�λ� for each v∈ span�v1; : : : ;
vcm−1�, we have

�ei − ei+1�xm = xi − xi+1 = O�λ� for each i ∈ cm:

Substituting it into (2.10) from k =m− 1 to 0 successively yields that

�2:14� xi − xj = O�λ� for all i; j ∈ c:

Hence (2.12), (2.13) and (2.14) improve (2.8) by increasing the power of λ by
1. Again, (2.4), (2.12), (2.13) and (2.14) imply that (2.6) can be written as

ẋk =Mk�1+O�λ��λkxk +Nk�1+O�λ��λkxk̂ = O�λ2�:

Hence we can start over again with an error term O�λ2�. An induction obvi-
ously follows to establish the lemma.

Step 2. Treat Sk as the only error term and (2.2) becomes

�2:15�
ẋk =Mk�1+O�λ��λkxk +Nk�1+O�λ��λkxk̂

+Rk�1+O�λ��λk+rxk +O�λk+r+s�:

By (2.4) and Lemma 2.2, we have from (2.15) the following: for 0 ≤ k ≤m and
i; j ∈ S,

ẋk =Mkλ
kxk +Nkλ

kxk̂ +Rkλ
k+rxk +O�λk+r+1�(2.16)

and

ẋk = O�λk+r�; xi − xj = O�λr� and xi = O�λ0�:(2.17)

The next lemma shows that we can improve the error terms in (2.16)
from O�λk+r+1� to O�λk+r+s� and in (2.17) from O�λk+r�; O�λr� and O�λ0�
to O�λk+r+s�;O�λr+s� and O�λs�, respectively.

Lemma 2.3. In (2.15), we have ẋk = O�λk+r+s�; xi − xj = O�λr+s� and
xi = O�λs�:
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Proof. The process is the same as that in Lemma 2.2. We start with k = 0
in (2.16): ẋk = M0x0 +N0x0̂ +R0λ

rx0 +O�λr+1�: For any left eigenvector v
of M0 corresponding to an eigenvalue µ, we have �v̇x0� = µ�vx0� + vN0x0̂ +
vR0λ

rx0 +O�λr+1�. Let g = µ�vx0 + �1/µ�vN0x0̂ + �1/µ�vR0λ
rx0�: Then ġ =

µg + O�λr+1� because of (2.17) and (1.10). Hence g = O�λr+1� and vẋ0 =
O�λr+1�. Thus by the same reason as in (2.10), we have ẋ0 = O�λr+1� and
thus x0 = −�M0 +R0λ

r�−1N0x0̂ +O�λr+1�: Since

−�M0+R0λ
r�−1 = �I+M−1

0 R0λ
r�−1�−M−1

0 � = �I−M−1
0 R0λ

r��−M−1
0 �+O�λ2r�;

we have

x0 = �I+M−1
0 R0λ

r��−M−1
0 �N0x0̂ +O�λr+1�

= �I−M−1
0 R0λ

r��−M−1
0 ��Q0; kxk +Q0; 0̂; k x0̂; k� +O�λr+1�:

Substituting x0 into (2.16) for k ≥ 1, we have

ẋ0 =Mkλ
kxk +Qk;0�k�λkx0 +Qk; 0̂; k�k�λkx0̂; k

+Rkλ
k+rxk +O�λk+r+1�

=Mkλ
kxk +Qk;0�k�λk�I−M−1

0 R0λ
r��−M−1

0 �
× �Q0; k�k�xk +Q0; 0̂; k�k�x0̂; k�
+Qk; 0̂; k�k�λkx0̂; k +Rkλ

k+rxk +O�λk+r+1�

=M′kλkxk +N′kλkx0̂; k + �Rk + R̃k�λk+rxk
+ R̄kλ

k+rx0̂; k +O�λk+r+1�;

(2.18)

where

M′k =Mk +Qk;0�k��−M−1
0 �Q0; k;

N′k = Qk; 0̂; k�k� +Qk;0�k��−M−1
0 �Q0; 0̂; k�k�;

R̃k = Qk;0�k�M−1
0 R0M

−1
0 Q0; k�k�

and

R̄k = Qk;0�k�M−1
0 R0M

−1
0 Q0; 0̂; k�k�:

Since R̃k is a positive matrix and xi−xj = O�λr� by the induction hypothesis,

we can replace R̃k by a positive diagonal matrix D̃ whose diagonal elements
are row sums of R̃k and R̃kxk−D̃xk = O�λr�. Similarly, R̄k can be replaced by
a positive diagonal matrix D̄ so that R̄kx0̂; k−D̄xk = O�λr�: IfR′k = Rk+D̃+D̄,

then R′kxk = �Rk + R̃k�xk + R̄x0̂; k +O�λr�. Hence

�2:19� ẋk =M′kλkxk +N′kλkx0̂; k +R′kλk+rxk +O�λk+r+1�;
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where M′k, N′k and R′k satisfy (2.3)–(2.5). An induction thus follows until k =
m, in which case (2.19) becomes

�2:20� ẋm =M′mλmxm +R′mλm+rxm +O�λm+r+1�:

Let v be the unique positive unit left eigenvector of M′m corresponding to
0. Then �vẋm� = αλm+r�vxm� + O�λm+r+1�, vxm = O�λ� and xm = O�λ� by
Lemma 2.1. Again, ẋm =M′mλmxm +O�λk+r+1� from (2.20) and we obtain

�2:21� ẋm=O�λk+r+1�; xi−xj=O�λr+1� and xi=O�λ� for i; j ∈ c

as in the proof of Lemma 2.2. This proves the case s = 1 and an obvious
induction follows for any s. 2

We remark that the eigenvector v forM′m in (2.20) is the ergodic distribution
of M′m since it is a transition rate matrix. Let xc = vxm. Then obviously,

�2:22� ẋc = O�λk+r+s�:

Also, we only take the leading term in the expansion of �I+M−1
0 R0λ

r�−1. This
can be justified by the estimate of xi’s in (2.21).

Step 3. Consider now the full equation (2.2). Lemma 2.3 implies that

�2:23� ẋk =Mkλ
kxk +Nkλ

kxk̂ +Rkλ
k+rxk +Skλk+r+s +O�λk+r+s+1�:

Lemma 2.4. In (2.21), we have ẋk = O�λk+r+1�, 0 ≤ k ≤ m, and xi =
θ · λs + o�λs�.

Proof. Following the same method as in Lemma 2.3, we shall obtain that
ẋ0 = O�λr+s+1� and x0 = −�M0+R0λ

r�−1�N0x0̂+Sr+s0 �+O�λk+r+s+1� in (2.21).
Similarly to (2.19), we therefore have ẋk =M′kλkxk +N′kλkx0̂; k +R′kλk+rxk +
S′kλ

k+r+s+O�λk+r+s+1� with M′k;N
′
k;R

′
k and S′k satisfying (2.3) to (2.5). When

k =m, we have ẋm =M′mλmxm+R′mλm+rxm+S′mλm+r+s+O�λm+r+1�. Hence
�vẋm� = αλm+r�vxm� + βλm+r+s + O�λm+r+s+1�. Therefore vxm = θλs + o�λs�
for some θ > 0. This completes the proof. 2

Combining Lemmas 2.2–2.4, we arrive at the main conclusion of this sec-
tion.

Theorem 2.5. Let c be a first order cycle and a /∈ c. If τ is the first exit time
from c, then Pt; i�Xτ = a� = θ · λs�t� + o�λs�t�� and �Pt; i�Xτ = a� −Pt; j�Xτ =
a�� = O�λr+s� for i; j ∈ c. Here r = V1�c� − d1�c� ≥ 1 and s = U1�c; a� −
V1�c� ≥ 0.
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3. Case II. Second- and higher order cycles. We shall treat second-
order cycles in some detail in this section and one should easily see that
higher order cycles can be treated similarly. Since we will be dealing with
second-order cycles, we shall use C ∈ S2; �U = U1� and V�= V1� for second-
order cycles and c;U;V for first-order cycles. Let C�k� = �c ∈ Cy V�c� = k�
for 0 ≤ k ≤M where M = d1�C� �= maxc∈C V�c��: As in Section 2, for c ∈ C;
let c�k� = �i ∈ c;V�i� = k� for 0 ≤ k ≤ m where m = d�c� �= maxi∈cV�i��.
We remark that J1�c� = k−m > 0. If V2�C� =M+R;R ≥ 1, and U2�C; a� =
M+R+S, S ≥ 0 then the backward equation of xi, i ∈ c�k� takes the following
form: for 0 ≤ k ≤m = maxi∈cV�i�,

�3:1�

ẋc�k� = �ẋi�i∈c�k� =Mc�k��1+O�λ��λkxc�k� +Nc�k��1+O�λ��λkxc�k̂�
+Ec�k��1+O�λ��λk+K−mxc�k�
+Fc�k��1+O�λ��λk+K−mxC\c

+Rc�k��1+O�λ��λk+K−m+Rxc�k�
+Sc�k��1+O�λ��k+K−m+R+S:

Here, as in Section 2, Mc�k� represents transitions among c�k� and Nc�k� rep-
resents the transitions between c�k� and the rest of c. Ec�k� and Rc�k� are
diagonal matrices representing the transition rates from c�k� to C\c and S\C
respectively. Obviously, c�k̂� = �i ∈ c, V�i� 6= k�� and ĉ = C\c. The coefficient
matrices in (3.1) satisfy the following:

�3:2� Mc�k��1+O�λ��1+Nc�k��1+O�λ��1 = 0;

that is, the row sums of Mk and Nk are 0. In particular, Mc�k�1+Nc�k�1 = 0,

�3:3� Ec�k��1+O�λ��1+Fc�k��1+O�λ��1 = 0 and Ec�k�1+Fc�k�1 = 0;

�3:4� Rc�k��1+O�λ��1+Sc�k��1+O�λ��λs1 ≥ 0

and

�3:5� Mk is a transition rate matrix and Ek and Rk are diagonal
matrices.

Like (2.3)–(2.5), properties (3.2)-(3.5) are characteristic of (3.1). The method
for treating second-order cycles is similar to that for first-order cycles,
only slightly more complicated. Our ultimate goal is to show ẋc�k� =
O�λk+�K−m�+R+S+1� and eliminate c�k�, k ≤ m − 1, from c and C�K�, K ≤
M− 1, from C. This shall be done in four steps.

Step 1. Considering first only two terms in the right-hand side of (3.1)
and treating the rest as error terms, we then have an equation exactly the
same as in (2.6):

�3:6� ẋc�k� =Mc�k��1+O�λ��λkxc�k� +Nc�k��1+O�λ��λkxc�k̂� +O�λk+K−m�:
Hence, as in Lemma (2.2), we have the following lemma.
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Lemma 3.1. In (3.6) we have xi−xj = o�λK−m�, ẋi = O�λk+K−m� for i; j ∈
c�k� and ẋc = O�λk�.

In the first step, each first-order cycle is considered separately without in-
teraction. The estimate ẋc = O�λK� is trivial from (2.12).

Step 2. To include the terms of order λk+K−m from (3.1), we have, for
c ∈ C�K� and d�c� =m,

�3:7�
ẋc�k� =Mc�k��1+O�λ��λkxc�k� +Nc�k��1+O�λ��λkxc�k̂�

+Ec�k��1+O�λ��λk+K−mxc�k�
+Fc�k��1+O�λ��λk−K−mxC�ĉ� +O�λk+K−m+R�:

Here we replace states xi, i ∈ C\c by cycles xĉ where i ∈ ĉ. This can be justified
by Lemma 3.1. For a first-order cycle c ∈ C�K�, we have by Lemma 3.1 the
following trivial estimates for (3.7):

�3:8�
ẋc�k� =Mc�k�λ

kxc�k� +Nc�k�λ
kxc�k̂� +Ec�k�λ

k+K−mxc�k�

+Fc�k�λ
k+K−mxC�ĉ� +O�λk+K−m+1�;

ẋc = O�λK�; xc − xc′ = O�λ0�(3.9)

and

ẋc�k� = O�λk+K−m�; xi − xj = O�λK−m� for i; j ∈ c:(3.10)

The next lemma shows that we can improve the error estimates in
(3.8) from O�λk+K−m+1� to O�λk+K−m+R� and in (3.9) from O�λK�;O�λ0� to
O�λk+R�; O�λR� and in (3.10) from O�λk+K−m�; O�λK−m� to O�λk+K−m+R�,
O�λK−m+R�, respectively.

Lemma 3.2. For a cycle c ∈ C�K� with d�c� = m, ẋc�k� = O�λk+K−m+R�,
xi − xj = O�λK−m+R�, ẋc = O�λK+R� and xc − xc′ = O�λR�:

Proof. Since there are terms xĉ of other cycles appearing in ẋc�k�, we
cannot treat each cycle c separately. We shall start from C�0�.The cycles in
C�0� are actually states in S (trivial cycles) and their backward equation is as
follows:

ẋC�0� = EC�0� +FC�0�xe�0̂� +O�λ�:
Here EC�0� is the matrix playing the same role as Mk in (2.2) and FC�0�xC�0̂� is
obtained from (1.4) by replacing xj�t� by xĉ�t�, j ∈ ĉ. Let µ be an eigenvalue
of EC�0� and v a left eigenvector corresponding to µ. Then vẋC�0� = µvxC�0� +
vFC�0�xC�0̂� +O�λ�. Let g = vxC�0� = �1/µ�vFC�0�xC�0̂�. We then have ġ = µg+
O�λ� and hence g = O�λ� by Lemma 2.1. Therefore vẋC�0� = O�λ�. Proceeding
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as in Lemma 2.2, we conclude ẋC�0� = O�λ�. Solving for xC�0�, we have

�3:11�
xC�0� = −E−1

C�0�FC�0�xC�0̂� +O�λ�
= −E−1

C�0��FC�0�;C\cxC\C�0�; c +FC�0�; c� +O�λ�:

Substituting (3.11) into (3.8) for c ∈ C�K�, K ≥ 1, we have

�3:12�

ẋc�k� =Mc�k�λ
kxc�k� +Nc�k�λ

kxc�k̂� +Ec�k�λ
k+K−m

+Fc�k�;C�0̂�λ
k−K−mxC�0̂�Fc�k�C�0�λ

k+K−mxC�0� +O�λk+K−m+1�
=MC�k�λ

kxc�k� +Nc�k�λ
kxc�k̂� +Ec�k�λ

k+K−m

+Fc�k�;C�0̂�λ
k−K−mxC�0̂�

+Fc�k�;C�0̂�λ
k−K−m�−E−1

C�0���FC�0�;C\cxC\C�0�; c +FC�0�; cxc�
+O�λk+K−m+1�

=MC�k�λ
kxc�k� +Nc�k�λ

kxc�k̂� +E′c�k�λk+K−mxc�k�
+F′c�k�λk−K−mxC�0̂� +O�λk+K−m+1�;

where F′c�k� = Fc�k�;C�0̂� +Fc�k�;C�0̂��−E−1
C�0��FC�0�;C\c and E′c�k� = Ec�k� + Ēc�k�

where Ēc�k� is the diagonal matrix whose diagonal elements are the column
vector Fc�k�;C�0��−E−1

C�0��FC�0�; c: Since Mc�k�;Nc�k�;E
′
c�k� and F′c�k� continue to

satisfy (3.2)–(3.5), we shall drop the “primes” and still call them Ec�k� and
Fc�k�. We next consider c ∈ C�1�. From (3.12) we have

ẋc�0� =Mc�0�xc�0� +Ec�0�λxc�0� +Fc�0�λxC�0̂� +O�λ2�:
Multiplying both sides of the above equation by the unit left eigenvector corre-
sponding to 0 eigenvalue, we have ẋc = Ecλxc+FcλxC�0̂�+O�λ2� where Ec is
the sum of the diagonal ofEc�0�. By Lemma 2.1, ẋc = O�λ2� = Ecλxc+FcλxC�0̂�
and hence ẋc�0� = Mc�0�xc�0� + O�λ2�. Thus xi − xj = O�λ2� if i; j ∈ c by
Step 1 in Section 2. Collecting all the cycles c ∈ C�1�, we thus have ẋC�1� =
MC�1�λxC�1� + NC�1�λxC�1̂� + O�λ2�, which has the same form as the first-
order cycle case in Section 2. Hence the induction applies and we conclude
ẋC�M� =MC�M�λ

MxC�M�+O�λM+1�. Thus ẋC�M� = O�λM+1� and xc−xc′ = O�λ1�
as in Lemma 2.3. This completes the proof for the first round. We then repeat
the same process starting from (3.8)–(3.10) with the error term one degree
higher in λ. An induction then completes the proof. 2

Step 3. To include the terms of order λk+K−m+R in consideration from
(3.1), we have

�3:13�
ẋc�k� =Mc�k��1+O�λ��λkxc�k� +Nc�k��1+O�λ��λkxc�k̂�

+Ec�k��1+O�λ��λk+K−mxc�k� +Fc�k��1+O�λ��λk+K−m

+Rc�k��1+O�λ��λk+K−m+Rxc�k� +O�λk+K−m+R+S�
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where c ∈ C�K�; d�c� = m and 0 ≤ k ≤ m. By Lemma 3.2, for a first-order
cycle c in (3.13), we have the following estimates:

�3:14�
ẋc�k� =Mc�k�λ

kxc�k� +Nc�k�λ
kxc�k̂� +Ec�k�λ

k+K−mxc�k�

+Fc�k�λ
k+K−mxC�ĉ� +Rc�k�λ

k+K−m+Rxc�k� +O�λk+K−m+R+1�
=M+N+E+F+R+O�λk+K−m+R+1�;

ẋc = O�λK+R�; xc − xc′ = O�λR�; xc = O�λS�(3.15)

and

ẋc�k� = O�λk+K−m+R�; xi − xj = O�λK−m+R� for i; j ∈ c:(3.16)

We will again improve the error estimates in (3.14)–(3.16) in the following.

Lemma 3.3. For a cycle c ∈ C�K� with d�c� =m, we have

ẋc = O�λK+R+S�; xc − xc′ = O�λR+S�; xc = O�λS�;
ẋc�k� = O�λk+K−m+R+S� and xi − xj = O�λK−m+R+S�:

Proof. Similar to that in Lemma 3.2, we start from the backward equa-
tions of C�0� in (3.14),

ẋC�0� = EC�0�xC�0� +FC�0�xC�0̂� +RC�0�λ
RxC�0� +O�λR+1�

and obtain ẋC�0� = O�λR+1�. Solving for xC�0�, we have

�3:17�

xC�0� = −�EC�0� +RC�0�λ
R�−1FC�0̂�xC�0̂� +O�λR+1�

= �I+E−1
C�0�RC�0�λ

R�−1�−E−1
C�0��FC�0�xC�0̂� +O�λR+1�

= �I−E−1
C�0�RC�0�λ

R��−E−1
C�0��FC�0�xC�0̂� +O�λR+1�

= �−E−1
C�0� +E−1

C�0�RC�0�λ
RE−1

C�0��
(
FC�0�;C�0�\cxC�0�\c

+FC�0�; cxc +O�λR+1�
)

= xC�0�\c + xc + R̃λRxC�0�\c +R′λRxc +O�λR+1�:
Substituting (3.17) into (3.14) for c ∈ C�K�, K ≥ 1, we have

ẋc�k� =M+N+E+Fc�k�;C�0�λ
k−K−mxC�0�

+Fc�k�;C�0̂�λ
k+K−mxC�0̂� +R+O�λk+K−m+R+1�

=M+N+E+R

+Fc�k�;C�0�λ
k−K−m�F̃xC�0�\c + Ẽxc + R̃λRxC�0�\c +R′λRxc�

+O�λk+K−m+R+1� +Fc�k�;C�0̂�λ
k+K−mxC�0̂�

=M+N+E′ +F′ +R′ +O�λk+K−m+R+1�;
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where

E′ = E+Fc�k�;C�0�λ
k+K−mẼxc;

F′ = Fc�k�;C�0̂�λ
k+K−mxC�0̂� +FC�k�;C�0�F̃λ

k+K−mxC�0̂�

and

R′ = R+Fc�k�;C�0�λ
k+K−m+R�R̃xC�0�\c +R′xc�:

Since xc − xi = O�λK−m+R�, for i ∈ c by (3.15) and R′ is a positive matrix,
we can replace FC�k�;C�0�R

′ by a positive diagonal matrix D′ whose diago-
nal elements are row sums of Fc�k�;C�0�R

′ such that Fc�k�;C�0�R
′xc −D′xc�k� =

O�λK−m+R�. Similarly, Fc�k�;C�0�R̃ can be replaced by a positive diagonal ma-
trix D̃ with the same row sums such that Fc�k�;C�0�R̃xC�0�\c − D̃xc = O�λR�.
Hence (3.2)–(3.5) are satisfied. Following the same procedure as in Lemma
3.2, we have

ẋc�0� =Mc�0�xc�0� +Ec�0�λxc�0� +Fc�0�λxc�ĉ� +Rc�0�λ
R+1xc�0� +O�λR+2�

and

ẋc = Ecλxc +Fcλxc�ĉ� +Rcλ
R+1xc +O�λR+2�; c ∈ C�1�:

Collecting all the cycles in C�1�, we have

ẋC�1� =MC�1�λxC�1� +NC�1�λxC�1̂� +RC�1�λ
R+1xC�1� +O�λR+2�;

which has the same form as in Lemma 2.3. Thus the same induction proce-
dures apply and this completes the proof. 2

Step 4. Because of Lemma 3.3, (3.1) can now be written as follows:

�3:18�
ẋc�k� =Mc�k�λ

kxc�k� +Nc�k�λ
kxc�k̂� +Ec�k�λ

k+K−mxc�k�

+Fc�k�λ
k+k−mxC�ĉ� +Rc�k�λ

k+K−m+Rxc�k�

+Sc�k�λk+K−m+R+S +O�λk+K−m+R+S+1�

where c ∈ C�k�; d�c� =m and 0 ≤ k ≤m. The following are from Lemma 3.3:

ẋc�k� = O�λK+R+S�; xc − xc′ = O�λR+S�; xc = O�λS�(3.19)

and

ẋc�k� = O�λk+K−m+R+S�; xi − xj = O�λK−m+R+S�:(3.20)

Lemma 3.4. For a cycle c ∈ C; xc = θ ·λS+O�λS+1� and ẋc = O�λk+R+S+1�:
Also, ẋc�k� = O�λk+K−m+R+S+1� and xi−xj = O�λK−m+R+S+1� if i; j ∈ c ∈ C�K�
and d�c� =m.
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Proof. We start from C�0�,
ẋC�0� = EC�0�xC�0� +FC�0�xC�0̂� +RC�0�λ

RxC�0� +SC�0�λ
R+S +O�λR+S+1�:

As in Lemma 3.3, we have ẋC�0� = O�λR+S+1� and hence

xC�0� = −�EC�0� +RC�0�λ
R�−1�FC�0�xC�0̂� +SC�0�λ

R+S� +O�λR+1�:
Repeating the process in Lemma 3.3, we thus eliminate all states in C�K�,
0 ≤K ≤M− 1 and finally obtain the following:

ẋC�M� =MC�M�λ
MxC�M� +RC�M�λ

M+RxC�M� +SC�M�λ
M+R+S +O�λM+R+S+1�:

Multiplying by the left eigenvector of MC�M� corresponding to 0, we have

ẋC = αλM+RxC + βλM+R+S +O�λM+R+S+1�:
Hence xC = θλS +O�λS+1� where θ = β/α. The rest of the proof is identical
to that in Lemma 2.4. 2

Combining Lemmas 3.1–3.4, we have the main conclusion of this section.

Theorem 3.5. For any states i; j in a second order cycle C and a state
a /∈ C, we have Pt; i�Xτ = a� = θ · λS�t� + O�λS+1�t�� for t large, where τ is

the first exit time from C and S = U2�C; a� −V2�C�: Moreover, if i; j belong
to different first order cycles then �Pt; i�Xτ = a� − Pt; j�Xτ = a�� = O�λR+S�,
where R = V2�C� − d2�C�. If i; j ∈ c ∈ C�K�, then �Pt; i�Xτ = a� −Pt; j�Xτ =
a�� = O�λ�R+S+K−m��; where m = d1�c�:

It is clear now how the induction will go for cycles of any order. The general
statement is in Theorem 1.1.

APPENDIX

We consider an example of seven points in the following graph: S =
�0;1;2;3;4;5;6� with U�0;1� = U�1;2� = U�3;4� = U�3;2� = U�4;3� =
u�4;5� = U�5;6� = 0;U�1;0� = U�2;1� = U�2;3� = U�5;4� = U�6;5� = 1
and U�i; j� = ∞ for other i; j:

0
�

1 3 4
� �

2 5

6

Since �5;6� is the only equivalence class of minimal states, it is a cycle in S1.
Other states are not minimal and each of them forms a trivial cycle. Hence
S1 = ��0�; �1�; �2�; �3�; �4�; 6̄� where 6̄ = �5;6�. For brevity, we write S1 =
�0;1;2; : : : ;4; 6̄�. An easy computation of (1.6) shows that U1�i; j� = U�i; j�
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for i; j = 0; : : : ;4, and U1�4; 6̄� = 0;U1�6̄;4� = 2. The graph becomes the
following:

0
�

1 3 4
� �

2

6

Now, �1;2;3;4; 6̄� is the only equivalence class of minimal states, hence

S2 = �0;
=
6� where

=
6� = �1;2;3;4; 6̄�. Again, an easy computation shows that

U2�0;
=
6� = 0 and U2�

=
6;0� = 3. The graph is the following:

0
�
�
�
=
6

Obviously S3 is a singleton and the process stops.
The content of Theorem 1.1(i) asserts that starting from 5 or 6, with prob-

ability close to 1, the exit distribution Xτ from �5;6� concentrates on δ4.
This is, of course, trivial because Pt;5�Xτ = 4� is alway 1. However, if one
adds an arrow between 3 and 5, that is, if we let U�5;3� = 1 (or 2), then
the cycle formation processes remain the same but Pt;5�Xτ = 3� → θ [or
Pt;5�Xτ = 3�/λ�t� → θ] for some θ > 0 as t→∞.

Acknowledgment. The authors express their gratitude to the referees
for their constructive suggestions on the presentation of cycles and their phys-
ical interpretation in the stochastic Ising model. They also thank the referee
for pointing out an error in the definition of cycles.

REFERENCES

[1] Catoni, O. (1992). Rough large deviation estimates for simulated annealing—application to
exponential schedules. Ann. Probab. 20 1109–1146.

[2] Chen, D., Feng, J. and Qian, M. (1995). The metastability of exponentially perturbed
Markov chains. Chinese Sci. A 25 590–595.

[3] Chiang, T. S. and Chow, Y. (1989). On the asymptotic behavior of some inhomogeneous
Markov processes. Ann. Probab. 17 1483–1502.

[4] Chiang, T. S. and Chow, Y. (1994). The asymptotic behavior of simulated annelaing with
absorption. SIAM J. Control Optim. 32 1247–1265.

[5] Chow, Y. and Hsieh, J. (1992). On occupation times of annealing processes. Bull. Math.
Academia Sinica 20 19–26.

[6] Freidlin, M. I. and Wentzell, A. D. (1984). Random Perturbations of Dynamical Systems.
Springer, New York.

[7] Geman, S. and Geman, D. (1984). Stochastic relaxation, Gibbs distribution and the Bayesian
restoration of images. IEEE Trans. Pattern Anal. Mach. Intelligence 6 721–741.



916 T.-S. CHIANG AND Y. CHOW

[8] Gidas, B. (1985). Global optimization via the Langevin equation. In Proceedings 24th IEEE
Conference on Decision and Control, Fort Lauderdale, FL 774–778. IEEE, New York.

[9] Hajek, B. (1988). Cooling schedules for optimal annealing. Math. Oper. Res. 13 311–329.
[10] Hwang, C. R. and Sheu, S. J. (1992). Singular perturbed Markov chains and exact behaviors

of simulated annealing process. J. Theoret. Probab. 5 223–249.
[11] Kirkpatrick, S., Gelatt, C. and Vecchi, M. (1983). Optimization by simulated annealing.

Science 220 671–680.
[12] Neves, E. J. and Schonmann, R. H. (1991). Critical droplets and metastability for a Glauber

dynamics at very low temperatore. Comm. Math. Phys. 137 209–230.
[13] Olivieri, E. and Scoppola, E. (1996). Markov chains with exponentially small transition

probabilities: First exit problem from a general domain II. J. Statist. Phys. 84 987–
1041.

[14] Schonmann, R. H. (1994). Slow droplet-driven relaxation of stochastic Ising models in the
vicinity of the phase coexistence region. Comm. Math. Phys. 161 1–49.

[15] Seneta, E. (1981). Nonnegative Matrices and Markov Chains, 2nd ed. Springer, New York.
[16] Van Laarhoven, P. J. M. and Aarts, E. H. L. (1987). Simulated Annealing: Theory and

Applications. Reidel, Dordrecht.

Institute of Mathematics
Academia Sinica
Taiwan, Taipei 11529
E-mail: matsch@ccvax.sinica.edu.tw.

maychow@ccvax.sinica.edu.tw


