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SCALING LAWS AND CONVERGENCE FOR THE
ADVECTION-DIFFUSION EQUATION

By GUILLAUME GAUDRON
Université de Provence / INRIA

In this paper we study the convergence of stochastic processes related
to a random partial differential equation (PDE with random coefficients)
of heat equation propagation type in a Kolmogorov’s random velocity field.
Then we are able to improve the results of Avellanda and Majda in the
case of “shear-flow” advection—diffusion because we prove a convergence
in law of the solution of the RPDE instead of just convergence of the
moments.

1. Introduction. The work of Avellaneda and Majda [3] consists of the
study of the following “shear-flow” advection—diffusion equation:

du Ju 1 A
-, 7t - =z )
" S xS = S

u(x,y,t=0) =uy(ex, ey),

where v (x,¢) is a Kolmogorov random velocity field (see [3]) depending on
two parameters ¢ and § (we will denote by { ) as the expectation with
respect to the statistics of v,) and ¢ is a scaling parameter.

The success and the originality of the work is of two types.

1. They get the correct scaling laws in this “shear-flow” advection—diffusion
equation,

2. They succeed in explicitly calculating the renormalized Green function in
the case 0 < 6 < 4.

More precisely about the first point, they prove that there exists an exact
renormalization depending on the parameters of v,, so that the nth order
moments (u"(x/&,y/e,t/p*(e))) have a nontrivial limit when & tends to 0
provided that a good choice of p(e) is made. For that, they use a Fourier
transform with respect to the variable y and apply the Feynman-Kac
formula to the resulting equation. Then they can identify the “good” scaling
law and the limiting function.

This result suggests that the random solution u(x /s, y/e,t/p*(e)) might
converge in law. The aim of this paper is to prove that this is indeed the case.
For the sake of this, we use a completely probabilistic approach, studying the
convergence of the stochastic processes underlying the PDE (1).
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After defining the process studied and giving the main theorem (Section 2),
we prove the convergence of finite-dimensional laws and the tightness (Sec-
tion 3) so that we can give results about the convergence of the solution (1)
(Section 4).

REMARK. In this paper we did not try to see if our method could reach the
Green’s function in the case 0 < § < 2, but we can hope that our entirely
stochastic method can give results in that direction.

2. Setting of the problem.

2.1. A simple mathematical model for turbulent transport. The advection—
diffusion of a passive scalar u by an incompressible velocity field v is given
by the general equation

&_u_( \) 1 A

py v, u=§vo u,

(2) u(x,t=0) =uy(x),
div(v) = 0.

The preceding problem is important in many applications such as turbulence
or diffusion of tracers in heterogeneous porous media (see [3] for precise
references). It is difficult, especially when the velocity possesses a continuous
range of excited scales, an energy cascade and a random description.

The statistical description that we use here is relevant in Kolmogorov’s
hypothesis for fluids with high Reynolds number (see [5]). It appears then
that there are two distinct length scales L, and L,(L; — 0 when the
Reynolds number Re tends to =) so that the velocity energy spectrum has a
universal form (in d-space dimension) for wave number %2 in the range
Lyt <|k| < Ly" given by

(8(k)1*) = KIRI'"7%2,

We note that the energy spectrum is assumed to vanish for large k;
meanwhile the small & behavior is not universal.

As a simple model, we will work with a rescaled velocity field

- 1 ikx|g,|(1=8)/2,1/2 4 1/2
(3) v,(x) —E'[Re k| Wy — | (kD) AW,

where we have the following:

1. {W,, k € R} is a one-dimensional Brownian motion;

2. [|k|*W¥(k)dEk < C, for all « > 0, ¥, > 0 is continuous at 0, ¥,(0) = 1 and
V¥, is bounded;

3. V(&) = 0 for |k| < k,, Py(k) = 1 for |k| > &k, ¥, is continuous.

The hypothesis of a shear layer helps us by providing an explicit stochastic
process (underlying the random PDE) that we will study. It would be a bit
more difficult in a nonsheared model.
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REMARKS. In this model, £ = 0 corresponds to Re — o« in the physical
problem. Besides ¥, is related to the comportment of the fluid for low wave
numbers. Finally, we can notice that &, corresponds to L;' and that L;*
marks the value where ¥, begins to vanish.

Notation. { ) will be used for the expectation with respect to the Brownian
motion W.

We can remark that v, is a stationary Gaussian process. Indeed the
stationarity follows from that of the first two moments. We note that we have
(v.(x)) = 0 and moreover,

1 . —s |2
(02,8 (50)) = = [ xplib (e, = sy M| < (1)

= (v (% = x5),0,(0)).
2.2. Renormalization. We are looking for an exact renormalization so

that we can get a nontrivial limit equation for the mean field {u). Let us
define

0 o) =l 52 ).
e’ & pi(e)
Then u, is a solution of the RPDE (random partial differential equation):
du, 1 &2 & x\ du,
® W =3 M )
u(%,y,t=0) =u,(x,y).

However, we know from [4] that if

, (o,(k)1*)
lim fR e U

then with the classical choice of p(g) = &, the limiting equation is of diffusion

type. It is the good scaling law for homogenization results, the usual proof

using essentially a central limit theorem (see, e.g., [12]). In fact, the preceding

integral is finite when 6 < 0. That is why we study the case 8 > 0 because

the usual proof does not fit here.

2.3. Stochastic processes associated with the RPDE. Let us introduce
(B,), a new two-dimensional Brownian motion, independent of W. We are
going to study the following processes:

&

Xbe=x+ B/
e g Bl

& & : [ x 1
X2 =y+ v B? + vg(—+,/v B!| ds.
t “p(e)" 92(8)/0 & * p(e)
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They are related to the RPDE (2) in the sense that we have
u(x,y,t) = E(uy(X}°, X)),

where E( ) is the expectation with respect to B.

We can remark that if £/p(¢) — 0 then X * — x and /v, (¢/p(&))B? - 0.
Moreover, we know that v, is a stationary process. Therefore, we will only
look in this particular case at the following process:

. € ¢ \/70 1
(6) Y=y + pz(g)fovg(w(g)Bs ds.

Studying the convergence of this stochastic process, we are able to give the
following results:

2.4. Theorem and Corollary.
THEOREM. (a) “Inviscid hyperscaling region”: in the case 2 < 6 < 4, we

choose p(g) = &'7%/% In this case the process Y® converges in law with
respect to B and W towards Y which is equal (in law) to

y + t\/(1/2w)fR‘PO(|k|)|kll_5 dk N

where N ~#°(0,1) and is independent of B.

(b) “Random nonlocal diffusivity”: if 0 < & < 2, we choose p(g) = £2/@*9),
In this case, the process Y* converges in law with respect to B and W to Y
which is equal (in law) to

v+ (1/V2m) [ds [ exp(iy/vo kB,)II" 772 dW,.
0 R

COROLLARY. Let us define f,(x,y,t) =lim,  (f(u(x/e,y/e,t/p?())))
and

1 1-5
a(8) = \/Z/R‘I’O('k')'k' dk ;
then in the peculiar case 2 < 8 < 4 we find that f, is solution of the PDE:

if, I*f,
= ta2(8) 3
at 9%y

fulx, 3,8 = 0) = f(u)(x, ).

3. Proof of the theorem. We want to prove the convergence of the
process Y°. We know that

Y?—>Y. inlaw < {(Y?), & > 0} is tight and

the finite-dimensional laws are convergent.

(7
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3.1. Convergence of finite-dimensional laws.

LEMMA 3.1. (1) In the case 2 < § < 4, finite-dimensional laws are conver-
gent.

(i1) In the case 0 < 8 < 2, finite-dimensional laws are convergent.

Proor. We are here in the particular case where we have an explicit
expression of the studied process. We have

Y, c ‘d _* B

L +— -

P e K Ui
|%]

b g )qf;ﬂukn aw,.

&

In case (i), using a change of variable k' = k /&, the good choice of p(¢) and
the fact that Ve W, = W,, (in law), we have that a.s. in B and W,

- 1 e

=g+ o [1ds [ explim ko B IS (k) 0 o)

1 ! _
1=68)/2y1/2 W
PETEA \/%/odsfkw Yo m(Ik]) dWi

t -
— v+ g [ TR Y,

1

~

J

by a simple argument of dominated convergence theorem and moreover,
Y/ = Y# (in law with respect to W).
In case (ii), with the same method using the change of variable &’ = & /p(¢),

the good choice of p(¢) and the fact that \/p(e) W), = W, ,,, (in law), we have
that a.s.in B and W,

Y? —y+ %f;ds/%exp(ik v, Bs)|k|(1_3)/2 aw,

1

o~

and moreover Y = Y/ (in law).

Therefore, we have the convergence of the finite-dimensional laws because
we can proceed the same way for (Y, ,...,Y, ), ., ... ., <.. Moreover, we
get an exact expression of the limit. O
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3.2. Tightness. We know that Y* is a continuous process, so we will use
the following Kolmogrov criterion (see, e.g., [6]) in order to prove the tight-
ness:

{(Y?), e > 0} is tight if
9) {(Y§), e > 0} is tight
Ja,B,C>0sothatV(s,t), E(|Y7 — Y?|*) < Clt —s|'*P.

Since Y¢ = vy, the tightness of {Y$} is obvious, and the tightness of {(Y?),
g > 0} follows in case 2 < § < 4 from the following lemma.

LEMMA 3.2. In case 2 < & < 4 there exists C such that

E((Y = Yo%) < C(t —s)™.
ProOOF. Let us estimate

&’ trt . k
27Tp4(8) j;fszE(eXp(L 7o p(e) (B. - BU)))

E(lyy - Y1)

Id 1-5
X :)¢m(|k|)|k| dk du dv
&’ ¢t vok?
 2mp*(e) fsfszeXp(_ 2p%(e) " v')
|k|) 1-5
X ol — | (IEDIEI"° dk dudv
P
&” t U v k2
- wp“(e)/sfs fReXp(_ 2p2(e) 4 v))
|| s
X, :)lﬂm(|k|)|k| dkdudv.
Defining
u k2
fo,i(k) = /:/s exp(—ZZZT(u - v)) du dv
~ 2p%(e)
(10) = W(t—s)
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we have that
g? ||
E(Y; - Y7 1)) = ——— k k)|EI"° dk.
(A = ¥3) = s [ by o DA
Now from the inequality e ! < 1 — at + (a*t?/2), we deduce that

E((Yf =Y M) < (1 =) p4( )fwo( ')ww(lkl)lkll " dk.

With the choice of p(g) = &' %/* and after a change of variables k' =k /&
in the integral, we can get

%IR%(%D d(elk))IRI° dE.

Besides, from the dominated convergence theorem we have

By - Y1) <

(11) [ ok elDIR? db — [ wro(1kDIE° dk.
R i R
Since this integral is finite as soon as 6 > 2, there exists C so that
E((|Yf—Y;‘|2>) SC(t—s)2. 0

REMARK 1. Here, the fact that § > 0 ensures that ¢/p(e) — 0.

REMARK 2. In case 0 < § < 2, the preceding estimation is not enough.
Indeed, the “good” choice of p(g) = £2/2%? Jeads to a divergent integral as
g — 0. Precisely, we have (after a change of variables k&' = k/p(e) in the
integral),

E(IYs - Y?1%)) < (t_s) f¢o(p( )|k|)¢w( p(&)lkIkI' " dk
and
f¢o(£|k|)¢u(ﬁ’(8)|k|)|k|l Pdk —2 .

This result is not surprising. In fact, f, t(k)k~ (2p2(&)/vok?Xt — s), which

corresponds to a choice of 8 = 0 in (9). So we need to consider a moment of
Y — Y? of order strictly bigger than 2.

LEMMA 3.3. In case 0 < 8 < 2 there exists C}, such that
V(t,s) € [0, M), E(UY - Y71) < Chy(t - s)™

Proor. First, let us define

q...(k) = ft/t/tftdudvdwdx

xE(expiy/vok(B, - B,) + iy/vo k(B, - B,))

(12)
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Now let us compute E({|Y? — Yf|4>)- We know that
f ‘/V—k B,|d
.| du
“o(e)

%]
><|k|(1 5)/2‘1,1/2( ) oc1/2(|k|) de

Yo V27 p? (8)f

so we can deduce that a.s. with respect to B, (Y —Y?) is a centered
Gaussian random variable M, ; and then, because of {|M 1*y = 3(IM|*)?, we
have

9 2

(yg=ye*)y = du| p(k) dk

[[os (

47Tp (a) f

p°(k)dkr |,

du

[l

T pS(s) J,
where

p*’"(k)=¢o(| |)ll/m(|k|)|k|1 °

Then, after the change of scale p(g) = ¢2/@%% and the change of variable
= k/p(e) in the preceding integral, we get

k E
77'2 R+2

2

E(Yf = Yo

[ exp(iy/vo kB, ) du

s

X‘ft exp(i‘/v—ok’Bu) du 2]

xp*( p(e)k) p*( p(&) k') dk
SIRE |
% \/E /: exp(iy/vy k'B,) du 4]
xXp*(p(e)k)p®(p(e)k’) dkdk’

iz[/ Va B Pk |
| ]

IA

/texp(i vy Bu) du
(13) S
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REMARK. At this step of the proof, we see that in this case the cut-offs do
not appear any more.

For the exact computation of g, ,(k), see the Appendix. The idea consists in
cutting the integral in parts that we can easily estimate, using the properties
of the Brownian motion and the symmetric roles of the integrants. At the end,
we estimate that

kSq, (k) = 87 — 30w k2(t — s) + 4v2k*(t — s5)°
784 vok?
g &P~ 5 (¢t —3s)

9
40 ) vok
—?vok (¢ — s)exp| —

(14)

2

‘)

1
+§exp(—2vok2(t —s))

so that the preceding integral is finite. Indeed, the large £ behavior of the
integrand is

+ o0
\/qs,t(k)k1‘5k~ v,k 17%(t —s) and f Bl %dk <o if6>0
— 0 1

and the small %2 behavior of the integrand is

Va, (k)R> ~ w3t —s)’k'? and [k dk < if 5<2.
’ k-0 0
Moreover, if s,t € [0, M], we have (¢t — s)* < M2(t — s)2. So we have finally
E(IY7 = Y71) < Ciy(t —s)°
and the theorem is proved. O

4. From stochastic process to PDE. Because of the convergence in
law of the studied stochastic process, we are able to give results about the
limiting mean field.

COROLLARY 4.1.

<u€(x,y,t)> —>ﬁ(x1y’t) Whereﬁ(x’y’t) :<E(u0(x7yvt))>

e—=0

ProOOF. Because of the theorem in Section 2.4, we have that the process
{(xte, X2*), te R} - {(x,Y,), t € R}
in law with respect to B and W. However, we know that

w2 3,) = B(ug( X2, X29))
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and then
(15) <u£(x,y,t)> =<E(u0(Xt1,a’Xt2,g))>
(16) _’<E(u0(x,Yt))> -

In fact, in the proof of the convergence of finite-dimensional laws, we get
an a.s. convergence for a similar process (equal in law to the one that we
study), so that we have the following corollary.

COROLLARY 4.2. (i) Let us define f.lx,y,t) =lim,  {ful(x/e,y/e,t/
p%(e))). Then f,(x, y,t) = (f(E(u,(x,Y))); i
(i1) In the peculiar case 2 < & < 4 we find that f, is the solution of the PDE

2f

taZ(S)

Jt
fu(x,y,t=0) =f(uy)(x,5),
where a(8) = \/(1/2m) [g¥,(IE)|kI"° dE .

Proor. (1) Let us fix ¢ > 0. We have seen that

fu,)(x,y,t) = F(E(ug(X)*, X2°)))

and that it has the same limits as f(E(u,(x,Y,"))) as & tends to 0.
Since Y = Y, (in law with respect to W) and Y7 - Y, as.in B and W (see
the deﬁn1t1on of Y in Lemma 3.1), we have that

f(E(uO(x,Yf)))—>f( (uo(x,Yt))) as.in W

=0

and then

(F(E(uo(x. 7)) w5 (F(Eluo(x.7.))))

= (f(E(uo(x,Y,)))).

(i) The idea is to use the fact that Y. is deterministic with respect to B..
Then

fu(x:y’t) =<f(u0(x’Yt))>

Moreover,

- t
Y, = — [V 2(Ik)IRIY 22 AW, = ta(8)N (inlaw),
V2

where N ~#(0,1) and a(8) = \/(1/277)IR\P0(|k|)|k|176 dk .
Then, we get

fulx,y,t) = ff(uo)(x y + tu)exp(—u®/2a”) du
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so that
af,(x,y,t) 1 fuﬁf(uo)
at aV2rm r dy
ta® 9*f(uy)
a2 fR dy?

2

(x,y + tu)exp(—u®/2a®) du

(x,y + tu)exp(—u®/2a®) du

fu
x,y,t). O
&yz( y,t)

= ta?

REMARK. For the difficult case 0 < 6 < 2, we exhibit an exact expression
of the limiting function f,. Maybe the interpretation of this form can provide
results for the Green function.

5. Conclusion. With the tool of stochastic processes, we have been able
to give additional information about this simple model of advection—diffusion
RPDE. The study of such stochastic processes can provide general results for
diffusion in more general random velocity fields [12], or for semi-linear RPDE
(see [13], [18]). Therefore, we suggest that the presented method may succeed
in the following areas:

1. The study of the time-dependent case (i.e., v (x, ); see [3], [9] and [10] for
discussions and examples);

2. The study of some problems involving nonsheared fluid flows (see [2] for
presentation of the Manhattan model);

3. The study of some problems of higher dimensions presenting nonstandard
renormalizations as have been studied in [11].

REMARK. Indeed, a recent work of Carmona and Xu [7] provides a general
model of turbulence involving two-dimensional nonsheared fluid flows, ex-
hibits anomalous scaling and identifies the limit of the related stochastic
processes.

APPENDIX

We compute
(17) A= [‘du ['dv ['dw [ dxE(exp(ia(B, + B, — B, - B,))).

First, we can notice that © and w and v and x play a symmetric role, so
that

A= 4ftdu fudw ftdv fvde(exp(ia(Bu +B, - B, - B,))).

Then, we are going to split this last integral in parts, ordering u, v, w and
x. So, using properties of the Brownian motion, we will be able to reduce the
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whole job to the computation of two different integrals:
u>v>x>w —> (Al),
u>v>w>x - (A2),
u>w>v>x— (A3),
v>u>x>w— (Ad),
v>u>w>x—> (A5),
v>x>u>w—> (A6).

Noticing that A is an even function of a, we see that the pairs (uz,w) and
(v, x) play a symmetric role. Then Al = A5, A2 = A4 and A3 = AG6.
We will use the following formula:

@ 1 1
(18) fs b(u —s)e®™ 9 du = (a —5— Z)eb(“s) + 3

and we will denote b = a?/2 in order to simplify the notation.
(ADu>v>x>w:

E(eXp(ia(Bu + Bw - Bv - Bx))) = E(exp(la[(Bu - Bv) - (Bx - Bw)]))

=exp(—%(u—v+x—w))

aZ

=exp(?(—u+v —x+tw)

So

(A1) = ftdufudvadxfxdwexp(b(—u +v—x+w))

s s

t . . exp(bx) — exp(bs)
:Ldu/; duj;dxexp(b(—u+v_x))( b )

exp(—b(v —s)) — 1}

t

(v—s)+ 5

‘ xp( bu xp( bs
= b2/;duexp(—bu)[(u_s)exp(bu) _ e Pé ) 4 e PZ() )

du ];udv exp(b(—u +v))

1
b /s
1

exp(bu) — exp(bs
- B )b o )+(u—s)exp(bs)}

B i[b(t —s) (- - 2(exp(—b(lt)— s)) — 1)

— (¢ —s)exp(—b(t —5)) — oxp( ~5(¢ ~ ) + l\

b b
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Then finally

(A1) = %(48 —16a2(t — s) + 2a*(¢t — 5)°

a® a®
—48exp(——(t - s)) — 8a?(t — s) exp(—(t - s)))
2 2
(A2) u >v > w > x:

E(exp(ia(B, + B, — B, — B,))) = E(exp(ia[(B, — B,) + (B, — B,)]))

=exp(—%(u—v+w—x))

2
=exp(?(—u+v—w+x)

So

(A2) = ftdu/udvadw fwdxexp(b(—u +v—w+x))

s

and finally (A2) = (A1).
(A u>w>v>x:

E(exp(ia(B, + B, — B, — B,)))
=E(exp(la[(Bu - Bw) + 2(Bw - Bv) + (Bv - Bx)]))
=exp(—%2(u—w+4w—4v+v—x))

a2
= exp(?(—u - 3w + 3v + x)

(A3) = ftdu/udw wdvadxexp(b(—u — 3w + 3v + x))

[ aw |
/tdufudw fwdvexp(b(—u - 3w + 3U))(exp(bv) _ exp(bs))

b

%/:du [ dwexp(b(—u = 30))

exp(4bw) — exp(4bs) exp( bs)( exp(3bw) — exp(3bs) ))

x 1b 35
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1 .
= Wj; duj; dw exp( —bu)
X (3exp(bw) — 4exp(bs) + exp(—b(3w — 4s)))
1
= /duexp(—bu)

125°
" ( 3(exp( bu)b— exp( bs))

—4(u — s)exp(4bs)

exp(—3bs) — exp(—3bu) )
3b

1
= Wfs du(9 — 8exp(—b(u —s))
—12b(u — s)exp(—b(u —s)) — exp(—4b(u — 5)))
exp(—b(¢t —s)) —1
b

1
= —=|9(¢t —s) +
3657 [9(t s) +8

+12(¢ — s)exp(—b(¢t —s)) + 12

exp(—b(t —s))
b

12 exp(—4b(t—s)) -1
" " 4b }

Then finally

1 , 80 a®
(A3) = p -9+ 2a%(t —s) + 3 exP —7(t—s)

2

—5(t—s)

16
+—a?(t — s)exp

1
3 + §exp(—2a2(t—s))l.

Finally we can get A with A = 8[(A1) + (A2) + (A3)]:

8 , 184 a®
A= —|87—30a%(t —s) +4a'(t —s) — 5 ©XP _E(t —s)
a

1
+ §exp(—2a2(t - s))l

40 a?
3 (¢ — s)exp —?(t—s)
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