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ON LACUNARY WAVELET SERIES

By Stéphane Jaffard

Université Paris XII

We prove that the Hölder singularities of random lacunary wavelet
series are chirps located on random fractal sets. We determine the Haus-
dorff dimensions of these singularities, and the a.e. modulus of continuity
of the series. Lacunary wavelet series thus turn out to be a new example
of multifractal functions.

1. Introduction and statement of results. The success of wavelet tech-
niques in many fields of applications is largely due to the following remarkable
property: many signals, images, or mathematical functions can be accurately
represented in a wavelet basis using very few nonvanishing coefficients. This
is the case for piecewise smooth functions, of a large class of images (see [6] or
[7]), and of solutions of nonlinear hyperbolic equations (see [4]); the starting
point of the denoising algorithm wavelet shrinkage of [6] and [7] is based on
the remark that, since images composed of piecewise smooth parts have few
nonzero wavelet coefficients, they can be efficiently denoised by setting to zero
all small wavelet coefficients; this amounts to approximating the noisy image
by a lacunary wavelet series. Similarly, recent techniques related to nonlinear
approximation have been developed to give a functional framework fit to study
functions which have a few numerically nonvanishing wavelet coefficients (see
[3]).

Though many signals or functions have thus been shown to be accurately
approximated by lacunary wavelet series, their properties have never been
investigated. Our purpose is to study a probabilistic model of such series.
We will see that, though this model is extremely simple, the corresponding
random functions have a subtle local behavior: they exhibit a whole range of
very oscillatory Hölder singularities, called chirps located on random fractal
sets. Note that in different contexts wavelet methods have already been used to
study stochastic processes; for instance, see [11] for processes with stationary
increments and [2] for some Gaussian processes.

Let us now describe the model we will study. We use 2d−1 wavelets ψ�i� in
the Schwartz class and such that the set of functions 2dj/2ψ�i��2jx−k�, j ∈ Z,
k ∈ Zd form an orthonormal basis of L2��d� (see [16]); these conditions imply
that all moments of the wavelets ψ�i� vanish. Since we are interested in local
properties of wavelet expansions, it is more convenient to work with periodic
wavelets which are obtained by a periodization of the above basis (see [17]);
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we thus obtain the functions

ψ0	0�x�=1	

ψ
�i�
j	 k�x�=

∑
l∈Zd

ψ�i��2j�x− l� − k�	 j ∈ �	 k ∈ �0	 � � � 	2j − 1�d(1)

for x ∈ T�= �d/Zd�. The 2dj/2ψ�i�
j	 k form an orthonormal basis of L2�T�. Note

that we have chosen an L∞ normalization for the ψ�i�
j	 k which is more conve-

nient for studying Hölder regularity; thus the wavelet coefficients of a function
f are given by

C
�i�
j	 k = 2dj

∫
T
f�t�ψ�i�

j	 k�t�dt�

The index �i� plays no specific role in the proofs, so we will forget it from now
on and write Cj	k for the wavelet coefficients and ψj	k for the wavelets.

The random process F that we will study depends on two parameters η ∈
�0	 d� and α > 0 and is defined by its wavelet coefficients as follows: for each
j ≥ 0 we pick at random and independently 
2ηj� locations k ∈ �0	 � � � 	2j−1�d,
and the corresponding wavelet coefficients Cj	k take the value 2−αj; we set to
0 all other wavelet coefficients. The locations of the nonvanishing coefficients
are chosen independently for each value of j.

The parameter η characterizes the lacunarity of the wavelet series; the
parameter α is related to its uniform Hölder regularity; indeed, a standard
result of [17] shows that if α /∈ �, F ∈ Cα���, and this uniform regularity is
best possible (if α is an integer, the Hölder spaces have to be replaced by either
the Zygmund class if α = 1 or iterated primitives of functions of the Zygmund
class if α = 1�. Nonetheless F has a much larger pointwise Hölder regularity
at “most” locations; this pointwise regularity is estimated with the help of the
Hölder exponent, which is defined as follows. Recall that if h is a positive real
number and x0 ∈ �d, a function f is Ch�x0� if there exists a polynomial P of
degree less than h and a constant C such that, if �x− x0� is small enough,

�f�x� −P�x− x0�� ≤ C�x− x0�h�(2)

The Hölder exponent of f at x0 [denoted by h�x0�] is the supremum of all the
values of h such that (2) holds. One of our purposes is to study the random sets
of points where F has a given Hölder exponent. Actually, we are interested in
a more complete local study than only the determination of Hölder exponents.
Indeed, a given Hölder exponent α at x0 allows for many different behaviors
near x0: for instance, cusplike singularities, such as �x−x0�α or very oscillatory
behaviors, such as

gα	β�x� = �x− x0�α sin
(

1
�x− x0�β

)
(3)

for β > 0. The functions gα	β are the most simple examples of chirps at x0.
A general definition can be derived from this one-dimensional example as
follows.
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If f ∈ L∞���, denote by f�−n� an iterated primitive of f of order n. A
consequence of the oscillations of (3) near x0 is that g

�−n�
α	β is Cα+n�β+1��x0� (the

increase of regularity at x0 is not 1 at each integration, as would be expected
for an arbitrary function, but β + 1�. This remark motivated the following
definition of [18].

Definition 1. Let h ≥ 0 and β > 0. A function f ∈ L∞��d� is a chirp of
type �h	β� at x0 if, for every n ≥ 0, f can be written as a finite sum

f = ∑
�α�≤n

∂αgα	

where gα ∈ Cβn+�α�+h�x0�.

The characterization of chirps given by Proposition 1 shows that this defini-
tion recaptures the oscillatory behavior of gα	β. Before stating this proposition,
we need to recall the following definition.

Definition 2. A bounded function f defined outside a ball centered at the
origin is infinitely oscillating if ∀n ∈ �, there exists a finite number of bounded
functions gα such that

f = ∑
�α�=n

∂αgα�

For instance, in dimension d = 1, the sine function is infinitely oscillating.
The following proposition is proved in [18].

Proposition 1. A function f ∈ L∞��d� is a chirp of type �h	β� at x0 if and
only if there exists a function r�x� which is C∞ in a neighborhood of x0 and
ε > 0 such that if �x− x0� ≤ ε,

f�x� = �x− x0�hg
( �x− x0�
�x− x0�β+1

)
+ r�x− x0�	

where the function g is defined outside a neighborhood of the origin and is
infinitely oscillating and r is C∞. Furthermore, the following wavelet charac-
terization holds: a function f is a chirp of type �h	β� at x0 if and only if the
following conditions are fulfilled:

(i) f is Ch�x0�.
(ii) In the domain �x0 − k2−j�1+β ≤ 2−j ≤ �x0 − k2−j�, ∀N ∈ �,

�Cj	k� ≤ CN
(
2j�x0 − k2−j�1+β

)N
�x0 − k2−j�h�(4)

(iii) In the domain �x0 − k2−j� ≤ 2−j, ∀N ∈ �,

�Cj	k� ≤ CN2−Nj�(5)
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We will define chirp exponents which extend the notion of Hölder exponents.
In order to state a definition, we need the following property that will be proved
in Section 3.

Proposition 2. If f ∈ L∞ is a chirp of type �h	β� at x0 with β > 0 and if
f ∈ Ch′ �x0� for h′ > h, then ∀h′′ < h′, f is a chirp of type �h′′	 β� at x0.

This proposition implies that the interior of the set of ordered pairs �h	β�
such that f is a chirp of type �h	β� at x0 is a rectangle �0	 h0� × �0	 β0�. We
can thus use h0 and β0 to define chirp exponents.

Definition 3. The chirp exponents of a function f at x0 are:

(i) h�x0� = sup�h: such that f is Ch�x0��.
(ii) β�x0� = sup�β: ∃h such that f is a chirp of type �h	β� at x0�.

The exponent h�x0� is the Hölder exponent at x0which was defined above,
and we will call β�x0� the oscillation exponent at x0. When the Hölder expo-
nent of a function is widely changing from point to point, one is interested in
obtaining some information about the geometry of the locations of the Hölder
singularities of the function. This motivated the definition of the spectrum of
singularities d�h�. This function associates to each positive h the Hausdorff
dimension of the set Ah of the points x where the Hölder exponent is h (see
[1] and [9] where this notion is studied in the context of fully developed turbu-
lence, where it was first introduced, and [13] for some mathematical results).
If we characterize singularities by their Hölder and oscillation exponent, we
are naturally led to define the chirp spectrum as follows.

Definition 4. The chirp spectrum d�h	β� of a function f is the Hausdorff
dimension of the set of points where f has the chirp exponents �h	β�.

We denote by dimH�E� the Hausdorff dimension of the set E, and we use
the usual convention dimH��� = −∞. We will determine the chirp spectrum
of lacunary wavelet series, and we will also determine their almost every-
where regularity; more general moduli of continuity than those supplied by
the Hölder conditions will be needed.

Definition 5. A modulus of continuity is any continuous increasing func-
tion ω defined on 
0	1� such that

ω�0� = 0	(6)

∃C > 0 such that ω�2x� ≤ Cω�x��
Let ω be a function satisfying (6); ω is a modulus of continuity at x0 of f if
there exists a polynomial P and a constant C such that, if �x − x0� is small
enough,

�f�x� −P�x− x0�� ≤ Cω��x− x0���
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We can now state the main results of this paper.

Theorem 1. The chirp spectrum of almost every sample path of the lacu-
nary wavelet series F is supported by the segment h = α�β+ 1�, h ∈ 
α	dα/η�;
on this segment,

d�h	β� = η�β+ 1��
A function ω satisfying (6) is a.s. almost everywhere a modulus of continuity
of F if and only if ∫ 1

0
ω−η/α�x�xd−1 dx <∞�(7)

Remarks.

1. Since for each h there is at most one β such that d�h	β� �= −∞, the spec-
trum of singularities of F is d�h� = hη/α for h ∈ 
α	dα/η�.

2. The same argument applied to primitives of F shows that the chirp expo-
nents of F are almost surely almost everywhere.

�h	β� =
(
dα

η
	
1
η

− 1
)
�

A strong local oscillatory behavior such as in (3) is very remarkable, and
it was commonly believed that it could only be found at isolated points
of a function; Y. Meyer disproved this opinion by showing that the Rie-
mann function

∑
n−2 sin�πn2x� has a dense set of chirps of type (3/2,1);

see [14]. Lacunary wavelet series are more remarkable under this respect,
since they exhibit chirps almost everywhere (a function cannot have chirps
everywhere; see [10]).

3. The assertion expressed in the theorem is stronger than stating that, for
each h	d�h	β� has almost surely a given value, which would not be suf-
ficient to determine the spectrum of singularities of almost every sample
path.

4. The parameters α and η can also be related to the Besov regularity of
the sample paths. Indeed, using the normalization we chose for wavelet
coefficients, the following characterization holds (see [17]). A function f
belongs to Bs	∞p if and only if its wavelet coefficients satisfy

∃C∀j∑
k

�Cj	k�p2j�sp−d� ≤ C�

It follows that sample paths of lacunary wavelet series belong to Bs	∞p if
and only if

η− d ≤ �α− s�p�
Almost everywhere moduli of continuity will be studied in Section 2 and

the chirp spectrum will be determined in Section 3.
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2. Almost everywhere regularity. In order to determine the almost ev-
erywhere regularity of F, we will need the following result of [14].

Proposition 3. Let ω be a modulus of continuity at x0 of a function f ∈
L∞��d�. There exists C′ such that the wavelet coefficients of f satisfy for all j
and k such that j is large enough and �k2−j − x0� small enough,

�Cj	k� ≤ C′
(
ω�2−j� +ω��k2−j − x0��

)
�(8)

We now prove the last point of Theorem 1. Suppose that ω is an almost
everywhere modulus of continuity of F; (8) will hold for almost every x0, but
the constant C′ may depend on x0. However, we can replace ω by a larger
modulus of continuity ω′ such that ω�x�/ω′�x� → 0 when x→ 0 and without
altering the integrability condition (7); thus we can pick C′ = 1/3 almost
everywhere when we replace ω by ω′ in (8). [Of course there is no uniformity:
the j’s and k’s such that (8) holds depend on x0.] Since ω′ is continuous and
increasing, we can define Sj by

ω′�2−ηj/dSj� = 2−αj if j ≥ 0�(9)

Suppose first that
∑
Sdj = +∞. We can pick a subsequence jn such that∑∞

n=1S
d
jn

= +∞ Sdjn ≥ 1/j2n. For each j let Fj denote the set of points k2−j

such that Cj	k is not vanishing. If c > 0 and k2−j ∈ Fj, let
Bcj	k = B�k2−j	 c2−ηj/dSj�

(where B�x	 r� denotes the closed ball with center x and radius r). The centers
of the balls Bcj	k are not exactly equidistributed on T; nonetheless, instead of
choosing the subsets Fj, we can equivalently pick an infinite sequence tn of
points on T, such that the tn are independent and equidistributed and then
define, if nj =

∑
l>j
2ηl� and Lj = �nj	 � � � 	 nj+1 − 1�,

Fj = �
tn2j�2−j� for n ∈ Lj�(10)

The ball B̄cjn	 k centered at tn of radius �c/2�2−ηjn/dSjn is included in Bcjn	 k
because the distance between the centers of Bcjn	 k and B̄

c
jn	 k

is bounded by
√
d2−jn ≤ c

2
2−ηjn/dSjn�

Thus, using the Borel–Cantelli lemma, ∀ c > 0 almost every point of T belongs
to lim sup B̄cjn	 k hence to lim supBcjn	 k. Since the Bcjn	 k are increasing with c,
almost every point of T belongs to⋂

c>0

lim supBcjn	 k�

Let x0 be a point of this set. There exists a subsequence j′n of jn, and there
exist points λ′n = k2−j′n with k ∈ Fj′n and a sequence cn → 0 such that

∀n	 �λ′n − x0� ≤ cn2−ηj
′
n/dSj′n �
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Since (8) holds with C′ = 1/3,

2−αj
′
n ≤ 1

3

(
ω′�2−j′n� +ω′��λ′n − x0��

)
≤ 1

3

(
ω′�2−j′n� +ω′�cn2−ηj′n/dSj′n�

)
�

hence for each n, either 2−αj
′
n < ω′�cn2−ηj′n/dSj′n� or 2−αj

′
n < ω′�2−j′n�. The first

inequality cannot hold for an infinite number of values of n for the following
reason: since cn → 0 and ω′ is increasing, it follows that

ω′�cn2−ηj
′
n/dSj′n� < ω′�2−ηj′n/dSj′n� = 2−αj

′
n �

If the second inequality held for an infinite number of values of n, then

ω′�2−ηj′n/dSj′n� = 2−αj
′
n ≤ ω′�2−j′n�

holds, thus

2−ηj
′
n/dSj′n ≤ 2−j

′
n

(because ω′ is increasing) so that Sj′n ≤ 2�η/d−1�j
′
n , which is contradictory with

Sjn ≥ �1/jn�2/d for n large enough, since η < d. Thus we have proved that if∑
Sdj = +∞, ω is not an a.e. modulus of continuity.

Let us now show that
∑
Sdj diverges if and only if

∫ 1
0 �ω�x�−η/αxd−1�dx di-

verges. We split the interval of integration 
0	1� into the sequence of intervals
of ends 2−ηj/dSj. Since ω is increasing, using (9),

∞∑
j=1

(
2−αj

3C′

)−η/α ∫ 2−η�j−1�/dSj−1

2−ηj/dSj
xd−1 dx ≤

∫ 1

0
�ω�x�−η/αxd−1�dx

≤
∞∑
j=1

(
2−α�j−1�

3C′

)−η/α ∫ 2−η�j−1�/dSj−1

2−ηj/dSj
xd−1 dx�

the first and last terms are equivalent to

∞∑
j=1

�2−αj�−η/α
((

2−η�j−1�/dSj−1
)d

−
(
2−ηj/dSj

)d)
	

which is equivalent to
∑
Sdj . It follows that, with probability 1,

∫ 1

0
ω−η/α�x�xd−1 dx = ∞ ⇒ a.e. ω is not a modulus of continuity.(11)

In order to prove the converse implication, let ω be a continuous increasing
function satisfying (8) and let Sj be defined by (9). Suppose now that

∑
Sdj <

+∞.
First, note that, because of (6), (7) is equivalent to

∑
2−djω�2−j�−η/α < ∞,

which implies ω�2−j� ≥ 2−αdj/η for j large enough. Because of (6), it implies
that, if �x− x0� is small enough,

ω��x− x0�� ≥ �x− x0�−αd/η�(12)
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If k2−j ∈ Fj, let
Bj	k = B�k2−j	2 · 2−ηj/dSj��

Using again the Borel–Cantelli lemma, for almost every point x0 of T, x0 /∈
lim supBj	k. Let x0 be such a point; the wavelet coefficients of F satisfy

∃J ∀j ≥ J	 Cj	k = 0 if �x0 − k2−j� ≤ 2 · 2−ηj/dSj�(13)

Recall that F�x� = ∑
Cj	kψj	k�x�. The function

∑
j≤J Cj	kψj	k�x� belongs

to C∞��d�; therefore, since ω satisfies (12), we can forget about this part.
Consider now the remaining term∑

j>J	 �x0−k2−j�>2·2−ηjSj
Cj	kψj	k�x��

For x given, let j1 be the first integer satisfying

�x0 − x� ≥ 2−ηj1/dSj1 �

Let +jf�x� =
∑
k Cj	kψj	k�x�. Using the fast decay of ψ and its partial deriva-

tives, it follows that ∀j ≥ J	∀N and for every multiindex β,

∣∣∂β+jf�x0�∣∣ ≤ 2��β�−α�j
CN	β

�2j2−ηj/dSj�N
	

and, uniformly on the segment with ends x0 and x; ∀j ∈ �J	 � � � 	 j1�	∀N and
for every multiindex β,

∣∣∂β+j�f��u�∣∣ ≤ 2��β�−α�j
CN	β

�2j2−ηj/dSj�N
�(14)

We denote by Pj the Taylor polynomial of +j�f� of degree 
α/η� at x0.
Now, let us make the further assumption

∃A such that Sj ≥
1
jA

for j large enough.(15)

Since η < d, (14) implies that, uniformly on the segment of ends x0 and
x	∀j ∈ �J	 � � � 	 j1�	 ∀N and for every multiindex β,

∣∣∂β+jf�u�∣∣ ≤ C′
N	β

2jN
	(16)

and ∀j ≥ J	∀N and for every multiindex β,

∣∣∂β+jf�x0�∣∣ ≤ C′
N	β

2jN
�(17)

It follows that
∑∞
j=1Pj�x− x0� is convergent and∣∣∣∣

j1∑
j=J

�+jf�x�−Pj�x−x0��+
∞∑

j=j1+1
+jf�x�−

∞∑
j=j1+1

Pj�x− x0�
∣∣∣∣ ≤ Cω��x− x0��
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[we apply Taylor’s formula and (16) to each term of the first sum, we bound
each term of the second sum by C2−αj and we use (17) to bound each term of
the last sum], hence the converse part of (11) provided that (15) holds. Now
(15) means that there exists A such that the modulus of continuity ω that we
consider is smaller than �x− x0�αd/η� log��x− x0���A. If ω does not satisfy this
property, let

ω′��x− x0�� = inf
(
ω��x− x0��	 �x− x0�αd/η� log��x− x0���2α/η

)
�

This is also a modulus of continuity which satisfies (15), so that Theorem 1
holds for ω′, hence a fortiori also for ω, which is larger.

3. Determination of the chirp spectrum. We first prove the property
of chirps exponents stated in Proposition 2. It requires the following result
of [12] which relates pointwise regularity to decay conditions of the wavelet
coefficients.

Proposition 4. Let f:� → � be a bounded function. if f is Ch�x0�, for all
j and k such that j ≥ 0 and �x0 − k2−j� ≤ 1,

�Cj	k� ≤ C2−hj�1+ �2jx0 − k��h�(18)

Conversely, suppose that there exists h′ < h such that for all j and k such that
j ≥ 0 and �2jx0 − k� ≤ 1,

�Cj	k� ≤ C2−hj�1+ �2jx0 − k��h
′
�(19)

Then f is Ch�x0�.

Proof of Proposition 2. Since f has a chirp of exponents �h	β� at x0,
the fast decay condition (5) holds, and since f is Ch

′ �x0�, using the criterium
given by (4), we only have to check that ∀N,

�Cj	k� ≤ CN
(
2j�x0 − k2−j��N�x0 − k2−j�h

′′
for

�x0 − k2−j�1+β ≤ 2−j ≤ �x0 − k2−j��
Since f has a chirp of exponents �h	β� at x0, (4) implies that ∀N,

�Cj	k� ≤ CN
(
2j�x0 − k2−j�

)N
�x0 − k2−j�h for

�x0 − k2−j�1+β ≤ 2−j ≤ �x0 − k2−j�
and since f is Ch

′ �x0�, �Cj	k� ≤ C�x0 −k2−j�h′ in the same domain. The result
follows by taking a weighted geometric average of these two estimates.

In order to prove the first part of Theorem 1, we reduce it to a problem
about random balls on the torus T.
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Let δ ∈ 
0	1�. Denote by Bδj	k the ball centered at k2−j�k ∈ Fj� and of
radius 2−δj. Let

Eδ = lim sup
j→∞

⋃
k

Bδj	k	 Gδ =
⋂
δ′<δ
Eδ′ −

⋃
δ′>δ
Eδ′ if δ < 1 and G1 =

⋂
δ′<1
Eδ′ �

Note that the Eδ are decreasing (in δ).

Lemma 1. If δ < η/d, Eδ = T a.s.

The proof of Lemma 1 uses the following proposition of [15] concerning
random coverings of the torus T. Let vn be a decreasing sequence of positive
numbers smaller than 1. We distribute at random and independently balls Bn
of volume vn on T. Let

E = lim supBn�

Proposition 5. If lim supn→∞�∑n
j=1 vj − d log n� = +∞, E = T a.s.

Proof of Lemma 1. Using the same argument as at the beginning of Sec-
tion 2, we can reduce the computation of lim supk2−j∈Fj B�k2−j	2 ·2−δj� to the
case of balls of radius two times smaller, but of centers i.i.d. on T with the
Lebesgue measure. We apply Proposition 5 to these smaller balls, and if vn
denotes their volumes, ∃C	C′ > 0 such that

nj+1∑
nj

vn − d log nj+1 ≥ C
2nj�2−dδj −C′j	

which tends to ∞ if η > dδ, hence Lemma 1. Thus every point of the torus
belongs to one of the �Gδ�δ∈
η/d	1�. The following proposition shows that the
points that belong to a given Gδ have the same regularity and oscillation.

Proposition 6. If x ∈ Gδ, the chirp exponents of F at x are �h	β� =
�α/δ	1/δ− 1�.

Proof of Proposition 6. If x ∈ Eδ, there exists an infinite number of
points k2−j �k ∈ Fj� such that �x− k2−j� ≤ 2−δj, so that, using Propositon 4,
the Hölder exponent of F at x is at most α/δ. Conversely, if x /∈ Eδ, inside
a domain �x − k2−j� ≤ 2−δj the wavelet coefficients of F vanish for j large
enough. Thus, if Cj	k is a nonvanishing wavelet coefficient,

�Cj	k� = 2−αj = �2−δj�α/δ ≤ �x− k2−j�α/δ�
Using again Proposition 4, F ∈ Cα/δ�x�.

Since the wavelet coefficients of F vanish in the domain �x0 − k2−j�1/δ ≤
2−j, the oscillation exponent is at least β. Since there are coefficients of size
2−αj just outside this domain, the oscillation exponent cannot be larger; hence
Proposition 6 holds.
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The determination of the spectrum of F is thus reduced to the computation
of the Hausdorff dimensions of the sets Gδ. Note that Eδ is included in⋃

j≥J	k∈Fj
B�k2−j	2−δj�

so that, using these balls as a covering, we obtain dimEδ ≤ η/δ, hence
dimGδ ≤ η/δ. The lower bound for the Hausdorff dimension of Gδ is a conse-
quence of a general technique that we will develop in the next section in order
to obtain lower bounds for the Hausdorff dimension of a fairly general class
of fractal sets.

The main result proved in Section 4 is the following. Let λn be a sequence
of points in T = 
0	1�d and εn > 0. We consider the sets

Ea = lim sup
N→∞

⋃
n≥N

B�λn	 εan�

[Ea is the set of points that belong to an infinite number of balls B�λn	 εan�].
The function a→ dimH�Ea� is decreasing. Furthermore, if

A = sup
{
α:
∑
εαn = ∞} = inf

{
α:
∑
εαn <∞}

	

using the covering by the balls B�λn	 εan�, one easily obtains dimH�Ea� ≤ A/a.
This upper bound often turns out to be sharp in situations where the λn are
“equidistributed” in some sense. However, this type of information is often
hard to obtain or to handle; sometimes a different kind of information is eas-
ily available. For an a small enough, we may know that almost every point of
T belongs to Ea (it is the case in problems related to diophantine or dyadic ap-
proximation, or if the λn are independent equidistributed random variables).
We will prove that this sole information yields a lower bound on dimH�Eb�
for b > a. In practice, a more precise result is often required: one needs to
obtain a positive Hausdorff measure for Ea. Let us now recall the definition
of a Hausdorff measure.

Let h:�+ → �+ be a continuous increasing function satisfying h�0� = 0,
and let A be a bounded subset of �d. If �B� denotes the diameter of the ball
B, let

� h
ε �A� = inf

�

( ∑
�ui�i∈N∈�

h��ui��
)

where the infimum is taken on all coverings � by families of balls �ui�i∈� of
radius at most ε. The � h-measure of A can be defined as

� h�A� = lim
ε→0

� h
ε �A��

We will prove the following theorem in the next section.

Theorem 2. Let hc�x� = �log x�2�x�c. If almost every x belongs to Ea,
∀ b > a	 � hda/b�Eb� > 0�

(In particular, the Hausdorff dimension of Eb is larger than da/b.)
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Here again, using the same argument as at the beginning of Section 2, we
reduce the problem to the case where the points of Fj are independent and
equidistributed on T; hence, by the Borel–Cantelli lemma, the hypothesis of
Theorem 2 is satisfied for a = η/d, hence Theorem 2 implies that the hη/δ
measure of Eδ is positive. Since the hη/δ measure of Eδ′ vanishes if δ′ > δ, it
follows that the Hausdorff dimension of Gδ is η/δ, hence the formula for the
spectrum of chirps in Theorem 1.

4. A priori lower bounds of the dimension of some fractals. The
idea of the proof of Theorem 2 is to construct a generalized Cantor set K in-
cluded in Eb and simultaneously a probability measure µ supported by this
set, with specific scaling properties. The “mass distribution principle” will al-
low us to deduce from these scaling properties a lower bound for the � hda/b

Hausdorff measure of Eb. The generalized Cantor set and the measure will
be constructed using an iterative procedure.

After perhaps reordering the sequence �λn	 εn�, we can suppose that εn is
nonincreasing. Let b > a fixed. We introduce the notations

Bn = B�λn	 εan�
and

B̃n = B�λn	 εbn��
[More generally, if B is the ball B�λ	 e�, B̃ will denote the ball B�λ	 eb/a�.]

We now construct the first generation of the balls of the Cantor setK. First
we will select a finite subsequence Bφ�n� of Bn as follows. Denote by 5Bn the
ball of same center as Bn and of diameter 5�Bn�. We first choose φ�1� = 1 (i.e.,
we select B1); φ�2� is the first index such that Bφ�2� is not included in 5Bφ�1�;
φ�3� is the first index such that Bφ�3� is not included in 5Bφ�1� ∪ 5Bφ�2�	���. We
stop this extraction at the first index N such that

mes
( N⋃
i=1

5Bφ�i�

)
≥ 1

2(20)

[where mes�A� denotes the d-dimensional Lebesgue measure of A]. The index
N exists because each ball Bn which has not been selected among the Bφ�i�
is included in one of the 5Bφ�i� previously selected (because εn is decreasing),
so that

φ�N�⋃
i=1

5Bi ⊂
N⋃
i=1

5Bφ�i��(21)

Since almost every x belongs to Ea, mes�⋃ni=1Bi� → 1, and (20) follows if N
is large enough.

By construction, the balls Bφ�i� thus selected are disjoint, and (20) implies
that

mes
( N⋃
i=1
Bφ�i�

)
≥ 1

2 · 5d �(22)
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The N balls B̃φ�i� are the first generation balls of our generalized Cantor set.
The measure µ will be supported by the union of these balls, and we take

∀ i µ�B̃φ�i�� =
mes�Bφ�i��∑N
j=1 mes�Bφ�j��

�

(22) implies that

µ�B̃φ�i�� ≤ 2 · 5d�B̃φ�i��da/b�(23)

We will not construct the second generation balls by subdivising each B̃φ�i�.
Let n be such that

1
εn

≥ exp
(

1
εφ�N�

)
�(24)

Let us consider one of the balls B̃φ�i�; since
⋃
j≥n Bj covers almost every

point of B̃φ�i�, we can as above select a finite number of balls Bφ�i	1�	 � � � 	
Bφ�i	N�i�� from the sequence �Bj�j≥n such that

mes

(
N�i�⋃
i=1

5Bφ�i	 j�

)
≥ 1

2mes�B̃φ�i���

The Bφ�i	 j� are disjoint, so that

mes

(
N�i�⋃
i=1
Bφ�i	 j�

)
≥ 1

2 · 5dmes�B̃φ�i���(25)

The balls B̃φ�i	 j� are the second generation balls in the construction ofK, and
we take

µ�B̃φ�i	 j�� = µ�B̃φ�i��
mes�Bφ�i	 j��∑N�i�
j=1 mes�Bφ�i	 j��

�(26)

Thus

µ�B̃φ�i	 j�� ≤ 2 · 5d�B̃φ�i	 j��da/b
µ�B̃φ�i��

mes�B̃φ�i��
�(27)

This construction is iterated, and we thus obtain a generalized Cantor set K
and a probability measure µ supported by K.

The balls thus constructed at each generation are called the fundamen-
tal balls of the generalized Cantor set. Note that the fundamental balls con-
structed are indexed by a tree, and the diameters of the balls at a given depth
of the tree need not be of the same order of magnitude. If B is a fundamental
ball, we will denote by B̂ the “father” of B, that is, the fundamental ball from
which B was directly obtained.
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The diameters of the fundamental balls have been chosen such that, if B is
any fundamental ball of the nth generation,

1
�B� ≥ exp

(
sup

( 1
�J�

))
	(28)

where the supremum is taken on all fundamental balls J of the previous
generation.

We will now check that, if B is an arbitrary open ball,

µ�B� ≤ C�B�da/b�log �B��2�(29)

following Principle 4.2 of [8], the Hausdorff measure of Eb constructed with
the dimension function hda/b will then be positive.

We first check that (29) holds for the fundamental balls, by induction on
the generation of the ball; (23) asserts that it is true for the first generation.
Suppose now that B is any ball of the nth generation. The analogue of (27) at
the nth generation states that

µ�B� ≤ 2 · 5d�B�da/b µ�B̂�
mes�B̂�

	

which, using the induction hypothesis, is bounded by

2 · 5d�B�da/b�B̂��da/b�−b�log �B̂��2	
which, because of (28), is bounded by 2 · 5d�B�da/b� log �B�� log�log��B���2. Thus
(29) holds for the balls of generation n.

Let now D be an arbitrary open ball. If D does not intersect the Cantor
set, µ�D� = 0. Otherwise, let B be the fundamental ball of smallest genera-
tion which intersects D and such that two children of B at least intersect D.
Clearly, there exists exactly one such ball. Denote by B̃1	 � � � 	 B̃p the children
of B that intersectD. If B is small enough, �B̃i� � �Bi� (because �B̃i� = �Bi�b/a),
so that

∀ i = 1	 � � � 	 p	 mes	 �B1 ∩D� ≥ Cmes�Bi�	
where the constant C depends only on the dimension d; this estimate holds
because �D� is larger than �Bi� and D contains points of B̃i which are close to
the center of Bi;

µ�D� ≤
p∑
i=1
µ�B̃i�	

which, by (26) and (25) applied at the corresponding generation is bounded by

µ�B�2 · 5d∑p
i=1 mes�Bi�

mes�B� �
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If �D� ≥ �B�, (29) holds because it holds for B, and µ�D� ≤ µ�B�; Otherwise,
since mes�Bi� ≤ Cmes�Bi ∩D� and Bi ∩Bj = �, it follows that

µ�D� ≤ Cµ�B�mes�D�
mes�B�

≤ C�B�da/b�log��B���2 �D�d
�B�d

≤ C�D�da/b�log��D���2

because a < b so that the function r→ rd�a/b−1��log r�2 is decreasing near the
origin.

5. Concluding remarks.

5.1. Failure of the multifractal formalism. Theorem 1 shows that, when
η �= d, Lacunary wavelet series are a.e. multifractal functions (i.e., their spec-
trum of singularities is supported by an interval of nonempty interior). This
notion was introduced in [9] in the context of fully developed turbulence. Frisch
and Parisi proposed a formula, known as the “multifractal formalism” in or-
der to compute the spectrum of singularities of a function f; let us describe
an equivalent wavelet formulation, proposed in [1], which is more adapted to
numerical computations. Let

ζ�q� = lim inf
j→∞

log�∑k �Cj	k�q�
−j log 2 �

The multifractal formalism asserts that the spectrum of singularities can be
recovered from ζ�q� by

d�h� = inf
q
�qh− ζ�q���(30)

This formula is valid for many multifractal functions (see [13] for a mathemat-
ical discussion). Nonetheless, let us check that the multifractal formalism fails
for the sample paths of lacunary wavelet series when η �= d; here ζ�q� = αq−η
and (30) would yield

d�h� =
{
η	 if h = α,
−∞	 else,

which is the right spectrum only in the nonlacunary case η = d. The results
of this paper thus show the need for a more general multifractal formalism
when dealing with functions which have sparse wavelet expansions (which,
as was pointed out in the introduction, is a very common situation in signal
analysis).
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5.2. Almost everywhere directional regularity. We proved that the a.e.
Hölder exponent of F is dα/η. Note that, in dimension larger than 1, the def-
inition of pointwise Hölder regularity given by (2) involves a uniform bound
in all directions. This does not prevent the function F being smoother when
one considers its traces on fixed directions. Let us introduce some definitions
concerning directional regularity. If u is a unit vector of �d, f is Cα�x0	 u� if
the one-variable function t→ f�x0 + tu� is Cα�0�. The following result holds.

Proposition 7. For a.e. x0 and a.e. direction u:

(i) If η ≤ d− 1, F is C∞�x0	 u�.
(ii) If η > d− 1, F is Cα/�η−d+1��x0	 u�.

Let us just sketch the proof of this result since it follows the line of the
other wavelet regularity proofs of this paper.

We consider a fixed point x0 and a given direction u. We showed that, with
probability arbitrarily close to 1,

∃A	 J	 ∀j ≥ J	 Cj	k = 0 if �x0 − k2−j� ≤
1
jA

2−nj/d�

Denote by D the straight line x0 + �u. Among the nonvanishing wavelet
coefficients of F, we separate two cases.

Case 1. dist�k2−j	D� ≥ j2−j. Because of the fast decay of the wavelets,
the contribution of these coefficients to the directional regularity is C∞ (if the
wavelets were compactly supported, these wavelets would actually bring no
contribution at all).

Case 2. dist�k2−j	D� < j2−j. There are at most CjA2�1−d�j2ηj such coeffi-
cients (for an A large enough) which are equidistributed in this domain. The
distance of the closest one to x0 is therefore at least �C/jA′ �2�−η+d−1�j (for an
A′ large enough). The Hölder exponent ofF at x0 in the direction u is therefore
at least α/�η−d+1�. It cannot be larger since there also exists a nonvanishing
wavelet coefficient, whose distance to x0 is bounded by CjA

′′
2�−η+d−1�j (for an

A′′ large enough).
Note that there clearly exists a dense set of directions for which the direc-

tional Hölder regularity is α/η, so that the directional regularity at a.e. point
x0 changes strongly from direction to direction. This study might probably be
pushed further to prove a multifractal directional regularity at a generic point
x0.
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Départment de Mathématiques
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