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This is a rambling review of what, with a few notable and signifi-
cant exceptions, has been a rather dormant area for over a decade. It con-
centrates on the septuagenarian problem of finding good approximations
for the excursion probability P�supt∈TXt ≥ λ�� where λ is large, X is a
Gaussian, or “Gaussian-like,” process over a region T ⊂ �N and, generally,
N > 1.

A quarter of a century ago, there was a flurry of papers out of vari-
ous schools linking this problem to the geometrical properties of random
field sample paths. My own papers made the link via Euler characteristics
of the excursion sets �t ∈ T : Xt ≥ λ�. A decade ago, Aldous popular-
ized the Poisson clumping heuristic for computing excursion probabilities
in a wide variety of scenarios, including the Gaussian. Over the past few
years, Keith Worsley has been the driving force behind the computation
of many new Euler characteristic functionals, primarily driven by applica-
tions in medical imaging. There has also been a parallel development of
techniques in the astrophysical literature. Meanwhile, somewhat closer to
home, Hotelling’s 1939 “tube formulas” have seen a renaissance as sophis-
ticated statistical hypothesis testing problems led to their reapplication
toward computing excursion probabilities, and Sun and others have shown
how to apply them in a purely Gaussian setting.

The aim of the present paper is to look again at many of these results
and tie them together in new ways to obtain a few new results and, hope-
fully, considerable new insight. The “Punchline of this paper,” which relies
heavily on a recent result of Piterbarg, is given in Section 6.6: “In com-
puting excursion probabilities for smooth enough Gaussian random fields
over reasonable enough regions, the expected Euler characteristic of the
corresponding excursion sets gives an approximation, for large levels, that
is accurate to as many terms as there are in its expansion.”
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1. Introduction.

1.1. On Gaussian maxima. One of the oldest, and most difficult, problems
in the study of random processes has been precise determination of the prob-
ability

P

{
sup
t∈T

X�t� ≥ λ

}
�(1.1.1)

where X is a (real-valued) random process, T is its (possibly quite general)
parameter space and λ ∈ � is arbitrary.
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When T ∈ �, and so is totally ordered, and X is Markovian, there are a
number of quite successfull ways to attack this problem. We, however, shall
be mainly concerned with the situation in which X is either Gaussian (and,
in general, non-Markov) or, in a sense to be made precise later, somehow
distributionally “related” to a Gaussian process, and in which T might be
quite general. Most of the discussion will center around T ⊂ �N, N ≥ 1, in
which case we shall call X a random field.

It is a fact that seems remarkable that, even today, there is no explicit
formula for this simple probability in the general Gaussian situation, despite
the fact that it appears in a large number of different problems. However,
despite, or perhaps because of this, there are multitudes of approximations
and techniques for deriving approximations to (1.1.1), particularly when λ is
large.

My aim in this paper will be to review a number of different approaches
to computing, or, to be more precise, approximating (1.1.1) and to compare
their effectiveness. The most general techniques involve the notion of metric
entropy (and, more recently, maximising measures) and give general bounds
that are attractive to theoreticians but which, because of their dependence
on unknown constants, are close to useless in practice2 unless supplemented
with additional information.

Another way of looking at (1.1.1) is via the excursion sets

Aλ ≡ Aλ�X�T� 
= �t ∈ T : X�t� ≥ λ�(1.1.2)

of the random field X on the set A over the level λ, since

P

{
sup
t∈T

X�t� ≥ λ

}
≡ P�Aλ �= ��
(1.1.3)

Of course, finding P�Aλ �= �� is no easier, either in principle or in practice,
than finding P�supTX�t� ≥ λ� directly, but there is an approximation based
on excursion sets that turns out to be very helpful. In one dimension, the
argument goes as follows:

P

{
sup
t∈0�T�

X�t� ≥ λ

}
= P�Nλ�T� ≥ 1 or X�0� ≥ λ�

≤ P�Nλ�T� ≥ 1� + P�X�0� ≥ λ�(1.1.4)

≤ E �Nλ�T�� + P�X�0� ≥ λ��
where Nλ�T� is the number of upcrossings3 of the level λ during 0�T�.

2By terms like “in practice” and “applied,” I will be referring to situations in which one wants
a numerical value for the probability in (1.1.1) correct to within a percentage point or two, and
not applications in which (1.1.1) is used as a tool in some other theoretical endeavour.

3If F�t� is a continuous function on 0�T� such that F�t� is not identically equal to λ in any
interval and neither F�0� nor F�T� equals λ, then F is said to have an upcrossing of the level
λ at the point t0 if there exists an ε > 0 such that F�t� ≤ λ in �t0 − ε� t0� and F�t� ≥ λ in
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If X is a zero-mean, stationary, almost surely continuous Gaussian process
on 0�T�, then a famous formula due initially to Rice [84] in 1945 (with exten-
sions, generalizations and rigorizations due to a number of authors, including
[16, 42, 124]) gives the mean number of level crossings as

E�Nλ� = Tλ
1/2
2

2πσ
exp

(
− λ2

2σ2

)
�(1.1.5)

where σ2 = E��X�t��2� and λ2 is a spectral parameter that will be defined
later.

Throughout this paper we shall use time and again the following basic
Gaussian tail inequalities, in which

��λ� = �2π�−1/2
∫ ∞
λ

exp
(
−1
2
x2
)
dx�(1.1.6)

denotes the tail of the standard Gaussian distribution function: For all λ > 0,(
1− σ2

λ2

)
σ

λ
√
2π

exp
(−λ2
2σ2

)
≤ �

(
λ

σ

)
≤ σ

λ
√
2π

exp
(−λ2
2σ2

)

(1.1.7)

Putting this together with (1.1.4) and (1.1.5) yields, for λ > 0,

P

{
sup

t∈0�T�
X�t� ≥ λ

}
≤
[

σ

λ
√
2π

+ Tλ
1/2
2

2πσ

]
exp
(−λ2
2σ2

)
(1.1.8)

≡ [C1 +C2λ
−1] exp(−λ2

2σ2

)



In fact, for large λ, it turns out that the right-hand side of (1.1.8) actually
serves as the first two terms of an expansion in decreasing powers of λ for the
probability on the left-hand side, and this expansion is accurate up toO�λ−2�4;
that is,

P

{
sup

t∈0�T�
X�t� ≥ λ

}
= [

C1 +C2λ
−1 +O�λ−2�] exp(−λ2

2σ2

)

(1.1.9)

for large λ. Note that from our derivation of (1.1.8) the first two constants
here are known, and only the details surrounding the error term remain un-
specified.

This simple result can be taken as the archetype of the results to be dis-
cussed in this review, in which, for more general processes over more general
spaces, (1.1.9) will be replaced by

P

{
sup
t∈T

X�t� ≥ λ

}
= λα exp

(−λ2
2σ2

)[ n′∑
n=0

Cnλ
−n + o�λ−n′ �

]
(1.1.10)

�t0� t0+ε�. Note that this implies that only relatively smooth functions can have a finite number
of upcrossings. Brownian motion paths, for example, do not fall into this category.

4Even better levels of accuracy are often available; cf. Theorem 4.5.2 and the surrounding
discussion.



EXCURSION SETS, MAXIMA AND TUBES 5

for some α and n′ that will depend on specific properties of both the process
and its parameter space.

It will turn out that the general metric entropy techniques hinted at before
usually suffice to identify α in (1.1.10), with n′ = 0 and C0 undeterminable.
A very brief discussion of these results forms the content of the following
section.

Level crossing, and, in the general case, excursion set techniques can gen-
erally be made to rigorously give (1.1.10) with n′ = 0, and with precise values
of α and C0. (In higher dimensions, the number of level crossings must be re-
placed by a generalization of this concept known as the Euler characteristic of
the excursion set, to be defined soon.) However, we shall see that, in fact, they
seem to give the expansion up to n′ = 2N/2�, where N is the dimension of
the parameter space and throughout this paper x� denotes the integer part of
x. Furthermore, the constants C0� 
 
 
 � C2N/2� are explicitly computable. Why
this is so, and how the argument involves the geometry of excursion sets, will
be the topic of Section 4 and parts of Section 6.

Section 5 looks at a technique that works when the excursion set approach
does not, a technique developed by Pickands [71, 72] in the late 1960’s for
processes on the line, extended to random fields by Bickel and Rosenblatt
[13] and Qualls and Watanabe [81] in 1973 and surveyed and developed in
the recent monograph of Piterbarg [76]. To explain what goes wrong with the
excursion set approach, it is important to note that while (1.1.5) is always cor-
rect under the conditions stated, if X is not differentiable (e.g., an Ornstein–
Uhlenbeck process) then the constant λ2 is infinite. Consequently, everything
that we built on the basis of this result fails to work in this scenario. The
Pickands–Piterbarg approach avoids this issue with an entirely different ap-
proach, which, however, requires a lot more work. Following Piterbarg, and for
reasons that will become clearer later, we call this approach the “double-sum
technique.”

Elements of both of the preceding approaches can be found in David Al-
dous’ superb monograph Probability Approximations via the Poisson Clump-
ing Heuristic5 [6], and the reader who wishes to find the distribution of the
maximum of a specific process should read Aldous’ book in conjunction with, or
preferably before, reading this paper. The relationship between our formulas
and Aldous’ clumping heuristic will be made clear in Section 5.

In the penultimate Section 6 an old/new, classical/innovative approach to
Gaussian maxima problems involving “tube formulas” will be discussed. This
is an approach that, in principle, leads to expansions of the form of (1.1.10)

5Actually, the title of this book is somewhat of a misnomer. The word “heuristic” gives the
reader the misguided impression that “Poisson clumping” is a rough-and-ready way for illegiti-
mately guessing answers that sometimes works and sometimes does not. The word “principle” is
probably more appropriate, since with the idea of Poisson clumping Aldous has managed to distill
the essence of a large number of related problems to identify a common underlying principle,
which almost always works. (Of course, I do have to admit that “almost always” here depends on
the measure one places on spaces of problems.)
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of a comparatively high order (n′) when other methods fail. However, what is
possible “in principle” is not always doable in practice, and so we shall discuss
both the strengths of, and the problems associated with, this new technique.
This approach, however, is applicable only to Gaussian processes.

Since the techniques based on Poisson clumping and excursion sets are
more widely applicable, at various points in the paper we will also discuss
Euler characteristics for a variety of non-Gaussian random fields. All of these
fields, however, have some “relationship” to their Gaussian counterparts, hav-
ing marginal distributions that are chi-squared, F, t and so on.

In general, with a few notable exceptions that will be discussed later, the
last decade has been a rather dry one for Gaussian random fields and as-
sociated excursion problems. The time, and applications, seem to be ripe for
renewed activity in the area. Thus, in the closing Section 7, I have listed what
seem to me to be a number of interesting open problems and general directions
for future research.

1.2. Gaussian and related fields. Here is a crash course on the basics of
stationary Gaussian processes and some basic notation that will remain con-
stant throughout the paper. It can be skipped on first (and subsequent) reading
and referred to when necessary.

The parameter spaces of random processes, or subsets of them, will be de-
noted by capital Latin letters. The most common will be T, and this might be
quite general, at least in the following section, where examples would include
families of test functions, all measurable subsets of some measure space and
so forth. Throughout, we assume that T is totally bounded in the pseudo met-
ric d�s� t� = �E��X�t� −X�s��2��1/2. From Section 3 onward, where we will
be looking at detailed tail probability computations, we will generally have
T ⊂ �N for some N ≥ 1. Random processes will share the same alphabet, but
closer to its end. If T ⊂ �N and the process is �d-valued, we shall call it an
�N�d� random field, or, generally only when d = 1, simply a random field.

The mean function of a real- or complex-valued process �X�t��t∈T is denoted
by m�t� = E�X�t��, and the covariance function by

R�s� t� = E
{X�s� −m�s�� [X̄�t� − m̄�t�]} �(1.2.1)

where the complex conjugation represented by the overbar is only meaningful
if X is complex valued. If X is real valued, then R is clearly a symmetric
function of s and t. If m is constant and R is a function only of �s − t�, then
we call X stationary, and, with some abuse of notation, write

R�s� t� = R�t− s�

If, in addition, T ∈ �N and R�t� is only a function of �t� = ��t1� 
 
 
 � tN�� 
=
�∑N

n=1 t
2
n�1/2, then X is called isotropic.

By Bochner’s theorem, for every stationary covariance function R on �N

there is a spectral distribution function F such that

R�t� =
∫
�N

exp�i t · λ�dF�λ��(1.2.2)
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where we shall use either t · λ or �t� λ� to denote the inner product in �N.
(Bochner’s theorem has, of course, natural extensions to more general spaces
with a group structure, but we shall not need these.) Furthermore, there is a
spectral process Z, with independent increments, such that, in this case, we
can write X via its spectral representation as

X�t� =
∫
�N

exp�i t · λ�dZ�λ�
(1.2.3)

Putting (1.2.1)–(1.2.3) together, it is easy to check that, for α�β� γ� δ ∈
�0�1�2� 
 
 
�,

E

{
∂α+βX�t�
∂αti∂

βtj
· ∂

γ+δX�t�
∂γtk∂

δtl

}
= �−1�α+β ∂α+β+γ+δ

∂αti∂
βtj∂

γtk∂
δtl

R�t�
∣∣∣
t=0

(1.2.4) = iα+β+γ+δ
∫
�N

λαi λ
β
jλ

γ
kλ

δ
l dF�λ�


Since they will arise often, we shall denote the second spectral moments∫
�N λiλj dF�λ� by λij, i� j = 1� 
 
 
 �N, and denote the N×N matrix of these
moments by %. Note that by (1.2.4) we could also define the components of %
using only derivatives of R, without ever referring to the spectrum.

It follows from (1.2.4) and appropriate choices of α�β� γ� δ that for a real-
valued stationary field X�t� [for which F is symmetric in the sense that
F�A� = F�−A� for all measurable A ∈ �N] the following relationships hold
for all 1 ≤ i� k� l ≤N:

X�t� and Xi�t� are uncorrelated �β = γ = δ = 0� α = 1��(1.2.5)

Xi�t� and Xkl�t� are uncorrelated �α = γ = δ = 1� β = 0�
(1.2.6)

The preceding discussion is quite general and has nothing to do with Gaus-
sian processes, to which we now turn. Recall that a (zero-mean) Gaussian
process is a family �Xt�t∈T of random variables, indexed by a parameter set
T, such that each linear combination

∑
αtXt is (centered) Gaussian. Equiva-

lently, we could require that all finite collections �X�t1�� 
 
 
 �X�tk�� are mul-
tivariate Gaussian with covariance matrix �R�ti� tj��i�j=1�


�k. It therefore fol-
lows that the mean and covariance functions determine the law of the entire
process, one of the things that makes Gaussian processes so easy to study.
Furthermore, since derivatives are limits of linear combinations, if X�t� is a
Gaussian field on �N then so are its derivatives, and the joint distribution of
X�t� with its derivatives is also multivariate Gaussian. Thus, in the Gaussian
case, the variables considered in (1.2.5) and (1.2.6) are not only uncorrelated
but also independent. We shall make repeated use of this fact.

Now the time has come to explain what “related” means in the title of this
subsection. In essence, it means “any random field to which one can extend the
kind of excursion theory analysis that works for Gaussian processes.” In prac-
tice, this means any random field for which it is possible to compute a precise



8 R. J. ADLER

formula for the expected value of the Euler characteristic of its excursion sets.
One such example is given by the so-called χ2 processes, representable as

χ2
K�t� =

K∑
n=1

X2
n�t��(1.2.7)

where the Xn are independent, identically distributed, zero-mean Gaussian
processes. It is easy to check that if the Xn are stationary then so is χ2

K, and
to compute the spectral moments of χ2

K in terms of those of the Xn. When
it comes to looking at the joint distribution of χ2

K�t� and its various deriva-
tives, (1.2.5) is still relevant, but now lack of correlation no longer implies
independence, a fact that is crucial for calculations in the Gaussian case. Nev-
ertheless, judicious conditioning arguments allow one to find independence
where unconditionally there is none, and expected Euler characteristics can
be computed.

With χ2
K fields defined, we leave it to the reader to guess how fields with

names like “F,” “t,” “noncentral χ2
K” and so on may be defined. In most of

these cases, excursion characteristic calculations can be carried through, and
an excursion theory parallel to the Gaussian one developed. The examples
of the following subsection will give some indication of why these fields are
important in practice.

1.3. Some motivating examples. In this subsection, I shall describe, very
briefly, two problems related to Gaussian maxima that are nicely solved by
applications of excursion set techniques. The solutions themselves will come
in Section 3.4.

We begin at the very beginning: the beginning of the Universe. According to
current astrophysical theory, 99.97% of the radiant energy of the Universe was
released within the first year after the Big Bang, and much of the structure
of that time is still measurable in terms of today’s background microwave
radiation. Theories that attempt to explain the origin of large-scale structure
seen in the Universe today must therefore conform to the constraints imposed
by these observations.

Figure 1 shows, in gray scale,6 the anomalies in the cosmic microwave back-
ground (CMB) radiation, divided by their standard deviation. This was the
first evidence of anomalies in the CMB radiation, a sort of signature left over
from the creation of the Universe. It was a widely published result; the reader
is referred to the article in Scientific American [80] or the 5-page, 28-author,
original paper [102].

The initial data are actually directional, as they represent radiation coming
into a point from the surrounding universe. As such, it is actually a random
field on a two-dimensional sphere. The map shown here is a projection of
the full sky in galactic coordinates, with the plane of the Milky Way placed

6For far more attractive and informative color figures, see, for example, www.gsfc.nasa.gov/
astro/cobe/ and follow the links. I “borrowed” the figure from [122], where it also exists in color.
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Fig. 1. Galactic radiation.

horizontally in the middle of the map and with the galactic center at the
center.

Very briefly, astronomers are interested in the apparent randomness in the
patterns in maps like Figure 1 and in determining whether or not the image
can be considered as the realisation of a Gaussian (or other) random field.
One very simple way to test a null hypothesis of normality is to look at the
statistic

sup
t∈sphere

�Standardized CMB anomaly�t��(1.3.1)

and to compare it to the maximum of a parametrically matched Gaussian (or
other) field. For this, of course, one needs the probability (1.1.1). However,
there are better ways to test such a hypothesis and to understand galactic
topography than merely looking at the maximum, and excursion sets provide
an appropriate, and, over the last 10 years, heavily used, tool.

We shall return to this later.
For our second example, we take a problem in biostatistics, related to brain

imaging. A small number of experimental subjects are injected with a positron
emitting radio isotope, which enables a positron emission tomography (PET)
machine to follow its flow through the bloodstream, and, in particular, in the
brain. Images of the brain are taken while the subjects are at rest, and then
when performing a task, such as the silent reading of words projected onto a
screen. The underlying principle is that those parts of the brain involved in
performing the task will require oxygen, and hence blood, so that there will
be a heavier blood flow to, and hence positron emission from, these regions.
The difference between the rest and task images, averaged over the subjects
and standardised at each point by the standard deviation of the sample, is
shown in Figure 2, where the dark regions depict excursion sets over two
different levels. As with the galactic example, the main problem of interest lies
in determining whether these pictures are consistent with a noise model or
whether the excursion sets above the highest levels contain information about
which part of the brain handles a specific task. Of course, in this case, the
averaging over a small number of subjects, differencing and standardisation,
lead to a “t,” rather than Gaussian, random field.
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Fig. 2. Excursion sets for PET brain images.

1.4. On the importance of formulas: Some philosophy. Since it has been
quite some time since I have written a paper about random fields, and since
this paper is already so long that a few more words will not make much of a
difference, I am going to allow myself a few words of “wisdom” and see if I can
slip them by the editor.

In 1981, 5 years out of graduate school, and with a beard somewhat shorter
and colored somewhat differently from my present one, I published a book
entitled The Geometry of Random Fields. As with most young authors, I was
very pleased with myself.

The book contained clever arguments involving integral and differential
geometry, and had a nice long chapter on Hausdorff dimension, just before
fractals became a household word. As with most young authors, I was also
certain that the clever ideas expressed in the book (most of which, of course,
were culled from the works of others) would leave a lasting impression on the
academic world.

Close to two decades later, and with the wisdom of hindsight (there have to
be some advantages to a white beard!), it is clear that what was important in
my book was not so much the ideas, but one very specific formula. This was
an explicit formula for the expectation of a topological characteristic of the
excursion sets of Gaussian fields [cf. formula (3.2.5) of this paper].

Its importance lay in the fact that, as for Rice’s formula (1.1.5), its one-
dimensional predecessor, its simple form allowed one to substitute real pa-
rameter values and obtain actual, meaningful numbers that could, and have
been, used for the solving of problems outside of mathematics.7

7There is a widespread belief among modern pure mathematicians that the major contribution
they have to make to “science” is the development of “understanding,” generally at the expense of
explicit results. Strangely enough, most subject matter scientists do not share the mathematicians’
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In many ways, this paper, the new parts of which primarily report on the
work of others, is an outgrowth of this formula, its extensions and its appli-
cations, how they are related and, in part, how they are derived. Throughout,
however, the emphasis will be on presenting, in a coordinated and reasonably
comprehensive fashion, as many useful formulas as possible, since I now un-
derstand their relative importance. Discussion of techniques will be limited to
what is needed to understand and apply the formulas, and to help the reader
develop new ones appropriate to his or her own specific needs. Thus the reader
should look upon this paper far more as a cookbook for the extrema of ran-
dom fields, and not expect a connoisseur’s description of the taste of each dish.
However, as a referee noted, in a perhaps apochryphal remark he had heard
attributed to Richard Hamming, “The goal of computations is understanding.
The goal of understanding is to compute.”

2. First-order results for maxima.

2.1. Basic large deviations. LetX be a centered Gaussian random variable
with variance σ2. Then from (1.1.7) we have, for all λ > 0,(

1− σ2

λ2

)
σ

λ
√
2π

exp
(−λ2
2σ2

)
≤ P�X > λ� ≤ σ

λ
√
2π

exp
(−λ2
2σ2

)

(2.1.1)

An immediate, and trivial, consequence of (2.1.1) is

lim
λ→∞

λ−2 log P�X > λ� = −�2σ2�−1
(2.1.2)

A classical result of Landau and Shepp [52] and Marcus and Shepp [63] gives
a result closely related to (2.1.2), but for the supremum of a general centered
Gaussian process. If we assume that �Xt�t∈T has bounded sample paths with
probability 1, then they showed that

lim
λ→∞

λ−2 logP
{
sup
t∈T

Xt > λ

}
= −�2σ2

T�−1�(2.1.3)

where

σ2
T 
= sup

t∈T
EX2

t 


In view of (2.1.2), the asymptotics of (2.1.3) seem at first rather surprising,
since they seem to imply that the supremum of a centered, bounded Gaussian
process behaves much like a single Gaussian variable with a suitably chosen
variance. However, it is important to note that the large deviation result (2.1.3)
is consistent with any of the forms

Cλα exp
(−λ2
2σ2

T

)
� C exp�λβ� exp

(−λ2
2σ2

T

)
(2.1.4)

enthusiasm for insight. It seems that they generally know their subject well enough to develop
their own insight. However, useful formulas are quite a different issue.
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for any α ∈ � and any β < 2, as well as combinations of these and similar
forms. What Gaussian large deviation theory is about, as opposed to general
large deviation theory, is going beyond (2.1.3) and identifying the correct form,
along with constants like α and β, in (2.1.4). What is perhaps surprising is
that this is possible in quite wide generality.

The basic result, from which the modern proofs of all others follow, is the
following inequality, a version of what is generally known as “Borell’s inequal-
ity” but is, in fact, due independently to Borell [14] (who gave a proof based on
isoperimetric inequalities for the n-sphere) and Cirelśon, Ibragimov and Su-
dakov [21] (who gave a stochastic analytic proof later rediscovered by Maurey
and Pisier [73]). Details8 can be found in [2]. The inequality states that, for
all λ > 0,

P

{∣∣∣∣ sup
t∈T

Xt −E

{
sup
t∈T

Xt

} ∣∣∣∣ > λ

}
≤ 2 exp

(−λ2
2σ2

T

)

(2.1.5)

An immediate consequence of (2.1.5) is that, for all λ > E sup X,

P

{
sup
t∈T

Xt > λ

}
≤ 2 exp

(
− 1

2

(
λ−E

{
sup
t∈T

Xt

})2/
σ2
T

)

(2.1.6)

Noting the trivial lower bound P�supt∈TXt > λ� ≥ P�Xt∗ > λ�, where t∗ ∈ T
is the point at which the supremum variance σ2

T is achieved, both (2.1.2) and
(2.1.3) follow from the previous equation and (2.1.1). More delicate inequalities
involving terms as in (2.1.4) would also follow if one knew how to calculate
E�supX�. However, it is almost as difficult to compute this expectation as it
is to compute exceedence probabilities.

Nevertheless, there are techniques to obtain bounds for E�supX� in quite
general situations, and these lead us to the approach of the following sub-
section.

2.2. Entropy. Perhaps surprisingly, we now lose no precision by going from
random fields on �N to very general parameter spaces, as all we really need
is �T�d� to be a totally bounded metric space, where d is the canonical pseudo
metric given by d2�s� t� = E�Xt −Xs�2.

Let N�T�d� ε� ≡ N�ε� be the smallest number of (open) d-balls of radius
ε needed to cover T. The natural logarithm of N is known as the entropy
function for �T�d�.

8Actually, this is a good place to point out that the third line from the bottom of page 46 in
[2], where I gave a proof of (2.1.5), is somewhat misleading. The problem, as usual, lies in the
sixth word in the sentence starting, “To complete the proof note simply that 
 
 
 .” Missing details
can be obtained from iew3.technion.ac.il:8080/Adler.phtml.
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Then results going back to [30, 31, 104, 105] (cf. [2] and [54] for details9)
yield the existence of universal constants C1 and C2 for which

C1 sup
ε>0

ε
(
logN�ε�)1/2

(2.2.1)
≤ E sup

t∈T
Xt ≤ C2

∫ diam(T)

0
�logN�ε��1/2 dε


Since entropies are generally quite simple to compute (cf. [2] for 20 pages of
worked examples) and to rephrase in terms of the covariance function, (2.2.1)
yields workable bounds that can be substituted into (2.1.6) to obtain bounds
on Gaussian maxima distributions which will improve on the large deviation
bound of (2.1.3). However, since the new bounds involve universal constants
that hold for a very wide variety of situations, one cannot expect them to be
sharp.

If one is prepared to assume more about the form of the entropy function,
and work considerably harder, then the upper bound of (2.1.6) can be consid-
erably improved. For example, in a series of papers [86, 87, 110, 88, 112] by
Samorodnitsky and Talagrand,with a leapfrogging of ideas and techniques,
the results of the following three theorems, among others, were obtained.

Theorem 2.2.1. If for some A > σT, some α > 0 and some ε0 ∈ 0� σT� we
have

N�T�d� ε� ≤
(
A

ε

)α
(2.2.2)

for all ε < ε0, then for λ ≥ σ2
T�1+

√
α�/ε0� we also have

P

{
sup
t∈T

Xt ≥ λ

}
≤
(
KAλ√
ασ2

T

)α

�

(
λ

σT

)
�(2.2.3)

where K is a computable numerical constant independent of X and T.

Theorem 2.2.2. Set

Tδ = {
t ∈ T : EX2

t ≥ σ2
T − δ2

}

(2.2.4)

Suppose there exist α > β > 1 such that, for all δ > 0, ε ∈ �0� δ�1+√
α�/√β�,

we have

N�Tδ�d� ε� ≤ Aδβε−α
(2.2.5)

9Better bounds than (2.2.1) exist in terms of so-calledmajorising measures, for details of which
both [2] and [54], and especially the simpler approach of [111], can be consulted. However, these
more delicate techniques have little to offer in terms of the bounds, with good constants, that
interest us here.
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Then, for λ ≥ 2σT

√
β, we also have

P

{
sup
t∈T

Xt ≥ λ

}
≤ Aββ/2

αα/2
Kα+β

(
λ

σ2
T

)α−β
�

(
λ

σT

)

(2.2.6)

If 1 < α < β, then there exist universal K1, K2 such that

K1�

(
λ

σT

)
≤ P

{
sup
t∈T

Xt > λ

}
≤ K2�

(
λ

σT

)

(2.2.7)

It is also known that, when α > β > 1, the right-hand side of (2.2.6), albeit
with different constants, also serves as a lower bound to the probability there
if multiplied by a factor of λα−β.

These results treat only entropy functions in which the growth of N in ε is
of a power form, which, at least for processes indexed by points in Euclidean
spaces, are the most common. In the case of exponential entropy structures,
the following theorem holds.

Theorem 2.2.3. Suppose there exist A�B > 0 and α ∈ �0�2� such that

N�T�ε� < A exp�Bε−α� 

Then, for all λ > 0,

P

{
sup
t∈T

Xt > λ

}
≤K1 exp�K2λ

2α/�2+α���
(

λ

σT

)
�

where K1 and K2 are universal.

Note that one cannot set α = 0 in this result to recover either Theorem 2.2.1
or Theorem 2.2.2. The upper bound given here is, under mild side conditions,
also a lower bound.

[There are also nice asymptotic bounds due to Lifshits [56], who, in a quite
general setting, has shown that

P

{
sup
t∈T

Xt > λ

}
� �2− p�1/2�p

(
λ2−p − dλ1−p

pσ2
T

)
(2.2.8)

× exp

{
−�2− p�λ2

2pσ2
T

− d�p− 1�λ
pσ2

T

+ d2

2σ2
T

}
�

(
λ− d

σT

)
for all 1 ≤ p < 2, where �p�x� ≡ E�exp�xsupt∈TXt

p�� and d is a constant
(not easily) determined byX. Of course, this result is somewhat circular, since
one needs the Laplace transform of supt∈TXt

p before being able to compute
anything. Nevertheless, (2.2.9) leads to some nice theoretical results about
+p-valued Gaussian processes.]

I am not going to say anything here about the way the proofs of the pre-
ceding theorems work, other than to note that the basic element of the most
general approach will also lie at the core of the more detailed results to follow.
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One looks for a subset Tmax ⊂ T (very often a unique point in T) where the
maximal variance is achieved, and one studies two things: the “size” of Tmax
(e.g., as measured in terms of metric entropy) and how rapidly EX2

t decays
as we move out of Tmax. The underlying idea is that the supremum of the
process will occur in the region of maximal variance, and the rate of decay
of EX2

t outside that region determines how important, if at all, the behav-
ior is elsewhere. All this should become clearer when we come to the Poisson
clumping heuristic.

Now, all these results are very nice, and very elegant, and certainly show
how much more one can say about large deviations in the Gaussian case than
in the general situation. However, when it comes to applications, there are two
problems with them. The first is that, in the notation of (1.1.10), a result like
(2.2.6) gives only the first term in the expansion of the exceedence probability,
and we have already decided that we need more. However, beyond this, there
is the issue that in order to get good bounds universal constants really need
to be replaced by constants tailored to specific examples.

As for the possibility that this could be done using the approach developed
in the general setting, we can do no better than to quote the master in [112]:
“In particular, it must be pointed out that while our approach is unlikely ever
to yield optimal constants, it does not use chaining (that makes the search of
sharp numerical constants hopeless). We have, however, felt that the search
of sharp numerical constants is better left to others with the talent and taste
for it.”

And, of course, to other tools. We start developing these now, with what, at
first, will seem like (and, in part, is) quite a digression from the main theme
of this review.

3. Euler characteristic techniques.

3.1. The Euler (and related) characteristics. Since Rice’s formula (1.1.5)
leads so simply and naturally to a rigorous bound and an approximation to
excursion probabilities for stationary Gaussian processes on �, it is natural
to try to find an analogue to it in higher dimensions as well.

There are a number of routes to go about this, involving either integral
geometry or differential topology, the essential details of which are described
in [1]. (Would-be experts should look also at [37, 38, 90].) We shall mix and
match the two approaches in what follows.

For the moment, let F be a smooth function on �N, N ≥ 1, and let T ⊂ �N

be a set with smooth boundaries. I shall not bother with defining “smooth” for
the moment, but, later on, when giving results about Gaussian processes, will
give conditions sufficient for everything to be correct.

Our interest centres on the excursion set Aλ�T� = �t ∈ T 
 F�t� ≥ λ�. How-
ever, for the moment,A could be any sufficiently nice set in �N, so that we can
drop the explicit dependence on λ and T, along with the implicit dependence
on F. So, let us assume that A is just such a set and that we are looking
for an integer-valued functional, say ϕ, defined on the collection of all nice A,
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that will do something like count the number of connected components of A.
Thus, at the very least, we must require that

ϕ�A� =
{
0� if A = ��
1� if A is sphere-like,(3.1.1)

where by “sphere-like” we mean topologically equivalent to an N-sphere, and

ϕ�A ∪B� = ϕ�A� + ϕ�B� − ϕ�A ∩B�
(3.1.2)

An important result of integral geometry states that not only does a func-
tional possessing these two properties exist but it is uniquely determined by
them. It is known as the Euler characteristic (or Euler–Poincaré or Hadwiger
characteristic, depending on how one approaches the definition and precisely
what the meaning of “nice” is).

Perhaps the most basic definition of the Euler characteristic of a set A is to
think of A as a manifold with a simplectic triangulation. Suppose that there
are, in total, αN N-dimensional simplices in the triangulation, which, in total,
have αn, n = 0� 
 
 
 �N− 1, n-dimensional faces. Then the Euler characteristic
of A is given by

φ�A� = α0 − α1 + · · · + �−1�Nαn
(3.1.3)

As always, Spivak [103] is a good place to read more details about this.
More global definitions follow from this. For example, in two dimensions,

the Euler characteristic of a set A is simply the number of its connected com-
ponents minus the number of holes. Thus the two figures in Figure 3 clearly
have Euler characteristics of 1 and 0. In three dimensions, the Euler charac-
teristic is given by the number of connected components, minus the number
of “handles,” plus the number of holes. Thus, for example, the Euler charac-
teristics of a solid ball, an empty sphere and a coffee cup are, respectively, 1,
2 and 0.

In principle, and in practice, it is thus very easy in dimensions 2 and
3 to look at a specific set and compute its Euler characteristic. However,
this is one of those unfortunate cases in which what is easy for the human
visual system to do quickly and effectively requires a lot more care when
mathematicised.

The first formal approach we shall adopt to compute the Euler characteristic
is via the following iterative fashion, due essentially to Hadwiger [37, 38].

Theorem 3.1.1. The functional ϕ characterized by (3.1.1) and (3.1.2) has
the following iterative definition for nice sets A ⊂ �N:

ϕ�A� =
{
Number of disjoint closed intervals in A� if N = 1�∑�ϕ�A ∩ �x� − ϕ�A ∩ �x−��� if N > 1�

(3.1.4)
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Fig. 3. Computing the Euler characteristic for a horseshoe and an annulus.

where

ϕ�A ∩ �x−� = lim
y↓0

ϕ�A ∩ �x−y��(3.1.5)

and where �x denotes the �N−1� plane of points in �N, all of which have their
jth coordinate equal to x, j ∈ 1�N� is arbitrary and the (finite) summation is
over all real x for which the summand is nonzero.

Two examples are given in Figure 3. Ignore the arrows for the moment. Here
x runs on the vertical, t2, axis, the regions of constancy of ϕ�A ∩ �x� along
with its value are marked alongside the vertical axis and the contributions
to the sum in (3.1.4) are shown to the left of those. In the first case, we have
the rather expected result that ϕ�A� = 1, and in the second the somewhat
less fortunate one that ϕ�A� = 0. This means that the Euler characteristic,
alone, does not distinguish, in �2, among a disk with a hole in it, an empty set,
a disk along with another disk containing two holes and so forth. However,
despite these apparent drawbacks, the fact that the two basic requirements
(3.1.1) and (3.1.2) characterize the Euler characteristic indicate that we have
chosen the correct, and only, functional for the task at hand.

The iterative formulation of Theorem 3.1.1 is both conceptually and com-
putationally useful for computing Euler characteristics in practice. However,
there is a serious problem with it from a probabilistic viewpoint, since if the
set A is random it is not at all clear how to go about computing, for example,
E�ϕ�A��. To get around this, note that rather than going up the x = t2 axis
in Figure 3 we could simply count the arrowed turning points on ∂A, counting
+1 when the boundary is convex, and −1 when it is concave.
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If we now specialise to the case in which A is, in fact, an excursion set Aλ

of some function F, note that at each point t∗ where a +1 is counted, we have

F�t∗� = λ� F1�t∗� = 0� F2�t∗� > 0� F11�t∗� < 0�(3.1.6)

whereas the −1’s correspond to points t∗ for which

F�t∗� = λ� F1�t∗� = 0� F2�t∗� > 0� F11�t∗� > 0�(3.1.7)

where, in a notation that will remain fixed for the remainder of the review,
first- and second-order partial derivatives are denoted by single and double
subscripts, respectively.

It turns out that this technique of counting can actually be extended to
higher dimensions. In fact, there is another way to compute the Euler charac-
teristic that is due, in essence, to Morse and developed fully in [68]. For this,
we need considerably more notation, but it will be worth the effort. Also, we
can easily be more rigorous and complete than before.

Let f�t�� t ∈ �N, be a real-valued function of class C2 on an open subset
of �N. A critical point t∗ [i.e., a point where fi�t∗� = 0, i = 1� 
 
 
 �N� will be
called ND (nondegenerate) if the Jacobian

D�f1� f2� 
 
 
 � fN�
D�t1� t2� 
 
 
 � tN�

�t∗� = det�fij�t∗��Ni�j=1�

(3.1.8) = detHessf�t∗�� �= 0


If each critical value of f is ND, f itself will be termed ND. The index of
a critical point t∗ of f is the number of negative eigenvalues of the matrix
��fij��t∗��i� j=1�


�N, counted with their multiplicities.

Now let A ∈ �N be a compact C2 domain; that is, its boundary ∂A is an
�N − 1�-dimensional C2 manifold. There is no need to assume that either
∂A or A is connected, but we do insist that they have a finite number of
components. Then f is called admissible relative to A if f is of class C2 on
an open neighbourhood of A, if f has no critical points on ∂A and if the
restrictions of f to A and ∂A, f�A and f�∂A, are both ND.

Finally, let ∂A− denote the submanifold of points t ∈ ∂A for which the
directional derivative of f in the direction of the outward normal to ∂A at t is
negative, and define the k-th type numbers of f�A and f�∂A− , �mk�k=0�1�


�N and
�m′

k�k=0�1�


�N−1, as the number of critical points of f�A and f�∂A− , respectively,
of index k. These are all finite if f is admissible relative to A. The following
important result is due to Morse and Cairns ([68], Theorem 10.2′) and is of
major importance both to differential topology and to us.

Theorem 3.1.2 (Morse’s theorem). Let f�t�, t ∈ �N, be a real-valued
function of class C2, admissible relative to a compact C2 domain A ∈ �N with
C2 boundary and a finite number of components. Then the Euler characteristic
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of A is given by

ϕ�A� =
N∑
k=0

�−1�kmk +
N−1∑
k=0

�−1�km′
k
(3.1.9)

The importance of this result for us lies in that it gives a local point set
representation of a global topological variable, and expectations of the number
of points in sets are often analytically accessible. (The impatient reader can
jump ahead to Theorem 3.2.1 to see why.)

There are a number of ways that Theorem 3.1.2 can be immediately applied.
For example, take X to be defined over a region T, take A = Aλ�X�T� and
assume that A∩ ∂T = �. Set the f of the theorem to be identical to X. Then,
since f is constant on ∂A, the second sum in (3.1.9) disappears and we have
a quite simple characterization of ϕ�A� in terms of the critical points of X.

Under the same setup onX, T andA, and again assuming thatA∩∂T = �,
take f to be the Nth coordinate function, that is,

f�t� = f�t1� 
 
 
 � tN� = tN


Then the next theorem follows easily from Theorem 3.1.2.

Theorem 3.1.3. Let F: �N → �1 be C2 over a compact T ⊂ �N and
assume that F�t� < λ for all t ∈ ∂T. Then, if the χk, defined later, are all
finite, the Euler characteristic of the excursion set Au�F�T� is given by

ϕ�A� = �−1�N−1
N−1∑
k=0

�−1�kχk�(3.1.10)

where χk is the number of points t ∈ T satisfying the following conditions:

F�t� = u�(3.1.11)

Fj�t� = 0� j = 1� 
 
 
 �N− 1�(3.1.12)

FN�t� > 0�(3.1.13)

the index of D �t� equals k�(3.1.14)

where D�t� is the �N−1�× �N−1� matrix of second derivatives with elements
Xij�t�, i� j = 1� 
 
 
 �N− 1.

Setting N = 2 in this result recovers (3.1.6) and (3.1.7), and so shows how
the integral geometric and differential topological approaches to the Euler
characteristic coincide.

In fact, (3.1.10) is such a neat and compact formula and, as we shall see
later, has such an elegant form for its expectation for a wide variety of random
X ≡ F that one is tempted to neglect the fact that excursion sets may occa-
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sionally intersect boundaries and use this relationship as an actual definition
of a characteristic, as in the following.

Definition 3.1.1. Let F: �N → �1 be C2 over a compact T ⊂ �N. Then,
if the χk of Theorem 3.1.3 are all finite, the DT (differential topology) charac-
teristic of the excursion set Au�F�T� is given by

χ�A� = �−1�N−1
N−1∑
k=0

�−1�kχk
(3.1.15)

The need for a new symbol here comes, of course, from the fact that the
Euler and DT characteristics are identical in general only if the excursion set
does not intersect ∂T.

Although this definition of an excursion characteristic is somewhat my-
opic (since it cannot see boundary events), it actually turns out to be quite
useful. By small miracles of computation, its expected value can be explic-
itly computed for Gaussian and related fields and shown to be asymptotically
(in λ) equivalent to both the expected number of local maxima of the field
above the level λ and the expected Euler characteristic itself. Consequently,
it turns out that one can use this formula to study the excursion probability
P�supt∈TXt > λ� in much the same way that Rice’s formula was exploited
in one dimension. All this was known 20 years ago, and was treated in detail
in [1].

However, there was one major drawback to using the DT characteristic
rather than the true Euler characteristic: when applied to estimate the excur-
sion probability, it gave, in the notation of (1.1.10), only the first term of the
asymptotic expansion. To go higher, we need to look at how to handle the true
Euler characteristic, when the excursion set is allowed to intersect ∂T. To do
this, consider Figure 4, which is a far more honest portrayal of excursion sets
than the previous figures.

First, the parameter space T, in this case the surrounding dumbbell shape,
appears. Second, of the three components of the excursion set (the hatched
objects) two intersect ∂T. We already know how to characterize the small
component in the top left: we count a +1 for each •, −1 for for each ◦, and sum
them. The problem is what to do with the remaining two components.

First, it is important to note that the iterative formulation of Theorem
3.1.1 still works here, without change. What fails is the alternative point set
characterization via (3.1.6) and (3.1.7). Morse’s Theorem 3.1.2 will also not
apply here. The problem is that be ∂T as smooth as it likes, and the same for
∂�t : F�t� = λ�, these two boundaries, which together form ∂A, will, in general,
intersect at a finite number of points to make ∂A only piecewise smooth.

Applying the approach of Theorem 3.1.1, Worsley [120] showed that the way
to compute the Euler characteristic in a general two-dimensional situation
with a smooth excursion set A over a set T with a piecewise smooth boundary
∂T was to add the number of •’s in Figures 4 and 5 and subtract the number of
◦’s. (Figure 5 simply indicates those parts of ∂T which may be parallel, rather
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Fig. 4. Computing the Euler characteristic honestly: with boundary.

than merely tangent, to the horizontal axis.) More formally, these points are
counted as follows:

(a) If t is in the interior of T, then apply the criteria (3.1.6) and (3.1.7)
exactly as before.

(b) If t ∈ ∂T ∩ ∂A and the tangent to the boundary of ∂T is not parallel to
the horizontal axis, then letFup�t� be the derivative ofF in the direction of the
tangent to ∂T pointing in the positive t2 direction. (Two such vectors appear
as τC and τF in Figure 4.) Furthermore, take the derivative of F with respect
to t1 in the direction pointing into T. Call this F⊥. (It will equal either F1 or
−F1, depending on whether the angles θ in Figure 4 from the horizontal to
the τ develop in a counterclockwise or clockwise direction, respectively.) Now
mark t as a • (and so count as +1) if F⊥�t� < 0 and Fup�t� > 0. There are no
◦ points in this class.

(c) If t ∈ ∂T ∩ ∂A and the tangent to the boundary of ∂T is parallel to the
horizontal axis, but is not included in an open interval all of which is parallel
to this axis, then proceed as in (b), simply defining F⊥ to be F1 if the tangent
is above ∂T and −F1 otherwise.

(d) If t ∈ ∂T ∩ ∂A belongs to an open interval of ∂T that is parallel to the
horizontal axis (as in Figure 5), then mark it as a • if T is above ∂T and
F1�t� < 0. (Thus, as in Figure 5, points such as B and C by which A “hangs”
from ∂T will never count.)

(e) Finally, if t ∈ ∂T ∩ ∂A has not already been marked and coincides with
one of the points that contribute to the Euler characteristic of T itself (e.g., A
andB in Figure 5), then mark this point exactly as it was marked in computing
ϕ�T�.
All told, this can be summarized as the following theorem.
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Fig. 5. Even more honesty/detail.

Theorem 3.1.4 (Worsley [120]). Let F be nice and let T ⊂ �2 have a piece-
wise smooth boundary. Denote the DT characteristic of A = Aλ�T� by χ�A�,
computed as in Definition 3.1.1. Denote the number of points satisfying condi-
tions (b)–(d) as χ∂T and denote the sum of the contributions to ϕ�T� of those
points described in condition (e) by ϕ∂T. Then

ϕ�A� = χ�A� + χ∂T + ϕ∂T
(3.1.16)

Three questions now need to be asked (and answered):

1. Do we really need such a complicated characterization of ϕ�A�?
2. What can we do with it?
3. What happens in higher dimensions if we continue along this route?

The answer to the first question is, not surprisingly, “it depends.” For ex-
ample, under the type of conditions under which Theorem 3.1.4 holds, one can
also apply the Gauss–Bonnet theorem to obtain

2πϕ�A� =
∫
∂A

κ�t�dt + ∑
n

βn�(3.1.17)

where κ�t� is the curvature of ∂A at t, dt is the element of arc length on ∂A
and the βn are the angles of rotation of the tangent to ∂A at its vertices.

While (3.1.17) may be no simpler to look at than (3.1.16), the definitions
of its components are much briefer. However, if one had to compute an Euler
characteristic on a real excursion set that came from some application, and
so was probably derived from grid data, it is clear that the main component
of (3.1.17), the integral of the curvature function against arc length, would
be essentially uncomputatble, whereas the formula given by (3.1.16) is easily
applied.

Perhaps more importantly, however, (3.1.16) leads to a simple approach for
computing E�ϕ�A�� when A is the excursion set of a nice random field.10

10I have computed the same expectation via (3.1.17), but the computations were led by knowing
what happens in the other case and intrinsically more difficult.
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Another reason to prefer the point set approach over a more global dif-
ferential geometric approach is that it helps to keep separate the contribu-
tions to ϕ�A� that come from points in the interior, T◦, of T and on its
boundary, ∂T. Overall, one would expect that for either large T or high λ
(so that the components of the excursion set are small compared to T) there
will be far more points within T◦ than on ∂T. This is, in fact, generally
the case. From the point of view of the excursion probability power expan-
sion (1.1.10) that we are seeking, it will turn out that the highest order
term is given by the internal points, and the next highest by the boundary
points.

The question of what we can do with results like Theorem 3.1.4 is the sub-
ject of the remainder of this section (after we see how to compute expectations
in the random case) and in the following section where we apply these results
to compute excursion probabilities.

Regarding higher dimensions, Theorem 3.1.4 has a version in �3, also due to
Worsley [120], in which the parameter space T is required to be smooth except
for a set of smooth edges, or creases, of finite length and perhaps vertices where
the edges meet. There is a formula corresponding to (3.1.16), although now
with four rather than three terms on the right-hand side, and the definitions
of the contributing points become more complex. They can be found in the
original paper. Nevertheless, it is important to note that although it takes
quite some time to write them out, the final list of things to check is simple
enough to explain to a computer.

What happens in �N,N ≥ 4, is, in general, not as clear. There are no known
formulas akin to (3.1.16). Nevertheless, the same procedure, based on the it-
erative definition of Theorem 3.1.1 and used to handle the cases N = 2�3,
should also work there. In practice, for higher dimensions the Euler charac-
teristic is often replaced by the easier to compute DT characteristic. However,
in a number of cases, in which the excursion sets are generated by isotropic
Gaussian fields and some geometric restrictions are placed on T, it is nev-
ertheless possible to compute the expected Euler characteristic (cf. Theorem
3.3.5). We shall return to this in the subsection after the next.

3.2. Mean values: I—DT characteristic. We will start with a meta-theo-
rem about the expected number of points at which a vector-valued random
field takes values in some set, and then describe how to use this to ultimately
compute expected Euler characteristics. In this subsection, however, we will
treat only the somewhat neater DT characteristic.

Fortunately, we are now finally in a situation where being rigorous is not
too time consuming, so we start by setting out some notation and laying down
some conditions.

For some N�K ≥ 1, let U = �U1� 
 
 
 �UN� and V = �V1� 
 
 
 �VK�, respec-
tively, be �N- and �K- valued N-parameter random fields. We need two sets,
T ⊂ �N and B ⊂ �K. Here T is assumed compact, and ∂T most have zero
N-dimensional measure. Furthermore, we require that every t ∈ T◦ have a
convex neighbourhood completely contained in T. We write ∇U�t� to denote
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the N×N matrix of first-order partial derivatives of U at t, that is,

∇U�t� =
(
∂Ui�t�
∂tj

)
i� j=1�


�N

�

and denote the modulus of continuity of a real-valued function F by

ωF�h� 
= sup
�t−s�≤h

∣∣F�t� −F�s�∣∣ � h > 0


Theorem 3.2.1. Let U, V, T and B be as before and suppose that the
following conditions are satisfied:

(a) All components of U, ∇U and V are continuous with probability 1 and
have finite variances (over T).

(b) For all t ∈ T, the marginal densities pt�u� of U�t� (implicitly assumed
to exist) are continuous in each of their N parameters.

(c) The conditional marginal densities pt�u�v� of U�t� given V�t� = v (im-
plicitly assumed to exist) are bounded above, uniformly in t ∈ T.

(d) The moduli of continuity of each of the components of U, ∇U and V
satisfy

P �ω�h� > ε � = o
(
hN
)

as h ↓ 0(3.2.1)

for any ε > 0.

Then, if N�U�V : B� denotes the number of points in T for which U�t� = u ∈
�N and V�t� ∈ B and pt�u�∇u� v� denotes the joint density of �Ut�∇Ut�Vt�
[with ∇u written as an N�N − 1�/2-dimensional vector], we have, with D =
N�N− 1�/2+K,

E�N�U�V : B�� =
∫
T

∫
�D

∣∣det∇u∣∣ · IB�v�pt�u�∇u� v�d�∇u�dvdt
(3.2.2)

Alternatively, it is sometimes more convenient to write this as

E�N�U�V : B��
(3.2.3) =

∫
T
E
{ ∣∣det∇U�t� ∣∣ · IB�V�t�� ∣∣∣U�t� = u

}
pt�u�dt�

where pt�u� now is the density of U�t�.

In the form stated, there is no published proof for this result. However,
if one rewrites the proof of Theorem 5.2.2 of [1] in terms of the notation of
Theorem 5.1.1 given there or in terms of the above, one can obtain a full proof.

To see how to apply this theorem, we start with the expected DT charac-
teristic of (3.1.15). This leads to the following, in which we also introduce �T�
to denote the N-dimensional Lebesgue measure of T.
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Theorem 3.2.2. Let X�t� be a zero-mean, homogeneous Gaussian random
field on �N and let T ⊂ �N have the properties described at the beginning of
this subsection. Suppose that X has almost surely continuous partial deriva-
tives of up to second order with finite variances, that the joint distribution
of X and these partial derivatives is nondegenerate and that the moduli of
continuity of the Xij satisfy

P

{
max
i� j

ωij�h� > ε

}
= o�hN� as h ↓ 0
(3.2.4)

Then the mean value of the DT characteristic of the excursion setA = Aλ�X�T�
is given by

E�χ�A�� = �T�ρN�λ��(3.2.5)

where

ρN�λ� 
= exp�−λ2/2σ2��det%�1/2
�2π��N+1�/2σN

HN−1

(
λ

σ

)
(3.2.6)

and

Hn�x� = n!
n∑

j=0

�−1�j xn−2j
j!�n− 2j�!2j

is the n-th Hermite polynomial, σ2 = E�X2�t�� and % is the covariance matrix
of the Xj�t� (cf. Section 1.2).

Before I comment on the proof of Theorem 3.2.2, let us look at the theorem
itself. The first, most noticeable fact is that (3.2.5) is a precise equality for
all λ, and not an asymptotic result true only for large λ, which is all that is
generally known for high-dimensional Gaussian fields.

It is instructive to see what (3.2.5) looks like in special cases. Setting T =
0�1� and N = 1, the formula reduces to

E�χ�t ∈ 0�1� : X�t� ≥ λ�� = 1
2π

(
λ2
σ2

)1/2
exp
(
− λ2

2σ2

)
�(3.2.7)

where λ2 = E��dX�t�/dt�2�. This is Rice’s formula (1.1.5), and so we have, via
the DT characteristic, a direct generalization of this basic result.

When N = 2 and T = 0�1�2 is the unit square, we have

E
{
χ
(
Aλ�0�1�2�

)} = �2π�−3/2�det%�1/2σ−3λ exp
(
− λ2

2σ2

)
�(3.2.8)

while if N = 3 and T = 0�1�3 the mean value of χ is given by

�2π�−2�det%�1/2σ−5 exp
(
− λ2

2σ2

)
· �λ2 − σ2�
(3.2.9)

Note that in the two-dimensional case E�χ�Aλ�� = 0 for λ = 0, while λ = σ
is the critical level in the three-dimensional case. The case N = 2 is easy to
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understand: because of the distributional symmetry of Gaussian fields, at the
mean level there are, on average, as many components to the excursion set
as holes. Hence the mean of 0. The case N = 3 requires some more thought,
because of the lack of a simple symmetry for three-dimensional objects.

In general, the mean value of χ is a polynomial in u with terms of order
�N − 1�� �N − 3�� �N − 5�� 
 
 
 � multiplied by a negative exponential in λ2

and some dimension-dependent constants. I shall have more to say on the
importance of this form soon.

Finally, a word about the conditions of the theorem. The existence of a.s.
continuous, second-order partial derivatives is a real condition, which means
that these results only work for smooth processes. The nondegeneracy is a
very weak condition. The continuity condition (3.2.4) is easy to check, given
that derivatives of the Gaussian fields are again Gaussian, with covariances
given by derivatives of the original covariance, and bounds on the Gaussian
moduli of continuity are easy to come by (cf., e.g., the examples in Chapter 1
of [2]).

For reasons that will become clear later, stationarity is a crucial assumption.
Without it, we will not obtain, and cannot expect, as elegant a result as (3.2.5).

Now we can turn to the proof of Theorem 3.2.2.

Proof of Theorem 3.2.2. I am not going to give details of the proof, par-
ticularly since they can all be found in [1]. Let it suffice to say that there is a
lot of calculus involved and a lot of fancy Gaussian integration. However, I do
want to describe what makes the proof work, so we can evaluate other results
and have an idea of how far results like this can be extended.

First, one has to show that the conditions of the theorem suffice to make
excursion sets “nice enough” that their DT characteristics are well defined.
This is a time-consuming, but not inherently difficult job. See [1].

Next, note that the way to use Theorem 3.2.1 here is, in view of (3.1.11)–
(3.1.15), to take U = �X�X1� 
 
 
 �XN−1�, u = �λ� 0� 
 
 
 �0� and V to be the
vector of length K = 1 + �N − 1��N − 2�/2 whose first element is XN and
whose remaining elements are a lineal arrangement of the elements of D =
�Xij�N−1

i� j=1. The set B is then 0�∞�×��N−1��N−2�/2.
All of this should be obvious, except for the way in which B is defined, since

the definition of χ�A� in (3.1.15) involves an alternating sum over subregions
of ��N−1��N−2�/2. However, the absolute value of the determinant that appears
there, together the alternating sign of the determinant over the different re-
gions and the alternating factor of �−1�k, gives the right-hand side of (3.2.2)
as the expectation we are seeking.

Now compute, but from (3.2.3) rather than (3.2.2). What makes the compu-
tation work is, in part, the Gaussian nature of everything, and, in particular,
the fact that because of this the Xi are independent of X and the Xjk, a fact,
as explained in Section 1.2, that arises from the assumption thatX is station-
ary. This has a major simplifying effect on all the computations. (Of course,
there is a lot of hard computation here, but the fact is that it is doable.) ✷
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3.3. Mean values: II—Euler characteristics. We now turn to objects of
real interest to us, the mean Euler characteristics. First, we already know
that formulas will not be easy to find in full generality, since we have a point
set representation for the true Euler characteristic only in dimensions 2 and
3, and a priori we require such representations in order to apply the meta-
theorem (Theorem 3.2.1). (An exception to this situation will be Theorem 3.3.5
at the end of the subsection.) We start with N = 2, and the representation
(3.1.16), which now reads as

E�ϕ�A�� = E�χ�A�� + E�χ∂T� + E�ϕ∂T�

The first term on the right-hand side was computed in the previous subsection,
so consider the second, which involves finding the number of points on ∂T
satisfying a number of conditions involving, in general, how the first-order
derivatives of X relate to the tangent to ∂T.

This seems at first like a simple computation. Since, in this case, ∂T is a
simple (deterministic) curve in �2, we can parameterise this curve somehow,
say by arc length s, and restrict X to this curve to obtain a single parameter,
process U = X�∂T on ∂T. Now form the vector-valued process V = �X1�X2�,
also restricted to ∂T, and the computation of E�χ∂T� becomes equivalent to
finding the expected number of points on ∂T for which U = λ and V ∈ B,
where B ⊂ �2 is determined by conditions (b)–(d) of Theorem 3.1.4.

This would seem to be tailor made for Theorem 3.2.1, and, conceptually, it
is. In general, however, there are serious problems in performing the integra-
tions, because, along ∂T, the process U (i.e., X�∂T) is not generally stationary.
This means that it is no longer uncorrelated with its derivatives, and the inte-
grations become, in general, either impossible or at least so unwieldy that the
final answers lead not to closed-form formulas but rather to expressions ulti-
mately requiring numerical integration for their evaluation (cf. Section 13.2 of
[24] to see how bad even Rice’s formula becomes for a nonstationary process).

There is, however, one simplifying assumption that will solve this. Assume
X to be not only stationary, but also isotropic, so that R�t� is a function of
�t� only. Then, in the notation of Figure 4, the angles θ, which are crucial
in determining whether or not V ∈ B, are reasonably obviously uniformly
distributed over 0� π�, independently of U. This is the key to making the
computation possible.

Note also that, in the presence of isotropy, the matrix % of second-order
spectral moments is of the form λ2�, where � is the unit matrix and λ2 is the
variance of the derivative ofX in any direction. Thus, with ρN�λ� as in (3.2.6),
but with det�%� = λN2 , we obtain the following theorem from (3.2.5).

Theorem 3.3.1 (Worsley [120]). Under the conditions of Theorem 3.2.2 for
X, along with isotropy, and assuming that the boundary of T ⊂ �2 is contin-
uously differentiable except at an at most finite number of points,

E�ϕ�Aλ�T��� = �T�ρ2�λ� +
�∂T�
2

ρ1�λ� + ϕ�T��
(
λ

σ

)

(3.3.1)
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The assumption of isotropy also allows one to compute in the three-dimen-
sional situation and to employ Theorem 3.2.1 once again to, this time, obtain
the following result.

Theorem 3.3.2 (Worsley [120]). Under the conditions of Theorem 3.2.2 for
X, along with isotropy, and assuming that the boundary of T ⊂ �3 is twice
continuously differentiable except perhaps for a set of smooth edges, or creases,
of finite length and also vertices where the edges meet, it follows that

E�ϕ�Aλ�T���
(3.3.2)

= �T�ρ3�λ� +
�∂T�
2

ρ2�λ� +
H�∂T�

π
ρ1�λ� + ϕ�T��

(
λ

σ

)
�

where H�∂T� is a curvature integral that equals the mean curvature if ∂T is
smooth, and involves all of the mean curvature, the lengths of the edges and
the angles between them otherwise (cf. [119] and references therein for details).

When T is a cube of length side +, (3.3.2) leads to

E�ϕ�Aλ�T��� = +3ρ3�λ� + 3+2ρ2�λ� + 3+ρ1�λ� +�

(
λ

σ

)

(3.3.3)

The last two theorems seem to indicate the existence of a pattern: a leading
term in �T�ρN followed by later terms in ρk� k ≤N−1. This can be formalized
in a slightly different setting, when the domain T is bounded by a C2 manifold
in �N. In this case, we have the following elegant result for which we require
a little notation.

For 1 ≤ k ≤N, letX�k�t1� 
 
 
 � tk� =X�t1� 
 
 
 � tk� 0� 
 
 
 �0� be the restriction
ofX to a k-dimensional affine subspace. For 1 ≤ k ≤N, let ρ̃k�λ� = ρk�X�k� λ�,
so that ρ̃N ≡ ρN, and set ρ̃0�λ� = P�X�0� ≥ λ�. Finally, for an n × n ma-
trix M, let detk�M� be the sum of all k × k principal minors of M, so that
detN�M� =det�M�, det1�M� =trace�M�, and define det0�M� = 1.

Theorem 3.3.3 (Worsley [121]). Under the conditions of Theorem 3.3.2 and
assuming that T ⊂ �N is compact and bounded by a C2 manifold,

E�ϕ�Aλ�X�T��� = �T� ρ̃N�λ�
(3.3.4)

+
N−1∑
k=0

(
>��N− k�/2�
2π�N−k�/2

∫
∂S

detN−1−k�C�t��dt
)
ρ̃k�λ��

where C�t� is the �N−1�×�N−1� inside curvature matrix of ∂T at the point t.

The proof of the theorem relies on differential geometric andMorse theoretic
considerations and results such as Theorems 3.1.2 and 3.1.3.

There is one case in which (3.3.4) is particularly simple to compute, for
if T = BN�r�, an N-ball of radius r, then the internal curvature matrix is
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constant, and so the integral reduces to
(
N−1
k

)
rk. With % = diag�λ2� 
 
 
 � λ2�,

ωk 
= πk/2

>�1+ k/2�(3.3.5)

and (3.2.6), a little rearrangement leads to

E�ϕ�Aλ�X�T���

= exp
(−λ2
2σ2

) N−1∑
k=0

(
N
k

)
λ
�N−k�/2
2 HN−k−1�λ/σ�ωNr

N−k

ωk�2π��N−k+1�/2σN−k + �

(
λ

σ

)
(3.3.6)

= exp
(−λ2
2σ2

) N−1∑
k=0

(
N
k

)
λ
�N−k�/2
2 HN−k−1�λ/σ�Wk�BN�r��
ωk�2π��N−k+1�/2σN−k + �

(
λ

σ

)
where Wk is the kth “Minkowski functional.” In a moment, we shall see that
this special case generates a stepping stone to extensions of Theorem 3.3.3 to
a much wider class of parameter sets T.

A word of explanation about Minkowski functionals is now in order. These
are functionals originally defined over � N, the class of convex sets in �N, and
can be extended in a quite natural fashion to unions and some intersections.
There are N+ 1 such functionals, and they essentially characterize the topo-
logical properties of sets in � N. The term W0�A� denotes the N-dimensional
Lebesgue measure (volume) of A. If ∂A is smooth, then NW1�A�/2 is the
�N−1�-dimensional measure of ∂A (i.e., surface area), andWN�A� = ωNϕ�A�.
The intermediate functionals are well defined via various Crofton integrals,
or integrals of curvature functions, but have somewhat less immediate inter-
pretations.

If A is a sphere or parallelogram, then the Minkowski functionals are par-
ticularly simple. In particular, Wk�BN�r�� = ωNr

n−k, and so the second line
in (3.3.6) follows trivially from the first.

The importance of rewriting (3.3.6) in terms of Minkowski functionals lies
in the following result, which is due to Hadwiger [37].11

Theorem 3.3.4 (Hadwiger [37]). If F : � N → � is a functional on convex
sets in �N, invariant under rotation and translation, additive [in the sense of
(3.1.2)] and monotone nonincreasing [A ⊂ B ⇒ F�A� ≤ F�B��, then

F�T� =
N∑
k=0

αkWk�T��(3.3.7)

where α0� 
 
 
 � αN are nonnegative, real constants. If F is monotone nondecreas-
ing, then the αk are nonpositive.

11The only place to find a proof of this result seems to be in the original book, but, unless you
have a weakness for classical German, you should turn to Schneider [91] to read about it.
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Here is the first “new” result of this paper.12

Theorem 3.3.5. LetT be obtained as the union of a finite number of convex
sets in �N. LetX be as in Theorem 3.2.2, isotropic, and let % = diag�λ2� 
 
 
 � λ2�.
Then

E�ϕ�Aλ�X�T���
(3.3.8)

= exp
(−λ2
2σ2

)N−1∑
k=0

(
N
k

)
λ
�N−k�/2
2 HN−k−1�λ/σ�Wk�T�
ωk�2π��N−k+1�/2σN−k + ��λ/σ�


Before turning to the proof, it is worthwhile to note that this result is, of
course, identical to those in Theorems 3.3.1–3.3.4, when all the conditions hold.
The difference in form is that in those examples the Minkowski functionals
have been explicitly computed.

Proof. Let T be as in the theorem, but convex. Fix λ and set F�T�
= E�ϕ�Aλ�X�T���. The homogeneity of X makes F translation invariant,
and invariance under rotation follows from isotropy. Since the Euler charac-
teristic itself is additive, the same is true of its expected value, F. Further-
more, for any fixed λ, E�ϕ�Aλ�X�T��� is either always positive or always
negative (or 0), and so monotonicity follows from homogeneity. Consequently,
F has a representation of the form (3.3.7). All that remains is to identify the
constants αk.

By Theorem 3.3.6 the theorem is true in the specific case of T a unit ball
in �N. Comparing (3.3.6) with (3.3.7) immediately identifies the αk as the
coefficients of the Minkowski functionals there, and so (3.3.9) and the theorem
follow for simple convex sets T. The extension to unions of convex sets follows
from the fact that X is stationary implies that F�T� is additive as a function
of T. ✷

These five results—the mean DT characteristic in any dimension for sta-
tionary Gaussian processes, the mean Euler characteristic in dimensions 2 and
3, and the preceding elegant extensions of Theorems 3.3.3 and 3.3.5 (assum-
ing isotropy)—are essentially all that is known. However, since most examples
are either two or three dimensional, they more or less cover all the important
cases.

In a more general situation, it is usually possible, given enough time, energy
and, often, numerical integration, to carry out this program for any specific
Gaussian process, even the nonstationary, and to compute a mean Euler char-
acteristic. However, it is doubtful that there exist elegant results beyond those
just described.

12It is really implicit in [121], although it was not recognized as such at the time.
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3.4. Mean Minkowski functionals. We came to the Euler characteristic of
excursion sets via the two requirements (3.1.2) (additivity) and (3.1.1) [the
normalization that ϕ �sphere-like set� = 1]. In fact, additivity holds for all the
Minkowski functionals, and, since these, together with the Euler characteris-
tic, characterize the basic topological properties of excursion sets, a natural
question is why not generalise all that we have done so far for mean Euler
characteristic values to mean Minkowski functionals.

In fact, some (nonrigorous) work has been done in this area, at least for a
DT-like version of Minkowski functionals13 and appears in [114].

There is an inherent difficulty, however, in explicitly evaluating the ex-
pectations of Minkowski functionals in dimensions greater than 2. This fact,
combined with (or perhaps leading to) a lack of immediate applications, has
made the study of Minkowski functionals in the random field setting a rather
academic question, and there has not been as much attention paid to this
problem as one might have initially imagined.

3.5. Non-Gaussian processes: I. The computation of expected Euler char-
acteristics has also been carried out for a number of non-Gaussian random
fields as well, although all have some sort of relation to the Gaussian. An
archetypical example is the so-called χ2 random field, which is built as
follows.

Let X1�t�� 
 
 
 � Xn�t� be n independent, zero-mean, homogeneous, real-
valued, Gaussian fields on �N with identical covariance function, R�t�, and
with variance σ2 = R�0�. From these we define a process Y�t� by setting

Y�t� = X1�t��2 + · · · + Xn�t��2

The univariate density forY�t� is therefore that of a scaled χ2 random variable
with n degrees of freedom, from whence the name of the process. Under the
usual sort of smoothness and nondegeneracy conditions (see [1] for details),
the mean value of the DT characteristic of the excursion set Au = Au�Y� T�
in two dimensions is given by

λ�n−2�/2�%�1/2
2n/2πσn>� 12n�

[
λ

σ2
− �n− 1�

]
exp
( −λ
2σ2

)
�(3.5.1)

where % is the usual covariance matrix of the first-order derivatives of theXi.
The basis for the passage from the general integral representations (3.3.2)

or (3.3.4) to (3.5.1) is not that different from the Gaussian case, and relies on
the fact that the partial derivatives of Y are given by

Yj�t� = 2
n∑
i=1

Xi�t�Xi
j�t��(3.5.2)

Yjk�t� = 2
n∑
i=1

Xi
j�t�Xi

k�t� + 2
n∑
i=1

Xi�t�Xi
jk�t�
(3.5.3)

13This work has been done with astrophysical applications in mind, and so the DT approach
is reasonable, given that the volume of the Universe is large compared to its boundary.
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Because of (1.2.5) and (1.2.6) and their implications of independence in the
Gaussian case, there are all kinds of interesting conditional (in)dependencies
hidden in these formula, many very reminiscient of the Gaussian case. For
example, conditioning on Xi = xi, i = 1� 
 
 
 � n, gives the Yj a zero-mean
normal distribution with variance 4λjj

∑�xi�2 = 4λjjY. Conditioning cleverly,
computing by efficiently exploiting simpler conditional distributions and then
ultimately lifting the conditioning is what makes the computation possible.

Similar kinds of arguments have been used in a number of other cases as
well. The basic approach is generally the same, but the devil is in the details.

Mean Euler characteristics for general χ2 fields, as well as F and t fields,
have been computed by Worsley in [119]. Cao and Worsley study Hotelling’s
T2 and “correlation” fields in [18, 19]. Detailed proofs are given in all of these
papers.

I will have more to say about the non-Gaussian situation in Section 7.2.

3.6. Back to applications. I want to look at only one example here, that
of the COBE radiation data described in the Introduction. All others that I
know of are similar in spirit, although they occasionally vary a great deal in
the details.

To recap, a null hypothesis in this case would be that background data
are essentially unstructured noise. The measured noise is not generally spa-
tially “white,” if only because the measuring mechanism involves a smooth-
ing/filtering operation that induces a dependence structure. Assuming Gaus-
sianity, this leaves two parameters to be estimated: the expectation (estimated
via a sample mean) and the covariance function (either estimated from the
data via one of a number of quite standard techniques or computed by as-
suming that true radiation is, spatially, purely white and then computing the
covariance function from known properties of the filter).

A one-statistic test to determine whether or not this null hypothesis is fea-
sible would now be, as suggested earlier, to compute supt∈galaxyIntensity�t�, as
in (1.3.1). Sections 4 and 6 will tell us how to determine excellent approxima-
tions to the distribution of this statistic, and so give the critical value for the
hypothesis test.

None of the above uses Euler characteristics, beyond the applications, to
come, of using mean Euler characteristics to compute excursion probabilities,
and so critical values. However, there is a rather interesting way to use them,
suggested close to two decades ago in [4].14

Figure 6 shows a graph (wiggly line) of the empirical Euler characteristic
curve for the COBE data, and its expectation, assuming a Gaussian field with

14Another piece of history to reinforce the “wisdom” of Section 1.4: the paper [4], which is
probably my most (only?) influential paper (although far, I think, from my best) was published in
a “nonprobability” journal by coincidence. If we had published it in one of the standard probability
journals, I am certain that the Euler characteristic would never have reached the astrophysics
community, and so the brain mapping community, and the impact of the ideas in it and everything
else I did in a similar vein but published in the probability literature would have been minimal.
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Fig. 6. Empirical versus theoretical Euler characteristic for the COBE galactic radiation data of
Figure 1.

spectral parameters estimated from the data. Note that they do not really
match. While the general shape is similar, this means little, since virtually any
model will give more “components” than “holes” at levels above the mean, and
the opposite below. Also, since at high and low levels all activity disappears,
both ends of the curve tend to 0.

The lack of matching here is then based on two factors: the empirical curve
is too low in the central regions, and too high at large, positive levels. One
should note that these represent two different phenomena, and both point to
the fact that it is unlikely that the data are consistent with a Gaussian model.

It would be nice to have a proper statistical test here, something that would
give the distribution of

sup
−∞<λ<∞

ϕ�Aλ�X�T�� − E�ϕ�Aλ�X�T���
n�λ�T� �(3.6.1)

where n is some appropriate normalizing function, but I know of nothing of
this kind beyond one dimension, where the Euler characteristic reduces to the
number of level crossings.

While all of the above may seem rather ad hoc, it is a reasonably faithfull
description of what is done in practice. The need for further theory is discussed
in Section 7.5.

3.7. Discrete data. A short digression to keep myself honest. Throughout
this paper, random fields are defined continuously over subsets of �N. Data,
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however, are almost always discrete, and generally come on a lattice. That
being the case, virtually all the theory has a problem when it comes to appli-
cations.

The way around this, already noted in [1], is to use the fact that the Euler
characteristic can also be computed via triangulations and alternating sums
as in (3.1.3) and to apply this type of definition to the discrete data. One then
uses the fact that in a large number of situations the Euler characteristic is
continuous in the Hausdorff metric (cf. [37], [38]), and so computation on a
fine lattice should yield the Euler characteristic of the true excursion set of
the underlying, continuous field.

There are far fewer theorems to justify this procedure than one would like,
but the approach seems to work well in practice.

4. Back to maxima. In the preceding section, we spent a lot of time look-
ing at Euler characteristics, which arose as multidimensional generalizations
of level crossings. In one dimension, these had a simple relationship with
extremal probabilities. However, we have not yet attempted to relate Euler
characteristics directly to extremal probabilities.

4.1. Maxima and the Euler characteristic. The basic equation

P

{
sup
t∈0�T�

X�t� ≥ λ

}
≤ P�X�0� ≥ λ� +TE �Nλ�(4.1.1)

[cf. (1.1.4)] that related extremal probabilities to level crossing rates will not
work in higher dimensions, in that the basic inequality that would result from
replacingNλ there by ϕ�Aλ� no longer holds. [For example, it is no longer true,
in higher dimensions, that ϕ�Aλ� ≥ 0.]

However, an argument that would generalise nicely to higher dimensions
would involve the random variable

Mλ�T� ≡ #�t ∈ T 
 t is a local maximum of X and X�t� ≥ λ�
(4.1.2)

In this case, the same argument that led to (1.1.4) would give

P

{
sup
t∈T

X�t� ≥ λ

}
≤ E �Mλ�T�� + P

{
sup
t∈∂T

X�t� ≥ λ

}

(4.1.3)

One expects that, in general, the expectation here is of a higher order (by a
power of λ) than the probability of the boundary term, which seems, a priori,
to be the harder to calculate. However, if T has a simple structure, then the
right-hand side here can be replaced by what might eventually lead to the
kind of power series expansions that we are seeking. For example, if T is a
rectangle, so that ∂k�T� 
= ∂�
 
 
 �∂T�� is the set of �N−k�-dimensional “edges
of edges” of T, (4.1.3) leads, by induction, to

P

{
sup
t∈T

X�t� ≥ λ

}
≤

N∑
k=0

E �Mλ�∂kT���(4.1.4)
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where, obviously, ∂0T = T and ∂NT is composed of the 2N vertices of T.
There is also an easily obtained lower bound for P�supt∈TX�t� ≥ λ�, due,

as far as I know, to Piterbarg. Argue as follows:{
sup
t∈T

X�t� ≥ λ

}
⇔
{
sup
t∈T

X�t� ≥ λ� sup
t∈∂T

X�t� < λ

}
∪
{
sup
t∈∂T

X�t� ≥ λ

}

(4.1.5)

But {
sup
t∈T

X�t� ≥ λ� sup
t∈∂T

X�t� < λ

}
⇔
{
Mλ�T� ≥ 1� sup

t∈∂T
X�t� < λ

}
⇔
{
Mλ�T� = 1� sup

t∈∂T
X�t� < λ

}
∪
{
Mλ�T� ≥ 2� sup

t∈∂T
X�t� < λ

}



To compute the probabilities of the preceding two events, set pk = P�Mλ�T�
= k�, and note that E�Mλ�T�� = P�Mλ�T� = 1� +∑∞

k=2 kpk, so that

P�Mλ�T� = 1� sup
t∈∂T

X�t� < λ�

= P�Mλ�T� = 1� −P�Mλ�T� = 1� sup
t∈∂T

X�t� > λ�

= E�Mλ�T�� −
∞∑
k=2

kpk −P�Mλ�T� = 1� sup
t∈∂T

X�t� > λ��

while, in a similar vein,

P�Mλ�T� ≥ 2� sup
t∈∂T

X�t� < λ� =
∞∑
k=2

pk −P�Mλ�T� ≥ 2� sup
t∈∂T

X�t� > λ�


Putting the last two equalities together with (4.1.5) immediately gives

P�sup
t∈T

X�t� ≥ λ� = E�Mλ�T�� −
∞∑
k=2

�k− 1�pk

+P�Mλ�T� = 0� sup
t∈∂T

X�t� > λ�(4.1.6)

> E�Mλ�T�� −E�Mλ�T�Mλ�T� − 1��/2�
on dropping the boundary term and noting that k− 1 < k�k− 1�/2 for k ≥ 2.

We will return to the second factorial moment here later on, but now note
that it is reasonable to expect that it will be of lower order than E�Mλ�T��.
Hence everything will now hinge on our ability to compute this expectation
for general T. Theorem 3.2.2 implies that, under a simple translation of the
conditions there to our current situation,

ρmax�λ�T� 
= E�Mλ�T��
(4.1.7)

=
∫
T
dt
∫ ∞
λ

dx
∫
�N�N+1�/2

1ẍ≺0 �det ẍ�pt�x� 0� ẍ�dẍ�
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where, if Ẍ�t� is the N�N + 1�/2-dimensional vector of elements of the ma-
trix ∇�∇X�t�� = �Xij�i�j=1�


�N, then pt�x� y� ẍ� is the joint density of �X�t��
∇X�t�� Ẍ�t��, and ẍ ≺ 0 indicates that the matrix corresponding to ẍ is neg-
ative definite.

It turns out that there is no way to explicitly evaluate the integral in (4.1.7),
but the following rather curious, and extremely useful, result, due to Worsley
[121], will help us to derive some asymptotics.

Theorem 4.1.1. Let X be a stationary random field, satisfying the condi-
tions of Theorem 3.2.2. Set

ρ�λ�T� = �−1�N
∫
T
dt
∫ ∞
λ

dx
∫
�N�N+1�/2

�detẍ�pt�x�0� ẍ�dẍ
(4.1.8)

[Note that the indicator and the absolute value sign around the determinant
have been dropped from (4.1.7.)] Then

ρ�λ�T� ≡ E�χ�Aλ�T����(4.1.9)

where E�χ�Aλ�T��� is given by (3.2.5).

The proof of this result is pure (but clever) calculus. There is no sample path
analysis involved. A related result, also with a calculus proof, is the following.

Theorem 4.1.2. Let X be a stationary random field, satisfying the condi-
tions of Theorem 3.2.2. Then, with the notation of the preceding theorem,

ρmax�λ�T� = ρ�λ�T� + o

(
exp
(−λ2
2σ2

)
u−α

)
(4.1.10)

for all α > 0 as λ→∞.

As stated, but with α = 2−N, this result is prehistoric, and, for example, is
essentially Theorem 6.3.1 of [1]. It was extended by Breitung [15] to α = 4−N,
and, in the much more powerful form that it is given here, for all α > 0, it is
due to Delmas [26]. The proof, given in full in Delmas’ doctoral thesis, remains
one of basic calculus, but this time wielded somewhat more cleverly than in
the past. [In fact, Delmas has (4.1.10) in more generality than stated here, for
she does not even require stationarity. In the more general scenario, however,
the coefficients in the expansion of ρ�λ�T� are far more complicated, and not
always explicitly computable.]

The previous two theorems give us that, up to a surprising level of agree-
ment, there is no difference among ρ�λ�T�, ρmax�λ�T� and E�χ�Aλ�T���,
and so each could be used to provide the first term in the upper bound (4.1.4).

Despite the title of this subsection, we have still not mentioned the mean
Euler characteristic, E�ϕ�Aλ�T���. In fact, in those situations in which we
know how to compute Eϕ�Aλ�T��, it always follows from either the same
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calculus that leads to Theorem 4.1.2 or from comparison of explicit expressions
that

E�ϕ�Aλ�T��� ≈ E�χ�Aλ�T���(4.1.11)

in the sense that the leading term in λ in each of these expressions is the
same. From this it also follows that E�ϕ�Aλ�T��� is also an approximant to
ρ�λ�T� and ρmax�λ�T�, but now only at the λ−1 level of accuracy.

Let us investigate these equivalences by looking a little more closely at
E�ϕ�Aλ�T��� and E�χ�Aλ�T���. Write these as

E�ϕ�Aλ�T��� =
(

N∑
k=0

a
ϕ
kλ

N−k−1
)
exp
(−λ2
2σ2

)
�

(4.1.12)
E�χ�Aλ�T��� =

(
N∑
k=0

a
χ
kλ

N−k−1
)
exp
(−λ2
2σ2

)



The equivalences that we discussed previously all imply that aϕ0 = a
χ
0 , and

nothing beyond this. In fact, it is clear that they can say nothing about higher
order terms, due to the simple fact that, at least for the odd-ordered terms,
the coefficients must be different. In particular, we have from (3.2.5) that
a
χ
2k+1 ≡ 0 for all k, while the specific cases in Theorems 3.3.1–3.3.4 all have

nonzero coefficients aϕk for all k. We shall return to this point later.
Nevertheless, why all these expectations should be so closely related, which

is the first clue to understanding why the upper bound can be replaced by an
asymptotic equivalence, is the subject of the next subsection.

4.2. Slepian model processes. To understand the preceding results, we
need to consider how a smooth Gaussian field behaves in the neighbourhood
of its local maxima. To do so, we shall limit ourselves, for this subsection, to
stationary Gaussian fields.

Suppose we search around for a local maximum (e.g., the one closest to
some arbitrary, fixed point) and then affinely translate the coordinate system
so that the new origin lies under this maximum.

Then, using an argument that dates back to Slepian (cf. [48], [100]) for
Gaussian processes on � and to Lindgren [57] for Gaussian fields, it is possible
to determine the distribution of the field conditioned on a local maximum
(chosen as just described) of height λ at the origin. The distribution takes on
a particularly simple form for large λ, and under the assumptions of Theorem
3.2.2, one has that, with probability approaching 1 as λ → ∞, the random
field has the following representation in the neighborhood of the origin:

X�t� = λ − λ

2σ
t%t′ + O �1� 
(4.2.1)

[For a more formal and precise version of this result, see either the original
paper of Lindgren, [57] or Sections 6.7 and 6.8 of [1]. Chapter 10 of [53] gives
a detailed treatment of the one-dimensional case.)
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A more general version of (4.2.1) conditions onX taking the value λ at t = 0,
and with first-order derivatives ∇X�0� = �X1�0�� 
 
 
 �XN�0�� = �d1� 
 
 
 � dN�
= d, in which case (4.2.1) becomes

X�t� = λ + d · t′ − λ

2σ
t%t′ + O �1� 
(4.2.2)

In fact, more precise information than either (4.2.1) or (4.2.2) is available,
so that one can make some (but not too many) informative statements about
the statistical properties of the O�1� term. However, even without this addi-
tional information, it is immediately clear from (4.2.1) and (4.2.2) where the
equivalences of the previous subsection come from: in the neighbourhood of
a high maximum, the random field looks roughly parabolic. Hence each local
maximum is associated with a single excursion, and the excursion set that
it generates is, up to order λ−1, an N-dimensional ellipse, with axis lengths
determined by (4.2.1) and (4.2.2). The full distribution of the axis lengths is
not, however, immediately obvious, since this is hidden in the O�1� terms in
(4.2.1) and (4.2.2). In the following section, we shall use an approximation
technique to determine the expected size of one of these ellipses.

Overall, however, the excursion set Aλ is made up of a number of approx-
imate ellipses, each one of which has Euler characteristic 1 and each one of
which is associated with a single maximum above the level λ. Furthermore,
since each component of an excursion set is small if λ is large, they are un-
likely to be any intersecting ∂T. This explains that asymptotic equivalence of
E�χ�Aλ�T��� and E�Mλ�T�� = ρmax�λ�T�.

To understand why ρmax�λ� and ρ�λ� should be equivalent, compare the
integrals (4.1.7) and (4.1.8) defining them. The difference lies in the extra
integration over the region for which the Hessian of X is not negative defi-
nite. However, the previous sample path approximations indicate that, above
excursion sets at high levels, there is very little probability associated with
this event. Thus the extra region adds little to the integral and hence the
asymptotic equivalence.

Why ρ�λ� and E�χ�Aλ�� should be identical seems to be a lot harder to
explain geometrically. At this point, it still seems to be a fortunate coincidence.

All of the preceding point to a simple-minded approximation of the structure
of a general (high-level, Gaussian) excursion set as a combination of a small
number of approximate ellipses. This is the basis behind the Poisson clumping
heuristic of David Aldous.

4.3. The Poisson clumping heuristic. The philosophy behind the Poisson
clumping heuristic (which for the remainder of this section we shall call simply
“the heuristic”) is the approximate modeling of excursion sets as “mosaic pro-
cesses.” Mosaic processes have two components: a random subset, or “clump,”
B ⊂ �N, and a Poisson point process on �N with mean measure µ. The mosaic
process, A, is then determined by choosing a sequence B1�B2� 
 
 
 of iid copies
of the random set and a numbering x1� x2� 
 
 
 of the points of the Poisson
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process, and defining the random set

A = ⋃
k

�xk ⊕Bk� �(4.3.1)

where x ⊕ B =
 �y ∈ �N 
 y = x + z for some z ∈ B�. These processes have
been studied in detail by Hall [39].

The basic argument behind the heuristic, in our setting, is that excursion
sets, above a high level λ, can be modeled as mosaic processes in which the
Poisson mean measure µλ is given by

µλ�T� = E�Mλ�T�� = ρmax�λ�T��(4.3.2)

and the basic random set B is a “typical” local excursion. This is not a well-
defined object, and so, a fortiori, its precise distribution is not avaliable.

Nevertheless, let us assume that the random sets B1� B2� 
 
 
 are small
enough, or the points of the Poisson process sparse enough, that the Bj rarely,
if ever, overlap. Writing, as usual, � · � for the Lebesgue measure, we then have
that, for the random mosaic A,

E��A ∩T�� ≈ µ�T�E��B��
(4.3.3)

In essence, this equation is the heuristic. It assumes sparce, Poisson points,
small random clumps and lots of independence. Here is a simple example of
how to use (4.3.3) in our case.

If X is a stationary Gaussian field and A is the excursion set Aλ�0�1�N�,
then

E��Aλ�� = P�X�0� ≥ λ� ≈ σ√
2πλ

exp
(−λ2
2σ2

)

(4.3.4)

Since µ�S� is given by (4.3.2) and (4.1.10) leads to the expression (3.2.5),
substituting into (4.3.3) gives the mean size of a single clump as

E��B�� ≈ �2π�N/2σ2N

λNdet%
�(4.3.5)

a result which is not directly derivable from either (4.2.1) or (4.2.2), although
the heuristic discussion about these results indicates that a result such as
(4.3.5) should hold.

Another use of the heuristic, which is not necessary for us at the moment,
would be to find, via (4.3.3)–(4.3.5), the mean rate of clumps, or mean number
of local maxima, if we knew the mean clump size. We shall return to this more
common use soon.

Now we relate all this to extremal probabilities. Let A be the (approximate)
random mosaic made up of the clumps in an excursion set. Then, assuming
rareness and smallness of clumps, the Poisson approximation gives us, with
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µλ the Poisson rate measure of excursion clumps above the level λ,
P�sup

T

X�t� ≥ λ� = 1 − P�Aλ�T� = ��
= 1 − P�no excursion clumps in T�
≈ 1 − exp

(−µλ�T�
)

= 1 − exp
(−ρmax�λ�T�

)
(4.3.6)

≈ ρmax�λ�T�
≈ E�χ�Aλ�T���
≈ E�ϕ�Aλ�T���


The first approximation follows from the heuristic, and the second from the
fact that e−x ≈ x for small x. Theorems 4.1.1 and 4.1.2 and (4.1.12) give
the last two. Note that while ρmax�λ�T� and E�χ�Aλ�T�� are identical up to
o�λ−α� for all α (in terms of the powers of λ) the approximation to E�ϕ�Aλ�T��
is good only to o�λ−1�, and so, a priori, it hardly seems worthwhile adding this
last step. This is particularly true since both of the last final two expectations
in (4.3.6) are explicitly computable, that for E�χ�Aλ�T�� in general and that
for E�ϕ�Aλ�T�� in a number of cases. Nevertheless, as we shall see soon, the
last line generally leads to the best approximation to the first!

Before leaving the heuristic, here is an example, from Cao [17], of how to
leapfrog with it.

One can use the Slepian processes of the preceding subsection to get some
decent probabilistic information of the volume of a single connected component
of the excursion set Aλ�T�. Suppose we denote the volume of the i-th com-
ponent by Vi, and let the number of such components be L = L�λ� T�. Then
an interesting statistic in spatial pattern analysis, particularly in problems of
medical scanning, is

Vmax =
 max
1≤i≤L

Vi


If V denotes a generic component volume, then the mosaic process underlying
the heuristic leads to the approximation in

P�Vmax ≤ v
∣∣L ≥ 1� =

∞∑
+=1

P�Vi ≤ v� 1 ≤ i ≤ +� L = +
∣∣ L ≥ 1�

=
∞∑
+=1

P�L = +
∣∣ L ≥ 1� P�Vi ≤ v� 1 ≤ i ≤ +

∣∣ L = +�

(4.3.7) ≈ 1
P�L ≥ 1�

∞∑
+=1

�E�L��+
+!

exp�−E�L�� �P�V ≤ v��+

= exp�−E�L�P�V ≤ v�� − exp�−E�L��
1− exp�−E�L�� �

where, as usual, E�L� needs to be replaced by one’s favourite estimate based
on an excursion characteristic of some kind. How reliable are the numbers
that finally come out of this kind of leapfrogging is anyone’s guess, but they
are the best (i.e., basically the only) ones available for this problem.
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4.4. Nonstationary and nonsmooth processes. Up until now, we have con-
centrated on stationary processes with sample paths smooth enough to gener-
ate excursion sets for which Euler characteristics and their ilk are well defined
and have finite expectation.

If we drop the requirement of stationarity, nothing changes very much, in
principle. However, in practice, the computation of expectations often becomes
very much more complicated. Consider, for example, the expression (3.2.3) for
computing a generic expectation of the number of points in a random set. The
first observation is that the spatial, t, integral cannot be ignored and replaced,
as in the stationary case, by �T�. However, the addition of one more level of
integration is a small part of the change.

The major change goes back to (1.2.5) and its consequences (1.2.5) and
(1.2.6), which gave that various partial derivatives of stationary processes
are uncorrelated. Since, in dealing with Gaussian processes, lack of correla-
tion implies independence, this means that, for example, in any computation
involving the joint density pt�x� ∇x� ẍ� of �X� ∇X� Ẍ�, we can write, in a
self-explanatory notation,

pt�x� ∇x� ẍ� = pt�∇x� pt�x� ẍ�
(4.4.1)

= pt�x� pt�∇x� pt�ẍ
∣∣x��

and then even drop the t dependence on each of the densities. Without this
simplification, which also occurs, in one form or another, in what we called
“Gaussian-related” fields, computations of expectations are usually prohibi-
tively complicated, and, if doable, then only in very special cases. One way
around this difficulty is to handle the integration via symbolic computation,
and this has been done for a number of cases, using the Maple package, by
Shafie in a McGill thesis [93] (cf. also [92]). Shafie gives some interesting
examples of rather complicated integrations that actually yield rather neat,
compact results, in which the general structure of a result like (3.3.6) can still
be seen.

Nevertheless, the passage frommean Euler characteristic to excursion prob-
ability, while probably correct, has never been formally justified. Hence, in
practice, if not in principle, much of what we have been discussing is safely
applicable only for stationary fields.

The second assumption, of sample path smoothness, is even more crucial. In
the Gaussian case, for example, mean square differentiability of up to second
order (⇔ the components of % are finite) is a minimal condition for all the
expectations we have considered to be finite. Nondifferentiable processes such
as the Brownian sheet are even worse, since, then, excursion sets are made
up of uncountably many components, and the excursion characteristics with
which we have been working cannot be defined.

Nevertheless, the Poisson clumping heuristic still works in this scenario,
although in a somewhat different format than we have applied it. Details can
be found in Aldous [6], but here is a quick summary of what happens.
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Basically, one has to be a little more creative in deciding how to identify the
“clumps” of the heuristic, and this is done by allowing a clump to be composed
of any number (even uncountably infinite) of components, characterized by
the fact that they occur in a small region and the distance to other clumps is
comparatively large. One can then develop a theory somewhat parallel to that
of the Slepian models of Section 4.2 to obtain information on the size of such a
clump. In particular, the mean areaE��B�� of a generic clump is computable.15

Still assuming stationarity and putting this together as in (4.3.3) and (4.3.4),
we get

µλ�T� ≈ P�X�0� ≥ λ�
E��Bλ��

�(4.4.2)

whereBλ is a typical clump of the excursion setAλ and µλ is the corresponding
clump rate.

Having established µλ in this way, following the first three lines of (4.3.6)
gives an approximate excursion probability. Again, the reader should turn to
[6] for details.

Note also that if we further complicate the situation by allowing nonsta-
tionarity as well as nonsmoothness, the application of the heuristic, while
not changing in principle, becomes somewhat more complicated in practice.
For example, E��Bλ�� is now position dependent, and the simple relationship
(4.3.4) becomes

E��Aλ�T��� =
∫
T
P�X�t� ≥ λ�dt�

which makes the computation of µλ�T� in (4.4.2) somewhat less straightfor-
ward than in the stationary situation.

4.5. How accurate are the approximations: I. Throughout all of the discus-
sions we have had so far on approximations, very little has been said on their
accuracy.

Results such as Theorem 4.1.2, which relate the various expectations to one
another, indicate precision of order λ−1 exp�−λ2/2σ2� between them. Since we
freely interchanged many of these at various stages, it is hard to believe that
the final level of accuracy will be higher than this.

Another compounding factor is the fact that in applying the heuristic we
are using a single parameter distribution, Poisson, to approximate something
far more complex. Thus, again, it is hard to believe that the level of accuracy
involved here would be very high, either.

In general, there is little that one can say beyond this. After all, if one
could make precise computations to enable comparisons, then approximate,

15There are also many other ways of determining E��B�� for situations similar in spirit but
extremely different in detail to the Gaussian situation, in which the Slepian model approach needs
to be either significantly changed or avoided altogether. It is the development of these techniques
in a wide variety of quite different situations that makes [6] such interesting reading.
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heuristic arguments would not be necessary. However, there is one case where
more information is available. Slightly extending a result of Pickands [71] and
Piterbarg [74], Kratz and Rootzén [50] showed the following.

Theorem 4.5.1. Let X be a zero-mean, stationary Gaussian process on �
with covariance function R satisfying:

R�t� = 1− 1
2t

2 + o�t2�� t→ 0�

E�X′�t� −X′�0��2� = 2�R′′�t� −R′′�0�� ≤ C1t
2� t ≥ 0�

�R�t�� + �R′�t��2 ≤ C2t
−α� t ≥ 0�

for some α > 2 and finite constants Cj. Then, with Nλ�1� indicating the mean
number of level crossings of λ in 0� 1�,

0 ≥ P�sup
0�T�

X�t� ≥ λ� − �TE�Nλ�1�� − P�X�0� ≥ λ��

(4.5.1)
≥ −K

(
λ2�1+1/α�T exp

(−λ2�1+ δ�
2σ2

)
+ λ2T2 exp

(−λ2
σ2

))
�

where K is an R-dependent constant and

δ 
= inf
t≥0

(
1−R2�t�

1−R2�t� +R′�t��R′�t��
)



The first inequality in (4.5.1) is merely our original inequality (1.1.4), the
proof of which was trivial. The lower bound requires rigorous arguments, at
the core of which lies the heuristic.

What is interesting here, however, is the level of accuracy of the approxima-
tion. Since E�Nλ�1�� = O�exp�−λ2/2σ2�� and the boundary term P�X�0� ≥
λ� is of order λ−1 exp�−λ2/2σ2�, the main implication is that the basic heuristic
is correct to O�λ−1 exp�−λ2/2σ2��, as expected. Adding the boundary correc-
tion leads to an extra term of O�λ−2 exp�−λ2/2σ2�.

Now consider the error term. Both of its components are o�exp�−λ2/2σ2��,
which means that the expansion to O�λ−2 exp�−λ2/2σ2�� is accurate up to
an exponential, and not power, level. This is a result of striking practical
importance and theoretical elegance, which one would never guess, on the
basis of the heuristic, to be true.

Recalling the fact that in one dimension the Euler characteristic of the
excursion set Aλ�X� T� is simply the number of upcrossings of λ plus 1, if
X�0� ≥ λ, and recalling Rice’s formula (1.1.5), one can rewrite (4.5.1) in the
rather tantalizing form

0 ≥ P�sup
0�T�

Xt ≥ λ� − E�φ�Aλ�T���

(4.5.2)
≥ −O

(
λ−2 exp

(−λ2
σ2

))
�

which rather makes one wonder what happens in general.
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To obtain a general result, for all dimensions, a little more has to be as-
sumed. The conditions are of two forms. The random field is required to be
close to isotropic, in that the matrix % of second-order spectral moments must
be diagonal, a condition automatically satisfied by isotropic fields. Beyond this,
we require homogeneity, continuous mean square derivatives of up to third
order and mild nondegeneracy conditions akin to those of Theorem 3.2.2. Fur-
thermore, the parameter space T must be convex and rather smooth, in that
it looks like a convex polyhedron (up to transformations of class C3) with nei-
ther large nor small angles between adjacent faces. Because of the centrality
of Theorem 4.5.2, we will now spell out the details.

Some notation and terminology: a pair ��� α�, where � ⊂ �N and dim � =
L, L ≤N, α : � → �L is a diffeomorphism, is called a map of class Cν if:

1. α belongs to Cν,
2. the set α� ⊂ �L is open and bounded,
3. the inverse mapping α−1 : α� → �N exists and belongs to Cν.

A one-point subset of �N is also called a map.
A closed set T ⊂ �N is called a simple cell complex of class Cν if there exists

a finite collection of maps ��i� αi�, i = 1� 
 
 
 �m, �i ⊂ �N, each of class Cν,
such that �i are mutually disjoint and T = ⋃m

i=1 �i. Any such collection is
called a stratification of T and denoted by S�T�.

Let I ⊂ �N denote a convex solid angle which is a finite intersection of
half-spaces:

I =⋂�x 
 �ai� x� ≥ 0�� ai ∈ �N


Note that I is called a ψ-angle, 0 < ψ < 1, if for any k� + either

��ak� a+�� ≤ ψ�ak� �a+� or ��ak� a+�� = �ak� �a+��
that is the vectors ak, a+ are either collinear, or the angle between them is
bounded by arccos�ψ�. Note also that the dimension of a ψ-angle may be less
than N.

Definition 4.5.1. A simple cell complex T ⊂ �N is of class C3�M�K�ψ� ε�,
K > 0, M > 0, 1 > ψ > 0, ε > 0, if:

1. There exists a stratification S�T� such that #�S�T�� ≤ K, and α ∈ C3���
with norm and derivatives up to order 3 bounded by M for all ��� α� ∈
S�T�.

2. For any s� t ∈ T such that �t − s� ≤ ε, there exist a diffeomorphism β
of class C3�M� B2ε�t��� B2ε�t� = �v : �v − t� ≤ 2ε�, a neighborhood V of
the segment �hβ�t� + �1 − h�β�s�� 0 ≤ h ≤ 1� and a ψ-angle I such that
β�B2ε�t� ∩T� ∩V = I ∩V


For example, finitely connected sets with nondegenerate smooth boundaries
such as balls or tori, their finite intersections (with some conditions on non-
degeneracy at the points of intersections of boundaries) and closed convex
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polyhedra with finite numbers of vertices all belong to C3�M� K� ψ� ε� for
appropriate M� K� ψ� ε.

Theorem 4.5.2 (Piterbarg [74], [76]). Let T ∈ �N be a convex simple cell
complex of class C3�M� K� ψ� ε� for some M�K�ψ and ε. Let X satisfy regu-
larity conditions of the kind spelled out after (4.5.2). In particular, the matrix
% of second-order spectral moments should be diagonal. Then there exists a
constant α > 1 such that, for all λ > 0,∣∣∣∣ P{sup

t∈T
X�t� ≥ λ

}
− E�ϕ�Aλ�X� T���

∣∣∣∣ ≤ O

(
exp
(−αλ2

2

))
�(4.5.3)

where, byE�ϕ�Aλ�X�T���, we refer to the sum on the right hand side of (3.3.8),
which, under the additional conditions on T of Theorem 3.3.5 is also the ex-
pected Euler characteristic.

This result is the key result in justifying all the discussion of this paper
as far as using the expected Euler characteristic to approximate excursion
probabilities is concerned. I have found no rigorous way to justify the Pois-
son clumping heuristic, but for the fact that, in general, it “seems to work”
very well. In the cases covered by Theorem 4.5.2, we now know that it works
superbly.16

In fact, in these cases, we have a better result than we were expecting when
we started looking at the asymptotic expansion (1.1.10). For here, not only do
we have an expansion of N + 1 terms in N dimensions, but we have that
it is correct to exponential rather than power accuracy. There is at least one
additional setting in which something similar can be shown to occur, for which
the reader is referred to the following section.

It is reasonably clear that the condition of convexity is rather important for
practical applications of this theorem. To see why this should be so, consider
an example that Keith Worsley described to me: let T be a “hairy disk,” that is,
a disk of radiusR with a large number of densely sited very thin rectangles, of
uniform length L, growing out of it. Then supTXt over the hairy disk should
behave much like supTXt over a disk of radius R + L. However, the Euler
characteristic of the excursion sets in the two cases will be very different, since
one expects the hairs of the disk to significantly add to it by shattering into
smaller pieces (each of Euler characteristic 1) components of the excursion
set over �2. It would be interesting to see how far Theorem 4.5.2 could be
extended.

Given the importance of Theorem 4.5.2, and the fact that, as stated, it
both differs somewhat from its formulation in [76] and seems somewhat more
general, a few words about its proof are in order.

(About the) Proof. First, note that Piterbarg’s Theorem 5.1 in [76] dis-
cusses only isotropic processes for which the first derivatives have a diagonal

16A fact which, of course, means that in these cases no heuristics are needed.
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covariance matrix % with elements 1/N. It is trivial to see that this can be ex-
tended to a general matrix by an orthogonal transformation of the parameter
space.

Furthermore, Piterbarg’s result is not expressed in terms of the expected
Euler characteristic as in (4.5.3), but rather via a sum involving Hermite poly-
nomials. A little algebra, and our crucial Theorem 3.3.5, enables the transla-
tion.

Now let me describe how Piterbarg proves his result.
He starts with the so-called “cosine” random field

XN�t� ≡ XN�t1� 
 
 
 � tN� 
= N−1/2
N∑
k=1

�Zk cos tk +Z′
k sin tk� �(4.5.4)

where the Zk and Z′
k are independent, standard Gaussians. (Note that the

“% matrix” in this case is diagonal with elements 1/N, which is where the
assumption mentioned previously comes from.)

When N = 1 one can, quite simply, compute the precise distribution of
sup0�T�X1�t� and check that it satisfies (4.5.1). (This was actually done in both
[74] and [11].) When N > 1 the computation works in an iterative fashion,
and some simple, but clever, calculus gives

P

{
sup
t∈T

XN�t� ≥ λ

}
(4.5.5)

= E�ϕ�Aλ�XN� T��� +O

(
exp
(−λ2�1+ 1/N�

2

))
from which (4.5.3) now follows for this case.

To go from the cosine field to more general fields, we need the following
rather powerful Gaussian tool known as Slepian’s inequality.

Theorem 4.5.3 (Slepian [100]). Let X and Y be two zero-mean Gaussian
processes on a general space T such that EX2

t = EY2
t for all t ∈ T and

E�Xt −Xs�2 ≤ E�Yt −Ys�2
(4.5.6)

Then, for all λ,

P

{
sup
t∈T

Xt > λ

}
≤ P

{
sup
t∈T

Yt > λ

}

(4.5.7)

[Note that despite the existence of a trivial heuristic “proof” of Slepian’s
inequality along the lines that processes that are intrinsically less correlated—
as in (4.5.6)—“must” move around more—as in (4.5.7)—the result is false if
supTX is replaced by supT �X�.]

Returning to our discussion of the proof of Theorem 4.5.2, we now argue as
follows: since we want to prove (4.5.3) for smooth processes, and the covariance
functions of the XN are smooth, we can use the XN to approximate them, at
least over small regions. The fact that (4.5.5) holds for XN allows one to apply
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Slepian’s inequality17 to derive (4.5.3) for the processes of the theorem, at least
for small enough sets T. Lifting the result to more general T now involves the
same kind of integral geometric argument that we used to justify deriving
Theorem 3.3.5 from a similar result for spheres. For further details, see [76].

This concludes the discussion on the accuracy of the Poisson approximation
and the role that the expected Euler characteristic has to play in it, at least for
the moment. Some further comments on the accuracy issue in more general
situations, including nonstationary processes, can be found in Section 6.6.
While the results there are not as sharp as here, I believe this to be due to the
lack of powerful enough techniques for proving sharpness, rather than being
due to their inapplicability.

5. Some rigor for the heuristic. First, I should point out once again
that I know of no theoretical justification for the heuristic not only in the
generality in which Aldous applies it in [6], but even in the Gaussian setup of
this section. The main justification is that it works.

Nevertheless, it does have an historical precedent in earlier work on Gaus-
sian (and other) extremes, although the setting is, at least at first glance,
somewhat different.

Results dating back to Cramér [22, 23] considered the distribution of the
normalized expression

sup0�T�X�t� − b�T�
a�T�(5.0.1)

as T → ∞, for a smooth Gaussian process X for which R�t� → 0 as t →
∞, generally at some given rate, and appropriate functions a and b. This
formulation was in the spirit of Gnedenko’s original approach [35] to extreme
value theory.

The proofs of these theorems were based on a Poisson argument, that,
roughly, went as follows: divide 0� T� intoO�1/αT� alternating intervals, long
ones of sizeO�αT� and short ones of size o�αT�, but such that both their lengths
go to ∞ with T. The short ones make up little of the total, so they can be ig-
nored. On the other hand, since they become large with increasing T and
since R�t� → 0 as t→∞, the behavior of X in the intervals of length O�αT�
becomes independent. With b in (5.0.1) also going to ∞ with T, we are in the
situation of a large number of almost independent rare events, which is tailor
made for a Poisson approximation. Writing the precise formulas for a and b
in terms of level crossing rates is what makes the argument look even more
familiar.

There is one very big difference, however, between the preceding scenario
and that of the heuristic: the heuristic works for all T, and not just for arbi-

17Slepian’s inequality is, of course, not quite enough, since it is crucial to keep track of the pre-
cision of estimates and bounds. This requires more delicate, and rather long, technical arguments,
of a type dating back to Berman [9–11].
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trarily large parameter sets. Thus there is no asymptotic dependence coming
from the decay of correlations.

In the late 1970’s and early 1980’s, Leadbetter and coworkers18 realized
that it was not necessary to require asymptotic independence of the values of
X at distant points. It sufficed to require only that high local maxima tended
to occur in an independent fashion. This, in itself, would lead to asymptotic
Poisson arguments.

Once one realises this, it is a small, but very significant, conceptual step to
develop the Poisson heuristic for Gaussian processes on parameter spaces of
fixed size. Aldous’ contribution, therefore, was not so much the introduction of
a new idea, but the realisation that there were efficient ways of using an old
one in a wide variety of different situations, well beyond the Gaussian, many
of which were too complicated to analyse rigorously.

5.1. The “double sum” method. Since we have spent so much time on
heuristics, it is only reasonable that we also briefly describe at least one rig-
orous way to obtain asymptotic exceedence probabilities.

The description will be very brief, since the topic is treated in detail in
both [53] and [76]. In particular, Piterbarg’s monograph [76] contains an ex-
cellent and remarkably readable introduction on the rigorous approach, which
Piterbarg has dubbed the “double-sum” method.

In fact, the technique goes back to Pickand’s original 1969 papers [71, 72]
on Gaussian exceedence probabilities and has changed little since, although
details often vary significantly from case to case.

Motivated by the technique just described for establishing (5.0.1), the basic
idea is to break up the parameter space T into a finite union of small sets
Tk, where the size of the Tk generally depends on the exceedence level λ. The
Tk need not be disjoint, although any overlap should be small in relation to
their sizes. There is no need to assume any particular structure for T, so that
we are back in the general setting of Section 2. Consequently, the number of
Tk required for a fine covering of T is related to its metric entropy in the
canonical metric.

It is then elementary that

∑
k

P
{
sup
t∈Tk

X�t� ≥ λ
}
≥ P

{
sup
t∈T

X�t� ≥ λ
}

≥ ∑
k

P
{
sup
t∈Tk

X�t� ≥ λ
}

(5.1.1)

−∑∑
j �=kP

{
sup
t∈Tj

X�t� ≥ λ� sup
t∈Tk

X�t� ≥ λ
}



18See [53] for references and details, in particular, the discussion on the conditions D and D′
there.
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The upper bound here is treated by looking at each summand, choosing a
point tk ∈ Tk and writing

P

{
sup
t∈Tk

X�t� ≥ λ

}
=
∫ ∞
−∞

P

{
sup
t∈Tk

X�t� ≥ λ
∣∣X�tk� = u

}
ptk

�u�du
(5.1.2)

There are a number of ways of treating the probability in the integrand. In
particular, since Tk is small, and if X is smooth, it is quite simple to build
a linearized version of �X�t∈Tk

[conditioned on X�tk� = u] and bound the
probability in question by the probability that the linearized version exceeds
λ somewhere in Tk. In fact, an appropriate approximation can be found even
in the nonsmooth case.

In the Gaussian case, the bound on the linearized process is usually taken
either from Borell’s inequality (2.1.5) or some version of this. Connecting this
bound to one on the original process is based on Slepian’s inequality, Theorem
4.5.3. Optimising the sizes of the sets Tk with respect to λ gives the best
results. Note that at this stage one has an upper bound for the exceedence
probability, not much different, in principle, from the elementary bound (1.1.4)
that we obtained at the very beginning of the paper.

The first term on the right-hand side of (5.1.1) is handled identically. What
remains is to show that the negative term here, the “double sum,” is of lower
order, and this is the hard part of the argument. This is what turns bounds
into asymptotics, and here is where the same considerations that arose in the
clumping characteristic arise again.

If we could write the joint probability P�supt∈Tj
X�t� ≥ λ� supt∈Tk

X�t� ≥ λ�
as a product of probabilities of the individual events, then we would be done,
since, then, the double-sum term is easily seen to be of lower order than the
single sum. Such independence obviously does not hold, but if we choose the
sizes of the Tk in such a fashion that a “typical” excursion set, or clump, is
considerably smaller than this size, and note somehow that high extrema, or
clumps, are independent of one another, then we are well on the way to a
proof.

The details, which are heavy, are all in Piterbarg [76]. Justifiably, there is
no mention there of the clumping heuristic, since Poisson considerations never
enter into the rigorous argument. However, it should now be clear how the two
are related.

Before turning to a new approach, it is worth noting that Piterbarg’s mono-
graph is also an excellent source of worked examples, and includes a number
of rigorous computations of excursion probabilities for many interesting exam-
ples of processes and fields.19 With the exception of his version of our Theorem

19There is an error in the result of Fatalov [33, 34] reported there for the distribution of the
supremum of the N-dimensional Brownian bridge on 0�1�N ([76], page 139), which should read
�4 ln 2�N−1λ2�N−1� exp�−2λ2�/�N − 1�!. [The factor �N − 1�! is missing.] The correct result was
derived via the Poisson heuristic in a Cornell Ph.D. dissertation by Michael Turmon [115]. In the
final analysis, both the heuristic and Fatalov’s rigorous argument lead to the same penultimate
result, requiring the evaluation of an elementary but tricky N-dimensional integral to obtain a
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4.5.2 and (4.5.5) for the cosine field, virtually all of Piterbarg’s results deal only
with the first (and occasionally second) term of the expansions of excursion
probabilities.

5.2. Processes “without boundary.” There is one other case in which rigor-
ous results have recently been obtained via explicit computation.

Suppose the parameter set T has no boundary, either in a purely geometric
sense or in that the random field is periodic in some fashion. In that case,
putting together (4.1.4) and (4.1.6), we have

E�Mλ�T�� −E�Mλ�T�Mλ�T� − 1��/2
(5.2.1) ≤ P�sup

T

X�t� ≥ λ� ≤ E�Mλ�T��


What has changed between this and the previous inequalities of a similar
kind is that expectations related to boundary phenomena have now disap-
peared, and the “correction” so obtained is always in a good direction, in that
it lowers the upper bound and raises the lower one.

It is possible, under quite general conditions, requiring neither isotropy nor
even stationarity, to bound the factorial moment in (5.2.2) (cf. [26], [77]) and
obtain, in this case, that

∣∣∣∣P�sup
T

X�t� ≥ λ� −E�Mλ�T��
∣∣∣∣ = o

(
λ−α exp

(−λ2
2σ2

T

))
(5.2.2)

for any α > 0.
Although we still cannot explicitly compute E�Mλ�T��, even in this case,

it is not hard to see from the formulas in [26] and [77] that it is also true that

∣∣E�φ�Aλ�T��� −E�Mλ�T��
∣∣ = o

(
λ−α exp

(−λ2
2σ2

T

))

for any α > 0, so that we also have

∣∣∣∣P�sup
T

X�t� ≥ λ� −E�φ�Aλ�T���
∣∣∣∣ = o

(
λ−α exp

(−λ2
2σ2

T

))
�(5.2.3)

which tells us that the Euler chracteristic is the right route to take in this
setting.

constant and complete the derivation. Turmon got the integral right, as has since been verified
by Fatalov himself.
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6. Tubes.

6.1. Higher order expansions. As outlined in the Introduction, what we
would really like to do would be to identify as many terms as possible of the
expansion

P

{
sup
T

X�t� ≥ λ

}
= λα exp

(−λ2
2σ2

T

)(
C0 +

n′∑
n=1

Cnλ
−n
)

(6.1.1)

for λ ≥ λ0 and n′ (optimally) finite, or, if need be, infinite.
We have nice, rigorous expansions up to order n′ = N for smooth, N-

parameter, isotropic Gaussian fields in which the expected Euler characteristic
gives the expansion (Theorem 4.5.2), and, as described in the previous subsec-
tion, in cases when the parameter set T has no boundary. All indications are
that these formulas also hold under far weaker conditions, essentially those
that permit computation of the expectation, but there is no proof for this. In
any case, such an approach will not work for nonsmooth processes, for which
Euler characteristics are not well defined.

In this section, I will describe another approach to the computation of ex-
tremal probabilities that is both old (dating back to Hotelling [41] in 1939)
and new, having seen a significant regrowth of interest in the past decade
or so.

This approach, based on the so-called “tube formulas,” seems to have noth-
ing to do with the Poisson approximations of the preceding sections, and, as
opposed to them, is highly Gaussian in its basic approach. It does, however,
rigorously yield information not only on C0 and C1 in (6.1.1), but also, in prin-
ciple, on all the Cn in a wide variety of situations. The qualifier “in principle”
is relevant here for two reasons: on the one hand, it will turn out that the Cn

for n ≥ 2 are close to uncomputable in specific examples; on the other hand,
truncating the sum in (6.1.1) at n′ = 1 generally gives an approximation that
is both much better than taking only the first term and also adequate for most
practical purposes.

To set this up, we shall first of all require a little extra theoretical back-
ground on Gaussian processes on Euclidean spaces. Note again the qualifiers:
whereas the Poisson clumping heuristic, and similar techniques, yield expan-
sions not only for Gaussian processes on quite general state spaces, but also
for non-Gaussian processes, the expansions that we are going to derive in
this section are obtainable for only Gaussian processes on Euclidean spaces.
In principle, these techniques could be extended to more general parameter
spaces. However, their essence is Gaussian, and while some extension to other
spherically symmetric cases should be possible to date this has only been done
in some special cases (cf. Section 7.2).

6.2. Karhunen–Loève expansions. Let T = 0�1�N and let X be a centered
Gaussian process on T with continuous covariance function R�s� t�. For the
moment, we require neither stationarity nor regularity ofR beyond continuity.
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The restriction to 0� 1�N as a parameter space is not, as we shall see later, all
that important in principle. However, if T is not a rectangle, the methodology
that follows is very hard to put into practice.

Let λ1 ≥ λ2 ≥ · · · and ψ1� ψ2� 
 
 
 be, respectively, the eigenvalues and
normalized eigenfunctions of the operator � : L2�T� → L2�T� defined by
�ψ�t� = ∫

T R�s� t�ψ�s�ds. That is, the λn and ψn solve the integral
equation

∫
T
R�s� t�ψ�s�ds = λψ�t� for all t ∈ T�(6.2.1)

with ∫
T
ψn�t�ψm�t�dt =

{
1� if n =m�
0� if n �=m


(6.2.2)

The following result can be found, for example, in Riesz and Sz-Nagy [85]
when N = 1 or Zaanen [125] for general N.

Theorem 6.2.1 (Mercer). Let R, T, �λn�n≥1 and �ψn�n≥1 be as before. Then

R�s� t� =
∞∑
n=1

λnψn�s�ψn�t� �(6.2.3)

where the series converges absolutely and uniformly on T×T.

Mercer’s expansion leads to the so-called “Karhunen–Loève” expansion,
which is the source of many good things in Gaussian process theory. Two
references for this on my desk are Adler [1, 2], but the result is essentially
prehistoric and available in any good book on stochastic processes.

Theorem 6.2.2 (Karhunen–Loève). Under the conditions of Mercer’s theo-
rem, the sum

Xt =
∞∑
n=1

λ1/2n ξnψn�t��(6.2.4)

where the ξn are orthonormal Gaussian, converges, uniformly in t ∈ T, in mean
square. The sum will also converge, uniformly, with probability 1, if, and only
if, X is a.s. continuous.

The mean square convergence of (6.2.4) is rather simple to show. The equiv-
alence between a.s. convergence and continuity is deep.

As a theoretical tool, Theorem 6.2.2 is extremely powerful. As an applied
tool, it can be equally so, as long as one has a powerful computer on hand and
knows how to numerically solve the eigenvalue equation (6.2.1).

Before going into the numerics, however, we shall give one classic example
of the Karhunen–Loève expansion for standard Brownian motionWt on 0�1�.
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Unfortunately, this is one of the very few examples for which a specific solution
is available. In the Brownian case,

ψn�t� =
√
2 sin

(
1
2
�2n+ 1�πt

)
� λn =

(
2

�2n+ 1�π
)2

�(6.2.5)

so that, with probability 1,

Wt =
√
2
π

∞∑
n=0

ξn

(
2

2n+ 1

)
sin
(
1
2
�2n+ 1�πt

)
�(6.2.6)

where �ξn�n≥1 is an orthonormal Gaussian sequence.
Now let us see how to exploit the Karhunen–Loève expansion for our

purposes.

6.3. Maxima and areas. We start by truncating (if necessary) the
Karhunen-Loève expansion (6.2.4) after 1 ≤K <∞ terms, to define

XK
t =

K∑
n=1

λ1/2n ξnψn�t��(6.3.1)

and rearranging as follows:

XK
t =

(
K∑
k=1

ξ2k

)1/2
K∑
n=1

λ1/2n

ξn

�∑K
k=1 ξ

2
k�1/2

ψn�t�
(6.3.2)

≡
√
χ2
K ·

K∑
n=1

Unφn�t��

where χ2
K =∑K

k=1 ξ
2
k and φn�t� = ψn�t�/χK.

As a first example, consider a unit variance, zero-mean Gaussian process,
although not necessarily stationary. In this case, in view of (6.2.3),

∑
n φ

2�t� =∑
n λnψ

2�t� = σ2 = 1 for all t ∈ 0�1�.
Consequently, the curve γ : 0� 1� → �K defined by

γ�t� ≡ �φ1�t�� 
 
 
 � φK�t��(6.3.3)

is a curve in the �K− 1�-dimensional unit sphere, SK−1.
Now note that the K-dimensional random variable

U ≡ �U1� 
 
 
 �Uk� =
(

ξ1

�∑K
k=1 ξ

2
k�1/2

� 
 
 
 �
ξK

�∑K
k=1 ξ

2
k�1/2

)
(6.3.4)

is actually uniformly distributed on SK−1, so that we can write

P

{
sup
t∈T

XK�t� > λ

}
=
∫ ∞
0

P

{
sup
t∈T

XK�t� > λ
∣∣χ2

K = x

}
fK�x�dx

=
∫ ∞
0

P

{
sup
t∈T

�U�γ�t�� > λ/
√
x

}
fK�x�dx�

where fK�x� is the (χ2, with K degrees of freedom) density of χ2
K.
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Equation (6.3.5) is really the key to developing the higher order extremal
asymptotics we are looking for. Note that the main contribution of (6.3.5)
is that it has translated a high-dimensional Gaussian computation to one
involving one χ2 variate and random variables distributed uniformly over the
surfaces of spheres. This uniformity means that the probability computation
in the final integrand of (6.3.5) reduces to a computation of surface area on
SK−1.

To exploit this approach, we need first to understand the geometric meaning
of the object �U ∈ SK−1 : supt∈T�U�γ�t�� > x� for a general curve γ on SK−1.

6.4. Weyl’s formula. We are now going to need concepts and terminology
from differential geometry, the basics of which we shall use freely and the
rest we shall define. Good references here are Gray [36] and Millman and
Parker [67].

Suppose � is an N-dimensional manifold embedded in SK−1. We shall
think of � as the image of a mapping γ, so that

� = �γ�t� = �γ1�t�� 
 
 
 � γK�t�� : t ∈ T ⊂ �N��(6.4.1)

where, for the moment, we gain nothing by restricting to the case T = 0� 1�N,
and so shall not do so.

(For more complete generality, we should really construct � out of patches,
in the usual differential geometric fashion, but will have no need of this for
our applications.)

Definition 6.4.1. The tube of geodesic (angular) radius θ of a manifold
� = �γ�t� : t ∈ T� embedded in SK−1 is the set

Tθ ≡ Tθ�γ� ≡ Tθ�� � =
{
x ∈ SK−1 : sup

t∈T
�x� γ�t�� ≥ cos θ

}
(6.4.2) = {x ∈ SK−1 : d�x� γ� ≤ �2�1−ω��1/2}�
where ω = cos θ and

d�x� γ� 
= inf
t∈T

�x− γ�t�� = 2
(
1− sup

t∈T
�u� γ�t��

)

(6.4.3)

The cross-sectional geometry of Figure 7a shows the relationship between
the geodesic and Euclidean radii of a tube.

An example (N = 1� K = 3) is given in Figure 7b. Note that manifolds may
have boundaries, as is the case in this example (where the boundaries are the
two endpoints of the curve), or could be closed. This difference will be of major
importance soon.

Note that the curve in Figure 7b does not curve around to intersect itself in
any way. Since some manifolds will do this, however, and this will be a “bad”
property, we are going to need some definitions to handle self-intersections.
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Fig. 7. Tubes: (a) Cross section showing the relationship between geodesic and Euclidean radii;
(b) a one-dimensional tube on the 2-sphere, based on a manifold (curve) with boundary.

Thus define the cross section of the tube Tθ at the point γ�t� on � as
Cθ�γ�t�� = �x ∈ Tθ : �x− γ�t�� ⊥ ∇γ�t��
(6.4.4)

Each point x ∈ Tθ lies in, at least, one cross section, Cθ�γ�x∗��, where x∗ is
chosen from the set �y ∈ γ : �x− y� = minγd�x− y��, and so it is clear that

Tθ = ⋃
t∈T

Cθ�γ�t��
(6.4.5)

No self-overlap is said to occur if the union in (6.4.5) is disjoint. There are
two ways that self-overlapping can occur. The cause can be “global,” in the
sense that � can “turn around” after a while and come back to close to where
it was earlier. [Of course, we are using the terminology of one (i.e., N = 1)
dimension here, but our meaning, for the general case, should be clear.] This
kind of behavior is not determined by local differential properties. Alterna-
tively, the tube radius θ may be large with respect to the local curvature of
� on SK−1. For example, if � is a great circle on S2, then the cross sections
Cθ�x� will also lie on great circles, perpendicular to � . They will be disjoint
for all θ < π/2 will all meet at the poles if θ = π/2 and will intersect in the
remaining case.

If � is a curve, then there will be no self-overlap if the geodesic radius
of the tube does not exceed the maximum radius of geodesic curvature of �
(cf. [41]).

This leads to the following definition.

Definition 6.4.2. The critical radius of first overlap of a tubeTθ�γ� [which
is really an intrinsic property of γ and not Tθ�γ�] is

θc = θc�γ� = inf�θ > 0 : Tθ�γ� has no self-overlap�
(6.4.6)

Here is the first most useful and simplest result on tube volumes. It is due
to Hotelling [41]. We call a curve γ : 0� T� → SK−1 regular if it is continuously
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differentiable with nowhere vanishing derivative and a �= b ⇒ γ�a� �= γ�b�,
except possibly for the case a = 0� b = T. In this case, we call the curve closed
and also demand that ∇γ�a+� = ∇γ�b−�.

Denote the volume of the unit ball in �d by ωd [as in (3.3.5)] and the (d−1)-
dimensional volume of � d−1 by ω̄d−1, so that

ωd = πd/2

>��d+ 2�/2� � ω̄d−1 = 2πd/2

>� 12d�

(6.4.7)

Theorem 6.4.1 (Hotelling [41]). Let γ be a regular, closed curve in SK−1

of length �γ�. If θ < θc, then

VolK−1�Tθ�γ�� = �γ�ωK−2 sin
K−2 θ

(6.4.8)
+ �1− 1�γ closed��ω̄K−2

∫ 1

cos θ
�1− z2��K−3�/2 dz


The integral here is, modulo multiplicative constants, that of a β�1/2�1/2�K−
1�� density, and thus, while it does not have a simple, explicit form, is eas-
ily computed. Note that if the curve γ is closed, the volume is merely the arc
length of γ times the volume of a cross-sectional �K−2�-dimensional ball of ra-
dius sin θ. When γ has endpoints, the additional volume of two hemispherical
caps of dimension K− 1, subtending angles of θ, must also be incorporated.

Similar results hold also for higher dimensional manifolds as well. However,
the only really simple remaining case is for a two-dimensional manifold.

Thus let � now be a regular, oriented surface embedded in SK−1, which is
given locally by a C3 function γ = γ�t� = γ�t1� t2� defined on an open set in
�2. Assume that the boundary ∂� is given by a piecewise regular, positively
oriented curve parameterized by arc length. Let �� � and �∂� �, respectively,
denote the surface area of � and length of ∂� . Then we have the following
result.

Theorem 6.4.2 (Knowles and Siegmund [49]). With � as described, as-
sume that the exterior angles at the vertices of ∂� (if there are any) are positive
in the sense that the tangent to ∂� rotates through a positive angle at each
vertex. If θ < θc, then

VolK−1�Tθ�� �� = ω̄K−4
�K− 3�

[
�� � cos θ�sin θ�K−3 + 2πϕ�� �

∫ θ

0
sinK−2�x�dx

]
(6.4.9)

+ ω̄K−3
2�K− 2� �∂� � �sin θ�K−2�

where ϕ�� � is the Euler characteristic of � .

If� is a simple, boundaryless manifold of the form of a “belt” around SK−1,
then ϕ�� � = 0, and the only difficult term in (6.4.9) disappears.
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If one wants to avoid the global topological considerations required to de-
duce the value of ϕ�� �, then the Gauss–Bonnet theorem (cf. [49]) allows one
to write

2πϕ�� � =
∫
�
κdA +

∫
∂�

kg ds + ∑
i

αi�(6.4.10)

where κ is the Gaussian curvature, dA is the element of surface area on � ,
kg is the geodesic curvature, ds is the element of arc length on ∂� , and the
αi are the angles of rotation of the tangent to ∂� at its vertices.

While (6.4.10) may look like an unreasonably complicated way to compute
an integral multiple of 2π, there are occasions, as we shall soon see, where
such an approach will make a lot of sense. Now, however, consider the general
version of the last two results. It is as old as Theorem 6.4.1, and appeared in
a companion paper [117] by Weyl to that of Hotelling. Although it has only
recently been reapplied to the statistical problem that led to it, it has long been
regarded as an important result in differential topology. It holds, however, only
for manifolds without boundary.

Theorem 6.4.3 (Weyl [117]). Let � be a C3, N-dimensional manifold,
without boundary, embedded in SK−1. If θ < θc, then

Volk−1�Tθ�� �� = 2πm/2

>�m/2�
2N/2�∑
n=0

κ2nJ2n�θ��(6.4.11)

where x� is the integer part of x, m =K−N− 1,

J0�θ� =
∫ θ

0
sinm−1�x� cosN�x�dx�(6.4.12)

Jn�θ� =
∫ θ
0 sinm+n−1�x� cosN−n�x�dx
m�m+ 2� · · · �m+ n− 2� � n = 2�4� 
 
 
 ≤N�(6.4.13)

and the κn = κn�� � are functions of the manifold to be discussed later. If
θ ≥ θc, then (6.4.13) still holds, but with “≤” replacing the equality.

It is important to note that Weyl’s theorem holds only for manifolds with-
out boundary. The special one- and two-dimensional cases that we have seen
in Theorems 6.4.1 and 6.4.2 show that the volume formula is considerably
simpler in this case. Presumably, there exists a general formulation of Weyl’s
theorem for manifolds with boundary, but, as far as I have been able to find,
only special cases are known. The comparatively recent text of Gray [36] avoids
the issue by defining tubes in such a way that Weyl’s formula will be correct
even when the manifold has a boundary, essentially by leaving out of the tube
sections akin to the semicircular “caps” of Figure 7b. General upper bounds
have been found by Naiman [69] and Naiman and Wynn [70].

The constants κn that appear in (6.4.11) have a variety of geometric inter-
pretations, although Weyl’s original description of them as “certain integral
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invariants of the surface determined only by 
 
 
 intrinsic curvature” is, in gen-
eral, as illuminating as any other. We have already seen the following special
cases.

If N = 1, then comparing (6.4.11) with (6.4.8) shows that in this simple
case of a one-dimensional manifold � = γ we have κ0 = �γ�.

Similarly, if N = 2, then comparing (6.4.11) with (6.4.8) shows that in this
case κ0 = �� � while κ2 is related to both �∂� � and the Euler characteristic
ϕ�� �. The reasons for this will become clearer later.

As N increases, the geometric significance of the κn becomes less and less
clear. However, the general pattern remains, in that κ0 is related to a bound-
ary length, and κ2 to a “certain integral invariant” of � . The higher order
coefficients become somewhat more complex. If the manifold has a boundary,
then, as mentioned previously, one can, in principle, compute various correc-
tion terms to Weyl’s formula. It is important to note, however, that these cor-
rection terms can be of quite a significant size, and so should not be thought
of as minor perturbations of an otherwise exact result.

Before we leave general tube volume computations, recall why we started
them. In the probabilistic motivation of the previous subsection, the manifold
� arose by mapping the parameter set T of a random field onto SK−1 via
the mapping t→ �φ1�t�� 
 
 
 � φK�t��, where the φn were the normalized eigen-
functions appearing in the finite Mercer expansion of the covariance kernel
R, as in (6.2.3). Since it therefore follows that once R is determined the same
is true of � , one might hope that Weyl’s theorem could be reformulated in
terms of R alone, alleviating the need for intermediate geometric calculations.
In part, this is true, and we have the following.

Theorem 6.4.4 (Sun [107]). Suppose the manifold � is defined as in the
previous paragraph, where R : T ⊂ �N → � is smooth (in a sense to be de-
scribed later), and has constant variance R�t� t� = 1. Suppose, furthermore,
that � has no boundary. Then

κ0 =
∫
T
�detG�t��1/2 dt1 · · ·dtN�(6.4.14)

κ2 =
∫
T

1
2
�−S�t� −N�N− 1�� �detG�t��1/2 dt1 · · ·dtN�(6.4.15)

where S�t� is the intrinsic scalar curvature of the manifold whose metric tensor
matrix is G = �gij�N×N, where

gij�t� = ∂2R�s� t�/∂si∂tj�s=t
(6.4.16)

(See the following discussion for details.) If the underlying random field is
stationary, then S ≡ 0 and G is independent of t and is actually the matrix of
second spectral moments %, so that the integrals in (6.4.14) and (6.4.15) reduce
to �%�1/2 · �T� and −12N�N− 1��%�1/2 · �T�, respectively.
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The main point of Theorem 6.4.4 is that one does not need to know any
geometry to compute κ0 and κ2 when � does not have a boundary. All one
needs to know is how to differentiate and integrate20. On the other hand, the
values of the κn for n > 2 seem to be so difficult to compute, that nobody ever
does so!

Before we tie all of this back to the distributions of Gaussian suprema, here
is how the intrinsic scalar curvature function S is computed. For extra details,
see either [51] or [107].

Write G−1�t� = �gij�t��N×N, where G is the metric tensor matrix (6.4.16).
Then the Christoffel symbols on � are defined by

>kij = 1
2

N∑
l=1

glk�t�
(
∂glj�t�
∂ti

− ∂gij�t�
∂tl

+ ∂gil�t�
∂tj

)

(6.4.17)

The Riemannian curvature tensor of � is then defined to be the tensor with
components

Rl
ijk = ∂>lik�t�

∂tj
− ∂>lij�t�

∂tk
+

N∑
p=1

(
>
p
ik�t�>lpj�t� − >

p
ij�t�>lpk�t�

)
�(6.4.18)

and the Ricci curvature tensor is defined to be the tensor with components

Gij�t� = ∑
k

Rk
ijk
(6.4.19)

Finally, the scalar curvature function of � is

S�t� =
N∑

ij=1
gij�t�Rij�t�
(6.4.20)

6.5. Application to maxima distributions. We can now return to our main
interest, the computation of Gaussian tails, and recall the basic formula (6.3.5),
which gave

P

{
sup
t∈T

XK�t� > λ

}
=
∫ ∞
0

P

{
sup
t∈T

�U�γ�t�� > λ/
√
x

}
fK�x�dx�(6.5.1)

where fK�x� was the density of a χ2 variable (with K degrees of freedom), as
the tail probability for a Gaussian process over T with a K-term Karhunen–
Loève expansion whose eigenfunctions define γ, as in (6.3.3).

In view of the preceding subsection, we now know how to relate the prob-
ability in the integrand in (6.5.1) to a volume computation on the surface of
a unit sphere, under the condition that �γ�t�� = R�t� t� = 1 for all t. [If �γ�t��
is some other constant, then a normalization solves everything, and we can
work as before. If �γ�t�� is actually t-varying, the situation is somewhat more

20Or, alternatively, have a computer (or graduate student) for which (whom) symbolic differ-
entiation and numerical integration are straightforward operations.
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complex, but still not intractable.] Thus a volume computation, followed by
integration over x, yields, in principle, the following theorem.

Theorem 6.5.1 (Sun [107]). Let X�t� be a zero-mean, unit variance Gaus-
sian random field over a Borel set T ⊂ �N with a K-order Karhunen–Loève
expansion. If, in the notation of (6.3.1)–(6.3.3), the manifold defined by γ has
no boundary and if the covariance function R ∈ C3, then, as λ→∞,

P

{
sup
t∈T

XK�t� > λ

}
(6.5.2) = κ0ψ0�λ� + κ2ψ2�λ� + · · · + κN̂ψN̂�λ� + o�ψN̂�λ���

where N̂ = 2N/2�, the κn are the same constants as in Weyl’s formula and

ψn�λ� =
1

21+n/2π�N+1�/2

∫ ∞
λ2/2

u�N−1−n�/2 exp�−u�du� n = 0� 
 
 
 � N̂
(6.5.3)

As Sun remarks in her paper, there are a number of difficulties when it
comes to applying this theorem. Perhaps the main one is the assumption of
the lack of boundary for the manifold generated by γ. We will come back to
this point later. Another difficulty arises from the assumed finiteness of the
Karhunen–Loève expansion. The following result gets around this, although,
in general, at the cost of replacing the equality in (6.5.2) with an upper bound.

Theorem 6.5.2 (Sun [107]). LetX be as in Theorem 6.5.1, and assume that
the set T is an N-dimensional rectangle. Assume that the covariance function
R�s� t� ofX satisfies Conditions 1 (form = 6), 2 and 3 below. Then, as λ→∞,

P�sup
t∈T

X�t� > λ� ≤ κ0ψ0�λ� + κ2ψ2�λ� + o�ψ2�λ���(6.5.4)

where the ψn are as in (6.5.3) and κ0 and κ2 are computed either as in Weyl’s
formula when the Karhunen–Loève expansion is finite or via (6.4.14)–(6.4.16)
in the general case.

If, furthermore, Condition 4 is satisfied, then the inequality in (6.5.4) can be
replaced by an equality.

The four regularity conditions are as follows.

Condition 1. One of the following is true for some m > 0:

(i) There exist functions f and g such that

R�s� t� = g�f�s� − f�t���(6.5.5)

where f� g ∈ CmN2�T�, g is even and real valued in each of its coordinate(s)
and f is a real vector function of full rank.
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(ii) There exist integers N1 < N, N2 =N−N1 and N3 <∞ and functions
f� Hij� hi for i� j = 1� 
 
 
 �N3 such that

R�s� t� =
N3∑

i�j=1
hi�s�1��hj�t�1��hij�f�s�2�� − f�t�2����(6.5.6)

where f�hij ∈ CmN2�N+1��T�� hi ∈ C4, the hij are even and real valued in

each of their coordinate(s), f is a real vector function of full rank and s�1� =
�s1� 
 
 
 � sN1

�, s�2� = �sN1+1� 
 
 
 � sN�.

Condition 2. TheN×Nmatrix with componentsRij�t� = ∂2R�s� t�/∂si ∂tj �s=t
is nonsingular on T.

Condition 3. Truncate the Karhunen–Loève expansion of X to K terms, as in
(6.3.1), and form the corresponding functions γK as in (6.3.3) and manifolds
�K as in (6.4.1). The �K must have no boundary for all K > N.

Condition 4. For some θ0 > 0, the critical radii θKc of the tubes Tθ�γK� in �K

satisfy θKc ≥ θ0 for all K > N.

Some words on the conditions of Theorem 6.5.2 are called for. First, one
should remember that there is an implicit assumption behind all the condi-
tions that the sample paths are a.s. continuous, so that the Karhunen–Loève
expansion converges uniformly, with probability 1.

Condition 1 is easily checked. Stationary processes trivially satisfy (6.5.5),
and (6.5.6) covers many other cases. The various levels of differentiability are
also easy to check. The real problems arise in checking the assumptions on the
manifolds �K, and this seems, in most cases, to be an impossible task. There
are, in fact, two different problems here. The easier one is the issue of lack of
boundary. Whether or not this holds is a question of luck, and may not be much
harder to check in the “K = ∞” case than in the finite case. As an example,
consider the case of Brownian motion,Wt, on 0� T�, for which the Karhunen–
Loève expansion is given by (6.2.6) Here the sinusoidal eigenfunctions begin
at 0 when t = 0 and all end at 1 when t = 1, and so the manifolds γK have
a boundary for all K. This is despite the fact that the full distribution of
sup Wt is comparatively easy to compute (via the reflection principle) from
first principles.

The second, often more serious, problem lies in the assumption that θKc ≥ θ0
for all K > N, insofar that one cannot generally expect this to happen. To see
why this should be so, think of the simple case of T = 0� 1� and note that,
under this assumption, there is a precise upper bound, depending only on θ0,
on the number of times t ∈ T for which X�t� = X�0�. However, this random
variable is, for most interesting processes X, in principle, unbounded, and so
having it bounded (uniformly) for each approximation XK is unreasonable.

Nevertheless, we shall, in general, now treat the result of Theorem 6.5.2 as
if it were an approximation, regardless of our (in)ability to check Conditions
3 and 4.
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One comment on the mechanics of the proof of Theorem 6.5.2 is in order,
since it is rather important to understand how the application of precise tube
formulas leads to the asymptotic version of (6.5.4). The issue lies in the inte-
grand in (6.5.1) for large values of x. In this case, the equivalent tube problem
involves a tube of geodesic radius cos−1�λ/√x� which, of course, is close to
π/2. This being the case, one cannot expect the tube about � to have no self-
overlap, and so blindly applying a volume formula to estimate the integrand
yields to the overestimate of (6.5.4).

On the other hand, for large x, the density fK�x� is small, and so one could
hope that the overestimate, after integration against fK, would be small, and
an approximate equality obtained.

There is also a version of Theorems 6.5.1 and 6.5.2 in the case that the
manifold � does possess a boundary. This will be of major importance to us
in what follows.

Theorem 6.5.3 (Sun [109]). Under regularity conditions similar to those
in the preceding two theorems, as λ→∞,

P

{
sup
t∈T

X�t� > λ

}
= κ0ψ0�λ� + κ1ψ̂1�λ�

(6.5.7)
+ �κ2 +C1 + κ11�ψ2�λ� + o�ψ2�λ���

where ψ0� ψ2 and κ0� κ2 are as before, C1 is related to the curvature of ∂�
in the same way that κ2 is related to that of � , κ11 is related to the rotation
angles in the regions of ∂2� (the boundary of the boundary of � ) where two
faces meet, κ1 = �∂� � and

ψ̂1�λ� = 1
4πN/2

∫ ∞
λ2/2

u�N−2�/2 exp�−u�du
(6.5.8)

The main difference between the boundary case and the nonboundary case is
clearly the extra term in ψ̂1, which leads to an order in the expansion that
was not there earlier. It is rather interesting, in fact, that in Theorems 6.5.1
and 6.5.2 the powers of λ in the expansion always dropped by two at a time,
much as in the expression (3.2.5) for the mean DT characteristic, and not by
one at a time, as for the mean Euler characteristic in, for example, (3.3.8). We
shall have more to say about this soon.

It is not always easy to apply Theorem 6.5.3 without knowing a lot of ge-
ometry, but if N = 2 then κ0 + κ2 + κ1 + κ11 = 2πϕ�� �. Thus, for example, if
T is a rectangle, then we recover the result of Knowles and Siegmund21 [49]
(cf. the related Theorem 6.4.2) that

P
{
sup
t∈T

XK�t� > λ
}
=
( �� �λ
�2π�3/2 +

�∂� �
4π

+ 1
λ
+ o

(
1
λ

))
exp
(−λ2

2

)
as λ→∞.

21See the correction in [98], pages 621–622.
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Of course, this has taken us back to geometric computations on� . However,
with the usual notation for spectral moments, it is easy to check that, for
example, for a stationary process this is equivalent to

P

{
sup
t∈T

XK�t� > λ

}
(6.5.9)

=
( �%�1/2�T�
σ2�2π�3/2λ+

�λ11 + λ22��∂T�
8πσ

+ σ

λ
+ o

(
1
λ

))
exp
(−λ2
2σ2

)
as λ→∞.

6.6. Tubes versus Euler, or How accurate are the approximations: II. The
time has now come to attempt to tie together our two different approaches to
Gaussian extrema.

The last formula of the preceding subsection, (6.5.9), gave an expansion for
a Gaussian excursion probability which, by Theorem 6.5.3, and in terms of our
initial expansion (1.1.10) is correct up to “third order” in λ. This, of course, is
far more accurate than we deserve to get from the Poisson clumping heuristic
and expected Euler characteristics.

However, (6.5.9) should be reminiscent of Theorem 4.5.2, in which we used
the expected Euler characteristic to approximate excursion probabilities for
certain isotropic fields. In fact, it is not difficult to compute E�ϕ�Aλ�X�T���
in the setting of (6.5.9) and to discover that it is identical to the first three
terms on the right-hand side. In other words, for this quite common situation,
we have a proof that, under the conditions of Theorem 6.5.2, the Euler char-
acteristic/Poisson clumping argument gives an answer far beyond its expected
level of precision, without the requirement of isotropy, as in Theorem 4.5.2.
On the other hand, we do not have the fine superexponential bounds on the
error term that we had in the isotropic case,22 although I imagine that they
still hold, implying that the remainder term in (6.5.7) is really smaller than
indicated there.

How common is this situation? Here is a very specific, and rather compli-
cated, example, in which the details have been carefully worked out.

Consider the space–time, zero-mean Gaussian field defined by

X�x� t� = t−N/2
∫
�N

g
(y− x

t

)
W�dy��(6.6.1)

where x ∈ C ⊂ �N, 0 < t0 ≤ t ≤ t1 <∞,W is a Gaussian white noise on �N [so
that E�W�A�W�B�� = �A ∩B� for A� B ∈ �N] and g is a smooth kernel with∫
g2�x�dx = 1. This particular �N + 1�-parameter random field arises in an

N-parameter signal testing problem with variable resolution filter23 studied

22Note that using the Euler characteristic, and not something like the DT characteristic, is
crucial here, since the higher order terms are quite different for the two. The additional precision
comes from the boundary terms inherent in the Euler formulation.

23Which is where the extra parameter comes from.
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Fig. 8. The parameter set for the process of (6.6.1) �N = 2�.

in Siegmund and Worsley [98], from where all the following calculations are
taken and to where the reader should turn for details. The parameter space
is shown in Figure 8. Note that C can be quite arbitrary, and, in the general
case, need only have piecewise smooth boundary.

It is straightforward to see that the covariance function of X is given by

R��x� t�� �y� s��
(6.6.2)

= �s/t�−N/2
∫
g �z+ �x− y�/t� · g ��zs�/t� dz� t0 ≤ s ≤ t ≤ t1�

so that all the various spectral moments that were required in Section 3 for
computed expected Euler characteristics can now be derived with a little cal-
culus and a lot of patience. [To see why “spectral moments” is a sensible term
here, rewrite (6.6.3) in terms of a transformed time parameter τ = log t, and
time “differences” will appear in R. If you prefer not to think in terms of
spectral moments, think in terms of derivatives of R only.]

With notation a little different from that of the preceding sections, let

	 =
∫
∇g�z� · �∇g�z��′ dz� κ =

∫ [
z′ · ∇g�z� + 1

2
Ng�z�

]2
dz�(6.6.3)

so that 	 is, loosely speaking, made up of the spatial second-order spectral mo-
ments of X and κ measures the covariance between X�x� t� and ∂X�x� t�/∂t.

With this notation and applying the arguments of Section 3, we have the
following result.

Theorem 6.6.1 (Siegmund and Worsley [98]). Let ϕ�Aλ� be the Euler
characteristic of the excursion set of the random field X, defined by (6.6.1),
over the level λ. Assume that N = 3 and that the set C defining the parameter
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space has a twice differentiable boundary ∂C. Assume, furthermore, that X is
spatially isotropic, so there exists a positive constant ν for which 	 = νI in
(6.6.3). Then

E�ϕ�Aλ�� = E�ϕ ��x� t� ∈ C× t1� t2� 
X�x� t� ≥ λ��
= �C��t−31 − t−32

)
ν3/2κ1/2�λ3/3− λ�1− 1/κ��φ�λ�/�2π�2

+ ��C�/2� (t−31 + t−32 �ν3/2 �λ2 − 1�φ�λ�/�2π�3/2

+ ��∂C�/4� (t−21 − t−22 �νκ1/2 �λ2 − 1+ 1/κ�φ�λ�/�2π�3/2

(6.6.4) +��∂C�/4��t−21 + t−22 �νλφ�λ�/�2π�
+�H�∂C�/π��t−11 − t−12 ��νκ�1/2λφ�λ�/�2π�
+�H�∂C�/�2π���t−11 + t−12 �ν1/2φ�λ�/�2π�1/2

+ ϕ�C� log�t2/t1�κ1/2φ�λ�/�2π�1/2

+ ϕ�C���λ��

where H�∂C� is the mean curvature of ∂C (e.g., Santaló [90]), and φ and �
are, respectively,the standard Gaussian density and tail functions.

A similar result also holds for piecewise smooth ∂C, but then H�∂C� also
includes terms related to the angles at joins. See [98] for details, as well as the
corresponding formula when N = 2, and [123] for generalizations to arbitrary
dimensions.

This is a rather long expression, and the only reason I have included it
to show how involved it is. Note that the powers of λ here run from λ3

to λ−1, that is, a five-term expansion. As usual, we could use E�ϕ�Aλ��,
via the Poisson clumping heuristic, to approximate the excursion probabil-
ity P�sup�x� t�∈C×t1� t2�X�x� t� ≥ λ�, but without a great deal of information as
to how accurate the expansion would be as regards terms beyond the first.

So far there are no surprises. The big surprise comes in that Siegmund and
Worsley also made a careful tube formula–based computation of the previous
excursion probability, which they found to be identical to E�ϕ�Aλ�� up to
order o�λ−1�. Thus the Euler characteristic/Possion clumping approach is, in
this case, accurate up to five (=N+ 2) terms, one term beyond what we have
come to expect.24

It is very hard to say how widespread this phenomenon is. Some calculations
by Slava Sigal, a Stanford Ph.D. student of Siegmund’s, indicate that it may be
true for all “nice enough” Gaussian fields over star-shaped domains. However,

24And, in the isotropic case, also proven to hold.
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no general theory, or even explanation, exists at this point. Nevertheless, we
do have the:

Punchline of this paper. In computing excursion probabilities for
smooth enough Gaussian random fields over reasonable enough regions, the
expected Euler characteristic of the corresponding excursion sets gives an ap-
proximation, for large levels, that is accurate to as many terms as there are in
its expansion.

“Proof.” Theorem 4.5.2 gives this in the smooth, homogeneous, isotropic
case. The discussion of Section 5.2 shows that it is true for fields over param-
eter sets without boundary. The discussion at the beginning of this subsection
proves the “Punchline” for smooth processes on a rectangle. Theorem 6.6.1
and the discussion following it provides a proof for a specific process in �3.
Star-shaped sets have been looked at by Sigal. For the general case, see the
challenge of Section 7.1.

6.7. Statistical applications. Throughout the discussion on tube formulas,
I have had very little to say about their general application out of the Gaussian
setting or as a general tool of statistical analysis, which, after all, is where
they began in Hotelling’s original paper [41]. However, the interested reader
can turn to the following papers, which cover various problems, primarily in
hypothesis-testing situations, to see these tools in action in a wider class of
problems: [45] by Johansen and Johnstone for an excellent introduction to the
area, [70, 71] by Naiman and Wynn, [49, 96, 98, 99] by Siegmund and his
coworkers, and [106, 108] by Sun.

6.8. Karhunen–Loève and the density of the maximum. I would be amiss if
I did not point out somewhere that the Karhunen–Loève approach of (6.3.1)–
(6.3.4) can also be used (without the need for tube formulas, but with other
surface area computations) to study the existence and properties of the density
of supTX in quite general situations. Hence this subsection.

For details, see Cirelśon [20], Diebolt and Posse [27–29] and the references
therein.

7. Directions for research. I feel a little uncertain about add-
ing this section, since Joe Gani taught me, over two decades ago, that the most
interesting directions for new research in probability are usually generated by
modeling needs rather than by pontificating probabilists. Nevertheless, here
are some thoughts:

7.1. Deeper connections and issues of accuracy. One of the most intriguing
themes of this review has been how well the expected Euler characteristic
matches up with the excursion probability. In all the cases where this could
be shown, the proof was extremely indirect, in that both expressions were
computed and seen to be the same. It would be very nice to somehow establish,
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in a more formal sense, that the two (under appropriate conditions) must be
the same, thereby alleviating the need to compute them both.

The Slepian model processes of Section 4.2 do indicate, via sample paths,
that the two should be similar, and this is the justification behind the Poisson
clumping heuristic. However, these do not show why the agreement should be
to as high a degree as it is.

At this point, I cannot see any way in which to do this, but have the feeling
(and have had for some time) that we are all missing some “obvious” deeper
connection here.

One immediate application of such a result would be the lifting of the as-
sumption of the diagonality25 of % in Theorem 4.5.2, without having to reprove
the theorem from scratch.

If such a deeper connection exists, then it may also be possible to exploit it
to extend the basically Gaussian set of results that we have to non-Gaussian
cases and so see how accurate are the mean Euler characteristic expressions
as approximations to excursion probabilities there. The importance of this
lies in the fact that while for many non-Gaussian cases we do know how to
compute long expressions for the mean Euler characteristic (cf. Section 3.5)
we do not know how to compute decent expansions for excursion probabilities.

7.2. Non-Gaussian processes: II. As just mentioned, it also would be nice
to develop expansions like (1.1.10) for the excursion probabilities of non-Gauss-
ian processes and fields from their mean Euler characteristic in many cases.
In fact, there is no a priori reason not to follow the logic of the Gaussian
case and simply identify the two expressions. However, I know of no rigorous
justification for this for any non-Gaussian process.

Alternatively, one can try to extend the tube approach to the non-Gaussian
scenario, an approach that should work only in special cases, but then should
work well.

For example, go back to the Karhunen–Loève expansion (6.2.4), but now
with non-Gaussian ξn. The tube approach will still work as before, as long as
after the normalization in (6.3.3) we still have that the Uk = ξk/�

∑
j ξ

2
j�1/2 are

uniformly distributed on the sphere. That is, we require some sort of spherical
symmetry for the ξk.

McCormick [65] has adopted this approach when the “Karhunen Loève”
expansion is finite, and ξ ≡ �ξ1� 
 
 
 � ξn�, where n is the order of the expansion,
has a spherically symmetric distribution, and the distribution of �ξ� either has
compact support or is in the (extremal) domain of attraction of exp�−e−x�. For
this situation, he has found the first two terms in an expansion like (1.1.10).

An interesting example of a non-Gaussian computation for a smoothed Pois-
son field can be found in [82], but this is a very different class of processes
from those we have considered.

25Which I am quite certain is an artificial condition resulting only from the style of the proof.
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It also would be rather interesting to extend this approach to the heavy-
tailed scenario, and so improve on first-order results for the suprema of stable
processes as in Marcus and coworkers [59, 61], Samorodnitsky and Taqqu [89]
and related papers. As an aside, it is worth noting that it is not at all clear
that the Euler characteristic approach has much to offer in this scenario,
since no examples of mean Euler characteristics for stable fields have yet
been computed. In fact, even for stable processes on the line, only first-order
approximations to the mean level crossing rates are known; cf. [5, 60, 62].

7.3. Nonstationary fields. In Section 4.4, we noted how difficult, in prac-
tice, it can be to do computations in the nonstationary case. Nevertheless,
nonstationary processes really do arise in many practical cases. This is clearly
an area that requires more attention. As mentioned there, Shafie’s approach
[92, 93] via computer algebra seems extremely promising.

7.4. Random fields on manifolds. Although it may seem so at first sight,
this is not a suggestion about generalisation for its own sake. Examples of
fields on manifolds, and related excursion problems, arise in both of the ex-
amples I used to motivate this paper. In the brain mapping situation, the
natural manifold of study is the surface of the cortex. In the astrophysical
problem, manifolds arise naturally in two ways. The first is a sampling issue.
As described in the Introduction, the COBE data, along with similarly ob-
tained data sets, are really on a sphere. The second, more fundamental way is
due to the basic structure of galaxies themselves, which tend to self-organise
on two-dimensional manifolds in space.

Piterbarg and coworkers [66, 71] already have some basic results about
excursion probabilities for Gaussian processes on manifolds. Worsley [121]
adopts the Euler characteristic approach to the manifold setting by first “thick-
ening” the manifold, so that it becomes a “nice” set in its ambient space. One
can then apply the usual Euler characteristic approach, and ultimately “thin”
the results of that analysis to obtain results on the manifold.

Both of these papers, however, seem to represent only the tip of a very
interesting iceberg.

7.5. The distribution of the empirical Euler characteristic. Throughout this
paper, we have concentrated on the expectation of the Euler characteristic and
have had nothing to say about its distribution. In fact, based on experience
with level crossings, Nλ�T�, in one dimension, it is unlikely that this is a nut
we shall ever be able to crack.

Nevertheless, in one dimension there do exist central limit theorem–style
results for

Nλ�T� −E�Nλ�T��√
T

as T → ∞ (cf. [25], [58]). While this is not really the scenario that interests
us (since we have always dealt with T of a fixed size), it is nevertheless of
interest and far more tractable than the nonasymptotic situation.
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In view of the above, one assumes that CLTs also exist for the empirical
Euler characteristic ϕ�Aλ�X� T�� as �T� → ∞. In fact, functional CLTs should
also be provable, so that the test statistic

sup
−∞<λ<∞

ϕ�Aλ�X� T�� − E�ϕ�Aλ�X� T���
n�λ� T�

(with n a normalizing function) of (3.6.1) should converge to a nice limit as
well, as �T� → ∞. Of course, since one assumes that the ratio here, considered
as a function of λ, should converge weakly to a Gaussian process, finding the
distribution of supremum takes us back to (1.1.1), and so we have come full
circle.

This has to be a good place to stop, and perhaps turn to filling in all the
missing details in the last 69 pages by getting back to work on [3].
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reinfecting me. Jiayang Sun, some of whose work is described in Section 6 on
tube formulas, showed amazing patience in helping me begin to understand
what was going on there.

Much of this paper was written at the Mathematical Sciences Research
Institute in Berkeley, during its special year on stochastic analysis. I thank
the organisers for allowing me to work on Gaussian processes in their Markov
midst.

Notes added in proof. In the 18 months between posting this paper on my
Web page, and its reaching proof stage, three important developments have
taken place.

1. A. Takemura and S. Kuriki, in “Maximum of Gaussian field on piece-
wise smooth domain: Equivalence of tube method and Euler characteristic
method” available at www.e.u-tokyo.ac.jp/∼takemura, have studied pro-
cesses with finite Karhunen-Loève expansion of the form

∑K
1 tkξk, where

the ξk are iid standard Gaussian, and t = �t1� 
 
 
 � tK� ranges over a man-
ifold in SK−1 with piecewise smooth boundary. They have shown that also
for these processes the “Punchline” of §6.6 is correct: The Euler charac-
teristic and tube approaches to computing excursion probabilities give the
same asymptotic result. Their proof is more “intrinsic” than those in this
paper, and may contain the kernel of what is needed to establish the Punch-
line in general, without resorting to actually computing the answer by each
technique and then comparing results. In order to prove their result, they
also establish a version of Morse’s Theorem (Theorem 3.1.2) that is valid
for manifolds with piecewise smooth boundary, a result of independent
interest.
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See also “Distribution of the maximum of Gaussian random field: tube
method and Euler characteristic method” (in Japanese), Proc. Inst. Stat.
Math. 47 201–221 (1999).

2. The same authors, in “Tail probability via tube formula and Euler charac-
teristic method when critical radius is zero,” available at the same web site,
have also found some examples (for which the critical radius of (6.4.6) is
zero) where the Euler characteristic and tube approaches disagree, and both
give the wrong answer. The fields they study here are all non-Gaussian.

3. In work under progress, Jonathan Taylor (a doctoral student at McGill
and the Technion) has found explicit expressions for the expected Euler
characteristic of a constant variance Gaussian process defined over quite
general (abstract) manifolds, with boundaries. His work also includes a
more general version of Morse’s Theorem, again of independent interest.
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