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CONSERVATIVE DELTA HEDGING1

By Per Aslak Mykland

University of Chicago

It is common to have interval predictions for volatilities and other
quantities governing securities prices. The purpose of this paper is to pro-
vide an exact method for converting such intervals into arbitrage based
prices of financial derivatives or industrial or contractual options. We call
this procedure conservative delta hedging. The proposed approach will per-
mit an institution’s management a greater oversight of its exposure to risk.

1. Introduction. How should one hedge an option when there is uncer-
tainty about the probability distribution governing the underlying security?
Apart from the possibility of substantial jumps in prices, this is perhaps the
most major issue facing institutions that sell and hedge options.

It should be emphasized right away that there are, in fact, two such ques-
tions. Suppose that P is the true probability distribution of the underlying
securities. One can now divide the problem into:

1. The “probabilistic problem”: P is fixed and known, but the “risk neutral
probability” P∗ [Harrison and Kreps (1979), Harrison and Pliskà (1981),
Delbaen and Schachermayer (1994, 1995)] is unknown.

2. The “statistical problem”: P is not known.

The bulk of existing literature focuses on case (1). A broader formula-
tion of this problem is to say that there is some form of incompleteness or
other barrier to perfect hedging. This usually is the same as saying that P∗

is unknown [though see, in particular, Delbaen and Schachermayer (1994,
1995)]. Strategies in such circumstances include super hedging [including Cvi-
tanić (1998), Cvitanić and Karatzas (1992, 1993), Cvitanić, Pham and Touzi
(1999a, b), El Karoui and Quenez (1995), Eberlein and Jacod (1997), Karatzas
(1996), Karatzas and Kou (1996, 1998) and Kramkov (1996)]; mean variance
hedging [Föllmer and Schweizer (1991), Föllmer and Sondermann (1986),
Schweizer (1990, 1991, 1992, 1993, 1994) and later also Delbaen and Schacher-
mayer (1996), Delbaen, Monat, Schachermayer, Schweizer and Stricker (1997),
Laurent and Pham (1999) and Pham, Rheinländer, and Schweizer (1998)];
quantile style hedging [see, in particular, Külldorff (1993), Cvitanić (1998),
Spivak and Cvitanić (1999) and Föllmer and Leukert (1999, 2000)]. There is
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also work on hedging in additional market traded securities, which can be
done, for example, in the presence of a stochastic volatility model [see, e.g.,
Ball and Roma (1994), Hofmann, Platen and Schweizer (1992), Hull and White
(1987), Pham and Touzi (1996) and Renault and Touzi (1996); see also Duffie
(1996), Chapter 8.H].

In this paper, however, we shall confront question (2): what should one do
when the probability distribution P of the underlying securities is unknown.
Specifically, suppose one has a set � of such probability distributions. Is there
a way of hedging a given option so that the strategy at least finances the payoff
no matter what the probability P is in � ? In other words, how can one convert
� into a replicating strategy?

We shall show that such strategies exist, and that the general form is simi-
lar to that obtained for super hedging for given P (Sections 3, 5 and 6). We also
show that the form of such strategies can be surprisingly simple, and we pro-
vide expressions for European options with convex payoffs (Sections 2 and 4).
The relationship to the super hedging literature cited above is discussed just
after Theorem 3.1.

A main contribution of our results is to provide a way of putting an inter-
val representing uncertainty around the value of an institution’s portfolio.
The lack of such intervals would appear to be a serious problem, in that it
reduces the effectiveness of management oversight and government regula-
tion. Such issues seem to have been a major factor behind a number of recently
reported substantial losses involving derivative securities. Headline-grabbing
cases include those of the Bank of Tokyo-Mitsubishi (see, for example, arti-
cle “Bank of Tokyo blames loss on bad model” in The Wall Street Journal,
March 28, 1997, page A3), National Westminster Bank (The Guardian, April
23, 1997, Section 1, page 24), and the Union Bank of Switzerland (see The
Economist, January 31, 1998, pages 18, and 75–77, including article, “Blind
faith”). On top of that, there is the room which the lack of oversight gives to
straightforward fraud.

An aspect of this problem is that accounting rules tend to try to mark
the portfolio to market as much as possible. For illiquid instruments, this
sometimes involves using prices arising from reported transactions where the
price is quite wrong. Somebody had a bad day. Nonetheless, such a price is
forced on others for accounting purposes. The methodology developed in this
paper provides an alternative in this respect.

Previous literature on this subject has looked at the case where � is the
set of all diffusions for which the volatility falls within a certain interval at
all times t. [Avellaneda, Levy and Paras (1995), and Lyons (1995); compare
Example 4 in Section 3 of this paper. See also Bergman, Grundy and Wiener
(1996), El Karoui, Jeanblanc-Picqué and Shreve (1998) and Hobson (1998),
though the intent of these papers appears more to be about robustness than
about prediction regions.] We shall see that the more general construction pro-
vided in this paper can provide substantially lower starting values for hedging
strategies. Apart from this literature, confidence or prediction regions seem at
this time to mainly be used in an ad hoc fashion. The value-at-risk literature
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is an example of this [see Duffie and Pan (1997) for a review]. New work, how-
ever, by Cvitanić and Karatzas (1998) and Karatzas and Zhao (1998) seems
to point toward putting value-at-risk on a more solid footing.

How is the set � of probabilities given? It can be a confidence or Bayesian
set, or it can be based on “expert judgement.” If one uses statistical meth-
ods, there is a substantial literature on inference for stochastic differential
equations in finance. Highlights include Aı̈t-Sahalia (1996, 1998), Andersen
and Lund (1997), Bandi (1998), Bandi and Phillips (1998), Barndorff-Nielsen
(1997), Barndorff-Nielsen and Shephard (1998), Bibby and Sørensen (1995,
1996a, b), Dachuna-Castelle and Florens-Zmirou (1986), Danielsson (1994),
Florens-Zmirou (1993), Foster and Nelson (1996), Gallant and Tauchen (1997),
Hansen and Scheinkman (1995), Hansen, Scheinkman, and Touzi (1998),
Jacquier, Polson and Rossi (1994), Kessler and Sørensen (1999), Küchler and
Sørensen (1998) and Lo (1987, 1988). For related discrete time processes, see
Bollerslev, Chou and Kroner (1992) for an overview of ARCH and GARCH
models.

In other words, this paper itself is not about statistical inference. Instead,
it provides a way of converting the results of statistical inference into trading
algorithms.

2. Conservative delta hedging. The approach we argue in this paper is
the following: take a conservative stab at predicting the cumulative volatility
and interest rate. Then hedge according to the (approximate) actual volatility
and interest. This uses sharply the well-posed feature of our system—that one
approximately observes the current interest rate and volatility. On the other
hand, it guards against excessive reliance on the ill-posed one, namely the
comparative lack of knowledge about P.

The basic idea, and the fact that it works, can be illustrated in the context
of European call options. Suppose that a stock follows

dSt = µtSt dt+ σtSt dWt(2.1)

and pays no dividends, and that there is a risk free interest rate rt. Both rt
and σt can be stochastic and random. They, and St, have to be adapted to some
underlying filtration, but it is not necessary to specify this filtration further.
We are not saying, for example, how many “factors” there must be. This is
similar to specifying a σ-field for one’s space of outcomes; it is there, but it is
anonymous.

Example 1. Consider a European call with strike price K that pays off at
time T. Let

C�S�R��� = S��d1� −K exp�−R���d2��(2.2)

where

d1 = �log�S/K� +R+�/2�/
√
�(2.3)

and d2 = d1 −
√
�. Note that if r and σ were fixed constants, then the Black–

Scholes–Merton [Black and Scholes (1973), Merton (1973)] price of the option



CONSERVATIVE DELTA HEDGING 667

at time t and stock price S would be C�S� r�T−t�� σ2�T−t��. We are, however,
proposing to use the function (2.2) and (2.3) for more general purposes.

Consider the instrument whose value at time t is

Vt = C�St�Rt��t��(2.4)

where

Rt = R0 −
∫ t
0
ru du and �t = �0 −

∫ t
0
σ2u du�(2.5)

In equation (2.5), rt and σt are the actual observed quantities. As mentioned
above, they can be stochastic and random.

Now suppose that

R0 ≥
∫ T
0
ru du and �0 ≥

∫ T
0
σ2u du�(2.6)

By using Itô’s formula, we shall see that no matter how rt and σt actually
otherwise behave (and whether they are random or nonrandom), there is a
self-financing strategy for Vt, based on hedging in the security St and the
money market bond

βt = exp
(∫ t

0
ru du

)
�(2.7)

The reason why Vt is self financing, is that
1
2CSSS

2 = C� and −CR = C−CSS�(2.8)

This can be obtained directly by differentiating (2.2). Also, the first of the two
equations in (2.8) is the well-known relationship between the “gamma” and
the “vega” [cf., for example, Chapter 14 of Hull (1997)].

Hence, by Itô’s Lemma, dVt equals

dC�St��t�Rt� = CS dSt + 1
2CSSS

2
t σ

2
t dt+C�d�t +CRdRt

= CS dSt + �C−CSSt�rt dt+ 	 12CSSS2
t −C�
σ2t dt(2.9)

+ 	−C+CSSt −CR
rt dt�
In view of (2.8), the last two lines of (2.9) vanish, and hence there is a self-
financing hedging strategy for Vt in St and βt. The “delta” (the number of
stocks held) is C′

S�St�Rt��t�.
Furthermore, since C�S���R� is increasing in � and R, (2.6) yields that

VT = C�ST��T�RT�
≥ lim
�↓0�R↓0

C�ST���R�(2.10)

= �ST −K�+

almost surely. In other words, one can both synthetically create the security
Vt, and one can use this security to cover one’s obligations.
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The above is sufficiently innocent looking that it should be emphasized that
it is not trivial. Keep in mind that it is true for all probability distributions
under which (2.6) is satisfied with probability 1. We again emphasize that this
includes stochastic volatility and stochastic interest rates.

Note that a lot of this example carries over to general European options. In
particular, for payoff f�ST�, one can write the Black–Scholes–Merton price of
the option as

C�S���R� = exp�−R�Ef
(
S exp

(
R−�/2+

√
�Z

))
�(2.11)

where Z is standard normal [see, for example, Chapter 6 of Duffie (1996)].
Hence (2.8) follows by differentiation for all European options. For noncall
options, however, it may be more suitable to specify intervals in a different
manner to assure (2.10).

Unless the cumulative interest is actually known beforehand, however, the
scheme given above is not quite right. This is in the sense that a lower price
can usually be found as the starting point for a self-financing strategy satis-
fying (2.10). The following is an example of this.

Example 2. What the procedure in Example 1 overlooks, is that the price
�0 of the zero coupon bond maturing at T is actually known (at least in most
markets). This bond satisfies

�t = E∗
[
exp

(
−
∫ T
t
ru du

)∣∣∣∣�t
]
�(2.12)

where P∗ is the risk-neutral distribution, and the procedure we have given
ignores that. A consequence, for example, is that if one prices a forward con-
tract the same way, one gets the price wrong.

It will sometimes be the case that the existence of security �t will also make
lower bounds for r and σ active, and one can consider replacing (2.6) by

R+ ≥
∫ T
0
ru du ≥ R− and �+ ≥

∫ T
0
σ2u du ≥ �−�(2.13)

We shall see in Section 4 how to compute the value of the call option in this
case. We show that if v0 solves

�
(
d2�S0� v0��

+�) = exp�−R−� − �0

exp�−R−� − exp�−R+� �(2.14)

where � is the cumulative normal distribution and in the same notation
as in (2.2) and (2.3), then one can start a super-replicating strategy with the
price at time zero given in the following:

v0 ≥R+
 C�S0�R
+��+�

R+ > v0>R
−
 C�S0� v0��

+�
+K(

exp�−v0� − exp�−R+�)�(d2�S0� v0��
+�)

v0 ≤R−
 C�S0�R
−��+� +K(

exp�−R−� − �0
)
�

(2.15)

An illustration of the improvement over Example 1 is given in Figure 1.
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Fig. 1. Option price as − log��0� varies betweenR− andR+. Three ways of pricing European call
options in the presence of restrictions (2.13). The upper dashed line is based on the strategy from
Example 1, while the heavily dotted line uses the strategy from Example 2. The almost diagonal
lower line is the plug-in price C�S0�− log�0��+�. The latter cannot be used as the starting value
of a conservative hedging strategy, but is included for reference. Parameter values are �+ = 0�04,
R− = 0�04 and R+ = 0�07. The option is at the money �K = S0�.

In the presence of market traded derivatives, one can further bring down
the starting value of the trading strategy by hedging in these in addition to
the zero coupon bond.

3. General theory. Consider a filtered space ���� ��t�0≤t≤T, and adapted
continuous processes S�1�

t � � � � � S
�p�
t , representing traded securities paying no

dividends. Here rt is an adapted processes representing the risk-free interest
rate, and βt = exp�∫ t0 ru du� is the value at time t of one dollar deposited in
the money market at time 0. � is a set of probability distributions on ���� �.

We find ourselves in the following situation. We stand at time t = 0,
and we have to make a payoff η at a (nonrandom or stopping) time τ; η is
�τ-measurable. We do not know what the probability distribution for this sys-
tem is, but we know that it is an element in � . We are looking for hedg-
ing strategies in S�1�

t � � � � � S
�p�
t � βt that will superreplicate the payoff with

probability 1.
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Definition. A property will be said to hold � -a.s. if it holds P-a.s. for all
P ∈ � . For any process Xt, X∗

t = β−1Xt, and vice versa.
A process Vt�0 ≤ t ≤ T, is said to be a superreplication of payoff η provided

Vt is adapted, cadlag and provided:

(i) One can cover one’s obligations,

Vτ ≥ η(3.1)

� -a.s.
(ii) For allP ∈ � , there are processesHt andDt, so that, for all t, 0 ≤ t ≤ T,

Vt =Ht +Dt� 0 ≤ t ≤ T�(3.2)

where D∗
t is a nonincreasing process and where Ht is self financing in the

traded securities S�1�
t � � � � � S

�p�
t .

“Self financing” means, by numeraire invariance [see, for example, Section 6.B
of Duffie (1996)], that H∗

t can be represented as a stochastic integral with
respect to the S�i�∗

t ’s, subject to regularity conditions to eliminate doubling
strategies. There is some variation in how to implement this [see, e.g., Duffie
(1996), Chapter 6.C, (pages 103–105)]. For this reason, the precise definition
is deferred until after the main theorem and some examples (see Section 5).

What should the price be for a promise of a payoff η? A natural hedging
based approach is as follows [cf. Cvitanić and Karatzas (1992, 1993), El Karoui
and Quenez (1995) and Kramkov (1996)].

Definition. The conservative ask price (or offer price) at time 0 for a payoff
η to be made at a time τ is

A = inf�V0
 �Vt� is a superreplication of the payoff��(3.3)

Similarly, the conservative bid price can be defined as the supremum over all
subreplications of the payoff, in the obvious sense.

The conservative bid price B equals

B�η� = −A�−η�(3.4)

in obvious notation, and subject to mild regularity conditions. For this reason,
it is enough to study ask prices. More generally, if one already has a portfolio of
options, one may wish to chargeA�portfolio+η�−A�portfolio� for the payoff η.

To give the general form of the ask price A, we consider an appropriate set
� ∗ of “risk neutral” probability distributions P∗.

Definition. Set

� = �C ⊆ �
 ∀P ∈ � ∃E ∈ � 
 C ⊆ E and P�E� = 0��(3.5)

� ∗ is now defined as the set of probability measures P∗ on � whose null
sets include those in � and for which S�1�∗

t � � � � � S
�p�∗
t are martingales. We
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also define � e as the set of extremal elements in � ∗. Pe is extremal in � ∗ if
Pe ∈ � ∗ and if, whenever Pe = a1Pe1 + a2Pe2 for a1, a2 > 0 and Pe1, P

e
2 ∈ � ∗,

it must be the case that Pe = Pe1 = Pe2.

Subject to regularity conditions, we shall show that there is a superreplicat-
ing strategyVt with initial valueA, and characterize the set of such strategies.
Under weak additional assumptions, it will be the case that

A = sup�E∗�η∗�
 P∗ ∈ � ∗��(3.6)

where

η∗ = exp
{
−
∫ T
0
ru du

}
η�(3.7)

The result (3.6) hinges on the existence of the “essential suprema”

A∗
t = ess sup�E∗�η∗ � �t�
 P∗ ∈ � ∗��(3.8)

Equation (3.8) means that A∗
t is (in a suitable sense) the smallest measurable

random variable so thatA∗
t ≥ E∗�η∗ � �t� for allP∗ ∈ � ∗. An exact definition of

this object is given in the Appendix. We can then state the following theorem.

Theorem 3.1. Assume the following conditions on the system: ��t� is right
continuous; �0 is the smallest σ-field containing � ; the S�i�

t are � -a.s. contin-
uous and adapted; the short rate process rt is adapted, and integrable � -a.s.;
every P ∈ � has an equivalent martingale measure, that is to say that there is
a P∗ ∈ � ∗ that is equivalent to P. Also assume the following conditions on the
payoff: 0 ≤ τ ≤ T, where T is nonrandom and finite, η is �τ-measurable, and

sup
P∗∈� ∗

E∗�η∗� <∞�

Define the following conditions. �E1): If X is a bounded random variable and
there is aP∗ ∈ � ∗ so thatE∗�X� > 0, then there is aPe ∈ � e so thatEe�X� > 0.
�E2): There is a real numberK so that �η∗ ≥K�c ∈ � . Let A be given by (3.3).

(i) Suppose that �Vt� is an adapted process satisfying (3.1). Assume either
condition �E1� or �E2�, or that �Vt� is continuous. Then �Vt� is a superreplica-
tion of η if and only if �V∗

t � is a cadlag supermartingale for all P∗ ∈ � ∗.
(ii) Suppose that a superreplication of η exists, and assume condition �E1�

or condition �E2�. Then there is a superreplication so that V0 = A.
(iii) Assume that the right-hand side of (3.8) is well defined for all t, 0 ≤ t ≤

T. Assume either condition �E1� or �E2� or that �At� can be taken to be continu-
ous. Then �At� has a right continuous modification which is a superreplication
of η, A0 = A, and A is given by (3.6).

Note that under condition �E2�, Theorem 3.1(i) is a corollary to Theorem 2.1
(p. 461) of Kramkov (1996). This is because � ∗ includes the union of the equiv-
alent martingale measures of the elements in � . For reasons of symmetry,
however, we have also sought to study the case where η∗ is not bounded below,
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whence the condition �E1�. The need for symmetry arises from the desire to
also study bid prices; compare (3.4). For example, neither a short call nor a
short put are bounded below. See Section 5.

Also note that the main difference between this paper and the literature on
superhedging for given P [such as Kramkov (1996) and other papers cited in
the introduction] is that we have to deal with things like essential suprema in
the undominated case. These do not automatically exist; see also the develop-
ment in the Appendix. This structures the conditions, definitions and results
in this section.

A requirement in the above theorem that does need some comment is the
one involving extremal probabilities. Condition �E1� is actually quite weak,
as it is satisfied when � ∗ is the convex hull of its extremal points. Sufficient
conditions for a result of this type are given in Theorems 15.2, 15.3 and 15.12,
pages 496–498, in Jacod (1979). For example, the first of these results gives
the following as a special case (see Section 6). This will cover our examples.

Proposition 3.2. Assume the conditions of Theorem 3.1. Suppose that rt
is bounded below by a nonrandom constant (greater than −∞). Suppose that
��t� is the smallest right continuous filtration for which �βt�S�1�

t � � � � � S
�p�
t � is

adapted and so that � ⊆ �0. Let C ∈ �T. Suppose that � ∗ equals the set of
all probabilities P∗ so that �S�1�∗

t �� � � � � �S�p�∗
t � are P∗-martingales, and so that

P∗�C� = 1. Then Condition �E1� is satisfied.

Example 3. To see how the above works, consider systems with only one
stock (p = 1). We let �βt�St� generate ��t�. A set C ∈ �T will describe our
restrictions. For example, C can be the set given by (2.6), or (2.13), or (3.11)
below. The fact that σt is only defined given a probability distribution is not
a difficulty here: we consider P’s so that the set C has probability 1 (where
quantities like σt are defined under P).

One can also work with other types of restrictions. For example,C can be the
set of probabilities so that (2.13) is satisfied, and also )− ≤ 	r� σ
T ≤ )+. Only
the imagination is the limit here. Of course, as we shall argue in Example 4,
some “prediction” sets are better than others, and determining such good sets
is an interesting question for further research.

Hence, � is the set of all probability distributions P so that S0 = s0 (the
actual value),

dSt = µtSt dt+ σtSt dWt�(3.9)

with rt integrable P-a.s., and bounded below by a nonrandom constant, so
that P�C� = 1, and so that

exp
{
−
∫ t
0
λu dWu −

1
2

∫ t
0
λ2u du

}
is a P-martingale�(3.10)

where λu = �µu−ru�/σu. The condition (3.10) is what one needs for Girsanov’s
theorem [see, for example, Karatzas and Shreve (1991), Theorem 3.5.1] to hold,
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which is what assures the required existence of an equivalent martingale
measure. Hence, in view of Proposition 3.2, Condition �E1� in Theorem 3.1 is
taken care of.

To gain more flexibility, one can let ��t� be generated by more than one
stock, and just let these stocks remain “anonymous.” One can then still use
condition �E1�. Alternatively, if the payoff is bounded below, one can use
condition �E2�.

Example 1 (Continued from Section 2). This can fall under Example 3
above, by taking C to be the set where (2.6) holds. In this case, however, the
problem is already solved in Section 2 by guessing the form of At and then
applying Itô’s lemma. The reason why this is the least expensive strategy is
that the stated upper bound coincides with the Black–Scholes–Merton (1973)
price for constant coefficients r = R0/T and σ2 = �0/T. This is one possi-
ble realization satisfying the constraint (2.6). Theorem 3.1, however, gives a
systematic way of arriving at the same result.

Example 2 (European call; hedging in the stock and a zero coupon bond.
Continued from Section 2). Here, p = 2, S�1�

t = St, S�2�
t = �t. This does not

fall under Example 3. Further details are explored in Section 4.

Example 4 [Avellaneda, Levy, and Paras (1995)]. The setup can be covered
by Example 3, but now the interest rate r is constant and nonrandom, and C
is the set for which

σt ∈ 	σ−� σ+
 for all t ∈ 	0�T
�(3.11)

To make the set C-measurable, one can suppose, for example, that σt is cadlag.
With this assumption, a superreplicating strategy is constructed for Euro-
pean options based on the Black–Scholes–Barenblatt equation [cf. Barenblatt
(1979)].

For the same reasons as in Example 1, the price given by Avellaneda, Levy
and Paras (1995) is the conservative ask price. Note, however, that the hedging
strategy presented by that paper is not the one used here. Instead of basing
themselves on the actually accrued volatility [as in (2.5)], they hedge based
on a worst case nonobserved volatility. The reason why they can get away
with this is that the method of specifying conservativeness is particularly
conservative; if one supposes a volatility model, say,

dσt = ν�σt�dt+ γ�σt�dBt�(3.12)

a 95% (say) bound of the type (3.11) yields a much higher price than one of
the type (2.6), since the latter involves the average of σ2t while the former
depends on the maximum and the minimum of this process. The high prices
that are inherent in the Avellaneda, Levy and Paras (1995) approach has
been commented on by Ahn, Muni and Swindle (1996a, b), who suggest ways
of alleviating the effect.
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4. A case study: convex European options hedged in a stock and a
zero coupon bond. As in Example 2 (see Sections 2 and 3), p = 2, S�1�

t = St,
S

�2�
t = �t. � is assumed to be the set of probability measures where:

1. St and �t are continuous and adapted semimartingales, with S0 = s0 and
�0 = λ0 (the actual values); rt is adapted, integrable and bounded below
by a nonrandom constant.

2. 	logS� logS
t is absolutely continuous (w.r.t. Lebesgue measure), with
derivative σ2t .

3. (2.13) holds.
4. Every P ∈ � has an equivalent martingale measure P∗, that is, P∗ ∼ P,

so that S∗
t and �

∗
t are P

∗-martingales.

In view of Girsanov’s theorem, the last condition is tantamount to imposing
conditions along the lines of what we did with Example 1 in Section 2.

We consider ask prices of options with payoff η = f�ST� at (nonrandom)
time T, where f is convex. This includes calls and puts. For convenience,
we suppose that f is bounded below. Hence can we invoke condition �E2� of
Theorem 3.1.

First, as far as (2.13) is concerned, �+ is attained. This is because, if not,
one can rescale time r̃t = rt/�1−ε�, S̃t = St/�1−ε� for 0 ≤ t ≤ T�1 − ε�, with
r̃t = 0 for �1 − ε�T ≤ t ≤ T and let S̃t run up the full unused volatility
on the same interval, say σ̃2t = ��+ − �T−ε�/ε. In other words, suppose that
Ã0 = E∗ exp�− ∫ T

0 ru du�f�ST� is within δ of the maximum. Then rewrite

Ã0 = E∗ exp�− ∫ T−ε
0 r̃u du�f�S̃T−ε�. If we prolong r̃t and σ̃2t as indicated on

the time interval, we get E∗ exp�− ∫ T
0 r̃u du�f�S̃T� ≥ Ã0. This is because S̃∗

t is

a martingale, whence it follows that exp�− ∫ t
0 r̃u du�f�S̃t� is a submartingale

from �1− ε�T to T, since r̃u is zero on this time interval.
In consequence, the conservative ask price at time 0 is in this case

A0 = sup
X

E∗Xf�S∗
T/X��(4.1)

where logS∗
T − logS∗

0 is normal N�− 1
2�

+��+�, and the supremum is over all
random variables X for which

exp�−R+� ≤X ≤ exp�−R−�(4.2)

and satisfying

E∗X = �0�(4.3)

This is provided we can show that, for the relevant P∗, there is a βt and a �t
so that βT =X−1.

Since x→ xf�s/x� is convex (for x� s > 0), the functionalX→ E∗Xf�S∗
T/X�

is also convex, and so the supremum in (4.1) is attained for an X which only
takes the values exp�−R−� and exp�−R+�.



CONSERVATIVE DELTA HEDGING 675

Let B± = �ω
 X�ω� = exp�−R±�� for ± = + or −. It follows from the above
that we wish to maximize

E∗ exp�−R+�f�exp�R+�S∗
T�IB+ +E∗ exp�−R−�f�exp�R−�S∗

T�IB−(4.4)

subject to

exp�−R+�P∗�B+� + exp�−R−�P∗�B−� = �0�(4.5)

Now let

B+ = �ω
 S∗
T ≥ K̃��(4.6)

where K̃ is determined by (4.5), and let B̃± be any other pair of sets satisfy-
ing (4.5).Sincef is convex,s→ exp�−R−�f�exp�R−�s�−exp�−R+�f�exp�R+�s�
is a nonincreasing function. Hence,

exp�−R+�f�exp�R+�S∗
T��IB+ − IB̃+� + exp�−R−�f�exp�R−�S∗

T��IB− − IB̃−�
≥ �exp�−R+�f�exp�R+�K̃�� − exp�−R−�f�exp�R−�K̃���IB+ − IB̃+��

and so the choice (4.6) maximizes (4.4) subject to (4.5). In the notation (2.2)
and (2.3), K̃ is found from (4.5) by

��d2�S0� K̃�0��
+�� = exp�−R−� − �0

exp�−R−� − exp�−R+� �(4.7)

Note that this equation always has a (unique) solution because exp�−R−� ≥
�0 ≥ exp�−R+�.

To see that the maximum is indeed the ask price, we now construct a P∗ ∈
� ∗ as follows. Fix t0 so that 0 < t0 < T. On 	0� t0�, we let dS∗

t = σS∗
tdWt,

with σ2 = �+/t0, and we set rt = R−/t0. From t0 to T, S∗
t is constant

(= S∗
t0−

)
.

If S∗
t0
< K̃, then rt = 0; otherwise rt = �R+ −R−�/�T − t0�. This gives us an

allowable βt, and �∗
t is obviously

�∗
t = exp�−R+�P�B+ � St� + exp�−R−�P�B− � St��(4.8)

The above gives the maximum for t = 0, but the same argument can be carried
out for all t, 0 ≤ t ≤ T, thereby also assuring the existence of the essential
supremum. We have thus proved the following proposition.

Proposition 4.1. Subject to the assumptions at the beginning of Section 4,
the conservative ask price at time zero for payoff f�ST� at time T is

A = E∗ exp�−R+�f�exp�R+�S�I�S≥K̃�
(4.9)

+E∗ exp�−R−�f�exp�R−�S�I�S<K̃��

where K̃ is given by (4.7), and where logS is normal N�logS0 − 1
2�

+��+�.
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Alternatively, one can obviously write

A = C�S0�R
+��+� f�s�I�s ≥ K̃ exp�R+��

+C�S0�R
−��+� f�s�I�s < K̃ exp�R+���

(4.10)

where C�S0�R���h�s�� is the Black–Scholes–Merton price for payoff h�ST�
at time T.

Note that if one wishes to disregard the bond �t (as in Example 1 in the
preceeding sections), one just maximizes (4.4) without (4.5).

Now for the European call.

Example 2 (Continued from Sections 2 and 3). If K is the strike price,
f�s� = �s −K�+. The solution given in (2.14) and (2.15) follows directly by
setting v0 = log�K/K̃�.

5. Defining self-financing strategies. In essence, Ht being self financ-
ing means that we can represent H∗

t by

H∗
t =H∗

0 +
p∑
i=1

∫ t
0
θ
�i�
s dS

�i�∗
s �(5.1)

This is in view of numeraire invariance [see, e.g., Section 6.B of Duffie (1996)].
Fix P ∈ � , and recall that the S�i�∗

t are continuous. We shall take the
stochastic integral to be defined when θ�1�t � � � � � θ

�p�
t is an element in L2

loc�P�,
which is the set of p-dimensional predictable processes so that

∫ t
0 θ

�i�2
u d

[
S�i�∗ ,

S�i�∗]
u
is locally integrable P-a.s. The stochastic integral (5.1) is then defined

by the process in Theorems I.4.31 and I.4.40, (pages 46–48), in Jacod and
Shiryaev (1987).

A restriction is needed to be able to rule out doubling strategies. The two
most popular ways of doing that are to insist either that H∗

t be in an L2-
space, or that it be bounded below [Harrison and Kreps (1979), Delbaen and
Schachermayer (1995), Dybvig and Huang (1988), Karatzas (1996); see also
Duffie (1996), Section 6.C]. We shall here go with a criterion that encompasses
both.

Definition. A process Ht, 0 ≤ t ≤ T, is self financing with respect to
S

�1�
t � � � � � S

�p�
t if H∗

t satisfies (5.1), and if �H∗−
λ � 0 ≤ λ ≤ T� λ stopping time� is

uniformly integrable under all P∗ ∈ � ∗ that are equivalent to P.

The reason for seeking to avoid the requirement thatH∗
t be bounded below

is that, to the extent possible, the same theory should apply equally to bid and
ask prices. Since the bid price is normally given by (3.4), securities that are
unbounded below will be a common phenomenon. For example, B��S−K�+� =
−A�−�S−K�+�, and −�S−K�+ is unbounded below.

It should be emphasized that our definition does, indeed, preclude doubling
type strategies. The following is a direct consequence of optional stopping and
Fatou’s lemma.
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Proposition 5.1. Let P ∈ � , and suppose that there is at least one P∗ ∈ � ∗

that is equivalent to P. Suppose that H∗
t is self financing in the sense given

above. Then, if there are stopping times λ and µ, 0 ≤ λ ≤ µ ≤ T, so that
H∗
µ ≥H∗

λ, P-a.s., then H
∗
µ =H∗

λ, P-a.s.

Note that Proposition 5.1 is, in a sense, an equivalence. If the conclu-
sion holds for all H∗

t , it must in particular hold for those that Delbaen and
Schachermayer (1995) term admissible. Hence, by Theorem 1.4, page 929, of
their work, P∗ exists.

6. Proofs for Section 3.

Proof of Theorem 3.1(i). The “only if” part of the result is obvious, so it
remains to show the “if” part.

(a) Structure of the Doob–Meyer decomposition of �V∗
t �. Fix P∗ ∈ � ∗. Let

V∗
t =H∗

t +D∗
t � D0 = 0(6.1)

be the Doob–Meyer decomposition of V∗
t under this distribution. The decom-

position is valid by, for example, Theorem 8.22, page 83, in Elliot (1982).
Then �H∗−

λ � 0 ≤ λ ≤ T� λ stopping time� is uniformly integrable under P∗.
This is because H∗−

t ≤ V∗−
t ≤ E∗��η∗� � �̄t�, the latter inequality because

V∗−
t = �−V∗

t �+, which is a submartingale sinceV∗
t is a supermartingale. Hence

uniform integrability follows by, say, Theorem I.1.42(b), page 11, of Jacod and
Shiryaev (1987).

(b) Under condition �E1�, �Vt� can be written V∗
t = V∗c

t +V∗d
t , where �V∗c

t �
is a continuous supermartingale for all P∗ ∈ � ∗, and �V∗d

t � is a nonincreasing
process. Consider the set C of ω ∈ � so that 7V∗

t ≤ 0 for all t, and so that
V∗d
t = ∑

s≤t 7V∗
s is well defined. We want to show that the complement Cc ∈

� . To this end, invoke condition �E1), which means that we only have to prove
that Pe�C� = 1 for all Pe ∈ � e.
Fix, therefore, Pe ∈ � e, and let H∗

t and D
∗
t be given by the Doob–Meyer

decomposition (6.1) under this distribution. By Proposition 11.14, page 345,
in Jacod (1979), Pe is extremal in the set M��S�1�∗� � � � � S�p�∗�� (in Jacod’s
notation), and so it follows from Theorem 11.2, page 338, in the same work,
that �H∗

t � can be represented as a stochastic integral over the �S�i�∗
t �’s, whence

�H∗
t � is continuous. Pe�C� = 1 follows.
To see that �V∗c

t � is a supermartingale for any given P∗ ∈ � ∗, note that
condition �E1� again means that we only have to prove this for all Pe ∈ � e.
The latter, however, follows from the decomposition in the previous paragraph.
(b) follows.

(c) �V∗
t � is a superreplication of η. Under condition �E2�, the result follows

directly from Theorem 2.1, page 461, of Kramkov (1996). Under the other
conditions stated, by (b) above, one can take �V∗

t � to be continuous without
losing generality. Hence, by local boundedness, the result also in this case
follows from the cited theorem of Kramkov. ✷
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Proof of Theorem 3.1(ii). Let �V�n�
t � be a superreplication satisfying

V
�n�
0 ≤ A+ 1/n. Set Vt = infn V

�n�
t . �Vt� is a supermartingale for all P∗ ∈ � ∗.

By Proposition 1.3.14, page 16, in Karatzas and Shreve (1991), �V∗
t+� (taken

as a limit through rationals) exists and is a cadlag supermartingale except
on a set in � . Hence �V∗

t+� is a superreplication of η, with initial value no
greater than A. The result follows from Theorem 3.1(i). ✷

Proof of Theorem 3.1(iii). Let A∗
t satisfy (3.8). This process is then a

supermartingale for all P∗ ∈ � ∗, by Proposition A.1 in the Appendix. If one
forms

(
A∗
t+
)
as in the proof of Theorem 3.1(ii) above, however, A∗

t+ ≤ At � ∗-
a.s. Since, however, for all P∗ ∈ � ∗, A∗

t+ ≥ E∗�η∗ � �t�, A∗
t+ must equal At

� ∗-a.s. Since, obviously, the right-hand side in (3.6) is a lower bound for A,
the result follows from Theorem 3.1(i). ✷

Proof of Proposition 3.2. Suppose that rt ≥ −c for some c <∞. We use
Theorem 15.2c, page 496, in Jacod (1979). This theorem requires the notation
Ss1�X�, which is the set of probabilities under which the process Xt is indis-
tinguishable from a submartingale so that E sup0≤s≤t �Xs� <∞ for all t (in our
case, t is bounded, so things simplify). [cf. pages 353 and 356 of Jacod (1979).]

Jacod’s result 15.2c studies, among other things, the set (in Jacod’s notation)
S = ⋂

X∈� Ss1�X�, and under conditions which are satisfied if we take �

to consist of our processes S�1�∗
t � � � � � S

�p�∗
t �−S�1�∗

t � � � � �−S�p�∗
t � βte

ct�Yt. Here,
Yt = 1 for t < T, and IC for t = T. (If necessary, βtect can be localized to be
bounded, which makes things messier but yields the same result). In other
words, S is the set of probability distributions so that the S�1�∗

t � � � � � S
�p�∗
t are

martingales, rt is bounded below by c, and the probability of C is 1.
Theorem 15.2(c) now asserts a representation of all the elements in the set

S in terms of its extremal points. In particular, any set that has probability
zero for the extremal elements of S also has probability zero for all other
elements of S.

However, S = M̃��S�1�∗� � � � � S�p�∗�� (again in Jacod’s notation; see page 345
of that work); this is the set of extremal probabilities among those making
S�1�∗� � � � � S�p�∗ a martingale. Hence, our condition �E1� is proved. ✷

7. Further questions. The above has provided a general methodology for
converting sets of probabilities into prices and hedging strategies. Many ques-
tions of implementation remain, however, in the realm of future research. Can
one substantially lower the price of the super hedge by choosing an optimal
prediction region? Or by hedging in additional market traded securities? How
does one compute ask and bid prices for more exotic derivatives than convex
European payoffs? What about dynamically adjusted contingency reserves?

On the more statistical front, it is also worth pursuing a stronger result than
our Theorem 3.2, as follows. If one has a prediction interval of the form (2.6),
and one uses conservative delta hedging as described, the probability of fail-
ure is the same as the probability of the prediction interval not covering the
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realized values. It remains unsolved whether this is the case in the general
setting of Theorem 3.1.

There are a lot of unanswered questions.

APPENDIX

We here deal with the measure-theoretic details having to do with the essen-
tial supremum of conditional expectations, in the (apparent) absence of a dom-
inating probability distribution. If such a distribution were to exist, one could,
for example, use the result in Proposition VI-1-1, page 121, of Neveu (1975).
In our case, we shall define the relevant objects in analogy to Neveu, but we
need stronger assumptions to pin down the properties needed. There may be
other ways of tackling the measurability problems; see, for example, Srivas-
tava (1998).

Definition. Suppose that � is a collection of probability distributions on
� , and let � be a sub-σ-field of � . Let X be a random variable satisfying

sup
P∈�
E�X� <∞�(A.1)

(a) If � is countable, then ess supP∈� E�X � � � is the random variable Z
for which:

(i) Z is � -measurable.
(ii) Z ≥ E�X � � �, P-a.s., for all P ∈ � .
(iii) If Z̃ also satisfies (i) and (ii), then Z̃ ≥ Z, P-a.s., for all P ∈ � .

(b) For general � , ess supP∈� E�X � � � is the random variable Z for which
(i) and (ii) hold, and satisfying

(iii′) For all P ∈ � , there is a subset � of � , � countable, P ∈ � , so that
Z = ess supR∈� ER�X � � � P-a.s.

Provided this quantity exists, it is, obviously, unique up to joint null sets of
� . Also, (iii′) implies (iii). If � is undominated in terms of absolute continuity,
however, existence does not appear to be assured.

Proposition A.1. Assume the conditions of Theorem 3.1. Also assume that
A∗
t , given by (3.8), is defined. Then A∗

t is an ��t�-supermartingale for all
P∗ ∈ � ∗.

Proof of Proposition A.1. Fix P∗ ∈ � ∗ and let 0 ≤ s ≤ t ≤ T. Let � =
�Q1�Q2� � � �� be such that A∗

t = ess supR∈� E�η∗ � �t� P∗-a.s. Suppose that
Q1 = P∗. Set

Q =
∞∑
m=1

1
2m
Qm�(A.2)
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For all R ∈ � , define ẼR�η∗ � �t� Q-a.s. by setting it to −∞ on the set �−CR
and to ER�η∗ � �t� Q-a.s. on CR, where Q � R on CR and R�� − CR� = 0.
Set

Z�n� = sup
1≤i≤n

ẼQi�η∗ � �t��(A.3)

and let Ci� i = 1� � � � � n be a �t-measurable partition of � so that Z�n� =
ẼQi�η∗ � �t� on Ci. Let U be the measure given by

U�C� = E∗
n∑
i=1
Qi�C � �t�ICi�

Since U ∈ � ∗, it follows that

A∗
s ≥ EU�η∗ � �s�
= E∗�Z�n� � �s�
→ E∗�A∗

t � �s�
(A.4)

as n → ∞ by monotone convergence, since E∗�Z�1�� ≤ E∗�η∗� < ∞ by
assumption. ✷
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Spivak, G. and Cvitanić, J. (1999). Maximizing the probability of a perfect hedge. Ann. Appl.

Probab. 9 1303–1328.
Srivastava, S. M. (1998). A Course on Borel Sets. Springer, New York.

Department of Statistics
University of Chicago
5734 University Avenue
Chicago, Illinois 60637
E-mail: mykland@galton.uchicago.edu


