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LIMIT THEORY FOR RANDOM SEQUENTIAL PACKING
AND DEPOSITION

BY MATHEW D. PENROSE AND J. E. YUKICH1

University of Durham and Lehigh University

Consider sequential packing of unit balls in a large cube, as in the Rényi
car-parking model, but in any dimension and with finite input. We prove a
law of large numbers and central limit theorem for the number of packed
balls in the thermodynamic limit. We prove analogous results for numerous
related applied models, including cooperative sequential adsorption, ballistic
deposition, and spatial birth-growth models.

The proofs are based on a general law of large numbers and central
limit theorem for “stabilizing” functionals of marked point processes of
independent uniform points in a large cube, which are of independent
interest. “Stabilization” means, loosely, that local modifications have only
local effects.

1. Introduction. Consider the following prototype random packing model.
Unit volume open balls B1,n,B2,n, . . . , arrive sequentially and uniformly at
random in the d-dimensional cubeQn having volume n and centered at the origin.
Let the first ball B1,n be packed, and recursively for i = 2,3, . . . , let the ith ball
Bi,n be packed iff Bi,n does not overlap any ball in B1,n, . . . ,Bi−1,n which has
already been packed. If not packed, the ith ball is discarded. Given a positive
integer k, let Nn,d(k) := N({B1,n, . . . ,Bk,n}) be the number of balls packed out
of the first k arrivals. One studies the (random) packing number Nn,d(k), or the
(necessarily finite) limit Nn,d(∞) := limk→∞Nn,d(k).

Packing models of this type arise in diverse disciplines, including the study
of microscopic physical, chemical, and biological processes and macroscopic
ecological and sociological systems. In statistical mechanics and biology, they are
fundamental to the description of the irreversible deposition of colloidal particles
or proteins onto a substrate (i.e., a surface). In this context, the prototype packing
model described above is known as the Random Sequential Adsorption (RSA)
model for hard spheres on a continuum surface; we will call this the “basic RSA
model.”

There is a vast literature involving versions of the basic RSA model on
continuum and lattice substrates. The abundance of experimental results contrasts
sharply with the paucity of rigorous theoretical results, particularly in more than
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one dimension; see Evans [11] for an extensive survey on lattice RSA results
and Senger, Voegel and Schaaf [33] for a survey on continuum RSA results.
Other surveys include Bartelt and Privman [3], Adamczyk, Siwek, Zembala and
Belouschek [1] and Talbot, Tarjus, Van Tassel and Viot [37]. A recent voluminous
special issue of Colloids and Surfaces [30] is dedicated to RSA research and
contains further surveys.

In addition to their fundamental role in adsorption modeling, sequential packing
models arise in the study of polymer reactions (Flory [12]; González, Hemmer
and Høye [13]). Packing also arises in the study of hard core interactions in
physical and materials science, and spatial growth models in crsytallography and
biology (Evans [11], Section III). A classical result of Rényi [32] on car parking
is effectively concerned with Nn,1(∞). In modeling communication protocols
(Coffman, Flatto, Jelenković and Poonen [9]), RSA is called on-line packing.

In the sequel we shall refer to Nn,d(k) and Nn,d(∞) as a fixed input packing
number and infinite input packing number, respectively. Also of interest is the
Poisson input packing number Nn,d(Po(λ)) := N({B1,n, . . . ,BPo(λ),n}), where
Po(λ) denotes an independent Poisson random variable with parameter λ. This
is quite natural if one imagines the evolving configuration of packed balls as a
continuous-time Markov chain running for a fixed amount of time.

In this paper we restrict attention to the fixed input and Poisson input packing
numbers, and take a thermodynamic limit with the (expected) number of incoming
balls proportionate to n, with constant of proportionality denoted τ . Our main
purpose is to prove a law of large numbers (LLN) and a central limit theorem
(CLT), for the basic RSA model (Theorems 1.1 and 1.2) as well as for diverse
related packing and deposition models. These include models with random
shapes/types, spatial birth-growth models, cooperative sequential adsorption, and
multilayer ballistic deposition. This section treats the limit theory of the basic RSA
model, whereas Section 2 treats the diverse related models.

Our CLTs and LLNs for all these models are proved via a general CLT
(Theorem 3.1 below) and a general LLN (Theorem 3.2 below) for functionals of
“marked” binomial and Poisson point processes. Theorem 3.1 extends a CLT for
unmarked processes in Penrose and Yukich [26], which was itself inspired in
part by methods of Kesten and Lee [17], Lee [19]. Theorem 3.2 is new, even
for unmarked processes. The general CLT and LLN are of independent interest
and potentially useful in other contexts, for example that of Boolean models over
binomial point processes; see Section 3 for further discussion.

Our LLNs are quite “strong;” they hold not only with convergence of means
(c.m.) but also with complete convergence (c.c.). Given a sequence of random
variablesXn (possibly on distinct probability spaces) and a constant x, we shall say
Xn → x c.m. if limn→∞EXn = x, and Xn → x c.c. if

∑
n P [|Xn − x|> ε]<∞

for all ε > 0. Complete convergence implies almost sure convergence of X′
n to x

for any sequence of coupled variables X′
n for which X′

n and Xn are identically
distributed for all n. Write c.m.c.c. if both types of convergence hold.
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THEOREM 1.1 (LLN for basic RSA). For all τ ∈ (0,∞) and all d ≥ 1 there
is a constant α(d, τ ) such that

Nn,d([τn])
n

→ α(d, τ ) c.m.c.c.(1.1)

and

Nn,d(Po(τn))

n
→ α(d, τ ) c.m.c.c.(1.2)

Turning to the CLT, we write
D−→ for convergence in distribution as n→ ∞

and N (0, σ 2) for a random variable having normal distribution with mean zero
and variance σ 2. Our result gives convergence of variances as well as convergence
to the normal distribution.

THEOREM 1.2 (CLT for basic RSA). For all τ ∈ (0,∞) and all d ≥ 1 there
exist constants 0< ηd,τ ≤ σd,τ <∞ such that

Nn,d(Po(τn))−ENn,d(Po(τn))

n1/2
D−→ N (0, σ 2

d,τ )(1.3)

and

n−1 VarNn,d
(
Po(τn)

) → σ 2
d,τ ,(1.4)

while

Nn,d([τn])−ENn,d([τn])
n1/2

D−→ N (0, η2
d,τ )(1.5)

and

n−1 VarNn,d([τn])→ η2
d,τ .(1.6)

REMARKS. (i) Previous rigorous mathematical work on basic RSA (and
variants) has been restricted to dimension d = 1. See Ney [22], Dvoretzky
and Robbins [10], Mannion [20], Coffman, Flatto, Jelenković and Poonen [9],
Coffman, Flatto and Jelenković [8], Itoh and Shepp [15]. In particular, the c.m.
part of (1.1) and the Poisson input CLT results (1.3) and (1.4) were already known
for d = 1, with explicit formulae for the limiting constants α(1, τ ) and σ1,τ (see
Coffman, Flatto, Jelenković and Poonen [9], equation (2) and Theorems 13, 14).
Theorems 1.1 and 1.2 extend these results to higher dimensions, albeit without
giving explicit formulae for the limiting constants. Even for d = 1 the fixed input
CLTs (1.5) and (1.6) of Theorem 1.2 are apparently new, and answer a question of
Coffman, Flatto, Jelenković and Poonen [9]. Note that Poissonization of the input
contributes extra randomness which shows up in the limiting variance.
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(ii) An alternative appproach to the LLN is given in simultaneous work of
Penrose [24], which is mainly concerned with infinite input but also applicable to
Poisson input. [24] does not address fixed input, complete convergence, or CLTs.

(iii) The physical sciences literature contains many simulation and analytical
studies of RSA in dimensions d = 2,3. See the survey articles mentioned
previously for discussion of these, and also Pomeau [29], Swendsen [36], Caser
and Hilhorst [4] for analytical results. A principal object of interest in these studies
is the limit α(d, τ ) (known as the coverage function) and/or the analogously
defined infinite-input limit α(d,∞) (the jamming coverage). Beginning with the
oft-quoted paper of Widom [40], these limits have long been assumed to exist, at
least in the c.m. sense, without proof. Theorem 1.1, and the LLNs for infinite input
in [24], establish rigorously the existence of these limits. Theorem 1.2 provides
rigorous information regarding the asymptotics of the fluctuations of the packing
number about the limit α(d, τ ).

(iv) At a technical level, sequential packing presents an interesting challenge
because it yields dependently thinned point processes having finite range interac-
tions but with long range dependence, apparently lacking any obvious subadditiv-
ity structure. This makes it harder to prove LLNs or CLTs by standard techniques.

(v) The unifying thread which ties together the limit theory for functionals in
this paper involves the notion of “add one cost,” namely the effect on the functional
of inserting a single point into a (marked) binomial or Poisson point process. In
fact, the hypotheses for both the general CLT and the general LLN are framed in
terms of “add one cost.” The add one cost for packing functionals is estimated
using methods from first passage percolation and, in particular, bounds for the
growth rate of a spatial epidemic.

(vi) The proof of Theorems 1.1 and 1.2 shows that the cubes Qn, n≥ 1, can be
replaced by more general regions. We refer to Section 3 for the exact conditions
on the regionsQn, n≥ 1.

(vii) In the off-line packing problem, all balls are collectively and simultane-
ously available for packing, that is, there are no sequential arrivals. Off-line pack-
ing is not treated in this paper, although in d = 1 it is amenable to methods related
to those used here.

NOTATION. For x ∈ R
d , r ≥ 0, andA⊂ R

d , let x+A denote the translated set
{x+ y :y ∈A}, let r ·A := {ry :y ∈A} let |x| denote the Euclidean norm of x, and
let |A| denote the volume of A. Let Br(x) denote the ball {y ∈ R

d : |y − x| ≤ r}.
Let diam(A) := sup{|x − y| :x, y ∈ A}, let ∂A denote the intersection of the
closure of A with that of its complement, and let ∂r(A) := ⋃

x∈∂A Br(x), the
r-neighborhood of the boundary of A. Let 0 be the origin in R

d . Let C denote
a positive finite constant whose value is unimportant and which may change from
line to line.
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2. Related models. There are a multitude of variants of the basic RSA
packing model. Our methods yield LLNs and CLTs for many of these variants.
We limit the discussion here to four widely used such models: (i) models with
unit volume balls replaced by particles of random size/shape/charge, (ii) time
dependent models, (iii) cooperative sequential adsorption models, and (iv) ballistic
deposition models.

2.1. Random shapes and types. In the basic RSA model, each incoming
particle is required to be a unit volume ball. One can relax this by allowing random
shapes such as balls of random radius or ellipses of random orientation. Many
simulation studies have considered RSA models of this kind. See for example
Sections 6.2 and 7 of [3]. More generally, one may consider particles having
random type, not necessarily representing size or shape. For example, Itoh and
Shepp [15] considered a one-dimensional packing model where there are two
types, which they call “spins;” particles of the same type exclude each other up
to range a and particles of different type exclude each other up to range 1.

We thus consider a generalized RSA model, where each particle has a random
type, representing its shape, or “spin,” or any other property of the particle. Let
(F,F ) be an arbitrary measurable space (the space of possible types), and let
P1 be a probability measure on (F,F ), representing the distribution of types of
random inputs. Suppose

�: R
d × F × F → {0,1}

is a measurable function (with respect to product measure), the so-called
“exclusion function,” where �(x, ′, ) takes the value 0 if a particle of type  ′
excludes any subsequently arriving particle of type  with relative displacement
x. For example, in the case of spatial exclusion by particles with random shape,
one could let F be a space of subsets of R

d and set�(x, ′, ) to be 1 if and only
if  ′ ∩ (x + )= ∅. Assume the exclusion function has finite range, in a sense to
be made precise later on.

Let the ith incoming particle have location Xi,n and type  i , where X1,n,

X2,n, . . . are independent and uniformly distributed over the cube Qn (as in the
basic RSA model), and ( 1, 2, . . .) is a sequence of i.i.d. random elements of
F with common probability distribution P1, independent of (X1,n,X2,n, . . .). For
example, if the particles are random shape sets in R

d , then the types  i are i.i.d.
in some space of (uniformly bounded) closed sets (see [35, 21] for background on
random closed sets) and the region of space actually occupied by the ith particle
is Xi,n + i .

Recursively, let the ith particle be accepted (i.e., packed) if �(Xi,n − Xj,n,

 j , i) = 1 for all j < i such that j was accepted; otherwise the ith particle is
rejected.

Of interest are various counts concerned with accepted particles. These include
the total number of particles, out of the first k to arrive, to be accepted, or the
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total volume of accepted sets, or the number of accepted sets of a particular kind,
for example, sets having volume bounded by some parameter α. The latter has
been studied for d = 1 by Ney [22] and Mannion [20]. Studying the total volume
of accepted sets is equivalent to studying the wasted (vacant) space, for which
Coffman, Flatto and Jelenković [8] have obtained rather precise asymptotics in
dimension d = 1 only. Theorem 2.1 below will provide LLNs and CLTs for a large
class of counts associated with accepted particles.

2.2. Time-dependent models. We describe two models where the acceptance
probability for an incoming particle depends not only on the locations and types
of nearby accepted particles, but also on the time since arrival for these particles.

2.2.1. Models with desorption. Consider a generalization of the basic packing
model, with arrivals at the points of a homogeneous space–time Poisson process
of unit intensity on Qn × [0,∞), in which a packed ball remains in place for
a random period of time (possibly infinity) at the end of which it is removed
(i.e., desorbs). This is a dynamic model, which among other things, describes the
reversible deposition of particles on substrates, and is discussed in the surveys of
Senger, Voegel and Schaaf (page 267 of [33]) and Talbot, Tarjus, Van Tassel and
Viot (Section 7 of [37]). Numerous experimental results are described in [37].

Assume that the times before desorption for particles are i.i.d. with some
arbitrary distribution on [0,∞], and independent of the locations of the balls.
Let Nn(Po(nτ )) be the number of adsorbed particles in the set Qn at time
τ . The scientific literature [33] implicitly assumes the existence of a coverage
function limn→∞ENn(Po(nτ ))/n representing the limiting mean coverage in the
thermodynamic limit. Theorem 2.1 below puts this on rigorous footing.

Desorption models can be put into the context of the “random type” model
described in Section 2.1, if we allow the function �, representing acceptance
probability, to depend not only on the location and type of nearby particles but
also on the time since arrival. For the basic RSA model with desorption, let the
space of types F be the interval [0,∞] and let the type  of an incoming particle
represent its time to desorption. Then take the domain of the exclusion function
� to be R

d × F × F × [0,∞], and let �(x, ′, , t) take the value 0 if unit
volume balls centered at 0 and x overlap each other and  ′ ≥ t . Then, recursively,
let an object arriving at X with type  at time T be accepted (i.e., packed) if
�(X−X′, ′, ,T − T ′)= 1 for all previously packed items (X′, ′, T ′).

The contribution of a particle to the count of adsorbed points Nn(Po(nτ )) is
determined not only by whether it is accepted or not, but also by whether, if ac-
cepted, it desorbs before time τ . This contribution is therefore a function of the
particle’s type and time of arrival, and Theorem 2.1 below is framed to take this
into account.
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2.2.2. Spatial birth-growth models. Consider the following generalized ver-
sion of a classical birth-growth model on R

d : cells are formed at random loca-
tions Xi ∈ R

d at times Ti , i = 1,2, . . . , according to a unit intensity homogeneous
spatial–temporal Poisson point process $ := {(Xi, Ti) ∈ R

d × [0,∞)}. When a
new cell is formed, its center Xi is called its “seed.” Initially (at time Ti ) the new
cell takes the form of a ball of (possibly random) radius ρi ≥ 0 centered at Xi (or
just the point Xi if ρi = 0) and then grows with a constant speed v, radially in
all directions compatible with nonoverlap with other cells: wherever a cell touches
another, it stops growing in that direction. New cells form only in the uncovered
space in R

d . That is, if a new seed appears at Xi such that the ball of radius ρi
centered at Xi overlaps any of the existing cells, then it is discarded. Ultimately,
the cells tessellate R

d . Assume that ρi , i = 1,2,3, . . . , are i.i.d. and independent
of $ , and that there is a constant r2 > 0 such that P [ρi ≤ r2] = 1.

In the special case where the growth rate v is zero a.s., this model reduces
to the packing model with balls of random radius as already described. In the
alternative special case where all the initial radii ρi of cells are zero a.s., our model
is referred to as the Johnson–Mehl model in Stoyan, Kendall and Mecke [35],
where further references can be found. It was originally studied to model crystal
growth (Kolmogorov [18]). A slightly different spatial birth-growth model due to
Pielou [28] is discussed in Section 2.4.1 below.

Let N∗(Qn, τ ) denote the number of accepted seeds inside the window Qn by
time τ . Quine and Robinson [31] (for d = 1) and later Chiu and Quine [6] (for
general d) established the asymptotic normality of N∗(Qn, τ ) in the case of the
Johnson–Mehl model. They allow the intensity of $ to be nonhomogeneous in
time. We simplify here by assuming time-homogeneity but in fact our methods
can be adapted to allow for nonhomogeneity in time, at the cost of some extra
notation.

We consider a modification of this model in which all seeds outsideQn×[0,∞)
are automatically rejected, while the rules for seeds inside Qn × [0,∞) are as
described above. Let N(Qn, τ ) denote the number of accepted seeds up to time τ
for this modified model. Unlike N∗(Qn, τ ), this is not the restriction to Qn of
a stationary point process, but incorporates edge effects and is arguably more
realistic.

Again the model can be described in terms of packing of objects of random
type, with account taken of time since arrival. In this case the type of an object is
 i := ρi and the exclusion function �(x, j, i, t) is 1 if |x|> ρj + vt + ρi , and
zero otherwise. Since we are interested only in the evolution of the process up to a
finite time τ , there is a finite range of interaction between two particles: no particle
excludes any other particle appearing at a distance more than 2r2 + vτ from it.

As a special case of Theorem 2.1 below, one obtains a LLN and a CLT for
the functional N(Qn, τ ), as well as convergence of its variance. Theorem 2.1 also
shows that the asymptotic normality of N(Qn, τ ) continues to hold if the Poisson
input is replaced by fixed input.
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2.3. Cooperative sequential adsorption. Cooperative sequential adsorption
(CSA) is a generalization of RSA, in which the probability that an arriving particle
centered at x ∈ R

d is accepted depends on the local configuration of previously
accepted particles near x. CSA models are ubiquitous in the scientific literature;
we refer to Evans [11] for a survey (mainly concerned with the lattice models),
and to Adamczyk, Siwek, Zembala and Belouschek [1] and Senger, Voegel and
Schaaf [33] for discussions of “soft sphere” models which are a special case of
continuum CSA.

We restrict attention to CSA with a finite range r3 > 0 of interactions. While
many models have infinite range [11], we note that the basic RSA model
is a special case of the finite range CSA model. We assume the acceptance
probability takes the form of a product of probabilities associated with each of
the existing nearby particles. This simplifies the notation and is in keeping with
most CSA models seen in the literature, although our methods are also applicable
to acceptance probabilities with finite range that do not take the form of a product.

It is easy to imagine combining the idea of CSA as just described with those of
random type and time-dependence described in Sections 2.1 and 2.2, and therefore
we now give results for a generalized CSA model allowing for all these effects.
The assumption that the acceptance probability has the form of a product means
that in effect, we simply extend the range of the function � described in earlier
sections from {0,1} to the interval [0,1], and take products to give the acceptance
probability.

Formally, the generalized CSA model goes as follows. The dimension d ≥ 1 is
fixed but arbitrary. Let (F,F ,P1) be a probability space with F representing the
space of possible types and P1 representing the distribution of types of incoming
particles. Define a product measurable function

�: R
d × F × F × [0,∞] → [0,1].(2.1)

Assume finite range interactions, that is, assume there is a constant r3 > 0 such
that for (P1 × P1)-almost all ( , ′),

�(x, ′, , t)= 1 if |x|> r3.(2.2)

Given τ > 0, and given the window Qn ⊂ R
d , we suppose that each incoming

particle is represented by a triple (X, ,T ) of independent variables, with X
distributed uniformly at random over Qn and representing the particle’s location,
with  taking its value in F with the distribution P1 and representing the type of
the particle, and with T distributed uniformly over [0, τ ] and representing its time
of arrival. The total number of incoming particles is Poisson with parameter τn for
the Poisson input model, and is [τn] for the fixed input model.

The decision on whether to accept a particle is made sequentially in the order of
arrival. If a particle is represented by the triple (X, ,T ), let it be accepted with
probability ∏

�(X−X′, ′, ,T − T ′),
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with the product taken over all accepted particles (X′, ′, T ′) for which T ′ < T
(and the product over the empty set is taken to be 1).

Let h: F × [0,∞] → [0,∞) be a bounded measurable test function, and define
Gn([τn]), respectivelyGn(Po(τn)), to be the sum∑

h( ,T ),(2.3)

with the sum taken over accepted particles in the fixed input generalized CSA
model, respectively the Poisson input generalized CSA model, as just described.
To avoid uninteresting degenerate cases, assume also that∫ τ

0

∫
F

∫
F

∫
Rd

(
1 −�(x, ′, , t)

)
dx dP1( )dP1( 

′) dt > 0;(2.4)

∫ τ

0

∫
F

h( , t) dP1( )dt > 0.(2.5)

Then the following limit result holds. It clearly generalizes Theorems 1.1 and 1.2.

THEOREM 2.1 (LLN and CLT for generalized CSA model). (a) There exists
a constantG :=G(d,F,F ,P1,�,h, τ ) such that

Gn([τn])
n

→G c.m.c.c.; Gn(Po(τn))

n
→G c.m.c.c.

(b) There exist constants 0 < η ≤ σ <∞ (dependent on d,F,F ,P1,�,h, τ )
such that

Gn(Po(τn))−EGn(Po(τn))

n1/2
D−→ N (0, σ 2)(2.6)

and n−1 Var(Gn(Po(τn)))→ σ 2, while

Gn([τn])−EGn([τn])
n1/2

D−→ N (0, η2)(2.7)

and n−1 Var(Gn([τn]))→ η2.

2.4. Ballistic deposition. Ballistic deposition (BD) models are extensions
of the basic RSA model, representing deposition of particles in the presence
of a gravitational field. Each incoming particle occupies a region of (d + 1)-
dimensional space (typically, a Euclidean ball); we assume d = 2 or d = 1,
and the (d + 1)st coordinate represents “height.” An incoming particle falls
perpendicularly from above towards a substrate taking the form of a d-dimensional
surface embedded in (d + 1)-space. We represent the substrate by the surface
R
d × {0} ⊂ R

d+1, which we identify with the lower-dimensional space R
d .

The downward motion of an incoming particle is vertical until it hits the
substrate or one of the particles already adsorbed. At this point there may be some
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lateral and/or vertical motion (displacement) of the incoming particle before it
either is accepted (adsorbed) and comes to rest, or is rejected.

The lateral/vertical displacement of the incoming particle, and also the decision
on whether to accept or reject it, depends on the positions of already accepted
particles according to some mechanism which could be deterministic (as for RSA)
or stochastic (as for CSA). For simplicity, we restrict attention here to deterministic
mechanisms, and also assume the incoming particles are open Euclidean balls of
identical radius (as for the basic RSA model); however, both these assumptions
can be relaxed using ideas discussed in Sections 2.1 and 2.3.

In keeping with the rest of this article, we restrict attention to continuum models,
although lattice models of BD are also of interest; see [11]. We assume that the
location of each incoming particle, that is, the position on the surface R

d at which
it would land if unhindered by existing particles, is uniformly distributed over
the window Qn (i.e., the d-cube of volume n). We describe two of the many BD
models which have been proposed: (i) monolayer BD with a rolling mechanism
and (ii) multi-layer BD.

2.4.1. Monolayer ballistic deposition with a rolling mechanism. “Monolayer”
refers here to the fact that all accepted particles lie on the surface of the substrate,
as in the basic RSA model. The model is as follows.

Particles fall sequentially from above, vertically towards the adsorption surface
R
d (strictly speaking, R

d × {0}). If a particle reaches the surface R
d , it is

irreversibly fixed on it. Otherwise, if the particle contacts a previously deposited
particle, it then rolls, following the path of steepest descent until it reaches a
stable position. The rolling process does not displace already deposited particles,
that, is there is no updating of existing particles. If the particle reaches the
adsorption surface, it is fixed there; otherwise it is removed from the system and
the next sequenced particle is considered. For d = 1, the model dates back to
Solomon ([34], page 129). For d = 2, Senger, Voegel and Schaaf [33] describe
the many recent experimental results; Choi, Talbot, Tarjus and Viot [7] give both
experimental and analytical results. Current work of Penrose [25] gives rigorous
results on the infinite input version of this model.

All accepted particles lie on the substrate, and so can be represented by points
in R

d . The position of an accepted particle is a translate (or displacement) of the
original location in R

d above which it originally comes in. The displacement and
the decision on whether to accept the particle are both determined by the original
location of the arrival of the particle, and the positions (after displacement) of
previously accepted particles. We claim that there is a uniform bound on the size
of the possible displacement. This is clear when d = 1, and a proof for d = 2 is
given in [25]; see also [7]. There are also numerous other monolayer BD models
satisfying this condition of uniformly bounded displacements. Our methods yield a
LLN and CLT for the total number of accepted particles in a fixed input or Poisson
input setting; see Section 2.4.3.
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Pielou [28] proposes another related model in the study of biological popu-
lations in a region of R

2. This resembles the spatial growth model discussed in
Section 2.2.2 above, but with infinite growth rate of cells, up to a maximum cell
size. Whenever a new seed appears, its initial cell radius is some specified min-
imum, and if that entails overlap with an existing cell the new seed is discarded
as in the grain-growth model described earlier. If accepted, the new cell instantly
grows up to a disk of the specified maximum radius or the smallest radius at which
it touches an existing cell, whichever is the smaller, and thereafter the cell remains
unchanged. This resembles the BD model just described, except that now it is the
size of the particle (cell) rather than the location of its center that adjusts itself in
a manner determined by the nearby existing (adjusted) cells, before the arrival of
the next particle. One might be interested either in the total number of cells or their
total area, and can obtain a LLN and CLT for these in much the same manner as
for the BD model just described.

2.4.2. Multilayer ballistic deposition. In multilayer BD, a particle may attach
itself to previously adsorbed particles instead of to the substrate. In the simplest
form of continuum multilayer BD, each particle falls vertically towards the
substrateQn (as described above) and as soon as it encounters either the substrate
or another particle, it sticks (and remains in that place forever). Therefore each
particle is accepted, and has a vertical displacement (or height) relative to the
position it would occupy if it were to fall to the substrate unhindered by other
particles. There have been many empirical studies of this multilayer BD model
(first proposed by Vold [39]) and its variants; see, for example, Jullien and
Meakin [16], Vicsek [38], Talbot, Tarjus, Van Tassel and Viot [37]. However there
is even less rigorous limit theory for BD models than for RSA models.

Variants of the BD model include those with displacement of incoming particles
by a rolling mechanism, and those where there is a possibility of rejection of an
incoming particle. We restrict attention to cases involving a uniform bound on the
possible lateral displacement induced by the rolling mechanism. Reference [16]
provides a variety of models which incorporate rolling subject to this restriction
and ([37], pages 321–322) describes a family of models incorporating both
(uniformly bounded) rolling and possible rejection.

There are a number of quantities of interest, including the number of accepted
particles (in cases where particles are not all accepted), the total height of accepted
particles, and the total volume of the agglomoration of particles, including “empty
space” trapped below overhanging particles. More precisely, let a part of a
particle’s surface be denoted “exposed” if it does not have any other parts of
particles lying above it. The contribution of a particle to the total volume is the
volume of the region (if any) lying below its exposed surface (and above the
substrate).

2.4.3. Generalized ballistic deposition. We describe a model incorporating
both types of BD described above as special cases. Particles arrive sequentially
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at locations X1,n,X2,n, . . . , which are independent and uniformly distributed over
the regionQn; as mentioned above,Xi,n represents the position in R

d at which the
ith particle would land if it fell unhindered to the substrate. The ith particle is either
accepted or rejected, and if accepted, receives a (d+ 1)-dimensional displacement
ξi := (ξ→

i , ξ
↑
i ), with ξ→

i ∈ R
d representing lateral displacement, and ξ↑

i ∈ [0,∞),
representing vertical displacement (“height”).

Assume that there is a constant r4 providing a uniform bound both on the
range of interaction and on the lateral displacement distance. Specify a measurable
function S �→$(S), taking values in {0,1} × Br4(0)× [0,∞) and defined for all
finite subsets S of Br4(0)× [0,∞). We use the notation

$(S) := (
$0(S),$→(S),$↑(S)

)
with $0(S) ∈ {0,1}, $→(S) ∈ Br4(0), and $↑(S) ∈ [0,∞). Assume that if S is
the empty set, then $(S)= (1,0,0). As a further condition on the function $ , to
reflect the idea that height builds up by the stacking of particles, assume that there
is a constant r5 such that for all S,

ψ↑(S)≤ max{y↑ :y = (y→, y↑) ∈ S} + r5.(2.8)

Suppose, inductively, that it has been determined which of particles 1,2, . . . , i− 1
are to be accepted and what their displacements are. Let J (i) be the set (possibly
empty) of j < i for which Xj is accepted and |Xj + ξ→

j −Xi | ≤ r4, and let

Si := {
(Xj + ξ→

j −Xi, ξ↑
j ) : j ∈ J (i)}.

Then if particle i arrives at location Xi , it is accepted if and only if $0(Si) = 1,
and if accepted its displacement is ξi := ($→(Si),$↑(Si)).

Again we consider the thermodynamic limit. Other limits are also of interest,
but the thermodynamic limit represents a fixed expected number (namely τ ) of
incoming particles per unit area as in Talbot, Tarjus, Van Tassel and Viot ([37],
page 321), where attention is focused on the first few layers. If Nn(k) denotes the
number of items accepted in the BD model just described (which includes the basic
RSA model as a special case), then for any τ ∈ (0,∞) the variables Nn([τn]) and
Nn(Po(τn)) satisfy a LLN and CLT as n→ ∞. The proof is virtually the same as
for Theorems 1.1 and 1.2, using the fact that an incoming particle is affected only
by the positions and displacements of previously accepted particles whose original
location (before displacement) was within distance 2r4 of that of the new particle.

Next we consider the total height of accepted particles. LetDn(k) denote the to-
tal height of accepted particles, out of the first k to arrive. That is, Dn(k) := ∑

ξ
↑
j ,

the sum being over all accepted particles with index j ≤ k. To avoid degeneracy,
assume the parameters of the model are such that there exists an integer k > 0 such
that with positive probability, particle k is accepted and ξ↑

k > 0.
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THEOREM 2.2 (LLN and CLT for total height in generalized BD). (a) For all
τ ∈ (0,∞), there is a constantD :=D(d,$, τ ) such that

Dn([τn])
n

→D c.m.c.c.; Dn(Po(τn))

n
→D c.m.c.c.(2.9)

(b) For all τ ∈ (0,∞) there exist constants 0< ητ ≤ στ <∞ (also dependent
on d and $) such that

Dn(Po(τn))−EDn(Po(τn))

n1/2
D−→ N (0, σ 2

τ )(2.10)

and n−1 Var(Dn(Po(τn)))→ σ 2
τ , while

Dn([τn])−EDn([τn])
n1/2

D−→ N (0, η2
τ )(2.11)

and n−1 Var(Dn([τn]))→ η2
τ .

A LLN and CLT for the total volume of the generalized BD process can be
derived by very similar means to those we shall use in the case of the total height.
In [27], we establish a thermodynamic limit and Gaussian fluctuations for the
height and surface width of the random interface formed in the generalized BD
model and we explicitly describe the limiting constant D.

3. A general CLT and LLN for marked point processes. To develop the
limit theory for packing and deposition numbers, we shall formulate in this section
a general CLT and a general LLN for stabilizing functionals H of marked spatial
point processes. The CLT is an extension of a general CLT developed by Penrose
and Yukich [26] in the context of unmarked point processes. The general LLN is
new.

Let (K,FK ,PK) be a probability space. We assume marks take values in K
and are i.i.d. with distribution PK . Let H be a real-valued functional defined for
all finite (marked) point sets X ⊂ R

d . Thus H is defined on sets of the form
{(xi,Mxi )}ni=1 ⊂ R

d × K , where for all x ∈ R
d the mark is denoted by Mx ,

Mx ∈ K . If X := {xi}ni=1, then we will abbreviate notation by suppressing mention
of the marks and simply write H(X) for H({(xi,Mxi )}ni=1).

Let Sy be the shift operator on R
d × K which sends (x,Mx) to (x + y,Mx).

Then H is translation-invariant if for any X and any y ∈ R
d we have H(X) =

H(Sy(X)).
Given a translation invariant H , define the “add one cost,” by which we mean

the increment in H caused by inserting a marked point at the origin into a finite
marked point set X ⊂ R

d , formally defined by

0(X) :=H(X ∪ {0})−H(X),(3.1)
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where it is always assumed that the inserted point at the origin has a K-valued
mark with distribution PK .

For “typical” marked point sets X, it is conceivable that the add one cost is not
affected by changes in X which are far from the origin. We formalize this notion
of stability as follows.

Let P := Pτ be a homogeneous Poisson process of intensity τ on R
d with each

point carrying a K-valued mark with distribution PK . Formally, P is a Poisson
process on the product of R

d × K with mean measure τ times the product of
Lebesgue measure on R

d with the measure PK on K . Each point of P is a pair
(X,M) with X ∈ R

d,M ∈ K , but we view it as a point X in R
d carrying a mark

M :=MX .
The functional H is strongly stabilizing at intensity τ if there exist a.s. finite

random variables R := R(τ) (a radius of stabilization of H ) and 0τ (∞) such
that with probability 1, 0((P ∩ BR(0)) ∪ A) = 0τ (∞) for all finite marked
A ⊂ (Rd \ BR(0)). Thus, R is a radius of stabilization if the add one cost is
unaffected by changes in the configuration outside the ball BR(0).

Throughout the sequel, τ > 0 is a constant and (Qn)n≥1 denotes a sequence of
bounded Borel subsets (“regions” or “windows”) of R

d , satisfying the following
conditions. First, |Qn| = n for all n; second,

⋃
n≥1

⋂
m≥n Qm = R

d ; third,
limn→∞(|∂rQn|/n)= 0 for all r > 0 (the vanishing relative boundary condition),
and fourth, lim supn→∞(n−1 diam(Qn)) <∞ (the linear boundedness condition
on Qn). Subject to these conditions, the choice of (Qn)n≥1 is arbitrary. Note that
in particular the cubes defined at the outset of this paper satisfy these conditions,
as do sets Qn of the form n1/d · C, where C is a bounded convex set of unit
volume containing the origin. Let B denote the collection of all regions obtained
by translating any of the sets Qn; that is, B := {x +Qn :x ∈ R

d, n≥ 1}.
Suppose Q ∈ B . Let U1,Q,U2,Q, . . . be independent identically distributed

uniform variables on Q, and let M1,M2, . . . be independent K-valued variables
with common distribution PK , independent of (U1,Q,U2,Q, . . .). Let Um,Q be a
marked point process consisting of m independent uniform variables on Q. Thus

Um,Q := {
(U1,Q,M1), . . . , (Um,Q,Mm)

}
which is a point process in Q× K but which we view as a marked binomial point
process onQ with each point carrying a K-valued mark with distribution PK . Let
Pτ,n be a homogeneous marked Poisson process on Qn of intensity τ (e.g., the
restriction of Pτ to Qn). Our general results refer to the point processes Pτ,n and
U[nτ ],Qn .

Our general CLT also requires a moment condition for the add one cost of
inserting a marked point at the origin into the marked binomial process Um,Q.
Given p ≥ 1, the functional H satisfies the bounded pth moments condition on B
at intensity τ if

sup
Q∈B : 0∈Q

sup
m∈[τ |Q|/2,3τ |Q|/2]

{
E[0(Um,Q)

p]}<∞.(3.2)
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The functional H is polynomially bounded if there exist constants C and β1
such that for all finite marked point sets X ⊂ R

d

|H(X)| ≤ C(diamX + cardX)β1,(3.3)

in which case we refer to β1 as an index of polynomial boundedness.
We extend the definition of N (0, σ 2) to the case σ = 0 by taking N (0,0) to be

a degenerate random variable taking the value 0 with probability 1. Our general
CLT goes as follows. It is proved by straightforward modifications of the proof of
Theorem 2.1 in Penrose and Yukich [26], which we leave to the reader.

THEOREM 3.1 (General CLT for marked point processes). Let d ≥ 1 and
suppose H is a translation invariant functional defined on finite marked point sets
in R

d . Let τ > 0, and assume that H is strongly stabilizing at intensity τ , satisfies
the bounded fourth moments condition on B at intensity τ , and is polynomially
bounded. Then there exist constants σ 2

τ and η2
τ := σ 2

τ − (E0τ(∞))2 such that as
n→ ∞, n−1 Var(H(Pτ,n))→ σ 2

τ and

H(Pτ,n)−EH(Pτ,n)
n1/2

D−→ N (0, σ 2
τ ),(3.4)

while n−1 Var(H(U[τn],Qn))→ η2
τ and

H(U[τn],Qn)−EH(U[τn],Qn)
n1/2

D−→ N (0, η2
τ ).(3.5)

Also, σ 2
τ and η2

τ are independent of the choice of (Qn). If the distribution of0τ (∞)
is nondegenerate, then η2

τ > 0, and hence also σ 2
τ > 0.

We anticipate that there will be other applications of this CLT besides those
to packing, for example, to Boolean models over binomial point sets, adding to
known CLTs for Boolean models over Poisson point processes found, for example,
in Heinrich and Molchanov [14], Penrose [23]. Numerous functionals of Boolean
models are of interest in statistical estimation; see Molchanov [21].

Next, we give a general LLN. We consider functionals H of finite marked point
processes, as described above, but now require some extra structure on H , as
follows.

Suppose ξ(X, x) is a measurable real-valued function defined for all pairs
(X, x), where X is a finite marked subset of R

d and x is an element of X.
Recalling the definition above of the shift operator Sy on R

d × K , we say that
ξ is translation-invariant if for any finite marked set X ⊂ R

d and any x ∈ X and
y ∈ R

d , we have ξ(X, x)= ξ(Sy(X), Sy(x)). If ξ is translation-invariant, it clearly
induces a translation-invariant functional H by

H(X) := ∑
x∈X

ξ(X, x).(3.6)
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Our LLN applies only to functionals H generated in this way. In practice,
this includes many functionals of interest, including all packing and deposition
functionals considered in this paper, and also all the functionals of unmarked
point processes considered as examples in Penrose and Yukich [26]. We define
stabilization and moments conditions for ξ (rather than H ) as follows.

The functional ξ is strongly stabilizing at intensity τ if there exist a.s. finite
random variables R′ := R′(τ ) (a radius of stabilization for ξ with respect to Pτ )
and ξ∞ := ξ∞(τ ) (the limit of ξ ) such that with probability 1, ξ((Pτ ∩ BR′(0)) ∪
{0} ∪ A,0)= ξ∞ for all finite marked A ⊂ (Rd \ BR′(0)). Thus, R′ is a radius of
stabilization for ξ if the contribution of the origin to the induced functional H is
unaffected by changes in the configuration outside the ball BR′(0).

Given p ≥ 1, the functional ξ satisfies the boundedpth moments condition on B
at intensity τ if

sup
Q∈B : 0∈Q

sup
m∈[τ |Q|/2,3τ |Q|/2]

{
E[ξ(Um,Q ∪ {0},0)p]}<∞.(3.7)

In practice, the types of calculations needed to check stabilization and moments
conditions for ξ are similar to those needed to check stabilization and moments
for the induced H , although we are not aware of any precise correspondence.

The general LLN goes as follows. The proof is deferred to Section 6.

THEOREM 3.2 (General LLN for marked point processes). Suppose ξ is a
translation invariant functional defined on pairs (X, x) consisting of a marked
point set X in R

d , and an element x of X. Let H be the functional induced by ξ
using (3.6), and assume H is polynomially bounded with index β1.

Let τ > 0, and suppose that there exists p > 2(1 + β1), such that H satisfies
the bounded pth moments condition on B at intensity τ . Suppose also that ξ is
strongly stabilizing with respect to Pτ , with limit ξ∞, and ξ satisfies the bounded
qth moments condition on B at intensity τ , for some q > 1. Then as n→ ∞,

n−1H(U[τn],Qn)→ τEξ∞ c.m.c.c.(3.8)

and

n−1H(Pτ,n)→ τEξ∞ c.m.c.c.(3.9)

Theorem 3.2 will have direct application in this paper to packing and deposition
functionals. As with the general CLT, we anticipate that there may be other
applications. In particular, by modifying arguments in [26], Theorem 3.2 yields
a LLN for the functionals of (unmarked) point processes considered as examples
in [26]; however for many of those functionals there are other ways to obtain a
LLN, although not always with an explicit identification of the limit.

Theorem 3.2, together with stabilization results of Lee ([19], Proposition 1),
should also yield a c.m.c.c. LLN for sums of the form

∑
ei
h(ei), where ei ,



288 M. D. PENROSE AND J. E. YUKICH

1 ≤ i ≤ n − 1, denote the lengths of the edges in the minimal spanning tree on
n i.i.d. uniform points in Qn and where h has at most polynomial growth and is
not necessarily monotone. This would generalize Aldous and Steele [2] who treat
the case h(x)= xd .

To conclude this section, we demonstrate how to apply the above marked point
process setup to the basic RSA model. Let the mark space be K := [0, τ ] and let
PK be the uniform distribution on [0, τ ]. We need to define a “packing” functional
H :=HRSA which is appropriate for this model. This is done by using the marks
to determine arrival times of balls, as follows.

Given a marked set X := {x1, . . . , xk}, we order X according to the natural
ordering on the marks {Mx1, . . . ,Mxk} (if Mx =My for some x, y ∈ X, then the
order of x and y is chosen using the lexicographic order on R

d ). The marks
represent the arrival times of balls. Observe that the order is preserved under
insertion and deletion of points.

Sequentially for i = 1,2, . . . , k, letBi be the unit volume ball centered at xi , and
let Bi be packed if it does not overlap any ball Bj , j < i, that was itself packed.
Let HRSA(X) denote the number of balls B1, . . . ,Bk which are packed.

It is clear that HRSA defined in this way is a translation-invariant functional
defined for all finite marked point sets in R

d . Moreover, HRSA(U[τn],Qn) and
HRSA(Pτ,n) are realizations of the packing numbersNn,d([τn]) andNn,d(Po(τn)),
respectively, appearing in Theorems 1.1 and 1.2. Therefore to prove those
theorems, it will suffice to show that the packing functional HRSA satisfies the
conditions of Theorems 3.1 and 3.2.

4. Percolation estimates. In this section we describe an oriented graph on
random points in R

d+1 which is a continuum version of oriented percolation
on Z

d . We prove two lemmas bounding the size of a “cluster at the origin” for
this graph; this will yield stabilization and moment conditions for packing and
deposition functionals.

The oriented graph is defined as follows. In addition to the parameter τ
representing mean point density, it has a parameter r > 0, representing range of
interaction. Given a marked point set X ⊂ R

d , with marks Mx(x ∈ X) taking
values in [0, τ ], make X into the vertex set of an oriented graph by including an
edge from x to y whenever (i) |x − y| ≤ r and (ii) Mx ≤My . Given x ∈ X, let
Aout(x,X, r) be the set of points in X that can be reached from x by a directed
path in this graph (along with x itself). Let Ain(x,X, r) be the set of points in X
from which the point x can be reached by a directed path in this graph (along with
x itself). Finally, let

Aout,in(x,X, r) :=
⋃

y∈Aout(x,X,r)

Ain(y,X, r).

In percolation terminology, Aout,in(x,X, r) is a sort of “cluster” associated with
the point x. The following lemma demonstrates its relevance to packing.
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LEMMA 4.1. Let r1 be the diameter of a unit volume ball. Suppose X and X′
are finite marked point sets in R

d , such that 0 ∈ X ∩ X′ and Aout,in(0,X, r1) =
Aout,in(0,X′, r1), with the equality referring to the mark values as well as
locations. Then

HRSA(X)−HRSA(X \ {0})=HRSA(X
′)−HRSA(X

′ \ {0}).(4.1)

PROOF. Recall that in the definition of the packing functional HRSA, X
represents the set of centers of balls in the basic RSA model, and the marks
represent their arrival times. Some thought (see [24] for more details) shows that
(i) the set of points whose packing status is affected by a deletion at the origin is a
subset of Aout(0,X, r1), and (ii) the packing status of a point x ∈ X is determined
by the graph structure of Ain(x,X, r1). Together, these observations imply the
equality (4.1) of add one costs. �

Lemma 4.1 demonstrates the potential relevance to packing of the following
lemmas concerned with the percolation clusters, which will be formally applied to
packing functionals in the next section.

LEMMA 4.2. Let τ, r > 0 and let Pτ be a Poisson point process with intensity
τ on R

d with points carrying uniform marks on [0, τ ]. Then diam(Aout,in(0,Pτ ∪
{0}, r)) is a.s. finite and its distribution has an exponentially decaying tail, that is,

lim sup
t→∞

t−1 logP
[
diam

(
Aout,in(0,Pτ ∪ {0}, r))> t]< 0.

PROOF. Since Mx is uniformly distributed on [0, τ ], the points (x,Mx)x∈Pτ
form a rate one Poisson point process on R

d × [0, τ ]. It is helpful to assume this
Poisson process is the restriction to R

d × [0, τ ] of a unit intensity homogeneous
Poisson process P on the whole of R

d ×[0,∞). Extending the previously defined
graph structure on marked point sets in the natural way, we assume there is an
oriented edge from point (X,T ) to (Y,U) whenever (X,T ) and (Y,U) are points
of P satisfying T ≤U and |X− Y | ≤ r .

The proof uses discretization. Let K > 2r . Divide R
d into cubes of side K ,

centered at the points of the lattice KZ
d . We thus identify each cube with the

corresponding point of Z
d . For x, y ∈ Z

d let T (x, y) be the smallest t > 0 such
that there exist Poisson points (X,TX) and (Y,TY ) with X in cube x, Y in cube y
and TY ≤ t , with an oriented graph path from (X,TX) to (Y,TY ).

It is useful to think of the induced graph on Pτ ∪ {0} as representing the spread
of an epidemic in which new points born in the r-neighborhood of existing infected
points are themselves instantly (and permanently) infected. Then T (x, y) is the
time it takes the infection to reach cube y assuming that all points born in cube x
are infected.
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Let ‖ · ‖ be the l∞ (maximum-component) norm on R
d . For x and y in Z

d ,
a path γ from x to y (written γ : x� y) is a sequence x0 := x, x1, x2, . . . , xn := y
of distinct elements of Z

d , with ‖xi−xi−1‖ = 1 for each i ∈ {1,2, . . . , n}. For such
a path we write |γ | = n. Note that there are 3d distinct vectors with entries 0,1, or
−1 and thus 3d − 1 l∞-neighbors of a given lattice point. Hence, the number of
paths of length n from any given starting point x0 = x is at most 3dn.

Given a path γ := (x0, x1, . . . , xn), define Sγ as follows (it is a lower bound
for the time it would take for the infection to pass from cube x to cube y along
the path γ , if only infections along that path were allowed). Set Sγ,0 := 0 and
inductively for i = 1, . . . , n define

Sγ,i := Sγ,i−1 +Wγ,i
where Wγ,i is the time from Sγ,i−1 to the next Poisson arrival time in the cube
associated with xi , and finally set Sγ = Sγ,n. Then Sγ := ∑n

i=1Wγ,i where the
Wγ,i , 1 ≤ i ≤ n, are independent exponential variables with parameter Kd .

We claim that there exists a finite constant C such that for all x, y ∈ Z
d ,

P [T (x, y)≤ τ ] ≤ C3−‖x−y‖.(4.2)

To see this, observe that if T (x, y) ≤ τ then Sγ ≤ τ for some path γ : x� y, and
so by Boole’s inequality we have

P [T (x, y)≤ τ ] ≤ ∑
γ : x�y

P [Sγ ≤ τ ].

For θ > 0, setting W to be an exponential variable with parameter Kd we have

P [Sγ ≤ τ ] ≤ E[e−θSγ ]
e−θτ = eθτ (E[e−θW ])|γ |

.

Let α := 3−(d+1). Take θ > 0 with E[e−θW ] ≤ α. Then P [Sγ ≤ τ ] ≤ eθτα|γ |, and
hence, since the number of paths of length n starting from x is at most 3dn,

P [T (x, y)≤ τ ] ≤
∞∑

n=‖x−y‖

∑
γ : x�y,|γ |=n

P [Sγ ≤ τ ]

≤
∞∑

n=‖x−y‖
eθτ3dnαn = eθτ (3dα)‖x−y‖

1 − 3dα
.

This gives us (4.2).
Set R∗ := diam(Aout(0,Pτ ∪ {0}, r)). We now show that the distribution

of R∗ has an exponentially decaying tail. Given λ > 0, let {xλ,i}ν(λ)i=1 be the set of
cubes having nonempty intersection with the boundary of Bλ(0), and observe that
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ν(λ)=O(λd−1). If R∗ ≥ 2λ then at least one of these cubes is infected by time τ ,
so by Boole’s inequality,

P [R∗ ≥ 2λ] ≤
ν(λ)∑
i=1

P [T (0, xλ,i)≤ τ ].

By (4.2) we obtain the desired exponential decay in λ.
Next, let R be the radius of the smallest ball centered at the origin containing

Aout,in(0,Pτ ∪ {0}, r). If R∗ ≤ λ but R ≥ 2λ, then there must be an oriented path
in the oriented graph induced by the marked point set Pτ , that starts outside the
ball B2λ(0) but ends inside the ball Bλ(0). This implies that T (x2λ,i , xλ,j )≤ τ for
some i ≤ ν(2λ), j ≤ ν(λ). Therefore by Boole’s inequality

P [R∗ ≤ λ,R > 2λ] ≤
ν(2λ)∑
i=1

ν(λ)∑
j=1

P [T (x2λ,i, xλ,j )≤ τ ].

Since the number of terms in this sum is O(λ2(d−1)), the above expression decays
exponentially in λ by (4.2). Combined with the previous claim, this demonstrates
exponential decay for the tail of the distribution of R, and this completes the proof.

�

The next lemma will help show that packing functionals satisfy the bounded
pth moments condition. ForQ ∈ B , m ∈ N, and r > 0 define Rm,Q,r by

Rm,Q,r := diam
(
Aout,in(0,Um,Q ∪ {0}, r)).(4.3)

LEMMA 4.3. Let τ > 0, r > 0. Then there is a constant δ := δ(τ, r) > 0 such
that

sup
Q∈B : 0∈Q

sup
m∈[τ |Q|/2,3τ |Q|/2]

E exp(δRm,Q,r) <∞.

PROOF. We will embed the binomial process Um,Q on Q into a higher
intensity Poisson process P2τ on R

d , and then use the epidemic arguments from
the proof of Lemma 4.2.

By standard large deviations arguments, there are constants C > 0, α > 0 such
that for all integers n > 0

P [Po(2τn)≤ 3τn/2] ≤ C exp(−αn),
and therefore for all n, all Q ∈ B with |Q| = n, and all m≤ 3τ |Q|/2, we can find
a coupling of the point processes P2τ and Um,Q such that if Em,Q denotes the
event that Um,Q ⊂ P2τ , we have that

P [Ecm,Q] ≤ C exp(−αn).(4.4)



292 M. D. PENROSE AND J. E. YUKICH

Let R2τ,r be defined by

R2τ := diam
(
Aout,in(0,P2τ ∪ {0}, r)).

Clearly for any point sets X ⊆ X′ and any x ∈ X we have Aout,in(x,X, r) ⊆
Aout,in(x,X

′, r). Therefore on the event Em,Q we have Rm,Q,r ≤R2τ,r .
By linear boundedness of the sequence (Qn)n≥1, there is a constant β > 0

such that for any Q ∈ B with |Q| = n, and any m ∈ [τn/2,3τn/2] we have
Rm,Q,r ≤ diam(Qn)≤ βn, and hence

E exp(δRm,Q,r )= E[
exp(δRm,Q,r )(1Em,Q + 1Ecm,Q)

]
≤ E exp(δR2τ,r)+ P [Ecm,Q] exp(δβn).

Provided δ is small enough, the last two terms are finite uniformly over n since
R2τ,r has a finite exponential moment (by Lemma 4.2) and since P [Ecm,Q] decays
exponentially by (4.4). �

5. Proof of limit theorems for packing. Equipped with the general limit
theorems of Section 3, and the percolation estimates from Section 4, we now prove
our main results for the RSA, CSA and BD models.

5.1. Proof of Theorems 1.1 and 1.2. We prove Theorem 1.2 by verifying
that the packing functional HRSA defined in Section 3 satisfies the conditions of
Theorem 3.1. We check the conditions as follows. Let r1 be the diameter of a unit
volume ball.

(i) Polynomially bounded. This is trivial since HRSA(X)≤ card(X).
(ii) Strong stabilization. Set

R := diam
(
Aout,in(0,Pτ ∪ {0}, r1)) + r1.

Then R is almost surely finite by Lemma 4.2. Also, the set Aout,in(0,Pτ ∪ {0}, r1)
is insensitive to changes to the configuration of Pτ outside BR(0), and by
Lemma 4.1, so is the add one cost of inserting a point at the origin to this Poisson
process. In other words, R is a radius of stabilization for HRSA.

(iii) Bounded fourth moments condition. Given Q ∈ B with 0 ∈Q, and given
m ∈ [τ |Q|/2,3τ |Q|/2], recall from (4.3) that Rm,Q,r denotes the diameter of
the cluster Aout,in(0,Um,Q ∪ {0}, r). As in (ii) above, the set of points of Um,Q

affected by an insertion at the origin is a subset of the ball of radius Rm,Q,r1
centered at the origin. Since the number of centers of disjoint unit volume balls
that can be packed in a set S is bounded by the volume of the (r1/2)-neighborhood
of S, there is a constant C such that

0(Um,Q)
4 ≤ C(Rm,Q,r1 + r1)4d .

Lemma 4.3 shows that the expectation of the last expression is bounded uniformly
over in Q ∈ B with 0 ∈Q and m ∈ [τ |Q|/2,3τ |Q|/2].
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(iv) Nondegeneracy of 0(∞). Let E1 be the event that the ball centered at the
origin is rejected, that is, the event that there is a unit volume ball which intersects
Br1/2(0) and which is packed before the origin is inserted. Then P (E1) > 0 and
on E1 we have

HRSA({0} ∪ Pτ ∩Q)−HRSA(Pτ ∩Q)= 0

for any large cube Q. On the other hand, if E2 is the event that none of the
balls centered at points of Pτ is centered within a distance r1 of the origin, then
P [E2]> 0 and on E2 we have

HRSA({0} ∪ Pτ ∩Q)−HRSA(Pτ ∩Q)= 1

for any cubeQ. Thus 0(∞) is nondegenerate.

The packing functionalHRSA thus satisfies all of the conditions of Theorem 3.1,
proving Theorem 1.2.

Next we prove Theorem 1.1 by verifying that the packing functional HRSA
satisfies the conditions of Theorem 3.2. Note first thatHRSA(X)= ∑

x∈X ξ(X, x),
where ξ(X, x) takes the value 1 if the ball arriving at x is packed, and zero if not.
Clearly ξ is translation-invariant.

In addition to those conditions already verified in the proof of Theorem 1.2,
we need to check that ξ is strongly stabilizing and satisfies the bounded second
moments condition on B at intensity τ . Strong stabilization of ξ follows from
Lemma 4.2, while the second moments condition is immediate from the fact that
the range {0,1} of possible values for ξ(X, x) is bounded. Finally, since the index
of polynomial boundedness ofHRSA is 1, we need to check that HRSA satisfies the
bounded pth moments condition on B for some p > 4. However, the proof of the
pth moments condition already given for p = 4 in proving Theorem 1.2 clearly
carries through to any p > 4.

The packing functional H thus satisfies all of the conditions of Theorem 3.2,
proving Theorem 1.1.

5.2. Proof of Theorem 2.1. Recall the notation of the generalized CSA model
of Section 2.3. To apply the general results on marked point processes from
Section 3 to CSA, we need a mark space which is richer than that for basic RSA.
We take K := F × [0, τ ] × [0,1] as the mark space, where the distribution PK

of marks is given by the product of the measure P1 on the space of types F

(see Section 2.3), the uniform probability distribution on [0, τ ], and the uniform
probability distribution on [0,1].

Define the generalized CSA functional HCSA on finite marked subsets of R
d

as follows. Given a finite marked set X ⊂ R
d , each point x of X carries a mark

Mx := ( x,Tx,Vx), with x ∈ R
d representing a location of an incoming particle,

 x ∈ F its type, Tx ∈ [0, τ ] its time of arrival, and Vx ∈ [0,1] its “acceptability.”
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Enumerate the elements of X as {x1, . . . , xk}, choosing the order according to
the natural ordering on the marks {Tx1, . . . , Txk } (if Tx = Ty for some x, y ∈ X,
then the order of x and y is chosen using the lexicographic order on R

d ). For
simplicity write ( i, Ti,Vi) for ( xi , Txi , Vxi ).

Sequentially for i = 1,2, . . . , k, let the ith incoming particle xi be accepted if
and only if

Vi ≤
∏
�(xi − xj , j , i, Ti − Tj )

where the product is over all accepted particles xj , j < i (and the product over the
empty set is taken to be 1). Let HCSA(X) := ∑

h( i, Ti), with the sum taken over
all i ∈ {1,2, . . . , k} for which xi is accepted, and with h being the test function
appearing in the definition (2.3) of the CSA process. Then HCSA is our CSA
functional.

Defined in this way, HCSA is clearly a translation-invariant functional of finite
marked point sets in R

d . Moreover, by including an “acceptability” component
V in the mark at each point, we have defined the deterministic functional HCSA
of marked points, which, on points with random marks, mimics the randomized
acceptance mechanism in the description of generalized CSA in Section 2.3.
In particular, HCSA(U[τn],Qn) and HCSA(Pτ,n) are realizations of the variables
Gn([τn]) and Gn(Po(τn)), respectively, appearing in Theorem 2.1. Therefore
to prove this theorem, it suffices to show that HCSA satisfies the conditions of
Theorems 3.1 and 3.2.

Recall from (2.2) that r3 is the range of interaction in the definition of
generalized CSA. Given a marked point set X ⊂ R

d with marks ( x,Tx,Vx),
x ∈ X, define an oriented graph on vertex set X by including an edge from x to
y whenever |x − y| ≤ r3 and Tx ≤ Ty . In other words, the graph is constructed
just as in Section 4 by taking only the second (“time of arrival”) component of the
mark, and ignoring the other components. Using this graph, let Aout,in(x,X, r3)
be defined just as in Section 4.

A similar argument to Lemma 4.1 shows that if X and X′ are finite marked
point sets in R

d , such that 0 ∈ X ∩ X′ and Aout,in(0,X, r3) = Aout,in(0,X′, r3),
with the equality referring to the marks as well as locations, then

HCSA(X)−HCSA(X \ {0})=HCSA(X
′)−HCSA(X

′ \ {0}).(5.1)

PROOF OF THEOREM 2.1(b). It suffices to show that HCSA satisfies the
conditions of Theorem 3.1. Since the test function h is assumed to be bounded, we
have HCSA(X)≤ C card(X) so that HCSA is polynomially bounded with index 1.

If we set R := diam(Aout,in(0,P ∪ {0}, r3))+ r3, then R is almost surely finite
by Lemma 4.2 and is a radius of stabilization for HCSA by (5.1).

For the bounded pth moments condition, let Q be an arbitrary translate of Qn,
and let m ∈ [n/2,3n/2]. Writing Rm,Q for Rm,Q,r3 as defined at (4.3), note that
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by (5.1) again and the boundedness of h,

0(Um,Q)
p ≤ C card

(
Um,Q ∩BRm,Q(0)

)p
= C

∞∑
j=0

card
(
Um,Q ∩BRm,Q(0)

)p1{j≤Rm,Q<j+1}

≤ C
∞∑
j=0

card
(
Um,Q ∩Bj+1(0)

)p1{Rm,Q≥j }.

Taking expectations, using Cauchy–Schwarz on the summands and the binomial
moment bound

E[Bi(n, q)2p] ≤ C(nq)2p,
together with the uniform exponential decay of the tails of Rm,Q given in Lem-
ma 4.3, we deduce that

sup
Q∈B : 0∈Q

sup
m∈[τ |Q|/2,3τ |Q|/2]

E
[(
0m,Q(0)

)p]
<∞.

ThusHCSA satisfies the boundedpth moment condition for any p ≥ 1, in particular
p = 4.

The proof of nondegeneracy essentially follows the proof of nondegeneracy for
the basic RSA model. One uses r3 (the range of interactions) instead of r1 in the
argument, and appeals to (2.4) to be assured that P [E1] > 0, and to (2.5) to be
assured that 0(∞) > 0 with positive probability on event E2. �

PROOF OF THEOREM 2.1(a). We apply Theorem 3.2 to HCSA. By the defini-
tionHCSA, it is clear thatHCSA(X) takes the desired form of a sum

∑
x∈X ξ(x,X),

where ξ takes the value h( x,Tx) if x is accepted and zero if not. Since h is as-
sumed uniformly bounded, so is ξ and therefore ξ satisfies the bounded second
moments condition. Also, by Lemma 4.2 and a similar argument to the one lead-
ing up to (5.1), ξ is strongly stabilizing. Therefore, Theorem 3.2 applies. �

5.3. Proof of Theorem 2.2. Given a marked point set X ⊂ R
d , with distinct

marks taking values in [0, τ ], let HBD(X) be the total height of accepted particles
if the points of X are the locations of incoming particles for the generalized BD
process, with arrival times given by the marks. Note that HBD(X) takes the form
of a sum

∑
ξ(x,X) with ξ(x,X) here taking the value equal to the height of x (if

x is accepted) and taking the value 0 if x is rejected.
Recall that the generalized BD model assumes that the range of interaction

and the lateral displacement are both uniformly bounded by some constant r4.
What happens to an incoming particle, given the location at which it arrives,
is clearly determined by the location, acceptance status and displacement of
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particles previously arriving within a distance 2r4 of the new particle’s location.
Therefore, a particle at x affects only points in Aout(x,X,2r4), as described in
Section 4, and the amount of the effect on such points is determined entirely by
the set Aout,in(x,X,2r4) (cf. Lemma 4.1). In particular, Lemma 4.2 shows that the
deposition functional HBD is strongly stabilizing.

To check the moments condition, observe first that for any point x ∈ X, the
height of the particle x is at most r5 times the number of points in Ain(x,X,2r4).
This fact implies, firstly, that the functional H is polynomially bounded with
index β1 = 2, and secondly, that the total change caused by an insertion of x
into X is bounded by a constant times the square of the number of points in
Aout,in(x,X,2r4). Therefore, now writing Rm,Q for Rm,Q,2r4 , we have

0(Um,Q)
p ≤ C

∞∑
j=0

card
(
Um,Q ∩BRm,Q(0)

)2p1{j≤Rm,Q<j+1}

≤ C
∞∑
j=0

card
(
Um,Q ∩Bj+1(0)

)2p
1{Rm,Q≥j }.

Using Cauchy–Schwarz on the summands, the binomial moment bound

E[Bi(n, q)4p] ≤ C(nq)4p,
together with the uniform exponential decay of the tails of Rm,Q (Theorem 4.3),
we can show the pth moment of 0(Um,Q) is bounded uniformly overQ ∈ B and
m ∈ [|Q|τ/2,3|Q|τ/2].

This gives us the bounded pth moments condition for HBD, and also the
bounded second moments condition on ξ .

The proof of nondegeneracy is similar to those given earlier. There is a positive
probability that no particle arrives within distance 2r4 of the origin, in which case
the inserted particle there does not change the total height. By the nondegeneracy
condition given just before the statement of the theorem, there is also a positive
probability that the inserted particle has a positive height and has no subsequent
particles arriving subsequently within a distance 2r4 of it, in which case the
inserted particle adds to the total height.

Therefore, the functional HBD satisfies all the conditions of Theorems 3.1
and 3.2, giving us the result.

6. Proof of the general LLN. In this section we prove Theorem 3.2, the
general LLN for functionals of the form H(X)= ∑

x∈X ξ(X, x). The proof uses
the following Coupling Lemma.

LEMMA 6.1. If ξ is strongly stabilizing at intensity τ with limit ξ∞, then
there exist coupled random variables ξ ′

n, n≥ 1, and ξ ′∞, such that ξ ′
n has the same

distribution as ξ(U[nτ ],Qn ,U1,Qn) for each n, and ξ ′∞ has the same distribution as
ξ∞, and P [ξ ′

n �= ξ ′∞] → 0 as n→ ∞.
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PROOF. The proof is similar to that of Lemma 4.2 of [26]. On a suitable
probability space, let P ′

τ be a marked homogeneous Poisson process of rate τ
on R

d , and for each n let (Vj,n, j ≥ 0) be a sequence of (marked) independent
variables uniformly distributed over Qn and independent of P ′

τ . Let R′ be a
radius of stabilization for the function ξ with respect to P ′

τ , and let ξ ′∞ be the
corresponding limit of ξ . By definition, ξ ′∞ has the same distribution as ξ∞.

Recall from Section 3 the definition of the shift map Sy . The translated point
process SV0,n (P

′
τ ) is also a homogeneous Poisson process of rate τ on R

d . Let
Mn − 1 be the number of points of this translated point process lying in Qn. Let
the points of SV0,n (P

′
τ ) lying in Qn, taken in an order chosen uniformly at random

from the (Mn−1)! possibilities, be denotedU ′
2,n,U

′
3,n, . . . ,U

′
Mn,n

. SetU ′
1,n = V0,n

and for j ≥ 1 set U ′
Mn+j,n = Vj,n. Then the points U ′

2,n,U
′
3,n, . . . are independent

and uniformly distributed overQn.
Define the marked point process U′[τn],Qn := {U ′

1,n, . . . ,U
′[τn],n} and set ξ ′

n :=
ξ(U′[τn],Qn,U

′
1,n). By the conclusion of the preceding paragraph, ξ ′

n has the same
distribution as ξ(U[τn],Qn,U1,Qn).

Let ε > 0 and choose K such that P [R′ > K] ≤ ε. Observe that the point
process U′[τn],n is obtained by starting with the points in Qn of the translated
Poisson process SV0,n (P

′
τ ), adding or removing |Mn − [τn]| points as appropriate

to modify the number of points in Qn to [τn] − 1, and finally inserting an extra
point at V0,n. The number of added/removed points is O(n1/2) in probability, and
since |Qn| = n, an estimate using Boole’s inequality shows that the probability
that any point (other than the special point V0,n) is added or removed in the ball
BK(V0,n) tends to zero.

By the vanishing relative boundary condition on Qn (see Section 3), the
probability that the ball BK(V0,n) is contained in Qn tends to 1. If this occurs,
and if also no point is added or removed in this ball, then U′[τn],Qn ∩BK(V0,n) is
a translate of the point process {0} ∪ (P ′

τ ∩BK(0)). If also R′ ≤K , then ξ ′
n = ξ ′∞,

and therefore P [ξ ′
n �= ξ ′∞] ≤ 2ε for large enough n. The result follows. �

PROOF OF THEOREM 3.2. The proof has three steps: the first step uses Lem-
ma 6.1 to show convergence of the mean EH(U[τn],n)/n, the second step uses a
variant of Azuma’s inequality to strengthen this to complete convergence, and the
third step deduces (3.9) from (3.8).

Step 1. By definition (3.6) of the functional H and exchangeability,

[τn]−1EH(U[τn],Qn)=Eξ(U[τn],Qn,U1,Qn)= E[ξ ′
n],(6.1)

with ξ ′
n and ξ ′∞ given by Lemma 6.1. Since ξ is assumed to satisfy the bounded qth

moments condition at intensity τ for some q > 1, the qth moment of ξ(U[nτ ],Qn ,
U1,Qn), and therefore that of ξ ′

n, is uniformly bounded. So ξ ′
n are uniformly

integrable random variables which converge in probability to ξ ′∞, and therefore
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E[ξ ′
n] → E[ξ ′∞] = E[ξ∞]. Therefore, the expression (6.1) tends to E[ξ∞],

completing Step 1.
Step 2. Now we show complete convergence of n−1H(U[τn],Qn). Write for

simplicity Ui instead of Ui,Qn , 1 ≤ i ≤ [τn]. By the definition of complete
convergence it suffices to show that for all ε > 0,

∞∑
n=1

P
[|H(U1, . . . ,U[τn])−EH(U1, . . . ,U[τn])|> εn]<∞.(6.2)

Let Fi denote the σ -field generated by the random variables U1, . . . ,Ui and let F0
be the trivial σ -field. Consider the martingale difference representation

H(U1, . . . ,U[τn])−EH(U1, . . . ,U[τn])=
[τn]∑
i=1

di,

with di :=E(H(U1, . . . ,U[τn]) | Fi)−E(H(U1, . . . ,U[τn]) | Fi−1). Notice that

di =E[H(U1, . . . ,Ui, . . . ,U[τn])−H(U1, . . . ,U
′
i , . . . ,U[τn]) | Fi]

where U ′
i is an independent copy of Ui . We claim that the bounded pth moments

assumption on H implies that the variables di have uniformly bounded pth
moments. To see this, observe that

E
∣∣H(U[τn],Qn)−H(U[τn]−1,Qn)

∣∣p
=

∫
Qn

E
∣∣H(U[τn]−1,Qn ∪ {x})−H(U[τn]−1,Qn)

∣∣p dx
n

which is bounded uniformly in n by the bounded pth moments condition on H .
Using this bound twice, and the triangle inequality, one obtains for all 1 ≤ i ≤ [τn],

E
∣∣H(U1, . . . ,Ui, . . . ,U[τn])−H(U1, . . . ,U

′
i , . . . ,U[τn])

∣∣p ≤ C,
and so by the conditional Jensen inequality,

E|di|p ≤EE(∣∣H(U1, . . . ,U[τn])−H(U1, . . . ,U
′
i , . . . ,U[τn])

∣∣p | Fi) ≤C.(6.3)

Choose γ to satisfy γ < 1/2 and pγ > β1 + 1. By the condition p > 2(β1 + 1),
such γ exists.

To show (6.2) we use the following modification of Azuma’s inequality (see,
e.g., Lemma 1 of Chalker, Godbole, Hitczenko, Radcliff and Ruehr [5]). For any
martingale difference sequence di , i ≥ 1, and for all sequences wi , i ≥ 1, of
positive numbers we have for all t > 0 that

P

[∣∣∣∣∣
[τn]∑
i=1

di

∣∣∣∣∣> t
]

≤ 2 exp
( −t2

32
∑[τn]
i=1 w

2
i

)
+ (

1 + 2t−1 sup
i

‖di‖∞
) [τn]∑
i=1

P [|di|>wi].
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Letting wi := nγ , t := εn, using (6.3), Markov’s inequality, and noting that
supi ‖di‖∞ ≤Cnβ1 by polynomial boundedness, we obtain

P

[∣∣∣∣∣
[τn]∑
i=1

di

∣∣∣∣∣> εn
]

≤ 2 exp
( −n2

Cn1+2γ

)
+ (1 +Cnβ1−1)

n

npγ
,

which is summable in n by the choice of γ . This completes the proof of Step 2,
and therefore of (3.8).

Step 3. We give only a sketch. LetMn be the number of points of Pτ,n, a Poisson
variable with mean nτ . Let λτ := τEξ∞. Then by conditioning on the value ofMn,
we obtain∣∣E[H(Pτ,n)− nλτ ]

∣∣ ≤ max
m : |m−τn|≤n3/4

∣∣E[H(Um,Qn)− nλτ ]
∣∣

(6.4)
+ ∣∣E[(H(Pτ,n)− nλτ )1{|Mn−nτ |>n3/4}]

∣∣
and

P
[|H(Pτ,n)− nλτ |> εn] ≤ max

m : |m−τn|≤n3/4
P

[|H(Um,Qn)− nλτ |> εn
]

(6.5)
+ P [|Mn − τn|> n3/4].

By repeating Steps 1 and 2 with the point process U[τn],Qn replaced by Umn,Qn

for an arbitrary sequence (mn) satisfying |mn − n| ≤ n3/4 for all n, one finds that
the first term in the right hand side of (6.4) tends to zero while the first term in the
right hand side of (6.5) is summable in n.

By a standard argument applying Markov’s inequality to the moment generating
function, P [|Mn − τn| > n3/4] decays exponentially in a power of n. Therefore
the second term of (6.5) is summable. Also, by Cauchy–Schwarz and polynomial
boundedness, the second term of (6.4) tends to zero. Therefore (6.4) tends to zero
and (6.5) is summable; together, these imply that n−1H(Pτ,n) → λτ c.m.c.c.,
completing Step 3. �
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