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This article studies a stochastic model of an evolutionary algorithm that
evolves a “population” of potential solutions to a minimization problem.
The minimization process is based on two operators. First, each solution
is regarded as an individual that attempts a random search on a graph,
involving a probabilistic operator called exploration. The second operator
is called selection. This deterministic operator creates interaction between
individuals. The convergence of the evolutionary process is described within
the framework of simulated annealing. It can be quantified by means
of two quantities called the critical height and the optimal convergence
exponent, which both measure the difficulty of the algorithm to deal with
the minimization problem. This work describes the critical height for
large enough population sizes. Explicit bounds are given for the optimal
convergence exponent, using a few geometric quantities. As an application,
this work allows comparisons of the evolutionary strategy with independent
parallel runs of the simulated annealing algorithm, and it helps deciding when
one method should be preferred to the other.

1. Introduction. Evolutionary algorithms are general purpose optimization
methods that have demonstrated a capability to yield good approximate solutions,
even in case of complicated multi-modal, bumpy or discontinuous problems. These
methods involve probabilistic operators based on the model of natural evolution.
The resulting algorithms rely on competitive behavior within a population of
interacting individuals, each of which represents a potential solution to the
optimization problem.

The population is initialized arbitrarily, and improved iteratively by means
of the randomized operators of mutation, selection and recombination (which is
omitted in some algorithmic realizations). The interaction arises from the selection
process, which is the main optimizing operator. Mutation is an exploration
operator, whose purpose is to introduce new potential solutions in the competition.
The new solutions created by this operator are often called the offspring resulting
from mutation, and the offspring are likely to replace their parents. Although
the merit of recombination is often asserted [Goldberg (1989), Cerf (1996)], this
operator is less amenable to a quantitative mathematical analysis, and will not be
discussed further [see Rabinovitch and Widgerson (1999)].
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Three main streams of evolutionary techniques have been identified: genetic
algorithms, evolutionary programming and evolution strategies (the later methods
sharing many similarities). For an overview of these different instances [see Fogel
(1995) and Bäck (1996)]. From this paper point of view, a fourth technique should
be added: parallel simulated annealing [Aarts (1988), Trouvé (1996)]. In such
case, selection is defined as a rejection/acceptance criterion called the Metropolis
dynamics. Many authors have proposed a simulated annealing-like approach to
genetic algorithms. In Davis and Principle (1991), the “mutation probability” is
assumed to converge to zero. This parameterization has been used by Cerf (1994)
but with selection (roulette wheel) reinforced as well. Continuous-time versions of
genetic algorithms have also been analyzed following this approach by Del Moral
and Miclo (1999). The link between these algorithms and simulated annealing has
been established through a theory called generalized simulated annealing (GSA),
based on large deviations results [Trouvé (1996), Catoni (1997)]. On the other
hand, few efforts have been devoted to evolution strategies [Bäck (1996)] within
the framework of GSA. This paper studies methods called exploration/selection
(E/S), for which the algorithmic principle is closer to evolution strategies than
genetic algorithms. Important differences will appear, however, motivated by the
use of GSA. Both methods are based upon a deterministic selection process. The
main difference is that the number of offspring obtained by mutation at each
generation will be random in E/S, while this number is deterministic in evolution
strategies. Furthermore, the fraction of offspring goes to zero, and plays the role
of a temperature.

The analysis of the algorithm faithfully follows Cerf’s approach of genetic al-
gorithms [Cerf (1996a, b)]. The merit of E/S algorithms is that less intricate argu-
ments are involved in their analysis. As a consequence, some of the critical geo-
metric constants that help to understand the algorithm’s behavior can be described
explicitly. Let us summarize the results obtained by Cerf for the genetic algorithm.
Cerf’s algorithm can be modeled as a nonhomogeneous Markov chain controlled
by a positive temperature parameter in the spirit of simulated annealing. To prove
the convergence of the algorithm toward optimal solutions, a first step was to war-
rant the concentration of the stationary distribution. Under mild assumptions, there
exists a critical population size above which the stationary distribution at low tem-
perature concentrates on copies of such solutions. This critical size is sensitive to
the “diameter” of the search space and other constants depending on the objective
function [see Cerf (1996a) for definitions]. Choosing the temperature schedule was
the second step. Optimal choices actually rely on two geometric quantities called
the critical height and the optimal convergence exponent, which both measure the
difficulty of the algorithm to deal with the optimization problem. The definition of
these quantities comes from GSA theory. The critical height is related to an infinite
horizon perspective while the convergence exponent is related to finite horizon.
Unfortunately, no explicit values (or easily computable bounds) are available for
these crucial quantities in genetic algorithms.
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Our paper is organized as follows. Section 2 gives a definition of the basic
algorithm. It uses a coupling of mutation and selection which is different from
genetic algorithms. The main results are stated in Section 3. Section 4 gives
basic notations and the main tools from the large deviations formalism. Auxiliary
results and proofs are deferred to the Sections 5 and 6. The paper concludes
with computer implementation issues and comparisons with parallel simulated
annealing algorithms.

2. The exploration/selection algorithm. Let E be a finite set and f a
nonnegative (non-constant) function defined on E. Let A∗ denote the subset of
minimal points of f :

A∗ = arg min
a∈E

f (a).(2.1)

Without loss of generality, minimization problems are considered instead of
maximization problems. The objective function f is often called the fitness
function.

The set E is endowed with a graph structure (E,G) called the exploration
graph. The Exploration/selection strategy uses a vector of potential solutions of
the minimization problem. Each solution is regarded as an individual that attempts
a random search on the exploration graph. The exploration process acts (almost)
independently on each individual, and consists of choosing a random neighbor
in the graph. By analogy with genetic algorithms, the exploration process is also
termed mutation process, and the neighbor resulting from a step of the random
walk is said to be the offspring resulting from mutation.

The strategy relies upon two parameters: The first parameter is the population
size

n≥ 2,(2.2)

and the second parameter is a mutation probability

0 <p < 1,(2.3)

which represents the fraction of offspring by mutation at each generation. The set
of all populations is defined as

X =En,(2.4)

which consists of replicas of the search space. For a given population x = (x1, . . . ,

xn) ∈X, let

Ax = {x1, . . . , xn} ⊂E(2.5)

denote the subset of “types” contained in x. We denote by

x̂ = arg min
xi∈Ax

f (xi)(2.6)

the minimal point in Ax with the lowest label.
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The exploration graph is assumed to be symmetric (non-oriented) and con-
nected. We denote by deg(a) the degree of the vertex a ∈ E, and by N(a) ⊂ E

its neighborhood. The algorithm can be described informally as follows.

• Choose n initial individuals in E.
• Repeat

1. Select x̂ from the population;
2. For each i = 1, . . . , n, create an offspring of individual i and replace the

parent by its offspring with probability p; otherwise replace individual i by
the individual selected in Step 1 [with probability (1− p)];

until some stopping criterion is met.

In Step 2 of the algorithm, we impose the additional condition that the offspring
cannot be the individual selected in Step 1. (This technical assumption will be
useful in defining the large deviations functionals associated with the algorithm.)
All choices are made independently. Our stopping criterion is a finite (large)
number of iterations (generations).

Modeling genetic algorithms with Markov chains is a standard topic in
evolutionary computation [see Nix and Vose (1992), Rudolph (1994), Cerf
(1994) and Chakrabordy, Kalyanmoy and Chakraborty (1996)]. The state of the
population at generation t is denoted by X(t), and the process (X(t)) is actually
described by a Markov chain model, for which the transition probabilities are given
by

∀x, y ∈X, Prob
(
X(t + 1)= y |X(t)= x

) = q(x, y)(2.7)

with

q(x, y)=
n∏

i=1

(
p a(x, yi)+ (1 − p)δx̂,yi

)
(2.8)

and

∀yi �= xi, a(x, yi)=



1

deg(xi)
, if yi ∈N(xi)\{x̂},

0, otherwise.
(2.9)

As usual, δa,b denotes the Kroneker symbol, equal to 1 if a = b, and 0 otherwise.
The exploration operator a is well defined as we set

a(x, xi)= 1− ∑
yi �=xi

a(x, yi).(2.10)

Let us give now an alternative description of the transition probabilities. For two
populations x, y, consider the subset of labels i ∈ {1, . . . , n} defined as

I (x, y)= {1 ≤ i ≤ n; yi �= x̂}.(2.11)
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The number of elements in this subset is denoted by

V1(x, y)= #I (x, y).(2.12)

Then, we have

∀x, y ∈X, q(x, y)= π(x, y)pV1(x,y)(1 − p)n−V1(x,y),(2.13)

with

π(x, y)= ∏
i∈I (x,y)

a(x, yi).(2.14)

To emphasize the relationship to the simulated annealing algorithm, a positive
parameter T is introduced. The mutation probability is therefore represented as

p = e−1/T .(2.15)

The parameter T is called a temperature. As T goes to zero, the transition
probabilities q(x, y) satisfy

∀x, y ∈X, q(x, y)∼ exp
(−V1(x, y)/T

)
,(2.16)

where the symbol ∼ means that

−T logq(x, y)→ V1(x, y) as T → 0(2.17)

(log is the natural logarithm), and the definition of V1(x, y) has been extended so
that

V1(x, y)=∞ if π(x, y)= 0.(2.18)

NOTE. To compare, let us recall the construction of the Mutation+selection
genetic algorithm studied by Cerf (1996a). Starting from x = x0 ∈X, the following
steps are repeated. For each individual xi , i = 1, . . . , n, one offspring ζ i is created
by mutation with probability p. Otherwise, ζ i is equal to xi . Therefore, a sample
(yi)i=1,...,n, yi ∈ {ζ 1, . . . , ζ n} is created according to the Boltzmann probability
distribution

P(Y = ζ i)∝ exp
(−θf (ζ i)/T

)
, θ > 0.(2.19)

Then, xi is replaced by yi for all i = 1, . . . , n.
This description actually corresponds to the genetic algorithm using roulette

wheel selection. The vector ζ represents the intermediate population vector
obtained after the mutation step has been applied. The parameter θ represents the
selection intensity, and allows the respective weights of mutation and selection
to be balanced. The Boltzmann distribution makes the population converge on
the best offspring ζ ∗ (as T goes to zero), and therefore warrants that some
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minimization process actually takes place. A Markov chain model can be
associated to the cost

VGA(x, y)= min
ζ




n∑
i=1

(
1 − δ(xi, ζ i)

)+ θ

n∑
i=1

f (yi)− f (ζ ∗)


 ,(2.20)

when the transition x → y is admissible. The contribution
∑n

i=1(1 − δ(xi, ζ i))

merely counts the number of offspring by mutation. These cost functionals are by
far more complicated than those described in equation (2.12).

NOTE. Similar ideas have been introduced by Del Moral and Miclo (1999).
In their work, a coin is tossed to decide which operator of Mutation or Selection
should be applied. When the result is “Head,” mutation is applied to each
individual with probability p. Otherwise, the population is resampled using
Boltzmann selection as in Cerf’s algorithm. Thus, global decisions are taken in
each generation. In contrast, the decision of which individual should mutate or be
replaced by a better individual holds locally in the E/S algorithm.

3. Main results.

3.1. Some definitions. To start with, we recall some necessary definitions
about the exploration graph (E,G). A path is merely a sequence of vertices

γ : a0 → a1 →·· ·→ ar , ai ∈E, i = 0, . . . , r,(3.1)

where the symbol ai → ai+1 denotes an edge between two consecutive vertices.
The length of the path is the number r of edges in the path. The distance on the
graph, that is, the minimal length of a path between two vertices a and b in (E,G),
is denoted by d(a, b). [The diameter of the graph is the maximum distance between
two arbitrary vertices in (E,G).]

Next, we define two geometric quantities of crucial importance with regard to
the convergence issue. The first is defined as

n∗ = max
a /∈A∗ d(a,A

∗),(3.2)

where d(a,A∗) is the distance from the subsetA∗. We shall call equifitness a subset
for which the fitness function is constant. The second quantity is defined as

D∗ = max
A:A∩A∗=∅

min
a∈A,b/∈A:f (b)≤f (a) d(a, b),(3.3)

where the maximum runs over one-point subsets and all equifitness subsets A such
that a path γaa′ having the property

(P ) f (ai)≥ f (a), ai ∈ γaa′,



254 O. FRANÇOIS

exists for all pairs of vertices aa′ in A. When f is one-to-one, D∗ takes a much
simpler form

D∗ = max
a �=a∗

min
b:f (b)<f (a)

d(a, b).(3.4)

Actually, this quantity measures the greatest distance between a local minimum of
the fitness function and a solution which outperforms this minimum (if f has a
local minimum). The constant D∗ can be regarded as a measure of the “chance” of
escape from local minima during the local search [Suzuki (1993)].

3.2. Statements. This section presents three statements. Theorem 1 describes
the behavior of the mean hitting time of the optimal solution. Theorem 2 gives
necessary and sufficient conditions for convergence using decreasing cooling
schedules in the spirit of simulated annealing. Theorem 3 describes the optimal
success probability after a large number of steps.

THEOREM 1 (Hitting time of A∗). Let n > n∗ and

τ = inf{t ≥ 1, X̂(t) ∈A∗}.
Then, we have

T log
(

max
x∈X,Ax∩A∗=∅

E[τ |X(0)= x]
)
→D∗ as T → 0.

Now, let the notation X(t) stand for XT (t)(t) for all t ≥ 1, meaning that
the temperature T can be changed at each generation. This notation includes
dependence on T (t), and (X(t)) is henceforth a nonhomogeneous Markov chain.

THEOREM 2 (Optimal cooling schedules). Let n > n∗. Consider a non-in-
creasing sequence of temperatures (T (t))t≥1 that converges to zero. Then we have

∀x ∈X, Prob
(
X̂(t) ∈A∗ |X(0)= x

) → 1 as t →∞,(3.5)

if and only if
∞∑
t=1

e−D∗/T (t) =∞.(3.6)

THEOREM 3 (Optimal convergence exponent). Let n > n∗. There exist two
constants R1 > 0 and R2 > 0, and a constant α∗ such that, for all t ≥ 1,

R1

tα∗
≤ inf

0≤T (t)≤···≤T (1)max
x∈X P

(
X̂(t) /∈A∗ | X(0)= x

) ≤ R2

tα∗
.

Moreover, the constant α∗ satisfies

n− n∗
D∗

≤ α∗ ≤ n(n∗ + 1 −D∗)+ n∗ − 1−D∗
D∗

.
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This constant is the convergence exponent of the Markov chain (X(t)) (to be
defined in Section 4).

REMARK. Similar results have been obtained in [Cerf (1996a)] regarding the
Mutation+Selection genetic algorithm. Cerf’s estimates are however less accurate.
Regarding the population size for instance, concentration on absolute minima
holds when

n >
D + θ(D− 1)(

min(1, θε)
,(3.7)

where D is the diameter of the exploration graph,

(= max{|f (a)− f (b)|; a, b ∈E}(3.8)

and

ε = min{|f (a)− f (b)|; a �= b ∈E}.(3.9)

In Del Moral and Miclo (1999), the critical height of the studied Mutation-
Selection algorithm remains unknown. Concentration on absolute minima holds
(taking θ = 1) if

n >
D

min(1, ε)
.(3.10)

In conclusion, the upper bounds on critical sizes obtained by Cerf (1996a) and Del
Moral and Miclo (1999) can be significantly larger than n∗, whose value is always
lower than D.

4. Notation and recalls. The cornerstone of this work is that our model fits in
with the formalism of generalized simulated annealing (GSA) presented in Trouvé
(1996). This framework has been developed to study Metropolis-like algorithms.
A Markov transition kernel qT defines a generalized Metropolis algorithm, or
generalized simulated annealing if there exists κ > 0 such that

1

κ
π(x, y)e−V1(x,y)/T ≤ qT (x, y)≤ κπ(x, y)e−V1(x,y)/T(4.1)

where the family V1 (the communication cost) satisfies V1(x, y)≥ 0 and V1(x, y)

=+∞ iff π(x, y)= 0.
The communication cost in many steps from x to y in X is defined as

V (x, y)= inf



r−1∑
k=0

V1(xk, xk+1), x0 = x, xk ∈X, xr = y, r ≥ 1


 .(4.2)

Virtual energy. Specific oriented subgraphs of X (with the same set of vertices)
are needed to proceed with the definition. Recall that an x-graph ends at x ∈ X
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(no edge starts from x), and contains no cycle (each y �= x is the starting point of
exactly one oriented edge). The set of all x-graphs is denoted by G(x). The virtual
energy is defined on the set X by

∀x ∈X, W(x)= min
g∈G(x)

V (g)(4.3)

with

V (g)= ∑
(y→z)∈g

V (y, z).(4.4)

In formula (4.3), the minimum is taken over the set of all x-graphs on X and the
sum (4.4) runs over the edges of these graphs. The virtual energy W describes the
asymptotic behavior of the chain X(t) as T goes to 0. In Freidlin and Wentzel
(1984), a logarithmic equivalent for the stationary probability distribution µT (x)

is given by

∀x ∈X, lim
T→0

−T logµT (x)=W(x)−W∗,(4.5)

where W∗ is the minimal value of W over the set X. Let W∗ be the set of all
populations in X for which the minimum W∗ is attained. Equation (4.5) states that
the distribution µT concentrates on W∗ as T goes to 0.

Elevations. For x, y ∈ X, x �= y and each trajectory γxy of the chain (X(t))

between x and y

γxy = (x0 = x → x1 →·· ·→ xr = y),(4.6)

define the elevation as

H(γxy)= max
0≤k<r

{W(xk)+ V (xk, xk+1)},(4.7)

where the maximum is taken over all vertices in γxy . Let H(x,y) be the lowest
possible value of H(γxy) over all self-avoiding trajectories γxy from x to y. The
quantity H(x,y) is called the communication altitude between x and y, and is
symmetrical in x and y [see Trouvé (1996)].

Definition of the cycles. Let λ≥ 0 and

Wλ = {x ∈X; W(x)≤ λ}.(4.8)

Consider the equivalence classes Cλ of the relation Rλ defined on Wλ as

∀x �= y ∈Wλ, xRλy iff H(x,y)≤ λ,(4.9)

and xRλx. A subset π ⊂ X is a cycle if either π = Cλ for some λ ≥ 0, or π

reduces to a one-point subset.
The critical height and the convergence exponent. The critical height is a

geometric quantity defined as

H1 = max{He(π); π cycle not intersecting W∗}.(4.10)
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The exit height He(π) can be viewed as the limit of T log(E[τπ |X0 = x]) as T

goes to zero, where τπ is the exit time of π and x ∈ π . (The definition is inde-
pendent of the starting point x.) An algorithmic definition of exit heights can be
found in Trouvé (1996) (because of its length, this definition cannot be reproduced
here). Following Theorem 7, we shall be able to give a simpler definition of H1 for
n > n∗, which will be more amenable to computations. The convergence exponent
is given by

α∗ = min
{
W(π)−W∗

He(π)
; π cycle not intersecting W∗

}
,(4.11)

where W(π) is the minimum of W over the subset π . The convergence
exponent describes the minimum error of the algorithm after a large number of
generations.

Trouvé’s Theorem. We recall here Trouvé (1996), Theorem 2.22, page 981.

THEOREM 4. For all decreasing cooling schedules (T (t))t≥1 converging to 0,
we have

sup
x∈X

Prob
(
X(t) /∈W∗ |X0 = x

) → 0 as t →∞(4.12)

if and only if

∞∑
t=1

e−H1/T (t) =∞.(4.13)

We assume that α∗ <∞. There exist two constants R1 > 0 and R2 > 0 such that,
for all t ≥ 1

R1

tα∗
≤ inf

0≤T (t)≤···≤T (1)max
x∈X P(X(t) /∈W∗ | X0 = x)≤ R2

tα∗
.

5. Concentration and uniform populations. Throughout the whole paper,
the uniform population (a, . . . , a) and the element a ∈E are identified by denoting

(a)= (a, . . . , a).(5.1)

The subset of all uniform populations is denoted by U . From the definition of V1

[equation (2.12)], we have,

∀x ∈X, V1
(
x, (x̂)

) = 0.(5.2)

Moreover, for all x ∈X and y �= (x̂),

V1(x, y) > 0.(5.3)
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Define a new functional on the subset of uniform populations as follows. For all
x, y ∈ U , put

V1,U (x, y)= inf



r−1∑
k=0

V1(xk, xk+1), x0 =x, xk /∈U (1≤k<r), xr =y, r≥1


 .

Therefore, define VU from V1,U in the same way as V is defined from V1. For
uniform populations (a) and (b), VU(a, b) and W(a) will stand for VU((a),(b))

and W((a)) (parentheses are omitted when dealing with uniform populations).

LEMMA 1. For two uniform populations (a) and (b), we have

W(a)= min
g∈GU(a)

∑
(b→c)∈g

VU(b, c)

where the minimum runs over the a-graphs defined over the subset U (or E).
Moreover, H(a,b) can be computed from VU instead of V .

PROOF. It follows from Theorem 5.8 of Cerf (1996a) applied with H =U .

NOTE. This lemma can be interpreted as follows. The chain (X(t)) can
be identified with the chain of successive visits to U . This induced chain is
defined over the subset U . It satisfies the large deviation property associated with
the functional VU . The functionals W and H coincide on U with their analog
definitions built from VU instead of V .

LEMMA 2. Let a∗ ∈A∗ and consider a vertex a ∈E such that a �= a∗. Then
we have

VU(a, a
∗)= d(a, a∗),(5.4)

where d is the distance on the graph (E,G).

PROOF. Obviously, we have VU(a, a
∗) ≥ d(a, a∗). Consider a path that

realizes the min in the definition of d(a, a∗):

a0 = a → a1 →·· ·→ ar = a∗,
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and the trajectory defined as follows:

x0 = (a)

↓
x1 = (a1, a, . . . , a)

. . .

↓
xk = (ak, x̃k, . . . , x̃k)

↓
. . .

↓
xr = (a∗, x̃r , . . . , x̃r )

↓
xr+1 = (a∗)

(5.5)

where we put

x̃1 = a(5.6)

and

∀k = 2, . . . , r, x̃k =
{
ak−1, if f (ak−1)≤ f (x̃k−1),

x̃k−1, otherwise.
(5.7)

Therefore, we have

∀k = 0, . . . , r − 1, V1(xk, xk+1)= 1,(5.8)

and then VU(a, a
∗)≤ d(a, a∗).

The following result warrants that the chain converges on a uniform population
consisting of n copies of a global minimum a∗ ∈A∗.

THEOREM 5 (Concentration on the subset of global minima). Let n > n∗
where

n∗ = max
a /∈A∗ d(a,A

∗).(5.9)

Then, we have W∗ =A∗, and for all x ∈X,

lim
T→0

lim
t→∞Prob

(
X(t)contains an element of A∗ |X(0)= x

) = 1.(5.10)

PROOF. See the Appendix.

6. Proofs.

6.1. Hitting times. Again, specific subgraphs of X are needed to proceed with
the computation of the hitting time of A∗ by the chain (X(t)). Let A be a subset
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of vertices in E, and G(A) be the set of all graphs that end in A (no edge starts
from A), and such that for g ∈ G(A), each a /∈ A is the starting point of exactly
one edge (g contains no cycle). Let

τ = inf{t ≥ 1, X̂(t) ∈A∗}.(6.1)

Put

H0 = lim
T→0

T log
(

max
x∈X,Ax∩A∗=∅

E[τ |X(0)= x]
)
.(6.2)

LEMMA 3. Let n > n∗. Then we have

H0 = min
g∈G(A∗)

VU(g)− min
a /∈A∗ min

g∈G(A∗∪a) VU(g).

PROOF. It follows from Theorem 5 and Freidlin and Wentzell (1984),
Chapter 6.

LEMMA 4. Let a, b ∈ E be any pair of vertices such that a /∈ A∗, and there
exists a path having the property (P ). Then the cost VU(a, b) is equal to the length
of a minimal path having this property.

PROOF. It is similar to Lemma 2.

THEOREM 6. Let n > n∗. Then we have H0 =D∗.

PROOF. Let g∗ ∈G(A∗) be a graph such that

VU(g∗)= min
g∈G(A∗)

VU(g).(6.3)

In g∗, an edge which starts from the uniform population (a) ends at a uniform
population (b) such that f (b) ≤ f (a). Since g∗ contains no cycle, the maximal
edge cost is necessarily equal to D∗. Now, consider an edge a∗ → b∗ for which

VU(a∗, b∗)=D∗.(6.4)

Then, build a minimal graph

g∗∗ ∈G(A∗ ∪ a∗)(6.5)

by deleting the edge a∗ → b∗ in g∗. Hence, we have

min
a /∈A∗ min

g∈G(A∗∪a) VU(g)= VU(g∗∗)= min
g∈G(A∗)

VU(g)−D∗.(6.6)

This proves that

H0 =D∗.(6.7)
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6.2. Cycles. A subset Uf ⊂ U is called equifitness if f (a) = f for all (a) ∈
Uf , and some constant f ≥ 0.

LEMMA 5. Let π be a cycle over U which is not an equifitness subset of U .
Let fπ be the minimal value of f (a) over π and a ∈ π such that f (a)= fπ . Then,
there exists b ∈ π , f (b) > fπ , such that

H(a,b)=W(a)+ VU(a, b).(6.8)

PROOF. The proof is by induction on the number of elements in π . First,
assume that #π = 2, that is, π = {a, b}. By definition, H(a,b)=W(c)+VU(c, d),
for some c �= d ∈ U . Since H(a,b)≤ λ for some λ≥ 0, we have H(c, d)≤ λ and
c, d ∈ π .

Now, take a cycle π of arbitrary size and consider the minimal λ such that
H(a,b)≤ λ for all a, b ∈ π . Let

Ufπ = {a ∈ π; f (a)= fπ },(6.9)

and consider all subcycles in π . The following dichotomy holds:

• Either there exists a strict subcycle which intersects Ufπ and which is not
equifitness. Then, the induction argument applies.

• Or Ufπ is a subcycle for all µ< λ.

In the second case, the chain exits optimally from Ufπ following an edge a → b

where a ∈Ufπ , b /∈Ufπ and

H(a,b)=W(a)+ VU(a, b)= λ. �(6.10)

THEOREM 7. Let n > n∗. Over U , a cycle either intersects A∗ or consists of
an equifitness subset of U .

PROOF. Let π be a cycle over U which is not an equifitness subset of U . Then,
by lemma 5, there exists two vertices a and b in π such that

VU(a, b)≥ n(6.11)

[at least n simultaneous mutations are necessary to go from (a) to (b)], and

H(a,b)= VU(a, b)+W(a)≤ λ(6.12)

for some λ > 0. Now, take a∗ ∈ A∗ such that d(a, a∗) = d(a,A∗). By lemma 2,
we have VU(a, a

∗)= d(a, a∗). Hence

H(a,a∗)≤W(a)+ VU(a, a
∗)=W(a)+ d(a, a∗)≤W(a)+ n∗.(6.13)

Moreover,

W(a)+ n∗ ≤W(a)+ VU(a, b)≤ λ.(6.14)

Putting together equations (6.13) and (6.14) shows that (a∗) ∈ π . �
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6.3. Optimal cooling schedules.

THEOREM 8. Let n > n∗. We have H1 =D∗.

The proof of this result requires a preliminary lemma.

LEMMA 6. Let π be a cycle and an equifitness subset of U . Then, the virtual
energy is constant over π .

PROOF. Take a cycle π such that #π ≥ 2. Assume that 4 populations have the
same virtual energy 4≤ #π , and let π4 denote this subset in π . Now, let (a) ∈ π\π4
and (b) ∈ π4, such that d(a, b) is minimal. Then, by Lemma 4,

H(a,b)=W(a)+ d(a, b)=H(b,a)=W(b)+ d(b, a).(6.15)

Then, we have W(a)=W(b) and π is equifitness. �

PROOF OF THEOREM 8. According to Theorem 7 and the definition of H1,
we have

H1 = max
a /∈A∗ min

a∗∈A∗{H(a,a∗)−W(a)}.(6.16)

(In this definition, we have used Lemma 6.) In order to prove that H1 ≤ D∗, let
a /∈A∗, a∗ ∈A∗ and consider all self-avoiding trajectories in U defined as

γ : (a0)= (a)→ (a1)→·· ·→ (ar)= (a∗),(6.17)

where each edge ai → ai+1 has been taken so that f (ai) ≥ f (ai+1) and there
exists a path γaiai+1 having the property (P ). In addition, assume that γaiai+1

denotes a minimal path. Then for every trajectory, we have

H(a,a∗)≤ max
i=0,...,r−1

{W(ai)+ length(γaiai+1)}(6.18)

and

H1 ≤D∗.(6.19)

To prove the reverse inequality, Proposition 14 of Catoni (1997) can be used.
According to this (classical) result, one has

H0 ≤ max
a /∈A∗ min

a∗∈A∗{H(a,a∗)−W(a)}.(6.20)

The left-hand side equals D∗ by Theorem 6.

The proof of Theorem 2 follows from Theorem 4.
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6.4. Optimal convergence exponent.

THEOREM 9. Let n > n∗. We have

n− n∗
D∗

≤ α∗ ≤ n(n∗ + 1−D∗)+ n∗ − 1 −D∗
D∗

.

PROOF. In light of Theorem 7 and Lemma 6, we have

α∗ = min
b/∈A∗

{
W(b)−W∗

He(b)

}
.(6.21)

Hence, by the definition of H1, we have

α∗ ≥ minb/∈A∗ W(b)−W∗
H1

(6.22)

Let b∗ /∈ A∗ be such that W(b∗) = minb/∈A∗ W(b), and consider a b∗-graph that
realizes the minimum in the former definition. From this graph, create an a∗-graph
(a∗ ∈ A∗), say g, by deleting the edge a∗ → a and adding the edge b∗ → a∗. By
Lemma 2, we obtain

VU(g)−W(b∗)= d(b∗, a∗)− VU(a
∗, a)≥W∗ −W(b∗)(6.23)

and hence

W(b∗)−W∗ ≥ VU(a
∗, a)− d(b∗, a∗)≥ n− n∗.(6.24)

This establishes that

α∗ ≥ n− n∗
D∗

.(6.25)

To compute the upper bound on α∗, notice that

α∗ ≤ W(b∗)−W∗
H1

(6.26)

where b∗ is such that He(b
∗) = H1. Now create a b∗-graph, say g′, by deleting

the edge b∗ → b and adding the edge a∗ → b∗ in an a∗-graph which realizes the
minimum in the definition of W∗. We obtain

V (g′)−W∗ = V (a∗, b∗)−D∗ ≥W(b∗)−W∗(6.27)

In order to obtain an upper bound on VU(a
∗, b∗), assume that D∗ > 1. Consider

the path that realizes the minimum in the definition of this quantity

γ : (a0)= (a∗)→ (a1)→ ·· ·→ (ar)= (b∗).(6.28)

We have f (ar−2) < f (b∗) and f (ar−1) ≥ f (b∗). Now less than (n∗ + 1 −D∗)
edges are needed to connect (a∗) and (ar−1). In the worst case, n simultaneous
mutations are need at each step. Moreover, we have

V (ar−1, b∗)≤ n∗ − 1.
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Therefore the cost is such that

V (a∗, b∗)≤ n(n∗ + 1−D∗)+ n∗ − 1.(6.29)

This proves that

α∗ ≤ n(n∗ + 1 −D∗)+ n∗ −D∗ − 1

D∗
.(6.30)

If D∗ = 1, this inequality can obviously be improved as follows

α∗ ≤ nn∗.(6.31)

Again, the proof of Theorem 3 follows from Theorem 4.

7. Computer implementation and examples.

7.1. Computer implementation. A slightly different version of the algorithm
proposed in Section 2 has been implemented. This version relies upon the binomial
sampling of the number of offspring by mutation. Mutation is applied to the first
labelled individuals in the population. Informally, the algorithm is as follows.

• Initialize a population x of n labelled individuals in E

• Repeat
1. Draw a random number N from the binomial distribution bin(n,p)

2. Select the best individual x̂ from the population
3. Create offspring x′1, . . . , x′N of the N first individuals x1, . . . , xN , and replace

the parents by their offspring. Replace the n−N remaining individuals by x̂

4. Decrease the mutation parameter p
until some stopping criterion is met.

The probability of a transition qM(x;y) from population x to y ∈X is given by

qM(x, y)= P
(
N = V1(x, y)

)
πM(x, y).(7.1)

where πM(x, y) = 0 if yi /∈N(xi) ∩ (E\{x̂}) for some i ≤ V1(x, y) or yi �= x̂ for
some i > V1(x, y). Otherwise, π(x, y) is a positive number (independent of p)
that corresponds to the choices of the neighbors on the exploration graph. The new
Markov chain still satisfies large deviations estimates. For some positive constant
κM , we have

1

κM
πM(x, y)e−V1(x,y)/T ≤ qM(x, y)≤ κMπM(x, y)e−V1(x,y)/T(7.2)

where the cost function V1 is the same as for the transition kernel q . As
a consequence, all results stated in Section 3 hold for this version as well.
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A merit of this way of programming is that the actual population size is N + 1.
Using this version allows saving memory space, as useless assignments of x̂ to
high-labeled individuals can be avoided. Furthermore, the main feature of this
algorithm is that it provides some kind of hierarchical search. Such ideas have
been considered in the past [see, e.g., Dawson (1987)], but do not seem often
used within the three streams of evolutionary computation. Individuals perform
different ‘degrees’ of search according to their position in the population. For large
population sizes, the first labeled individuals may travel along the search space
with very weak selection pressure, due to the standard fluctuations of the binomial
distribution. On the other hand, the individuals with labels close to np perform a
local search around the best individual, and the selection pressure is strong. This
version has been experimented by Francois (1998) and turns to be computationally
more efficient than the one proposed in Section 2. It has been preferred for running
the numerical simulations presented in the next section.

7.2. Comparisons with simulated annealing. Given two algorithms A and B

and a class of test functions, a crucial question is to determine whether algorithm A

is better than algorithm B or not. By the “no free lunch” theorem of Wolpert
and Macready (1997), the decision may be difficult when the test class is too
broad. Our approach allows comparisons between algorithms on the basis of
optimal convergence exponents, since these quantities give estimates of the success
probability for the algorithms. Thanks to this constant, classes of problems can be
built for which an algorithm outperforms (at least asymptotically) the other. To
carry out this program, explicit estimates on the convergence exponent must be
available.

In this section, we compare the E/S algorithm, denoted by A, with n simulated
annealing running in parallel, denoted by B , where n is the population size of A.
The optimal exponent of algorithm B is lower than n(( − h∗)/h∗ where h∗ is
Hajek’s critical height [Hajek (1988)] and

(= max{|f (a)− f (b)|; a, b ∈E}.(7.3)

In light of Theorem 3, algorithm A should be preferred to algorithm B if

h∗ > ((− h∗)D∗,(7.4)

and n is chosen so that

n

(
1 − ((− h∗)D∗

h∗

)
> n∗.(7.5)

To assess the value of such a claim, numerical simulations have been performed
on a very simple test problem, for which the critical constants h∗, n∗ and D∗ are
easy to compute. The test problem is defined on the search space E = Z/16Z,
and the exploration operator acts as a random walk on this space (a neighborhood
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FIG. 1. Objective values for the first test problem defined on the cyclic group with 16 elements.
f (0)= 2.5, f (1)= 4.3, f (2)= 4.6, f (3)= 1.0, f (4)= 2.9, f (5)= 0.0, f (6)= 1.5, f (7)= 12.0,
f (8) = 10.2, f (9) = 11.0, f (10) = 2.0, f (11) = 4.1, f (12) = 2.8, f (13) = 6.3, f (14) = 12.0,
f (15)= 9.4.

consists of the right and left vertices). The values of the objective function are
given in Figure 1. We have

h∗ = 10.0, n∗ = 7, D∗ = 4(7.6)

and

1− ((− h∗)D∗
h∗

= 0.196.(7.7)

Therefore, n has been taken equal to 40, so that equation (7.5) can be checked.
The probability of hitting the best solution a∗ = 5 has been estimated from

a (huge) number of runs. The population has been started from the vertex 10,
which corresponds to the less favorable situation. First of all, note that the
infinite temperature strategy is efficient, because of the low complexity of the
minimization problem. As far as E/S can be modified to become elitist, A and
B are equivalent in this infinite parameter setting. With 10 iterations, we have
about a 0.75 probability of hitting a∗, and this probability increases to 0.99 with
10 additional iterations.

Results concerning six non-trivial temperature schedules are displayed in
Tables 1 and 2. First, the temperature has been kept fixed to the value T =
0.83 (a mutation probability of 0.3). The results show that algorithm A has
a 0.96 probability of reaching the absolute minima within 25 iterations, while
the independent simulated annealing B has almost no chance to do so. With
the temperature T = 0.33 (p = 0.05), algorithm A has a 0.99 probability of
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TABLE 1
Success probability for the exploration/selection algorithm (population size n= 40), varying with
inverse temperature schedules and the number of iterations on the first test problem. The results

were averaged over 1,000 runs

− log(0.3) − log(0.05) β1 β2 β3 β4

20 0.88 – 0.65 0.98 0.66 0.98

25 0.97 0.12 0.92 1 0.78 1

50 1 0.30 0.97 1 0.89 1

100 1 0.61 1 1 0.91 1

500 1 0.99 1 1 1 1

finding a∗ while this probability is neglectible for algorithm B . Analogous results
are reported when decreasing schedules were experimented. Consider

∀t ≥ 1, β(t)= 1/T (t).(7.8)

The logarithmic schedules β1(t) = log(t)/4 + 1.2 and β2(t) = log(t)/10 + 0.5
have been tested first. With β1, the absolute minimum is attained within 50
iterations of algorithm A with probability 0.97, while this probability is 0 for
algorithm B even with 500 iterations. The second schedule seems more favorable
to B , but A is still more efficient. The same phenomenon occurs with linear
schedules β3(t) = 0.83 + 0.05t , and β4(t) = 0.51 + 0.02t . With β3, the absolute
minimum is attained within 100 iterations of algorithm A with probability 0.91,
while this probability is 0.0 for algorithm B even with 500 iterations. With β4,
the probability increases to 0.15 for algorithm B , but A is again better. Note
that the number of function evaluations is significantly lower in algorithm A’s
runs than in B’s. As the evaluation of the objective function can be considered
as the major source of complexity in solving the minimization problem, then
E/S strategies reveal themselves computationally more efficient than n simulated
annealing running in parallel.

TABLE 2
Success probability for 40 simulated annealing running in parallel, varying with inverse

temperature schedules and the number of iterations on the first test problem. The results were
averaged over 1,000 runs

− log(0.3) − log(0.05) β1 β2 β3 β4

20 – – – – – –

25 – – – – – –

50 – – – – – –
100 0.001 – 0.0 0.19 0.0 0.14

500 0.03 0.0 0.0 0.31 0.0 0.15
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FIG. 2. Objective values for the second test problem defined on the cyclic group with 16 elements.
f (0)= 1.8, f (1) = 1.9, f (2)= 2.0, f (3) = 1.6, f (4)= 1.8, f (5) = 0.0, f (6)= 1.6, f (7) = 2.6,
f (8) = 2.4, f (9) = 2.5, f (10) = 1.6, f (11) = 2.0, f (12) = 1.8, f (13) = 2.0, f (14) = 2.6,
f (15)= 2.3.

Analogous arguments apply to decide when B may outperform A. Algorithm B

should be preferred when

n(n∗ + 1 −D∗)+ n∗ −D∗ − 1

D∗
<

nδ

h∗
(7.9)

with

δ = min{f (a)− f (a∗); a �= a∗ ∈E}.(7.10)

To assess the value of this claim, numerical simulations have been performed
for a second test problem defined on the same search space (Figure 2). For this
problem, the critical constants h∗, n∗ and D∗ are

h∗ = 1.0, n∗ = 7, D∗ = 4,(7.11)

and n = 8, so that equation (7.9) can be checked. The same six schedules have
been studied for this problem, except for β2 which has been changed to β2(t) =
0.5+ log(t), taking into account the rescaling of function f .

The results reported in Tables 3 and 4 show that 8 simulated annealing performs
better than the E/S algorithm with size n= 8. For constant schedules, the success
probability (of hitting a∗ = 5) is close to 1 within 100 iterations of algorithm B .
For algorithm A, this probability is smaller (almost 0 for p = 0.05). Algorithm B

significantly outperforms algorithm A for the other schedules. This results show
that condition (7.9) have some value although it is based on rough estimates.
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TABLE 3
Success probability for 8 simulated annealing running in parallel, varying with inverse temperature
schedules and the number of iterations on the second test problem. The results were averaged over

1,000 runs

− log(0.3) − log(0.05) β1 β2 β3 β4

20 0.68 0.26 0.60 0.49 0.66 0.78

25 0.82 0.41 0.73 0.61 0.81 0.88
50 0.99 0.84 0.99 0.87 0.97 1

100 1 0.99 1 0.97 0.99 1

APPENDIX

Proof of Theorem 5. The proof generalizes a previous result stated in
Francois (1998). It is given here for sake of completeness. According to Lemma 2,
we have

VU(a, a
∗)= d(a, a∗)(A.1)

for all a∗ ∈A∗, and a �= a∗.
The Markov transition matrix q which is associated to the algorithm satisfies

the classical irreducibility condition

∀(x, y) ∈X×X, ∃r ≥ 1, q(r)(x, y) > 0,(A.2)

and, the Markov chain (X(t)) converges to the stationary distribution µT , as t goes
to infinity.

To prove that A∗ ⊂ W∗, consider a∗ ∈ W∗ and the a∗-graph, say g∗, which
realizes

VU(g∗)=W∗.(A.3)

Since the graph is minimal, an edge which starts from the uniform population (a)

ends at a uniform population (b) such that

VU(a, b)= min
b′:f (b′)≤f (a) d(a, b

′).(A.4)

TABLE 4
Success probability for the exploration/selection algorithm ( population size n= 8), varying with

inverse temperature schedules and the number of iterations on the second test problem. The results
were averaged over 1,000 runs

− log(0.3) − log(0.05) β1 β2 β3 β4

20 – – – – – 0.36

25 0.24 – 0.05 – 0.17 0.49
50 0.54 – 0.13 – 0.19 0.73

100 0.82 0.01 0.19 0.02 0.23 0.79
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Since g∗ contains no cycle, there exists an edge a∗ → b∗ such that a∗ ∈ A∗ and
b∗ ∈ W∗. Now, create a a∗-graph, say g, by reversing the path from a∗ to a∗ in g∗.
We have

V (g)=W∗ − V (a∗, a∗)+ V (a∗, a∗)=W∗,(A.5)

and a∗ ∈W∗.
Now, let (a) be a uniform population such that a /∈A∗. We have

n > max
a /∈A∗{d(a,A∗)}.(A.6)

Hence, by Lemma 2, there exists an a∗ ∈A∗ such that

n > VU(a, a
∗).(A.7)

On the other hand, at least n simultaneous mutations are required to exit from the
subset of minimal populations

∀b /∈A∗, VU(a
∗, b)≥ n.(A.8)

Let g be a a-graph on U for which

VU(g)=W(a)= ∑
(u→v)∈g

VU(u, v).(A.9)

Since a /∈A∗ and g is a spanning tree on U rooted at a, there must be a population
b ∈ U such that (a∗ → b) is in g. We build an a∗-graph by deleting the edge
(a∗ → b) in g and introducing the edge (a→ a∗). Thus, we have

W(a∗)≤W(a)+ VU(a, a
∗)− VU(a

∗, b).(A.10)

Thus, we have

∀a /∈A∗, W(a) >W(a∗),(A.11)

and W∗ ⊂A∗.
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