
The Annals of Applied Probability
2002, Vol. 12, No. 1, 1–22

A REFINEMENT OF THE HUNT–KURTZ THEORY OF
LARGE LOSS NETWORKS, WITH AN APPLICATION TO

VIRTUAL PARTITIONING

BY STAN ZACHARY AND ILZE ZIEDINS

Heriot-Watt University and University of Auckland

This paper gives a refinement of the results of Hunt and Kurtz on
the dynamical behavior of large loss networks. We introduce a Liapounov
function technique which, under the limiting regime of Kelly, enables
the unique identification of limiting dynamics in many applications. This
technique considerably simplifies much previous work in this area. We further
apply it to the study of the dynamical behavior of large single-resource loss
systems under virtual partitioning, or dynamic trunk reservation, controls. We
identify limiting dynamics under the above regime, describing the behavior
of the number of calls of each type in the system. We show that all trajectories
of these dynamics converge to a single fixed point, which we identify. We also
identify limiting stationary behavior, including call acceptance probabilities.

1. Introduction. This paper presents a refinement of the results of Hunt and
Kurtz (1994) on the dynamical behavior of large loss networks. It then considers an
application to the virtual partitioning control strategy of Mitra and Ziedins (1996)
discussed below.

In recent years there has been considerable interest in the dynamical behavior
of loss networks. Although such networks typically reach equilibrium very fast,
an understanding of the dynamical behavior both permits the investigation of
stability issues and is often the only way to establish equilibrium behavior—
see Bean, Gibbens and Zachary (1997) and also the results of Section 3 of the
present paper. Hunt and Kurtz (1994) prove a functional law of large numbers
describing limiting dynamics in a sequence of loss networks in which arrival rates
and capacities are allowed to grow in proportion. However, their result does not
always identify these dynamics uniquely. In applications it is necessary to resort
to further, ad hoc arguments, and these usually only work in problems where
the number of resource constraints is small—typically at most two. In Section 2
we give a result which shows how a Liapounov function technique may be used
to refine the original Hunt–Kurtz result in such a way as to permit the unique
identification of limiting dynamics in considerably more complex problems. While
we give a simple application in that section, our main use of the technique is in the
study of the virtual partitioning control scheme considered in Section 3.
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Virtual partitioning is a mechanism for sharing the capacity of a resource
between a number of competing call types, while preventing any call type from
overwhelming the others. Here we consider the classical model of a single-
resource loss system modified as follows. Calls of each type r are accepted if there
is sufficient available capacity to do so, except when those type-r calls already in
progress occupy capacity in excess of some suitable thresholdCr . In that case, any
further call of this type is accepted only if the resulting free capacity in the network
will be greater than or equal to some suitably chosen reservation parameter tr .
Here tr effectively acts as a “trunk reservation” parameter which is operative only
when the number of type-r calls already in progress is sufficiently large. In a large
network only a modest value of each tr is required to ensure that the capacity
occupied by type-r calls cannot significantly exceed Cr except only when there
would otherwise be spare capacity in the system. This result, which is a property
of (rapidly achieved) equilibrium behavior, is a consequence of the analysis of
Section 3.

Control mechanisms based on the use of reservation parameters have been both
used and investigated for a long time—see Kelly (1991) for a review. However,
virtual partitioning as a formal scheme was first proposed by Mitra and Ziedins
(1996). The idea has since been applied in several contexts—see, for example,
Borst and Mitra (1998), Kumaran and Mitra (1998) and Mitra, Reiman and Wang
(1997). The policy has properties of fairness and efficiency and is robust under
deviations from the engineered load.

In Section 3 we investigate the limiting dynamics of a loss system with virtual
partitioning in a sequence of large loss networks as above, under the assumption
of a slowly growing reservation parameter. We prove stability and also deduce
limiting equilibrium behavior, including call acceptance probabilities.

For general reviews of loss networks, see, in particular, Kelly (1991) and Ross
(1995).

2. Refinement of the Hunt–Kurtz theory. In this section we give a brief
description of the Hunt–Kurtz theory of large loss networks. We generalize the
original description to permit consideration of a wider class of control strategies—
for example, the virtual partitioning strategy studied in Section 3. We then give a
refinement (Theorem 2.1) to this theory which, in many applications, can be used
to uniquely identify limiting dynamics.

As discussed in Section 1, the theory is concerned with the dynamical behavior
of loss networks with large capacities and arrival rates and with the establishment
of a functional law of large numbers for a suitably normalized version of
the dynamics. Thus we consider a sequence of networks, indexed by a scale
parameterN , with a common set of call types indexed in a finite set R. For theN th
member of the sequence, calls of each type r ∈ R arrive as a Poisson process of
rate κr(N), where

κr(N)

N
→ κr > 0 as N → ∞.(2.1)
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A call of type r is accepted, or else rejected and lost, as described below. If
accepted, it remains in the network for a period of time which is exponentially
distributed with meanµ−1

r independent ofN . All arrival processes and call holding
times are statistically independent. Define nN(t)= (nNr (t), r ∈ R), where nNr (t) is
the number of calls of type r in progress at time t .

We now give the rules for call acceptance. Let A = (Ajr, j ∈ J, r ∈ R),
where J is a finite set and each Ajr ∈ Z+ (the set of nonnegative integers). For
each N , let C(N)= (Cj (N), j ∈ J ), where Cj (N) ∈ Z+, and suppose that

Cj (N)

N
→Cj > 0 as N → ∞.(2.2)

Again for each N , define the process mN(·)= (mNj (·), j ∈ J ) by

mNj (·)=Cj (N)−
∑
r∈R

Ajrn
N
r (·).(2.3)

We assume that, for some J1 ⊆ J and for each j ∈ J1, the process mNj (·) ∈ Z+.
This corresponds to the interpretation of each such j as indexing a resource of
capacity Cj(N) where a call of each type r requires Ajr units of this capacity. For
each j ∈ J2 = J \ J1, we have mNj (·) ∈ Z. Thus, for each j ∈ J , define

Zj =
{

Z+, if j ∈ J1,
Z, if j ∈ J2,

and let D = ∏
j∈J Zj be the product set. A call of type r arriving at time t is

accepted if and only if mN(t−) belongs to some appropriate subset of D (see
below), which depends on r but is independent of N . The introduction of the
set J2 [with appropriately defined Ajr and Cj (N) for each j ∈ J2] permits the
consideration of, for example, trunk reservation strategies in which the trunk
reservation parameter grows with N , as well as the virtual partitioning strategy
considered in Section 3.

To obtain the functional law of large numbers of Hunt and Kurtz (1994), we
require an additional condition on each of the acceptance sets. Compactify each of
the sets Zj to Z

�
j , where

Z
�
j =

{
Z+ ∪ {∞}, if j ∈ J1,
{−∞} ∪ Z ∪ {∞}, if j ∈ J2,

where the topologies are those of the usual one-point compactification of Z+ for
j ∈ J1 and the analogous two-point compactification of Z for j ∈ J2. Let E =∏
j∈J Z

�
j be given the corresponding product topology. Let C be the collection of

subsets F of E such that the indicator function IF is continuous. [For F to belong
to C it is necessary and sufficient that there exists someM ∈ Z+ with the following
property: for m ∈ E such that, for some j , mj = ±∞, we have IF (m) = IF (m′)
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for all m′ with m′
k =mk , k �= j , |m′

j | ≥M and signm′
j = signmj .] We regard the

acceptance sets as subsets of E [although, for each N , the process mN(·) is, of
course, confined to the space D ⊂ E] and require that, for all N , a call of type r
arriving at time t is accepted if and only if mN(t−) ∈ Ar , where Ar ∈ C. This
condition is satisfied for all reasonable control strategies.

Now, for each N , define the normalized process

xN(·)= nN(·)/N.
Following Hunt and Kurtz (1994), define also the random occupation measure νN

on [0,∞)× E, associated with the process mN(·), by

νN ([0, t] × �)=
∫ t

0
I{mN(u)∈�} du, � ∈ B(E)(2.4)

[where B(E) is the Borel σ -algebra induced by the above topology]. Then νN ∈
L0(E), where L0(E) denotes the space of all measures γ on [0,∞)×E such that
γ ([0, t] ×E)= t . Again following Hunt and Kurtz, L0(E) is given the topology
corresponding to weak convergence of the measures restricted to [0, t] × E for
each t .

We are interested in any possible “fluid limit” process x(·) of the process xN(·)
[see, e.g., Kelly (1991)]. Note that any such limit necessarily takes values in the
space X = {x ∈ R

R+:
∑
r Ajrxr ≤ Cj for all j ∈ J1}. For each x ∈X, let mx(·) be

the Markov process on E with transition rates given by

m →
{

m − Ar , at rate κrI{m∈Ar },
m + Ar , at rate µrxr ,

(2.5)

where Ar denotes the vector (Ajr, j ∈ J ) and ∞ ± a = ∞ for any a ∈ Z+. Then
the process mx(·) is reducible, and so does not always have a unique invariant
distribution. Lemmas 1 and 2 and Theorem 3 of Hunt and Kurtz (1994) apply
without change to the present generalized control strategy. They show that the
sequence {(xN(·), νN )} is relatively compact in DRR [0,∞)×L0(E) and that any
weakly convergent subsequence has a limit (x(·), ν) which obeys the relations

xr(t)= xr(0)+
∫ t

0

(
κrπu(Ar )−µrxr(u))du(2.6)

and

ν([0, t] ×�)=
∫ t

0
πu(�)du, � ∈ B(E).(2.7)

Here, for each t, πt is some invariant distribution of the Markov process mx(t)(·)
and additionally satisfies

πt{m: mj = ∞} = 1 if
∑
r∈R

Ajrxr(t) < Cj , j ∈ J,(2.8)

πt{m: mj = −∞} = 1 if
∑
r∈R

Ajrxr(t) > Cj , j ∈ J2.(2.9)
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REMARK 2.1. For a discussion of these results—which involve a separation,
in the limit, of the time scales of the processes xN(·) and mN(·)—again see Hunt
and Kurtz (1994). Conditions (2.8) and (2.9) are easily seen to hold by noting that,
for any j , away from the boundary region

∑
r∈R Ajrxr = Cj in X, the limiting

dynamics x(·) may be deduced without reference to the control j .

Depending on the model under study, it may or may not now be the case that
there exists a function π ′ on X (each value of which is a probability distribution
on E) with the property that, for all convergent subsequences, we may take πt
above to be given by πt = π ′

x(t). In particular, if there does exist such a function,
then we may define a velocity field v = (vr , r ∈R) on X by

vr (x)= κrπ ′
x(Ar )−µrxr,(2.10)

so that (2.6) becomes

xr(t)= xr(0)+
∫ t

0
vr

(
x(u)

)
du.(2.11)

However, Hunt (1995) gives some, rather pathological, examples in which the
function π ′ fails to exist.

There remains now the general problem in applications of establishing the
existence of such a function π ′ and of identifying it. For each t , the state space
of the process mx(t)(·) fragments into 2J1 × 3J2 closed components, each of which
is usually not further reducible. Each of these components may have an associated
invariant distribution, and, subject to the restrictions imposed by conditions (2.8)
and (2.9), the above results merely require the distribution πt to be some convex
combination of these (extreme) invariant distributions.

In previous work—see Hunt and Kurtz (1994), Hunt (1995), Hunt and Laws
(1997), Bean, Gibbens and Zachary (1995, 1997) and Alanyali (1999)—the
distribution πt , t ≥ 0, is usually identified by making use of the further observation
that the process x(·)must necessarily remain within the spaceX. This observation,
however, only provides sufficient additional information in quite simple examples,
where the set J is small. Otherwise, it is necessary to further refine the limiting
theory described above to establish additional properties of the distribution πt ,
essentially via some form of tightness argument. We give below, in Theorem 2.1, a
very general result (see also the further discussion at the end of this section). Once
established, this result considerably simplifies the arguments used in earlier work
to identify πt . The theorem further permits the identification of πt in more complex
models. An example is the virtual partitioning strategy considered in Section 3.

For any function f on D, and for each x ∈ R
R+, define the function dxf on D

by

dxf (m)=
∑
r

[
κrI{m∈Ar }

(
f (m − Ar )− f (m))

+µrxr(f (m + Ar)− f (m))](2.12)
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here dx is simply the generator of the Markov process mx(·) defined by (2.5).
Similarly, for each N ≥ 1, define the function dNx f on D as for dxf in (2.12) but
with each κr replaced by κr(N)/N .

THEOREM 2.1. Let (x(·), ν) be the limit, in some convergent subsequence, of
the sequence {(xN(·), νN )}. Suppose that, associated with some region X′ ⊆ X,
there exist a set F satisfying D ⊆ F ⊂ E, a real-valued function f on D, a set
K ⊆ J and a constant ā ∈ R such that

|f (m + Ar )− f (m)| is bounded in m ∈D, r ∈R,(2.13)

∑
r∈R

Ajrxr =Cj for all j ∈K and x ∈X′,(2.14)

the function f depends only on those mj with j ∈K,(2.15)

G(a)⊆ F(a)⊆ F for some compact set F(a)⊂E for all a ∈ R,(2.16)

where G(a)= {m ∈D: f (m)≤ a}, and

sup
m∈D\G(ā)

dxf (m) < 0 for all x ∈X′.(2.17)

Suppose also that x(t) ∈X′ for all t in some interval T . Then, in (2.6) and (2.7),
we have πt(F )= 1 for almost all t ∈ T .

PROOF. As in Hunt and Kurtz (1994), we take the convergent subsequence of
{(xN(·), νN )} and its limit (x(·), ν) to be defined on a common probability space
(*,F ,P ) in such a way that the convergence is almost sure. We show first that,
given any closed interval [t1, t2] ⊆ T and 0< λ< 1, for all sufficiently large a,

lim
N→∞P

[
1

t2 − t1
∫ t2

t1

I{mN(t)∈G(a)} dt > λ
]

= 1,(2.18)

where, here and elsewhere, N indexes the convergent subsequence. It follows
from (2.12), (2.13) and the continuity of x(·) that the function

sup
m∈D\G(ā)

dx(·)f (m)

is continuous. It further follows from (2.17), (2.1), the definition of the function
dNx f and the weak convergence of xN(·) to x(·) that, given δ > 0, there exist
b > 0 and θ > 0 such that, for all sufficiently large N , on a set �*N ⊂ * with
P (�*N) > 1 − δ,

sup
m∈D\G(ā)

dNxN(t)f (m)≤ −b for all t ∈ [t1, t2],(2.19)
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and also [by considering the Taylor expansion of eθf and using (2.13) and (2.19)]

sup
m∈D\G(ā)

(
dNxN(t)e

θf
)
(m)≤ 0 for all t ∈ [t1, t2].(2.20)

Note that the relationships (2.19) and (2.20) are supermartingale properties for the
processes f (mN(·)) and ef (m

N(·)), respectively, while the process mN(·) remains
within the set D \G(ā). It follows from (2.3) that, for all N and for all j ∈ J ,

∣∣mNj (t1)∣∣ ≤N
∣∣∣∣
(
Cj − ∑

r

Ajrxr(t1)

)∣∣∣∣ + ∣∣Cj(N)−NCj ∣∣
+N∑

r

Ajr
∣∣xNr (t1)− xr(t1)∣∣.

Now apply this result to j ∈K: it follows from (2.2), (2.13), (2.14) and (2.15) that
there exists c > 0 such that, for any N , if |xN(t1)− x(t1)|< ε, then |f (mN(t1))−
ā| < cNε. The weak convergence of xN(t1) to x(t1), together with (2.19), now
ensures that the time from t1 until the process f (mN(·)) first enters the set
G(ā) converges in probability to 0 as N → ∞ [see, e.g., Fayolle, Malyshev and
Menshikov (1995), Theorem 2.1.1]. For any a > ā, consider the durations of the
subsequent successive crossings of the interval [ā, a] by the process f (mN(·)),
where upcrossings and downcrossings are achieved at the times of alternate entries
into the sets D \ G(a) and G(ā), respectively. Standard martingale arguments,
together with (2.13), show that, while (2.20) obtains, the expected time of each
upcrossing is bounded below by k1e

θa/N for some k1 > 0 independent ofN and a.
[Consider, e.g., any fixed â > ā. The upcrossing time of the process f (mN(·))
associated with the interval [ā, â] is bounded below by c1/N for some c1 > 0
independent of N . The optional stopping theorem, (2.13) and (2.20) show that,
conditional upon the completion of such an upcrossing and for all sufficiently
large a > â, the probability that the process then exits the interval [ā, a] above a
is bounded above by c2e

−θa , for some c2 > 0 independent of N and a.] Similarly,
while (2.19) obtains, the expected time of each downcrossing of [ā, a] is bounded
above by k2(a − ā)/N for some k2 > 0 independent of N and a [again see
Fayolle, Malyshev and Menshikov (1995), Theorem 2.1.1]. Since δ may be taken
arbitrarily small, routine probability estimates now show that, given 0 < λ < 1,
there exists a(λ) such that (2.18) holds for all a ≥ a(λ).

Now, for each t , the convergence (for each sample path in *) of the measure
νN([0, t] × ·) on E to the measure ν([0, t] × ·) on E is then that of weak
convergence of finite measures. It follows from (2.16), (2.18) and (2.4) that, again
given 0< λ< 1, for all sufficiently large a,

lim
N→∞P

[
1

t2 − t1 ν
N

([t1, t2] × F(a))> λ] = 1,
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and so, since F(a) is compact,

1

t2 − t1 ν
([t1, t2] × F(a)) ≥ λ a.s.

Hence

1

t2 − t1 ν
([t1, t2] × F ) = 1 a.s.

Since [t1, t2] is an arbitrary interval within T , the result now follows from (2.7).
�

REMARK 2.2. The function f of Theorem 2.1 is a Liapounov function
which ensures a form of tightness for the sequence of random measures {νN }.
In applications it is often convenient to define f on the set F rather than simply on
D ⊆ F . The compact set F(a) may then usually be taken to be F(a) = {m ∈
F : f (m) ≤ a}. This is the case both in the application below and in that of
Section 3.

REMARK 2.3. In some applications—in particular, that of Section 3—it may
be that there exists some proper subset D′ ⊂ D such that mN(·) ∈ D′ for all
sufficiently large N . In this case, we clearly only require (2.17) to hold with D
replaced by D′.

REMARK 2.4. Other (mild) generalizations of the theorem are possible—
though not required in the rest of this paper. Note that, in particular, (2.14)
and (2.15) are required simply to ensure that, in the above proof, f (mN(t1)) is
sufficiently close to ā.

Theorem 2.1 goes some considerable way to closing the gap in the Hunt–Kurtz
theory with respect to the unique identification of the limiting dynamics x(·).
In applications it is usually possible, for each x ∈ X, to guess that part of the
state space E on which is concentrated the relevant stationary distribution of the
process mx(·), and then to verify this result using Theorem 2.1 and an appropriate
choice of one or more Liapounov functions. (There is, of course, great flexibility
here.) We give a detailed example of this strategy in the study of the virtual
partitioning problem in Section 3. We complete the present section by giving
a fairly simple example which nevertheless allows us to make some important
points.

EXAMPLE 2.1. Suppose that J = J1, so that D = Z
J+ and the state space

E = (Z+ ∪ {∞})J of each of the processes mx(·) fragments into 2J closed
components, on each of which there may be concentrated a stationary distribution
of mx(·). Let R∗ = {r ∈ R: (∞, . . . ,∞) ∈ Ar}. For each x ∈ X and j ∈ J , let
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αj (x)= ∑
r∈R Ajr(κrI{r∈R∗} −µrxr) and let α(x)= minj∈J αj (x). Consider first

the problem of identifying πt (insofar as it is unique) for t such that x(t) ∈ Y =
{x ∈ X:

∑
r∈R Ajrxr = Cj for all j ∈ J and α(x) > 0}. (Note, in particular,

that, for t such that
∑
r∈R Ajrxr < Cj for some j , then, by Remark 2.1, the

problem effectively reduces to one of smaller dimension.) Apply Theorem 2.1
with X′ = Y , F = E \ {(∞, . . . ,∞)}, f defined on all of F (see Remark 2.2)
by f (m)= minj∈J mj and K = J . Conditions (2.13)–(2.16) are trivially satisfied
with, in (2.16), F(a)=G(a). Further, the earlier condition Ar ∈ C, r ∈ R, implies
that there exists M ∈ Z+ such that, for all m with f (m) ≥M , we have m ∈ Ar

for r ∈ R∗ and m /∈ Ar for r /∈ R∗. Now, for any such m, let j be such that
f (m) = mj ; then, from (2.12) and the definitions of f and α(x), it follows that
dxf (m) ≤ dxmj ≤ −α(x). Thus, from the definition of Y , (2.17) is satisfied by
taking ā =M . We thus conclude that

πt
(
(∞, . . . ,∞)) = 0 for all t such that x(t) ∈ Y.(2.21)

In the single-resource case J = {1}, (2.21) shows that, for t such that x(t) ∈ Y ,
we have πt = π ′

x(t), where π ′
x is the stationary distribution for mx(·) on Z+. [For t

such that x(t) /∈ Y , we have πt(Ar ) = I{r∈R∗} for all r—see Bean, Gibbens and
Zachary (1997)—thus completing the unique identification of limiting dynamics
in the single-resource case.] For J = {1}, (2.21) may also be deduced from
the observation that the limiting dynamics x(·) must remain within the set X
—see Section 3 of Hunt and Kurtz (1994). However, in the present example,
this latter observation is, in general, insufficient to deduce (2.21) even in the two-
resource case J = {1,2}. Hunt (1995) gives an example of pathological behavior
for the two-resource case, where the limiting dynamics are not uniquely defined
(so that we may, for example, have different limits in different subsequences). The
result (2.21) is nevertheless required to identify limiting dynamics insofar as this
is possible and, for his example, is proved by Hunt using a quite complex coupling
argument. This again does not extend to the more general situation considered
here, where some result such as Theorem 2.1 is essential.

Given the result (2.21), a general treatment of the two-resource case J = {1,2}
is completed, using more elementary arguments, as in Bean, Gibbens and Zachary
(1997). In higher dimensions, any treatment is necessarily more complex. We see
an example in the analysis of the virtual partitioning problem of Section 3, where
we effectively have |J1| = 1, |J2| = 2, and the choice of Liapounov function for
Theorem 2.1 is nontrivial.

3. Loss systems under virtual partitioning. We study the virtual partition-
ing problem described in the Introduction. We consider a sequence of networks as
described in Section 2 and show the existence of a velocity field for the limiting
dynamics. We then show that all trajectories of these dynamics converge to a single
fixed point, thereby also establishing equilibrium behavior.
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The call acceptance rule for the sequence is as follows. Associate with each
call type r a positive-integer capacity requirement er . Associate with the N th
member of the sequence a total capacity C(N) and, for each r , a threshold Cr(N)
and a positive (integer) reservation parameter tr (N). In the N th member of the
sequence, a call of type r is accepted when the process is in state n if and only if
either ∑

s∈R
esns + er ≤ C(N) and er(nr + 1)≤ Cr(N)(3.1)

or ∑
s∈R

esns + er ≤ C(N)− tr (N).(3.2)

As in (2.2) we have

lim
N→∞

C(N)

N
=C, lim

N→∞
Cr(N)

N
=Cr for all r ∈ R.(3.3)

We also assume

lim
N→∞ tr (N)= ∞, lim

N→∞
tr (N)

N
= 0 for all r ∈R.(3.4)

Condition (3.4) includes the optimal growth rate logN of the reservation para-
meter t (N) [see Key (1990)].

To model the problem as in Section 2, for each N define the process mN(·) =
(m̂N (·), mNr (·), m̄Nr (·), r ∈ R) by

m̂N (·)= C(N)− ∑
r∈R

ern
N
r (·),(3.5)

mNr (·)= Cr(N)− ernNr (·),(3.6)

m̄Nr (·)= C(N)− tr (N)−
∑
r∈R

ern
N
r (·)

(= m̂N(·)− tr (N)).(3.7)

The process mN(·) takes values in the space D = {m = (m̂,mr, m̄r ): m̂ ∈ Z+,
mr ∈ Z, m̄r ∈ Z, r ∈ R}. The space D is compactified to E as described in
Section 2. The acceptance sets Ar ∈E, r ∈R, are given by

Ar = {
m: mr ≥ er, m̂≥ er} ∪ {

m: mr < er, m̄r ≥ er}.(3.8)

We now consider the limiting dynamics x(·) defined in Section 2. Formally,
x(·) is the limit associated with any convergent subsequence of the sequence
{(xN(·), νN )} defined there; however, it turns out that, for the results of this
section, the limit x(·) is unique. Note that x(·) takes values in the space X = {x ∈
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R
R+:

∑
r erxr ≤ C}. Define the function α on X and, for each r ∈ R, the functions

αr , γr on X by

α(x)= ∑
s∈R

es(κs −µsxs),(3.9)

αr(x)= α(x)− erκr ,(3.10)

γr(x)=
∑
s �=r
es(κs −µsxs) (= α(x)− er(κr −µrxr)).(3.11)

We now define various subsets of X on which it will be necessary to consider
separately the behavior of the process x(·). Define the sets

B =
{

x ∈X:
∑
r

erxr = C
}
,

Y = {
x ∈ B: α(x) > 0

}
.

Note that it is clear from (2.6) that, for almost all t such that x(t) ∈ Y , we have
πt(Ar ) < 1 for at least one r ∈ R—see also Theorem 3.1. Define also the subsets
of Y :

Ûr = {
x ∈ Y : erxr =Cr, γr(x)≤ 0

}
, r ∈R,

V̂r = {
x ∈ Y : erxr =Cr, γr(x) > 0

}
, r ∈R,

Ur = {
x ∈ Y : erxr > Cr

} ∪ Ûr , r ∈R,
V = Y∖⋃

r

Ur.

For the present we assume that

Cr +Cs > C for all r, s ∈ R with r �= s,(3.12)

so that no two of the (limiting) reservation regions {x ∈ B: erxr ≥ Cr} overlap.
(It is natural for this to always be the case for |R| = 2.) We analyze the limiting
dynamics x(·) as in Section 2. We show in Theorem 3.1 that there exists a unique
velocity field for these dynamics. Then, in Theorem 3.2, we show that there exists a
unique fixed point to which all trajectories of these dynamics converge (as t → ∞).
We thus deduce also the limiting stationary behavior, including call acceptance
probabilities. Finally, we informally generalize these results to the case where
reservation regions may be permitted to overlap.

In order to state and prove Theorem 3.1, we first define some simpler related
control strategies. Consider first the modified control in which a call of any type r
is accepted if and only if condition (3.1) holds. This corresponds to the replacement
of each acceptance region Ar by A∗

r = {m: mr ≥ er , m̂≥ er}. For each N , denote
the corresponding normalized dynamics by (x∗)N(·). Here, for each N and for
each r , the threshold Cr(N) is treated as a “hard-constraint” on the number of
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type-r calls in progress. This is an instance of the classical control strategy studied
by Kelly (1986) where, for each N , calls are accepted subject only to a set of
linear constraints on the resulting process (x∗)N(·). The results of Bean, Gibbens
and Zachary (1997) show that, for the corresponding limiting dynamics x∗(·), there
exists a unique velocity field v∗ on {x ∈X: erxr ≤ Cr for all r ∈R}. This velocity
field may be determined as in that paper, but what will be important here is that
there is a unique point x∗, defined following (3.23), to which all trajectories of x∗(·)
converge—see the proof of Theorem 3.2.

For each fixed r ∈ R, consider also the simple “trunk reservation” control
strategy in which a call of type r ′ �= r is accepted if and only if∑

s∈R
esns + er ′ ≤ C(N)

(i.e., if and only if there is sufficient capacity to do so), while a call of type r
is accepted if and only if (3.2) holds. In a straightforward generalization of
Example 2 of Section 3 of Hunt and Kurtz (1994) [and by recalling (3.4)], it
follows that there exists a unique velocity field vr on X for the associated limiting
dynamics xr(·). In particular, for x ∈ Y , vr (x) satisfies the conditions

vrs (x)= κs −µsxs, s �= r, αr(x)≤ 0,(3.13)

vrr (x)= −µrxr, αr(x) > 0,(3.14) ∑
s∈R

esv
r
s (x)= 0.(3.15)

[See, e.g., Hunt and Laws (1997).] Note also that, for x ∈ Y and αr(x) ≤ 0,
conditions (3.13) and (3.15) determine vr uniquely.

We now return to consideration of the limiting dynamics x(·) corresponding to
the virtual partitioning controls described at the beginning of this section.

THEOREM 3.1. There exists a unique velocity field v on X for the limiting
dynamics x(·), given by

vr (x)= κr −µrxr , r ∈R, x ∈X \ Y,(3.16)

v(x)= vr (x), x ∈ Ur, r ∈R,(3.17)

v(x)= v∗(x), x ∈ V.(3.18)

PROOF. The result (3.16) is clear for x ∈ X \ B , since here, for the limit
process x(·), neither the capacity constraint nor the controls associated with the
virtual partitioning thresholds are operative—see Remark 2.1. [Formally, the result
follows from (2.8), applied to the coordinate of D corresponding to m̂.] To prove
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(3.16) for x ∈B \Y , let T be any measurable set, contained within a finite interval,
such that, for all t ∈ T , x(t) ∈B \Y . Then, from (2.6) and with πt as defined there,∫

T

∑
r

er
(
κrπt (Ar)−µrxr(t))dt = 0.

Since α(x(t))≤ 0 for all t ∈ T (from the definition of Y ), it follows from (3.9) that
πt(Ar )= 1 for all r [and α(x(t))= 0] for almost all such t . Thus we may define a
velocity field v on B \ Y by vr(x)= κr −µrxr for all r , and the result (3.16) now
also follows for x ∈ B \ Y .

To prove (3.17), note that, for any r , the result is clear for x ∈ Ur \ Ûr , since
here the limiting dynamics are as for the simple trunk reservation control strategy
described above. To show (3.17) for x ∈ Ûr , we argue similarly to the proof
of (3.16). Let T now be any measurable set, contained within a finite interval,
such that, for all t ∈ T , x(t) ∈ Ûr . Then, from (2.6) and the definition of Ûr ,∫

T

∑
s �=r
es

(
κsπt (As)−µsxs(t))dt = 0,

and, since γr(x) ≤ 0 for all x ∈ Ûr , it follows that πt(As) = 1 for all s �= r [and
γr(x) = 0] for almost all t ∈ T . Thus we may define a velocity field v on Ûr
by vs(x) = κs − µsxs for s �= r and

∑
s∈R esvs(x) = 0. From a comparison of

(3.10) and (3.11), we also have αr(x) ≤ 0 for all x ∈ Ûr . Since also Ûr ⊆ Y , the
result (3.17) now follows by a comparison with (3.13) and (3.15) above.

To prove (3.18), note that the result is once again straightforward for x ∈
V \⋃

r∈R V̂r , since here it is clear that the limiting dynamics are as for the classical
hard-constraint control strategy described above. It thus remains to consider, for
any fixed r , the behavior of x(·) on the set V̂r . Here, to apply the theory of
Section 2, we need only consider the components m̂x(·), mx, r (·) and m̄x, r (·) of
the process mx(·). Since, from (3.12), the reservation regions do not overlap,
these components correspond to the only controls relevant to the dynamics of
the process x(·) on the set V̂r—again Remark 2.1. That the component m̄x,r (·) is
relevant here follows since, from (3.3) and (3.4), limN→∞(C(N)− tr (N))/N =C
while

∑
s∈R esxs = C for all x ∈ V̂r . From (2.5), these components have joint

transition rates given by

(m̂,mr, m̄r )→




(m̂− er ,mr − er , m̄r − er), at rate κrI{m∈Ar },
(m̂− es,mr, m̄r − es), at rate κsI{m̂≥es},

s �= r ,
(m̂+ er ,mr + er , m̄r + er), at rate µrxr ,
(m̂+ es,mr, m̄r + es), at rate µsxs, s �= r

(3.19)

[where Ar is as given by (3.8)]. Figure 1 illustrates these transition rates where
we take just one s �= r ; note, from (3.5) and (3.7), the informal coupling of the m̂
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FIG. 1. Transition rates for the control process (m̂x(·),mx,r (·), m̄x,r (·)).

and m̄r axes, which are shown coincident, although with different origins. We shall
show that

πt {m: m̂ <∞,mr >−∞} = 1 for almost all t such that x(t) ∈ V̂r(3.20)

[where again πt is as defined by (2.6)]. We also have

πt{m: m̂ <∞, m̄r >−∞} = 0 for almost all t .(3.21)

This latter result follows from (3.5) and (3.7), together with the assumption of
(3.4) that limN→∞ tr (N)= ∞; it is implicit in, for example, the work of Hunt and
Laws (1997) on trunk reservation and is formally proved as in Lemma 2.1(a) of
Alanyali (1999). It then follows from (3.20), (3.21) and the definition of Ar that
πt {m: m̂ <∞, m̄r = −∞,mr ≥ 0} = 1 for almost all t such that x(t) ∈ V̂r .

It now follows that the limiting dynamics x(·) on the set V̂r are the same as
would be obtained if the set Ar were replaced by the set A∗

r defined above and
corresponding to the hard-constraint control strategy. That a unique velocity field
for these dynamics now exists on V̂r , and is given by v(x)= v∗(x), follows from
the results of Bean, Gibbens and Zachary (1997). (Indeed the results there show
that, on V̂r , the velocity field is identified by the further conditions πt {m: mr <
∞} = 1 if µrxr/κr <

∑
s∈R µsxs/κs and πt {m: mr = ∞} = 1 otherwise.)

It thus remains to establish the result (3.20). We shall do this by applying
Theorem 2.1, for each ε > 0, with the sets X′ and F of that theorem given by
X′ = V̂r,ε = {x ∈ V̂r : α(x)∧ γr(x) > ε} and F = {m: m̂ <∞,mr >−∞}. Since
V̂r = ⋃

ε>0 V̂r, ε, the result (3.20) will then follow.
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Thus fix ε > 0. To define the Liapounov function f , define first the functions ĥ
and f̂ on Z+ and the functions hr and fr on Z by

ĥ(m̂)= 0 ∨ m̂− ê
k

∧ 1,

f̂ (m̂)=
m̂∑
i=1

ĥ(i), m̂ ∈ Z+,

hr(mr)= −1 ∨
(
mr − er
k

− 1
)

∧ 0,

fr(0)= 0, fr(mr)− fr(mr − 1)= hr(mr), mr ∈ Z,

where ê = maxs∈R es and where the positive constant k satisfies k > ê. The
Liapounov function f will be defined on all of F (see Remark 2.2) by f (m) =
f̂ (m̂)+ fr(mr), where k is taken sufficiently large. Note that the function f does
not depend on m̄r . We thus take the setK of Theorem 2.1 to index the components
(m̂,mr) of m. Conditions (2.13)–(2.16) of Theorem 2.1 are trivially satisfied, with,
in (2.16), F(a)= {m ∈ F : f (m)≤ a} for all a. We therefore require only to verify
condition (2.17) for a suitable constant ā, and with D replaced by a set D′ such
that mN(·) ∈D′ for all sufficiently large N—see Remark 2.3.

It is now easy to check that there exists a constant c, independent of k, such that

|dxf (m)− φx(m)| ≤ c

k
for all m ∈D,x ∈ V̂r, ε,(3.22)

where, for each x ∈ V̂r, ε, the function φx on D is given by

φx(m)= −
[∑
s∈R

es(κsI{m∈As} −µsxs)
]
ĥ(m̂)

− er(κrI{m∈Ar } −µrxr)hr(mr).
Now define D1 = {m ∈ D \ Ar : mr < er}, D2 = {m ∈ Ar : m̂ ≥ ê + k} and
D3 = {m ∈D: mr ≥ er, m̂ < ê+ k}. Note thatD2 ⊆ As for all s �= r . For m ∈D1,
we have hr(mr)= −1 and so, for all such m and for all x ∈ V̂r,ε,

φx(m)= −
(
γr(x)−

∑
s �=r
esκsI{m̂<es}

)
ĥ(m̂)− erµrxr (1 − ĥ(m̂)).

Similarly, for all m ∈ D2, we have ĥ(m̂) = 1 and so, for all such m and for all
x ∈ V̂r,ε,

φx(m)= −α(x)(1 + hr(mr)) + γr(x)hr(mr).
Since α(x) ∧ γr(x) > ε for x ∈ V̂r,ε, −1 ≤ hr(mr) ≤ 0 for all mr , 0 ≤ ĥ(m̂) ≤ 1
for all m̂ and ĥ(m̂) = 0 whenever m̂ < ê, it follows from the above expressions
for φx(m) and from (3.22) that we may choose a sufficiently small ε′ > 0 and k
sufficiently large so that dxf (m) ≤ −ε′ for all m ∈ D1 ∪ D2, x ∈ V̂r,ε. Now
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define D′ = {m ∈D: m̄r ≤ m̂− k}. Observe that mN(·) ∈ D′ for all sufficiently
large N , that D′ ⊂ D1 ∪ D2 ∪ D3 and that the function f is bounded on the
set D3. Condition (2.17) of Theorem 2.1 is now satisfied with D replaced by D′
and ā any constant satisfying ā > supm∈D3

f (m). The conclusion (3.20) follows
as previously described. �

REMARK 3.1. It is readily verified from (3.10), (3.11) and (3.13)–(3.15) that,
for x ∈ Ur \ Ûr , vr (x) = vrr (x) has opposite sign to γr(x). It is therefore not
entirely surprising that, for x belonging to the boundary set Ûr ∪ V̂r , the threshold
control associated with calls of type r behaves as a “hard-constraint” if and only if
γr(x) > 0, that is, x ∈ V̂r . What is now interesting is that, from Theorem 3.1 and for
x ∈ V̂r , the above threshold control behaves exactly as the classical hard-constraint
control.

We are now in a position to characterize the behavior of the limiting dynamics.
Define x̄ = (x̄r , r ∈ R) ∈ R

R+ by x̄r = κr/µr , r ∈ R. For each r ∈ R, define also
xr ∈ R

R by xrs = x̄s for s �= r and
∑
s∈R esxrs = C. Define also the function g on

X by g(x)= ∑
r∈R gr(xr), where

gr(xr)= xr logκr − xr logµrxr + xr , r ∈ R.(3.23)

Note that each of the functions gr , and so also the function g, is strictly concave
on X. Let x∗ maximize g subject to the constraints∑

r∈R
erxr ≤ C, erxr ≤Cr, r ∈R.

For the classical hard-constraint control strategy, in which the acceptance sets
are the regions A∗

r considered earlier in this section, Kelly (1986) shows x∗ to
be the point on which is concentrated the limiting equilibrium distribution of
the corresponding normalized dynamics (x∗)N (·). Zachary (2000), Theorem 2.2,
further shows that all trajectories of these dynamics converge to x∗.

Now define the heavy-traffic condition [see Bean, Gibbens and Zachary (1995)]∑
r∈R

er x̄r > C,(3.24)

or, equivalently, x̄ /∈X.

THEOREM 3.2. We have limt→∞ x(t)= x̂ a.s., where x̂ is given as follows.

(i) If the heavy-traffic condition (3.24) does not hold, then x̂ = x̄.
(ii) If condition (3.24) holds and additionally, for some (necessarily

unique) r , ∑
s �=r
es x̄s +Cr ≤ C,(3.25)

then x̂ = xr ∈ Ur .
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(iii) If condition (3.24) holds and additionally∑
s �=r
esx̄s +Cr > C for all r ∈ R,(3.26)

then x̂ = x∗ ∈ V .

PROOF. Let v again denote the velocity field for the limiting dynamics x(·),
as given by Theorem 3.1. Define �X = {x ∈ X: xr ≤ x̄r for all r}. We assume
until further notice that x(0) ∈ �X and so also, from (2.10), x(t) ∈ �X for all
t ≥ 0. Since, when the heavy-traffic condition (3.24) does not hold, �X = {x ∈
R
R+: xr ≤ x̄r for all r} ⊂X \ Y , the result (i) is here immediate from (3.16).
Now consider any r ∈ R and x ∈ Ur ∩ �X; from (3.17), v(x) = vr(x). Thus,

if αr(x)≤ 0, then, from (3.13) and (3.15),

vr(x)= − 1

er

∑
s �=r
es(κs −µsxs)

≤ − 1

er
µmin

∑
s �=r
es(x̄s − xs)

= µmin(x
r
r − xr),

where µmin = mins∈R µs > 0 and where the last equation above follows since,
from the definition of xr and the assumption x ∈ Ur ⊆ B , we have

∑
s∈R es(xrs −

xs) = 0 and xrs = x̄s for s �= r . If, alternatively, αr(x) > 0, then, from (3.14),
vr(x)= −µrxr ≤ −µrCr/er . We thus obtain

vr(x)≤
(
−µrCr

er

)
∨µmin(x

r
r − xr), x ∈ Ur ∩ �X, r ∈R.(3.27)

Now suppose that (3.24) does hold and continue to assume that x(0) ∈ �X. Note
that then, from (3.9), B ∩ �X ⊆ Y . Hence, easily from (3.16), there exists t0 such
that

x(t) ∈ B ∩ �X ⊆ Y = V ∪ ⋃
r∈R

Ur for all t ≥ t0 a.s.(3.28)

Suppose first that the additional condition (3.25) also holds for some r ∈ R, which,
straightforwardly from (3.12) and (3.24), is unique. Then, from the definition
of xr and (3.25), erxrr ≥ Cr . It thus follows from the definition of Ur and (3.28)
that, if x ∈ B ∩ �X and xr > xrr , then x ∈ Ur . Thus, from (3.27) and (3.28),
lim supt→∞ xr(t) ≤ xrr . The result (ii) now follows by again using (3.28) and the
definition of xr . Now suppose, alternatively, that condition (3.26) holds [in addition
to (3.24)]. Then, for each r ∈ R, erxrr < Cr and so, from (3.27) and the definition
of Ur , vr(x) is negative and bounded away from 0 on the set Ur . It now follows



18 S. ZACHARY AND I. ZIEDINS

from (3.28) that the process x(·) eventually exits each set Ur forever. Thus the
result (3.28) may be strengthened to conclude that there exists t1 such that, almost
surely, x(t) ∈ V ∩ �X for all t ≥ t1. The result (iii) now follows from (3.18), together
with the result of Zachary (2000) referred to above that all trajectories determined
by the velocity field v∗ converge to x∗.

Finally, when we do not necessarily assume x(0) ∈ �X, observe that, since
vr(x)≤ κr−µrxr for all x ∈X, r ∈ R, we nevertheless have lim supt→∞ xr(t)≤ x̄r
for all r ∈R. Thus entirely routine modifications are required to extend the above
proof to this more general case. �

REMARK 3.2. Note also that, given x(0), the limiting dynamics (x(t), t ≥ 0)
are uniquely determined (almost surely). This follows straightforwardly from the
uniqueness of the velocity field v and its continuity on each of the sets X \ Y , Ur ,
V̂r and V \ ⋃

r∈R V̂r—see also Zachary (1996).

We now describe limiting equilibrium behavior.

THEOREM 3.3. The stationary distribution of xN(·) converges, asN → ∞, to
that concentrated on the single point x̂, while the stationary acceptance probability
associated with each call type-r converges to µrx̂r/κr .

PROOF. The first assertion of the theorem is immediate from Theorem 2.2 of
Bean, Gibbens and Zachary (1997). That theorem also shows that the stationary
free-capacity distribution is given by π ′

x̂ (where this is as defined in Section 2).
The second assertion is now immediate from (2.6) on taking x(0)= x̂. �

We now use an extremal principle to consider, briefly and informally, the
relaxation of condition (3.12) that no two of the reservation regions overlap. For
each r ∈R, define the concave function ĝr on R+ by

ĝr (xr )=


gr(xr), if xr ≤ Cr/er ∧ x̄r ,
gr(Cr/er), if Cr/er < xr ≤ x̄r ,
gr(xr)− gr(x̄r )+ ĝr (x̄r), if xr > x̄r

[where gr is as given by (3.23)]. Define also the function ĝ on X by ĝ(x) =∑
r∈R ĝr (xr). Let x̂ be any fixed point of the velocity field v (in any convergent sub-

sequence such that this exists). Suppose also that the heavy-traffic condition (3.24)
holds—otherwise, it is again trivial that x̂ = x̄. Clearly, x̂r ≤ x̄r for all r ∈R. Then,
as previously, it follows easily that x̂ ∈ Y . Under the additional condition

x̂r ≥Cr/er ∧ x̄r for all r ∈R,(3.29)

it is trivial that, for each r , x̂r maximizes ĝr over R+, and so x̂ maximizes ĝ overB .
Now assume, instead of (3.29), the alternative additional condition

x̂r < Cr/er ∧ x̄r for some r ∈ R(3.30)
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[which, of course, implies (3.24)]. If also condition (3.12) does hold, then x̂ ∈ V .
[This follows since if, instead, x̂ ∈ Ur for some r , then, by Theorem 3.2, x̂ = xr ,
implying (3.29).] Thus here, by Theorem 3.2, x̂ = x∗, where x∗ is as defined earlier
following (3.23). More generally, under (3.30) but when condition (3.12) does
not necessarily hold, we again expect that x̂ = x∗. The informal explanation for
this is that condition (3.30) implies that, in the network sequence and at points
which converge to x̂ as N → ∞, the proportion of calls of type r , and so of
every call type, which are rejected due to the total capacity constraint [given by
the first equation in (3.1)] tends to a nonzero limit. Thus, from consideration
of the limiting regime and, in particular, the condition limN→∞ tr (N) = ∞, we
expect the threshold constraints to behave at x̂ as classical “hard constraints;”
however, as previously mentioned, x∗ is the unique fixed point of the velocity
field defined by these hard constraints, implying x̂ = x∗ as required. Since also,
under (3.30), x̂ ∈ Y ⊆ B , it then follows that x̂ then maximizes the function g over
{x ∈ B: erxr ≤ Cr for all r} and so maximizes ĝ over B . A rigorous proof of this
result would require an appropriate generalization of Theorem 3.1.

We thus expect that, under the heavy-traffic condition (3.24), any fixed point
of the limiting dynamics maximizes ĝ over B . However, in the absence of
condition (3.12), the function ĝ is no longer necessarily strictly concave within
the intersection of two or more of the reservation regions, and so the fixed point x̂
may not be uniquely determined. This is entirely to be expected: to obtain unique
behavior here, we would have to be considerably more specific than (3.4) about
the relative limiting behavior of the reservation parameters tr (N). See Hunt and
Laws (1997) for a further discussion of these issues.

4. Examples. We give two examples for the virtual partitioning scheme
described in the previous section. In each example we take er = 1 for all r ∈ R; the
choice of the remaining parameters C, Cr, κr and µr, r ∈ R, is such that both the
condition (3.12) and the heavy-traffic condition (3.24) are satisfied. It thus follows
from Theorem 3.2 that (almost surely) the trajectories of the limiting dynamics x(·)
converge to the unique fixed point x̂ ∈ Y identified in the previous section. For
each example we give a figure. The upper panel shows these trajectories for
a set of starting points x(0) and identifies the fixed point x̂. The lower panel
shows simulated trajectories for the corresponding (finite) network with the same
call characteristics, capacity C, thresholds Cr and arrival rates κr , r ∈ R. These
simulations use the same set of starting points. The values of C,Cr and κr
are chosen sufficiently large that, provided the reservation parameters tr , r ∈ R
(the values of which are only relevant to the simulated trajectories for the finite
network), are chosen not too close to 0, we expect reasonable agreement between
the limiting trajectories and the simulated trajectories.

Example 1 has two types of calls with C = 1500, κ1 = 1500, κ2 = 800,
µ1 = 1, µ2 = 2 and Cr = 1000, tr = 5 for r = 1,2. The fixed point x̂ is here
given by x̂ = (1100,400) ∈ U1. Figure 2 shows the corresponding limiting and
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FIG. 2. Limiting and simulated trajectories for Example 1.

simulated trajectories in the spaceX—but not their time dependence. However, all
trajectories in general move fairly rapidly to the fixed point (within about 2 time
units in every case). In this example the set B \Y = {x ∈B :x2 ≥ 800} is nonempty
and is indicated on the plot as the dotted region on the boundary B .

Example 2 has three types of calls with C = 1500, κ1 = 1500, κ2 = 960,
κ3 = 120, µ1 = µ3 = 1, µ2 = 2 and Cr = 1000, tr = 5 for r = 1,2,3. The fixed
point x̂ for this system is given by x̂ = (1000,400,100) ∈ V̂1. The limiting and
simulated trajectories in Figure 3 are projected onto the boundary plane B , by
scaling each point x by 1500/

∑
i xi . The figure also shows the boundaries of

the reservation regions, corresponding to the thresholds Cr . Again, as with the
previous example, the set B \ Y = {x ∈ B :x2 ≥ 1080} is nonempty, and limiting
trajectories with x(0) ∈ B \ Y will initially leave the boundary set B before
eventually returning to it. On the other hand, it is easy to check that limiting
trajectories with initial point x(0) ∈ Y never leave the set Y . The trajectory shown
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FIG. 3. Limiting and simulated trajectories for Example 2.

in the upper panel with the initial point x(0)= (0,1500,0) ∈ B \ Y returns to the
setB at the point z = (617.65,832.94,49.41)marked on the plot. Finally, note also
that various other kinds of interesting behaviors are possible in this example. Thus
the trajectory with initial point x(0) = (1050,0,450) ∈ U1 shown in the figure
passes through the set V̂1 at the point (1000.00,78.00,422.00) into V \ V̂1 before
converging to x̂ ∈ V̂1.
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