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JOINT CHARACTERISTIC FUNCTION AND SIMULTANEOUS
SIMULATION OF ITERATED ITÔ INTEGRALS FOR
MULTIPLE INDEPENDENT BROWNIAN MOTIONS

By Magnus Wiktorsson

Lund University

We consider all two-times iterated Itô integrals obtained by pairing m
independent standard Brownian motions. First we calculate the conditional
joint characteristic function of these integrals, given the Brownian incre-
ments over the integration interval, and show that it has a form entirely
similar to what is obtained in the univariate case. Then we propose an
algorithm for the simultaneous simulation of the m2 integrals conditioned
on the Brownian increments that achieves a mean square error of order
1/n2, where n is the number of terms in a truncated sum. The algorithm
is based on approximation of the tail-sum distribution, which is a multi-
variate normal variance mixture, by a multivariate normal distribution.

1. Introduction. Consider the multidimensional stochastic differential
equation (SDE),

dX�t� = b�X�t�� t�dt + σ�X�t�� t�dW�t��(1.1)

where X�t� is a d-dimensional vector and W�t� is an m-dimensional vec-
tor of independent standard Brownian motions. The functions b�X�t�� t� and
σ�X�t�� t� are measurable mappings from Rd ×R to Rd and from Rd ×R to
Rd×Rm, respectively. The above equation is here interpreted in the Itô sense.

Explicit solutions to (1.1) can only be found in a few special cases, so
that in general we are confined to computing numerical approximations. Con-
sider a sequence �X̃h�t��0 ≤ t ≤ T�, for h > 0, of numerical approxima-
tions of a (strong) solution �X�t��0 ≤ t ≤ T�, where X̃h�·� is defined for
t = 0� h�2h� 
 
 
 � T , where h is called the step size. This sequence is said to
converge at rate O�hγ� if

E
X�T� − X̃h�T�
 = O�hγ� as h → 0


For example, the simplest scheme, the Euler one, converges at rate γ = 1/2.
The dispersion matrix σ�x� t� of the SDE (1.1) is said to satisfy the so-called

commutativity condition if

Liσkj = Ljσki� i� j = 1� 
 
 
 � m� k = 1� 
 
 
 � d�(1.2)
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where the differential operator Li is given by

Li =
d∑

l=1
σli�x� t� ∂

∂xl


(1.3)

In the general case where σ�x� t� does not satisfy (1.2), it is not possible
to generate numerical approximations converging faster than O�h1/2� unless
the iterated Itô integrals,

Iij�tn� tn + h� =
∫ tn+h

tn

∫ s

tn

dWi�u�dWj�s�(1.4)

are included in the numerical scheme [see, e.g., Rümelin (1982)]. Here �tn�
are the time points used in the discretisation.

Milshtein (1974) proposed a numerical scheme that converges strongly at
rate O�h� if b ∈ C1�1�Rd ×R+� and σ ∈ C2�1�Rd ×R+�. In this scheme the kth
component of the approximation is given by

X̃h
k�tn+h� = X̃h

k�tn�+bkh+
m∑

i=1
σki�Wi�tn�tn+h�+

m∑
i=1

m∑
j=1

LiσkjIij�tn�tn+h��

X̃h�t0� = X�t0��
where �Wi�tn� tn + h� = Wi�tn + h� − Wi�tn�.

The purpose of this paper is twofold. First, we derive the conditional joint
characteristic function of the iterated Itô integrals given the Brownian incre-
ments, and second we propose an algorithm for the simultaneous simulation
of the iterated Itô integrals and the Brownian increments. Before proceed-
ing we note that the joint distribution of �Wi�t� t + h� = Wi�t + h� − Wi�t�,
�Wj�t� t+h� = Wj�t+h�−Wj�t� and Iij�t� t+h� for i� j = 1� 
 
 
 � m does not
depend on t, and hereafter we write �Wi�h� for �Wi�t� t + h� and Iij�h� for
Iij�t� t + h�.

In the case m = 2 the conditional characteristic function of I12�h� given
�W1�h� and �W2�h� is given by

ϕI12�h�
�W1�h�� �W2�h��t�

= th/2
sinh�th/2� exp

{
−ρ2

2
��th/2� coth�th/2� − 1� + ıtha

}
�

(1.5)

where ρ2 = ��W1�h�2 + �W2�h�2�/h, a = �W1�h��W2�h�/2h and ı is the
imaginary unit. This expression was derived by Lévy (1951) [see also Talacko
(1956), Lévy (1965), pages 329–333]. In Section 3 we show that a similar
expression holds true in the multidimensional case.

There is no simple way to simultaneously simulate the iterated Itô integrals
and Brownian increments exactly. In the case m = 2, Gaines and Lyons (1994)
proposed an algorithm for exact simulation of ρ2 (see above) and the single iter-
ated Itô integral I12�h�, based on Marsaglia’s “rectangle-wedge-tail” method.
This method is complicated to implement, however, and occasionally requires
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numerical inversion of the joint characteristic function of ρ2 and I12�h�. In
higher dimensions, Kloeden, Platen and Wright (1992) suggested a simulation
algorithm essentially based on truncation of an infinite series representation
of the iterated Itô integrals. In order to accomplish a convergence rate of h for
a numerical scheme approximating an SDE, the mean square error (MSE) in
the approximation of the iterated Itô integrals must be negligible compared
to the discretisation error of the numerical scheme. More precisely, an MSE
of Ch3 for some positive constant C is required [Kloeden and Platen (1995),
Corollary 10.6.5]. Hence it is important to have an algorithm that simulates
the iterated Itô integrals with small MSE in short time. The algorithm of
Kloeden, Platen and Wright (1992) has an MSE of order h2/n, where n is the
number of terms in the truncated sum. In Section 4 we show that a slight
modification of this algorithm yields an MSE of order h2/n2. Hence, with this
improved convergence rate n needs to be proportional to h−1/2 rather than
h−1, resulting in a considerable speed-up of the simulation. This can also be
viewed in a different way. Assume that we want to simulate an SDE with a
mean error E
Xh�T� − X�T�
 ≤ ε; how much work is required to accomplish
this? If we measure work by the number of Gaussian random variables that
needs to be simulated, we obtain WKPW�ε� ∼ ε−2 for Milshtein combined with
the Kloeden, Platen and Wright algorithm and WNA�ε� ∼ ε−3/2 for Milshtein
combined with our new algorithm. The notation WM�ε� ∼ ε−α means that as
ε → 0 the number of Gaussian variables needed to achieve the accuracy ε
for the method M is O�ε−α�. If we compare this with the Euler method which
has WEULER�ε� ∼ ε−2, it is evident that there is no gain in using Milshtein
combined with the Kloeden, Platen and Wright method since it requires no
less (in practice even more) work than the Euler method to obtain the same
accuracy. The Euler method is also easier to implement and faster to execute
provided that the evaluations of the drift and dispersion functions are not too
time-consuming compared to generation of the Gaussian random variables.
This clearly shows why it is crucial to have a convergence rate faster than
h2/n in the approximation of the iterated Itô integrals.

Before closing this section we give some general notation used throughout
the paper. The matrix In is an n×n identity matrix, 0n×m is an n×m matrix
of zeros and 0n is a column-vector of n zeros. Furthermore AT will denote the
transpose of A. The imaginary unit (

√−1) will be denoted by ı.

2. Representation of the iterated Itô integrals. The iterated Itô inte-
grals are closely related to the so-called Lévy stochastic area integrals, denoted
by Aij�h� and defined by

Aij�h� =
Iij�h� − Iji�h�

2

for i� j = 1� 
 
 
 � m. These integrals have a nice geometric interpretation;Aij�h�
would, if theBrownianmotionhadfinitevariation,equalthesignedareaenclosed
by the two-dimensional Brownian motion �W�t�� = ��Wi�t�� Wj�t��� from 0 to
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Fig. 1. Illustration of Lévy’s stochastic area integral.

h and the chord connectingW�h� andW�0� = �0�0� (see Figure 1). We can think
of it as a stochastic generalization of area.

We now state some useful relations between Iij�h�, Aij�h�, �Wi�h� and
�Wj�h� for i �= j:

Iij�h� + Iji�h� = �Wi�h��Wj�h� a.s.�

Iij�h� =
�Wi�h��Wj�h�

2
+ Aij�h� a.s.�

Aji�h� = −Aij�h��(2.1)

Iii�h� =
�Wi�h�2 − h

2
a.s.�

Aii�h� = 0


Kloeden, Platen and Wright (1992) gave the following simultaneous repre-
sentation of Iij�h�, �Wi�h� and �Wj�h� for i� j = 1� 
 
 
 � m:

Iij�h� =
�Wi�h��Wj�h� − hδij

2
+ Aij�h��

Aij�h� =
h

2π

∞∑
k=1

1
k

{
Xik

(
Yjk +

√
2
h

�Wj�h�
)

−Xjk

(
Yik +

√
2
h

�Wi�h�
)}

�

where �Wi�h� ∼ N�0� h�, Xik ∼ N�0�1� and Yik ∼ N�0�1�� i = 1� 
 
 
 � m�
k = 1�2� 
 
 
 are all independent.
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If we let I�h� and A�h� be the matrices where element i� j equals Iij�h�
and Aij�h�, respectively, we can rewrite this representation in matrix form as

I�h�= �W�h��W�h�T − hIm

2
+A�h��

A�h�= h

2π

∞∑
k=1

1
k

{
Xk�Yk +

√
2/h�W�h��T − �Yk +

√
2/h�W�h��XT

k

}
�

(2.2)

where now �W�h� ∼ N�0� hIm�, Xk ∼ N�0m� Im� and Yk ∼ N�0m� Im�, k =
1�2� 
 
 
 are all independent. Indeed, �W�h� = ��W1�h�� 
 
 
 � �Wm�h��T, Xk =
�X1k� 
 
 
 � Xmk�T and Yk = �Y1k� 
 
 
 � Ymk�T.

3. Conditional joint characteristic function of the stochastic area
integrals. Recall that m is the number of independent Brownian motions.
Let θij be the variable which corresponds to the random variable Aij�h� in
the joint characteristic function. From (2.1) it follows that we only need to
calculate the characteristic function of the random variables Aij�h�� i < j,
since the other stochastic area integrals depend in a deterministic way on
these. We denote this set of Aij�h�’s by Ã�h�. Now define θ̃ as the m × m
upper triangular matrix, with zeros on the diagonal, given by

θ̃ij =
{

θij� for i < j,
0� otherwise.

Let ϕÃ�h�
�W�h��θ̃� be the conditional joint characteristic function of Ã�h� given
�W�h�.

Theorem 3.1. The conditional joint characteristic function of Ã�h� given
�W�h� can be written as

ϕÃ�h�
�W�h��θ̃�
=det�sinch�+�θ̃���−1/2(3.1)

×exp
(
−tr

(
�W�h��W�h�T

2h
�cosh�+�θ̃��sinch�+�θ̃��−1−Im�

))
�

where sinch�x� = sinh�x�/x, +�θ̃� = �−h�θ̃ − θ̃T�2/2�1/2 and where the hyper-
bolic functions and the square root should be interpreted in the matrix sense.

Before giving the proof we note that the characteristic function Ã�h� has a
form that is similar to what is obtained for m = 2 [cf. (1.5)]. The first factor
does not depend on �W�h� and it follows by taking �W�h� = 0m that it is itself
a characteristic function. In the univariate case m = 2 it is the characteristic
function of a logistic random variable and so its density is known; for m > 2
all marginals are of course still logistic, but the joint distribution involves
dependencies and we have not been able to find a closed form for the joint
density. The second factor is also a characteristic function itself when m = 2
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but its density admits no simple closed form expression. When m > 2 we do
not even know if this factor is a characteristic function. The factor exp�ıtha�
in (1.5) comes from the second relation in (2.1) and so does not appear in
ϕÃ�h�
�W�h�.

Proof. First note that

ϕÃ�h�
�W�h��θ̃� = E

[
exp
(

ı
∑
i<j

θijAij�h�
∣∣∣∣�W�h�

)]
= E�exp�ı tr�θ̃TA�h��� 
 �W�h��


Using (2.2) it is clear that

tr�θ̃TA�h�� = h

2π

∞∑
k=1

1
k

{
XT

k �θ̃ − θ̃T��Yk +
√
2/h�W�h��

}



Now since �Xk�∞1 and �Yk�∞1 are two independent i.i.d. sequences of random
vectors it follows that

ϕÃ�h�
�W�h��θ̃� =
∞∏

k=1
ϕ

(
h

2πk
θ̃

)
�

where ϕ�θ̃� = E�exp�ıXT
1 �θ̃ − θ̃T��Y1 + √2/h�W�h��� 
 �W�h��. In order to

simplify the notation we write θ̄ for θ̃ − θ̃T.
To compute ϕ�θ̃�, first calculate the conditional characteristic function

given Y1,

ϕ
Y1
�θ̃� = E�exp�ıXT

1 θ̄�Y1 +
√
2/h�W�h��� 
 Y1� �W�h��

= exp�−�Y1 +
√
2/h�W�h��Tθ̄θ̄T�Y1 +

√
2/h�W�h��/2�


The random variable Q = �Y1 + √2/h�W�h��Tθ̄θ̄T�Y1 + √2/h�W�h�� is a
quadratic form in Y1 + √

2/h�W�h� with matrix θ̄θ̄T. Thus ϕ�θ̃� = EY1

exp�−Q/2�, which is the moment generating function of Q evaluated at the
point −1/2. From Mathai and Provost [(1992), Theorem 3.2a.1] we get

EY1
exp�tQ� = det�Im − 2tθ̄θ̄T�−1/2

× exp
(
− 1

2

√
2/h�W�h�T�Im − �Im − 2tθ̄θ̄T�−1�√2/h�W�h�

)



Hence

ϕ�θ̃� = det�Im + θ̄θ̄T�−1/2

× exp
(
− 1

2

√
2/h�W�h�T�Im − �Im + θ̄θ̄T�−1�√2/h�W�h�

)
�
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and thus

ϕÃ�h�
�W�h��θ̃� =
∞∏

k=1
det
(

Im+ c2

k2
θ̄θ̄T

)−1/2

×exp
(
−1
2

√
2/h�W�h�T

{
Im−

(
Im+ c2

k2
θ̄θ̄T

)−1}√
2/h�W�h�

)

= det
( ∞∏

k=1

(
Im+ c2

k2
θ̄θ̄T

)−1)1/2

×exp
(
− 1

h
�W�h�T

∞∑
k=1

{
Im−

(
Im+ c2

k2
θ̄θ̄T

)−1}
�W�h�

)
�

where c = h/�2π�.
If a ∈ R+ then

∞∏
k=1

�1+ a/k2�−1 = π
√

a

sinh�π√
a�

and
∞∑

k=1
�1− �1+ a/k2�−1� = 1

2

{
cosh�π√

a� π
√

a

sinh�π√
a� − 1

}
�

for a = 0 the functions by continuity equal one and zero, respectively. Since
θ̄θ̄T is a symmetric and nonnegative definite matrix it then follows, by the
spectral lemma for normal matrices [see, e.g., Golub and van Loan (1996)
Theorem 11.1.3], that for θ̄θ̄T positive definite,

∞∏
k=1

(
Im + c2

k2
θ̄θ̄T

)−1
= h

2

√
θ̄θ̄T sinh

(
h

2

√
θ̄θ̄T

)−1

and
∞∑

k=1

{
Im −

(
Im + c2

k2
θ̄θ̄T

)−1}

= 1
2

{
cosh

(
h

2

√
θ̄θ̄T

)
h

2

√
θ̄θ̄T sinh

(
h

2

√
θ̄θ̄T

)−1
− Im

}
�

where the square root and the hyperbolic functions should be interpreted in
the matrix sense. If θ̄ is singular some extra precaution is necessary and in fact
θ̄ is always singular if m is odd. This follows from that θ̄ is skew symmetric and
since skew-symmetric real matrices only have eigenvalues with zero real part,
at least one of the eigenvalues must be zero. To avoid problems in the singular
case we simply use the matrix version of the function sinch�x� instead, where
sinch�x� = sinh�x�/x. This leads to the representation (3.2) and the proof is
complete. ✷
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Note that the function 1/ sinch�·� is well behaved on the entire real line and
is in fact analytic in the strip −π < Im�x� < π. This implies that the charac-
teristic function is analytic in the region where all eigenvalues of �h/2�

√
θ̄θ̄T

have their imaginary parts in �−π� π�.
We further remark that the conditional joint characteristic function of all

the stochastic area integrals can in fact be easily obtained from the one cal-
culated above, since exactly the same calculations go through with θ̃ replaced
by a matrix that has arbitrary real-valued elements in all positions.

4. Simulation of the iterated Itô integrals. Because the Brownian
increments �W�h� can easily be simulated exactly while the iterated Itô inte-
grals cannot, we consider an algorithm that first simulates �W�h� and then
simulates approximations Îij�h� of Iij�h� conditional on the realized �W�h�.
Furthermore, since the iterated Itô integrals and stochastic area integrals
only differ by products of the Brownian increments, it is enough to simu-
late approximations Âij�h� of Aij�h�. Then Îij�h� can easily be constructed.
Because of the relations (2.1) we only need to approximate Aij�h� for i < j;
see the previous section.

The MSE of interest is maxij E�Iij�h� − Îij�h��2; see Kloeden and Platen
[(1995), Corollary 10.6.5]. It turns out, however, to be more convenient to work
with the sum of squared errors which is of course larger. Thus the error we
consider is

E
∑
i<j

�Iij�h� − Îij�h��2 = E
∑
i<j

�Aij�h� − Âij�h��2


The representation (2.2) immediately suggests a simulation algorithm; trun-
cate the sum after n terms. This algorithm is essentially the one proposed by
Kloeden, Platen and Wright (1992) and it has an MSE of order h2/n. In order
to improve on this rate, a careful analysis of the discarded tail-sum is needed.
We shall show that this sum asymptotically has a multivariate Gaussian dis-
tribution, and that approximating it with a Gaussian random vector yields a
convergence rate of order h2/n2.

To carry out this proof, some more notation is needed, and we also need to
formalize the operation of picking out elements with indices i < j. We now
show how to do this.

The Kronecker tensor product between twomatricesA andBwill be denoted
A ⊗ B and is defined as

A ⊗ B =


a11B a12B · · · a1nB
a21B a22B · · · a2nB











 
 






am1B am2B · · · amnB

 


If A is an m× n matrix and B is an p× q matrix, then A⊗B is an mp× nq
matrix. The operation vec is defined as the mn×1 matrix obtained by stacking
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the columns of a matrix on top of each other, that is,

vec�A� =


A
1
A
2





A
n

 �

for an m × n matrix A.
The representation (2.2) can now be written with column vectors as

vec�I�h�T� = �W�h� ⊗ �W�h� − vec�hIm�
2

+ vec�A�h�T��

vec�A�h�T� = h

2π

∞∑
k=1

1
k

{
Xk ⊗

(
Yk +

√
2
h

�W�h�
)

(4.1)

−
(
Yk +

√
2
h

�W�h�
)
⊗ Xk

}



Let Pm be the m2 × m2 permutation matrix which swaps rows i and j =
1+m��i−1�modm�+ �i−1� div m for i = 1�2� 
 
 
 � m2. Then Pm�Xk ⊗Yk� =
Yk ⊗ Xk. From the definition of Pm we see that it is symmetric and thus Pm

is its own inverse. We rewrite the representation of vec�I�h�T� as

vec�I�h�T�= �W�h� ⊗ �W�h� − vec�hIm�
2

+ vec�A�h�T��

vec�A�h�T�= h

2π

∞∑
k=1

1
k
�Pm − Im2�

{(
Yk +

√
2
h

�W�h�
)
⊗ Xk

}



(4.2)

We now want to pick out the M-dimensional subset of Aij�h�’s correspond-
ing to i < j, where M = m�m − 1�/2. Thus define

Ã�h� = �A12�h�� 
 
 
 � A1m�h�� 
 
 
 � Al� l+1�h�� 
 
 
 � Alm�h�� 
 
 
 � Am−1� m�h��T


This column vector can also be written

Ã�h� = Km vec�A�h�T��
where Km is an M × m2 matrix which picks out elements 2� 
 
 
 � m� 
 
 
 �
�k − 1�m + k + 1� 
 
 
 � km� 
 
 
 � M from vec�A�h�T�. The matrix Km is thus

Km =



0m−1×1 Im−1 0m−1×m�m−1�
0m−2×m+2 Im−2 0m−2×m�m−2�














0m−k×�k−1�m+k Im−k 0m−k×m�m−k�














01×�m−2�m+m−1 1 01×m







SIMULATION OF ITERATED ITÔ INTERVALS 479

One may verify that Km and Pm satisfy the following relations:

KmKT
m = IM�

KT
mKm = diag�0�1T

m−1� 
 
 
 �0T
k �1T

m−k� 
 
 
 �0T
m−1�1�0

T
m��

KmPmKT
m = 0M×M�(4.3)

KmIm2KT
m = IM�

�Im2 − Pm�KT
mKm�Im2 − Pm� = Im2 − Pm�

where diag�xT� is the diagonal matrix with xT on its diagonal. Given Ã�h�,
the other stochastic area integrals can be easily be generated from Ã�h� using
relations (2.1). More precisely,

vec�A�h�T� = �Im2 − Pm�KT
mÃ�h�


It follows from (4.2) that we can write Ã�h� as

Ã�h� = h

2π

∞∑
k=1

1
k

Km�Pm − Im2�
{(

Yk +
√
2
h

�W�h�
)
⊗ Xk

}



We now split this sum into two by defining

Ã�n��h� = h

2π

n∑
k=1

1
k

Km�Pm − Im2�
{(

Yk +
√
2
h

�W�h�
)
⊗ Xk

}

and

εn = h

2π

∞∑
k=n+1

1
k

Km�Pm − Im2�
{(

Yk +
√
2
h

�W�h�
)
⊗ Xk

}



It easy to see from these definitions that given �W�h�, εn and Ã�n��h� are
conditionally independent. We proceed by examining the tail-sum εn in closer
detail.

The term �Pm − Im2���Yk + √2/h�W�h�� ⊗ Xk� in the above sum can for
each k, given Yk and �W�h�, be seen as a conditionally Gaussian column
vector with conditional mean 0m2 and conditional covariance matrix 4�Yk�,
where

4�Yk�= �Im2 − Pm�
((
Yk +

√
2/h�W�h�)⊗ Im

)
×
((
Yk +

√
2/h�W�h�)T ⊗ Im

)
�Im2 − Pm�

= �Im2 − Pm�
((
Yk +

√
2/h�W�h�)(Yk +

√
2/h�W�h�)T ⊗ Im

)
×�Im2 − Pm�


(4.4)
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Hence, given Y = �Yk�∞1 and �W�h�, the conditional distribution of εn is
Gaussian with mean 0M and covariance matrix �h/2π�2∑∞

k=n+1 4̃�Yk�/k2,

where 4̃�Yk� = Km4�Yk�KT
m. Write

εn = h

2π

( ∞∑
k=n+1

4̃�Yk�
k2

)1/2
Gn�

where Gn is the random vector

Gn = 2π
h

( ∞∑
k=n+1

4̃�Yk�/k2

)−1/2
εn


The conditional distribution of Gn given Y and �W�h� is thus a standard
Gaussian distribution N�0M� IM�, that is, the conditional distribution does
not depend on Y and �W�h�. Hence Gn is a standard Gaussian vector inde-
pendent of Y and �W�h�. From the above calculations it is evident that the
random vector εn is a Gaussian variance mixture with random covariance
matrix

∑∞
k=n+1 4̃�Yk�/k2.

We remark that in the scalar case (m = 2), the distribution of the mixing
random variance is infinitely divisible, which is equivalent to saying that εn

has a so-called class G distribution. This was shown in Rydén and Wiktorsson
(1999). For the definition of class G distributions, see, for example, Rosinski
(1990). In the case m > 2 it holds that each element in the random covariance
matrix is infinitely divisible, but we have not been able to prove that εn has
a multivariate class G distribution.

We shall now examine the asymptotic properties of the random covariance
matrix. Let 4n denote the normalized version, that is,

4n = 1
an

∞∑
k=n+1

4̃�Yk�
k2

�

where an = ∑∞
k=n+1 1/k

2. Define 4∞ = EY1
4̃�Y1�. Taking the expectation

in (4.4) and using (4.3) it follows that

4∞ =2IM + 2
h

Km�Im2 − Pm�(Im ⊗ �W�h��W�h�T)�Im2 − Pm�KT
m
(4.5)

We will show below that 4n converges in mean square sense to the constant
matrix 4∞ as n → ∞. This implies that �2π/h�a−1/2

n εn converges weakly to
a Gaussian vector with zero mean and covariance matrix 4∞. This property
gives rise to the following improved simulation algorithm for vec�I�h�T�.
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1. Simulate �W�h� from N�0m�
√

hIm�.
2. First approximate the stochastic area integrals as

Ã�n��h� = h

2π

n∑
k=1

1
k

Km�Pm − Im2�
{(

Yk +
√
2
h

�W�h�
)
⊗ Xk

}
�

where Xk ∼ N�0m� Im� and Yk ∼ N�0m� Im�.
3. Simulate Gn ∼ N�0M� IM� and add the tail-sum approximation:

Ã�n�′ �h� = Ã�n��h� + h

2π
a1/2

n

√
4∞Gn


4. Finally define the approximation vec�I�h�T��n�′ of vec�I�h�T� as

vec�I�h�T��n�′ = �W�h� ⊗ �W�h� − vec�hIm2�
2

+ �Im2 − Pm�KT
mÃ�n�′ �h�


The following result gives a bound on the maximal conditional MSE given
�W�h�. We also give an explicit expression for the square root of the asymp-
totic covariance matrix 4∞.

Theorem 4.1. (i) The maximal conditional MSE for the approximation of
the iterated Itô integrals given �W�h�, for n ≥ 1, satisfies

max
i� j

E
[∣∣Iij�h� − I

�n�′
ij �h�∣∣2 
 �W�h�

]
≤ ∑

i<j

E
[∣∣Iij�h� − I

�n�′
ij �h�∣∣2 
 �W�h�

]
(4.6)

≤ h2

24π2n2
m�m − 1��m + 4
�W�h�
2/h�


(ii) The matrix square root
√

4∞ can be explicitly written as√
4∞ = 4∞ + 2

√
1+ 
�W�h�
2/hIM√

2�1+√1+ 
�W�h�
2/h� 
(4.7)

As mentioned in the introduction, the MSE in the simulation of the iterated
Itô integrals should be no larger than Ch3. We then see that it is enough to
choose

n ≥
√

m�m − 1��m + 4
�W�h�
2/h�/�24π2�√
Ch

(4.8)

in the approximation of the iterated Itô integral.
Taking the expectation over �W�h� of the right-hand side of (4.6), it follows

that

max
i� j

E
[∣∣Iij�h� − I

�n�′
ij �h�∣∣2] ≤ 5h2

24π2n2
m2�m − 1�
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Hence, there are two ways of choosing n. Either we first simulate �W�h� and
then choose n according to (4.8), or we fix n beforehand according to

n ≥
√
5m2�m − 1�/�24π2�√

Ch
�(4.9)

and thus do not take �W�h� into account when selecting n. By Jensen’s
inequality, the mean of the right-hand side of (4.8) is smaller than the right-
hand side of (4.9), so that the first way of choosing n yields a smaller n on the
average.

Proof. The first part is an immediate consequence of Theorem 4.3 below.
The second part follows by direct calculation. First let a = √1+ 
�W�h�
2/h

to simplify the notation. Then, with A as in the right-hand side of (4.7),

A2 = 42
∞ + 4a4∞ + 4a2IM

2�1+ a�2

= 42
∞ − �2+ 2a2�4∞ + 4a2IM

2�1+ a�2 + 2+ 2a2 + 4a

2+ 2a2 + 4a
4∞

= 42
∞ − �2+ 2a2�4∞ + 4a2IM

2�1+ a�2 + 4∞


Hence we need to show that

42
∞ − �2+ 2a2�4∞ + 4a2IM = 0M×M�

which is the same as saying that 4∞ has minimal polynomial �x−2��x−2a2�.
This is, further, the same as saying that 4∞ only has two different eigenvalues,
namely 2 and 2 + 2
�W�h��h�
2/h, and since 4∞ = 2IM + B, where B is the
nonnegative definite matrix Km�Im2 − Pm���2/h��W�h��W�h�T ⊗ Im��Im2 −
Pm�KT

m, it is enough to show that B2 = �2
�W�h�
2/h�B. This is equivalent to
that B has minimal polynomial x�x−2
�W�h�
2/h�. Writing W for

√
2/h�W�h�

to simplify the notation and using (4.3), it follows that

B2 = Km�Im2 − Pm�
(
WWT ⊗ Im

)(
WWT ⊗ Im

)
�Im2 − Pm�KT

m

− Km�Im2 − Pm�
(
WWT ⊗ Im

)
Pm

(
WWT ⊗ Im

)
�Im2 − Pm�KT

m

= Km�Im2 − Pm�
(

W
2WWT ⊗ Im

)
�Im2 − Pm�KT

m

+Km�Im2 − Pm�
(
WWT ⊗ Im

)
Pm

(
WWT ⊗ Im

)
Pm�Im2 − Pm�KT

m


Now using the definition of Pm it follows that

B2 = 
W
2B + Km�Im2 − Pm��WWT ⊗ WWT��Im2 − Pm�KT
m


The last term is zero since

�WWT ⊗ WWT� = �W ⊗ W��WT ⊗ WT��
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and from the definition of Pm it is evident that �Im2 − Pm��W ⊗ W� = 0m2 .
This concludes the proof. ✷

In the following the usual operator norm will be denoted �B� and the
Frobenius norm of a p × q matrix B, defined as �∑p

i=1
∑q

j=1 B2
ij�1/2, will be

denoted �B�F.

Theorem 4.2. Conditional on �W�h�, 4n converges in mean square sense
to 4∞. Moreover,

EY�4n − 4∞�2F ≤ dm

3n
for n ≥ 1�

where dm = m�m − 1��m + 4
�W�h�
2/h�.

Proof. First observe that

EY4n = 1
an

( ∞∑
k=n+1

EY
4̃�Yk�

k2

)
= EY4̃�Y1� = 4∞


Hence, by the definition of the Frobenius norm,

EY�4n − 4∞�2F =
M∑

p� q=1
EY�4n� pq − EY4n� pq�2 =

M∑
p� q=1

VY�4n� pq��

and since �4̃�Yk�� is an i.i.d. sequence of matrices we obtain

EY�4n − 4∞�2F =
M∑

p� q=1

1
a2

n

( ∞∑
k=n+1

VY�4̃�Yk�pq�
k4

)

= bn

a2
n

M∑
p� q=1

VY�4̃�Y1�pq� =
bn

a2
n

dm�

where bn = ∑∞
k=n+1 1/k

4 and dm = ∑M
p� q=1 VY�4̃�Y1�pq�. Approximating the

sums an and bn by integrals yields

bn

a2
n

=
∑∞

k=n+1 1/k
4(∑∞

k=n+1 1/k2
)2 ≤

∫∞
n+1/2 1/x

4dx(∫∞
n+3/4 1/x

2dx
)2 = �n + 3/4�2

3�n + 1/2�3 ≤ 1
3n

for n ≥ 1


We now turn to the calculation of dm. Recall the definition (4.4) of 4�Yk�.
To simplify the notation we drop the index k on Yk and define

Q =
(
Y +

√
2/h�W�h�

)(
Y +

√
2/h�W�h�

)T
⊗ Im

− EY

(
Y +

√
2/h�W�h�

)(
Y +

√
2/h�W�h�

)T
⊗ Im

=
(
YYT + Y

√
2/h�W�h�T +

√
2/h�W�h�YT − Im

)
⊗ Im
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Then we can write

dm =
M∑

p� q=1
VY�4̃�Y�pq�

= EY tr
(
�4̃�Y� − EY4̃�Y���4̃�Y� − EY4̃�Y��T

)
= EY tr

(
Km�Im2 − Pm�Q�Im2 − Pm�KT

m

×Km�Im2 − Pm�Q�Im2 − Pm�KT
m

)
= EY tr

(
Q�Im2 − Pm�KT

mKm�Im2 − Pm�

×Q�Im2 − Pm�KT
mKm�Im2 − Pm�

)
= EY tr

(
Q�Im2 − Pm�Q�Im2 − Pm�)

= EY tr
(
Q2 − 2Q2Pm + QPmQPm

)
= EY tr�Q2� − 2EY tr

(
Q2Pm

)+ EY tr�QPmQPm��

where we used (4.3). Now start with tr�Q2�. We replace
√
2/h�W�h� with W̃

to simplify the notation:

EY tr�Q2� = tr�Im�EY tr��YYT + W̃YT + YW̃T − Im�2�
= mEY tr�YYTYYT + YYTW̃YT + YYTYW̃T − YYT�

+mEY tr�W̃YTYYT + W̃YTW̃YT + W̃YTYW̃T − W̃YT�
+mEY tr�YW̃TYYT + YW̃TW̃YT + YW̃TYW̃T − YW̃T�
+mEY tr�−YYT − W̃YT − YW̃T + Im�

= m��m�m + 2� + 0+ 0− m�
+ �0+ 2
�W�h�
2 + 2m
�W�h�
2 + 0�/h
+�0+ 2m
�W�h�
2 + 2
�W�h�
2 + 0�/h
+�−m + 0+ 0+ m��

= m�m + 1��m + 4
�W�h�
2/h�


Continue with tr�QPmQPm�. By the definition of Pm,

PmQPm = Im ⊗ �YYT + YW̃T + W̃TY − Im��
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and thus

EY tr�QPmQPm� = EY�tr��YYT + YW̃T + W̃TY − Im�
⊗ �YYT + YW̃T + W̃TY − Im���

= EY��tr�YYT + YW̃T + W̃TY − Im��2�
= EY��YTY + 2W̃TY − m�2�
= EY��YTY�2 + 4�W̃TY�2 + m2

+4YTYW̃TY − 2mYTY − 4mW̃TY�
= m�m + 2� + 8
�W�h�
2/h + m2 + 0− 2m2 + 0

= 2�m + 4
�W�h�
2/h�

Finally −2EY tr�Q2Pm� = −2�m + 1��m + 4
�W�h�
2� is obtained similarly,
giving that

dm = m�m − 1��m + 4
�W�h�
/h�

This concludes the proof. ✷

In order to calculate the MSE in the approximation of vec�I�h�T� the fol-
lowing lemma will be useful.

Lemma 4.1. If A and B are two symmetric positive definite matrices then

�A1/2 − B1/2�F ≤ β−1/2�A − B�F�

where β is the smallest eigenvalue of B.

Proof. First observe that for a ∈ R+,
√

a = 1
π

∫ ∞

0

a

a + t
t−1/2 dt


By the spectral lemma for normal matrices it then follows that

A1/2 = 1
π

∫ ∞

0
�A + tI�−1At−1/2 dt = 1

π

∫ ∞

0
A�A + tI�−1t−1/2 dt

for any symmetric positive definite matrix A. Thus

A1/2 − B1/2 = 1
π

∫ ∞

0
�A + tI�−1�A − B��B + tI�−1t1/2 dt�

so that

�A1/2 − B1/2�F ≤ 1
π

∫ ∞

0
��A + tI�−1�A − B��B + tI�−1�Ft1/2 dt


Using twice that �CD�F ≤ �C��D�F for any pair of symmetric matrices C and
D, we obtain

��A + tI�−1�A − B��B + tI�−1�F ≤ ��A + tI�−1��A − B�F��B + tI�−1�
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We bound these norms from above by ��A + tI�−1� ≤ t−1 and ��B + tI�−1� ≤
1/�t + β�, yielding

�A1/2 − B1/2�F ≤ �A − B�F

1
πβ

∫ ∞

0

β

β + t
t−1/2 dt = β−1/2�A − B�F
 ✷

Theorem 4.3. The conditional MSE, given �W�h�, in the approximation
�h/2π�a1/2

n

√
4∞Gn of εn is bounded by

E

[∣∣∣∣εn − h

2π
a1/2

n

√
4∞Gn

∣∣∣∣2 
 �W�h�
]
≤ dmc2

6n2
for n ≥ 1�

where c = h/�2π� and dm = m�m − 1��m + 4
�W�h�
2/h�.

Proof.

E

[∣∣∣∣εn − h

2π
a1/2

n

√
4∞Gn

∣∣∣∣2 
 �W�h�
]

= c2anE�

(√

4n −
√

4∞
)
Gn
2 
 �W�h��

= c2anEYE�

(√

4n −
√

4∞
)
Gn
2 
 Y� �W�h��

= c2anEY�
√

4n −
√

4∞�2F


By Lemma 4.1,

EY�
√

4n −
√

4∞�2F ≤ 1
β4∞

EY�4n − 4∞�2F = 1
2

EY�4n − 4∞�2F�

here β4∞ = 2 follows from the proof of Theorem 4.1. Now use Theorem 4.2 and
the bound an ≤ 1/n to complete the proof. ✷

We remark that the tail sum associated with the full vector vec�A�h�T� of
stochastic area integrals is a Gaussian variance mixture as well, and its con-
ditional covariance matrix converges in mean square sense to a nonstochastic
limit. However, this limit, as well as the conditional covariance matrix, are
singular and indeed have ranks M so that the corresponding Gaussian vari-
ance mixture have support on a subspace of dimension M. This invalidates
the use of Lemma 4.1 for the asymptotic analysis of the algorithm and is the
main reason for working with the set Ã�h� throughout this section.
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