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Abstract Kesten [12] noticed that the scenery reconstruction method proposed by Matzinger
[18] relies heavily on the skip-free property of the random walk. He asked if one can still
reconstruct an i.i.d. scenery seen along the path of a non-skip-free random walk. In this article,
we positively answer this question. We prove that if there are enough colors and if the random
walk is recurrent with at most bounded jumps, and if it can reach every integer, then one
can almost surely reconstruct almost every scenery up to translations and reflections. Our
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for the random walk.
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1 Introduction and Result

A (one dimensional) scenery is a coloring ξ of the integers Z with C0 colors {1, . . . , C0}. Two
sceneries ξ, ξ′ are called equivalent, ξ ≈ ξ′, if one of them is obtained from the other by a
translation or reflection. Let (S(t))t≥0 be a recurrent random walk on the integers. Observing
the scenery ξ along the path of this random walk, one sees the color ξ(S(t)) at time t. The
scenery reconstruction problem is concerned with trying to retrieve the scenery ξ, given only
the sequence of observations χ := (ξ(S(t)))t≥0. Quite obviously retrieving a scenery can only
work up to equivalence. Work on the scenery reconstruction problem started by Kesten’s ques-
tion, whether one can recognize a single defect in a random scenery. Kesten [11] answered this
question in the affirmative in the case of four colors. He takes the colors to be i.i.d. uniformly
distributed. In his Ph.D. thesis [18], see also [17] and [19], Matzinger has proved that typical
sceneries can be reconstructed: He takes the sceneries as independent uniformly distributed ran-
dom variables, too. He showed that almost every scenery can be almost surely reconstructed.
In [12], Kesten noticed that this proof in [18] heavily relies on the skip-free property of the
random walk. He asked whether the result might still hold in the case of a random walk with
jumps. This article gives a positive answer to Kesten’s question: If the random walk can reach
every integer with positive probability and is recurrent with bounded jumps, and if there are
strictly more colors than possible single steps for the random walk, then one can almost surely
reconstruct almost every scenery up to equivalence.

More formally: Let C = {1, . . . , C0} denote the set of colors. Let µ be a probability measure
over Z supported over a finite set M := suppµ ⊆ Z. With respect to a probability measure
P , let S = (S(k))k∈N be a random walk starting in the origin and with independent increments
having the distribution µ. We assume that E[S(1)] = 0; thus S is recurrent. Furthermore we
assume that suppµ has the greatest common divisor 1, thus S can reach every z ∈ Z with
positive probability. Let ξ = (ξ(j))j∈Z be a family of i.i.d. random variables, independent of S,
uniformly distributed over C. We prove:

Theorem 1.1 If |C| > |M|, then there exists a measurable map A : CN → CZ such that

P [A(χ) ≈ ξ] = 1. (1.1)

Research on random sceneries started by work by Keane and den Hollander [10], [4]. They
thoroughly investigated ergodic properties of a color record seen along a random walk. These
questions were motivated among others by the work of Kalikow [9] and den Hollander, Steif [3],
in ergodic theory.

As was shown in [19] the two color scenery reconstruction problem for a scenery which is i.i.d.
is equivalent to the following problem: let (R(k))k∈Z and (S(k))k≥0 be two independent simple
random walks on Z both starting at the origin and living on the same probability space. Does
one path realization of the iterated random walk (R(S(k)))k≥0 uniquely determine the path of
(R(k))k∈Z a.s. up to shift and reflection around the origin? This is a discrete time analogue to
a problem solved by Burdzy [2] concerning the path of iterated Brownian motion.

A preform of the scenery reconstruction problem is the problem of distinguishing two given
sceneries. It has been investigated by Benjamini and Kesten in [1] and [11]. Howard in a series of
articles [8], [7], [6] also contributed to this area; see below. The scenery distinguishing problem
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is the following: Given two different sceneries ξ, ξ ′ and observations (ξ̃(S(j)))j≥0, where ξ̃ equals
either ξ or ξ′, the question is: Can we distinguish whether ξ̃ = ξ or ξ̃ = ξ′? Benjamini and
Kesten [1] showed that one can almost surely distinguish almost all pairs of sceneries ξ, ξ ′, if
they are drawn independently with i.i.d. entries. Their result even holds in the two dimensional
case. This result is not beaten by a reconstruction result: the reconstruction method in two
dimensions by Löwe and Matzinger [15] holds only when we have many colors. When ξ and
ξ′ differ in precisely one point, the distinguishing problem was examined by Kesten [11] and
Howard [6]. Kesten proved that almost all pairs of those sceneries (ξ, ξ ′) can be distinguished in
the 5-color case. He assumes the sceneries to be i.i.d. Howard proved that all periodic sceneries
can be distinguished.

As mentioned above, it is in general not possible to reconstruct ξ; one can at most expect a
reconstruction up to equivalence. As a matter of fact, even this is impossible: By a theorem of
Lindenstrauss [14], there exist non-equivalent sceneries that cannot be distinguished. Of course,
they also cannot get reconstructed.

For sceneries that can be reconstructed Benjamini asked whether the reconstruction works
also in polynomial time. This question was positively answered by Matzinger and Rolles [21]
and [23] (see also [20]) in the case of a two color scenery and a simple random walk with holding.
Löwe and Matzinger [16] proved that reconstruction works in many cases even if the scenery is
not i.i.d., but has some correlations. For the setting of our article den Hollander asked if the
finite bound on the length of the jumps is necessary for scenery reconstruction.

In a way a result by Lenstra and Matzinger complements the present paper. If the random
walk might jump more than distance 1 only with very small probability and if the tail of the
distribution of the jumps decays sufficiently fast, Lenstra and Matzinger [13] proved that scenery
reconstruction is still possible.

Based on the results of the present paper, Matzinger and Rolles [22] showed that the scenery
can be still reconstructed if there are some random errors in the observations.

Let us explain how this article is organized. In order to avoid getting lost among the many
details of the rather complex proof, this article is ordered in a “top-down” approach: In order to
show the global structure of the reconstruction procedure in a compact but formal way, we start
with a section called “Skeleton”. This section collects the main theorems and main definitions
of the reconstruction method, using “lower level” procedures as black boxes. In the “Skeleton”
section, we only show how these theorems fit together to yield a proof of the reconstruction
theorem 1.1; all proofs of the “ingredient” theorems are postponed to later sections. Although
this approach is more abstract than a “bottom-up” structure would be, we hope that it allows
the reader to more quickly see the global structure.

Overview on some steps for the reconstruction procedure The reconstruction starts
with an ergodicity argument: It suffices to consider only sceneries which produce a very untypical
initial piece of observations; in particular we may condition on a large but finite initial piece
of the observations to be constant. We apply a reconstruction procedure, which works only in
this untypical situation, again and again to the observations with larger and larger initial pieces
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dropped, disregarding all instances that do not produce the prescribed “untypical” outcome.
Finally we will see even the prescribed “untypical situation” sufficiently frequently to successfully
reconstruct the scenery. The “untypical initial piece” serves to identify locations close to the
origin at later times again, at least up to a certain time horizon.

The reconstruction procedure consists of a hierarchy of partial reconstruction procedures;
these try to reconstruct larger and larger pieces of the scenery around the origin. The hierarchy
of partial reconstruction procedures is defined recursively.

To reconstruct a large piece in the (m + 1)st hierarchical level, we need some information
where the random walker is located while producing its color records. This information is
encoded in stopping times, which stop the random walk with high probability sufficiently close
to the origin, at least up to a certain time horizon.

The stopping times for the (m + 1)st hierarchical level are built using the mth level partial
reconstruction procedure: Given a reconstructed piece around the origin from the mth level, one
starts the whole mth level partial reconstruction procedure again at a later “candidate time”.
Whenever the piece of scenery obtained in this way has a sufficiently high overlap with the
reconstructed piece around the origin, then one has a high chance that the random walk is close
to the origin at the “candidate time”.

The global structure of this recursive construction is formally described in the “Skeleton”
Section 3. Most theorems in this section are proven in Section 5, and we prove in Sections 7 and
8 that the stopping times fulfill their specification. Some related lemmas claimed in Section 5
are also proved in Section 8.

The heart of the reconstruction procedure, i.e. the construction of the partial reconstruction
algorithm given the stopping times, is described in Section 4 and proven to be correct in Section
6. Roughly speaking, to reconstruct a piece of scenery of size 2n, we collect a “puzzle” of words
of size proportional to n, i.e. logarithmically in the size of the piece to be reconstructed. The
puzzle contains (with high probability) all correct subwords of the given size in the “true” piece
of scenery to be reconstructed, but also some “garbage” words. We play a kind of puzzle game
with these pieces: starting with seed words, we reconstruct larger and larger pieces by adjoining
more and more pieces of the puzzle that fit to the growing piece.

Although the actual construction is much more complicated than the idea described now,
let us describe an (over)simplified version of how to collect pieces in the puzzle: Suppose we
have two “characteristic signals” A and B in the scenery, which occur only once in the scenery.
Suppose that the distance between A and B is a multiple of the maximal step size l→ of the
random walk to the right. Then we can almost surely identify the whole “ladder” word read
while stepping from A to B with step size l→ as follows: Look at all occurrences of A and B in
the color record with minimal distance. The words occurring in the color record between those
A and B should (a.s.) be always the same in the whole record, and it is the “ladder” word we
are looking for. Of course, by ergodicity there are almost surely no (bounded) signals A and B
in the scenery that occur only once; this is why the simple idea described here cannot be applied
without considerable refinement.

The “pieces of puzzle” obtained are l→-spaced pieces; not pieces with spacing 1. This is
why our puzzle game leads to reconstructions of modulo classes of the scenery modulo l→
only. In order to successfully reconstruct the whole scenery, we need to arrange these modulo
classes correctly, using some “neighborship” relation between pieces of the puzzle. Unfortunately,
the correct arrangement of modulo classes is a technically intricate step in the reconstruction
procedure.
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2 Some notation

We collect some globally used nonstandard notations and conventions in this section.

Sets, functions, and integers: For functions f and sets D the notation fdD means the
restriction of f to the set D. D need not be contained in the domain of f ; thus fdD is defined
on D ∩ domain(f). If f and g are functions, the notation f ⊆ g means that f is a restriction
of g; this notation is consistent with the set theoretic definition of functions. By convention,
0 ∈ N. The integer part of a real number r is denoted by brc := max{z ∈ Z | z ≤ r}; similarly
dre := min{z ∈ Z | z ≥ r}.

Integer intervals: Unless explicitly stated otherwise, intervals are taken over the integers,
e.g. [a, b] = {n ∈ Z : a ≤ n ≤ b}, ]a, b[= {n ∈ Z : a < n < b}. Given a fixed number C0, we
define the set of colors C := [1, C0] = {1, . . . , C0}, |C| = C0.

In the rest of this section I will denote an arbitrary subset of Z unless otherwise specified.

Sceneries and equivalence: By definition, a scenery is an element of CZ. If I ⊆ Z, then the
elements of CI are called pieces of scenery. The length |ζ| of a piece of scenery ζ ∈ CI is the
cardinality |I| of its index set. ζ↔ := (ζ−i)i∈−I denotes the reflection of a piece of scenery ζ ∈ CI

at the origin. Two pieces of scenery ζ ∈ ZI and ζ ′ ∈ ZI′ are called strongly equivalent, ζ ≡ ζ ′,
if ζ is obtained by some translation of ζ ′, i.e. I ′ = I + b for some b ∈ Z, and ζ = (ζ ′i+b)i∈I . ζ
and ζ ′ are called equivalent, ζ ≈ ζ ′, if ζ is obtained by some translation or reflection of ζ ′, i.e.
I ′ = aI + b for some a ∈ {±1}, b ∈ Z, and ζ = (ζ ′ai+b)i∈I . If T : Z→ Z, T (z) = az + b, denotes
this translation or reflection, then T [ζ] := ζ ′ denotes the transport of ζ ′ by T ; the same notation
is used for the domains: T [I] = I ′. By definition, ζ 4 ζ ′ means that ζ ≈ ζ ′dJ for some J ⊆ I ′. If
additionally such a subset J ⊆ I ′ and its reading direction (i.e. either ζ ≡ ζ ′dJ or ζ ≡ (ζ ′dJ)↔)
is unique, we write ζ 41 ζ

′. Similarly ζ v ζ ′ (in words: “ζ occurs in ζ ′”) means that ζ ≡ ζ ′dJ
for some J ⊆ I ′.

Words: The elements of C∗ :=
⋃

n∈N C
n =

⋃

n∈N C
{0,...,n−1} are called words (over C). We

identify C with C1. The concatenation of two words w1 ∈ C
n and w2 ∈ C

m is denoted by
w1w2 ∈ C

n+m.

Probability distributions: The law of a random variable X with respect to a probability
measure P is denoted by LP (X). The n-fold convolution of a probability distribution µ over R
is denoted by µ∗n.

Random sceneries and random walks: As mentioned before, let µ be a probability measure
over Z supported over a finite set M = suppµ ⊆ Z. Let Ω2 ⊆ ZN denote the set of all paths
with starting point S(0) = 0 and jump sizes S(t + 1) − S(t) ∈ M, t ∈ N. Let Q0 denote the
law of a random walk S = (S(k))k∈N with start in 0 ∈ Z and with independent increments
having the distribution µ. Furthermore, let ξ = (ξj)j∈Z be a family of i.i.d. random variables,
independent of S, with uniform distribution L(ξj) = ν over C. We realize (ξ, S) as canonical
projections of Ω = CZ × Ω2 endowed with its canonical product σ-algebra and the probability
measure P := νZ ⊗Q0. (The restriction of the random walk paths not to have forbidden jumps
even on null sets is technically convenient.) We assume that E[S(1) − S(0)] = 0 (k ∈ N);
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thus S is recurrent. Furthermore we assume that suppµ has the greatest common divisor 1,
thus S eventually reaches every z ∈ Z with probability one. For fixed sceneries ξ ∈ CZ, we set
Pξ := δξ ⊗Q0, where δξ denotes the Dirac measure at ξ. Thus Pξ is the “canonical” version of
the conditional probability P [ · |ξ]. We use the notations Pξ and P [ · |ξ] as synonyms; i.e. we
will never work with a different version of the conditional measure P [ · |ξ] than Pξ.

Filtrations: We define the filtration F := (Fn)n∈N, Fn := σ(ξ, (S(k))k=0,...,n) over Ω. We
further introduce the filtration G := (Gn)n∈N over CN, where Gn is the σ-algebra generated by
the projection map CN → C[0,n], χ 7→ χd[0, n].

Observations of the scenery along the random walk and shifts: Let χ = (χn)n∈N :=
(ξS(n))n∈N. We sometimes write simply χ = ξ ◦ S; this is to be understood in the sense χ(ω) =
ξ(ω) ◦ S(ω) for all ω ∈ Ω. Let H = (Hn)n∈N, Hn := σ(χk, 0 ≤ k ≤ n) denote the filtration
obtained by observing the scenery along initial pieces of the random walk. We define the shift
operations θ : CN → CN, (χn)n∈N 7→ (χn+1)n∈N, and Θ : Ω → Ω, (ξ, S) 7→ ((ξn+S(1))n∈Z, (S(k +
1) − S(1))k∈N); thus χ ◦ Θ = θ ◦ χ. Intuitively, Θ spatially shifts both the scenery and the
random walk by the location S(1) of the random walk after one step, and it drops the first time
step. One observes ξ ≈ ξ ◦Θ.

Admissible paths: A piece of path π = (πi)i∈I ∈ ZI over an integer interval I is called
admissible if πi+1 − πi ∈ M for all {i, i + 1} ⊆ I. For finite I 6= ∅, πmin I and πmax I are
called starting point and end point of π, respectively. We set TimeShift(π) := (πi−1)i∈I+1. By
definition, the length |π| of the path π is the cardinality |I|. For x, t > 0 let AdPaths(x, t) denote
the set of all admissible pieces of path π ∈ [−x, x][0,t[.

Ladder intervals and ladder paths: Let l→ := maxM, l← := |minM|; thus l→ and l← are
the maximal possible jump sizes of S to the right and to the left, respectively. We abbreviate
l := max{l→, l←} and h := l|M|. By definition, d-spaced intervals (d ∈ N) are sets of the form
I∩(a+dZ) with a bounded interval I and a modulo class a+dZ ∈ Z/dZ. l→-spaced intervals are
also called right ladder intervals. Similarly, l←-spaced intervals are called left ladder intervals.
By definition, a right ladder path is a piece of path that steps through the points of some right
ladder interval in increasing order. Similarly, a left ladder path is a piece of path that steps
through the points of some left ladder interval in decreasing order.

Reading words from pieces of sceneries: For I = {i0, . . . , in−1} ⊂ Z with i0 < . . . < in−1
and a piece of scenery ζ ∈ CI , we define ζ→ := (ζik)k=0,...,n−1 ∈ C

n and ζ← := (ζin−1−k
)k=0,...,n−1 ∈

Cn; thus ζ→ and ζ← are the words obtained by reading ζ from the left to the right and from the
right to the left, respectively. The right ladder word of a scenery ξ over a right ladder interval I
is defined to be (ξdI)→; similarly one defines left ladder words (ξdJ)← over left ladder intervals
J .

2.1 Conventions concerning constants

Four fixed “sufficiently large” positive integer parameters c2, c1, α, and n0 globally play a role.
The meaning of these parameters is explained below at the location of their occurrence; at this
point we only describe their mutual dependence:
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• c2 ∈ N is chosen first sufficiently large; say c2 ≥ c
min
2 (|C|, µ).

• Then c1 ∈ 2N is chosen to be even and sufficiently large; say c1 ≥ c
min
1 (c2, |C|, µ).

• Then α ∈ N is chosen to be sufficiently large; say α ≥ αmin(c1, |C|, µ).

• Finally n0 ∈ 2N is chosen to be even and sufficiently large; say n0 ≥ n
min
0 (c1, α, |C|, µ).

We do not specify explicitly here how large the allowed lower bounds cmin
2 , cmin

1 , αmin and
nmin
0 actually need to be; but we emphasize that the constructions below will work if they are

sufficiently large.
All other positive constants are denoted by “ci” with a counting index i > 2; they keep their

meaning globally during the whole article. Unless explicitly stated otherwise, these constants
may depend only on the number of colors |C| and on the jump distribution µ of the random
walk; in particular they may depend on the upper bound l of the jump size, but not on n0.

3 Skeleton of the Reconstruction Procedure

Our first “ingredient” theorem reduces the problem of almost surely reconstructing sceneries to
the following simpler one: We only need to find an auxiliary reconstruction procedure AB which
may fail to give an answer, and it may sometimes even give the wrong answer, if only giving
the correct answer is more probable than giving a wrong one. Roughly speaking, we apply the
auxiliary reconstruction procedure AB repeatedly to the observations with initial pieces dropped,
taking the answer of the majority as our result; here ergodicity of the observations plays a key
role.

Theorem 3.1 If there exists a measurable map AB : CN → CZ ∪ {fail} with

P [AB(χ) 6= fail,AB(χ) ≈ ξ] > P [AB(χ) 6= fail,AB(χ) 6≈ ξ], (3.1)

then there exists a measurable map A : CN → CZ such that

P [A(χ) ≈ ξ] = 1. (3.2)

The auxiliary reconstruction procedure AB gives the output “fail” if one does not see a long
block of 1’s in the initial piece of the observations. Thus failure of AB is a very frequent event;
however, non-failure still occurs with a positive but small probability, and conditioned on this
event the most probable answer will be the correct one. Roughly speaking, when we apply AB

again and again to the observations with initial pieces dropped, we will finally see sufficiently
many long blocks of 1’s to make the whole procedure work correctly.

The required long block of 1’s in the initial piece should have length n200 for some sufficiently
large but fixed even number n0 ∈ 2N. The parameter n0, which parametrizes the size of this
required block, is chosen fixed but large enough (see Subsection 2.1).

Definition 3.2 With the abbreviation J1 = [−2ln200 , 2ln
20
0 ], we define the following events:

EB(k) := {χn = 1 for all n ≤ k} for k ∈ N, (3.3)

BigBlock :=

{

There is an integer interval J0 ⊆ J1 with |J0| ≥ n
4
0 such that

ξdJ0 = (1)j∈J0 is a constant piece of scenery with value 1.

}

. (3.4)
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Let PB denote the image of the conditional law P [ · |EB(n
20
0 )] with respect to the shift Θn20

0 .
Furthermore, we define the conditional law

P̃ := PB[ · |BigBlock]. (3.5)

The event EB(n
20
0 ) occurs when we see a large block of 1’s in an initial piece of the observations,

while BigBlock occurs when there is a large block of 1’s close to the origin in the (unobservable)
real scenery ξ.

We describe the intuitive meaning of P̃ : After having seen a large initial block of 1’s in the
observations, we drop this initial piece and take the present point as our new starting point.
Since then a large block of 1’s close to the origin in the unobservable real scenery ξ is typical, it
does not change much when we even condition on this (unobservable) event.

The next theorem shows that whenever we have a reconstruction procedure A′ that works
sufficiently probably with respect to the modified measure P̃ , then there exists the auxiliary
reconstruction procedure AB that we needed above:

Theorem 3.3 Assume that there exists a measurable map A′ : CN → CZ with

P̃ [A′(χ) ≈ ξ] ≥
2

3
. (3.6)

Then there exists a measurable map AB : CN → CZ ∪ {fail} such that

P [AB(χ) 6= fail,AB(χ) ≈ ξ] > P [AB(χ) 6= fail,AB(χ) 6≈ ξ]. (3.7)

The reconstruction function A′ required by the last theorem is built by putting together a
hierarchy of partial reconstruction algorithms Am, m ≥ 1. The partial reconstruction algorithms
Am try to reconstruct longer and longer pieces around the origin; the relevant length scale in
the m-th hierarchy is given by 2nm , where nm is defined as follows:

Definition 3.4 We define recursively a sequence (nm)m∈N: n0 was already chosen above; we
set

nm+1 := 2b
√
nmc. (3.8)

The partial reconstruction algorithms may sometimes, but not too frequently, give the wrong
answer:

Theorem 3.5 Assume that there exists a sequence (Am)m≥1 of measurable maps Am : CN →
C[−5·2

nm ,5·2nm ] such that

P̃

[ ∞
⋃

m=1

(Em)c

]

≤
1

3
, (3.9)

where
Em := {ξd[−2nm , 2nm ] 4 Am(χ) 4 ξd[−9 · 2nm , 9 · 2nm ]}. (3.10)

Then there exists a measurable map A′ : CN → CZ such that the following holds :

P̃ [A′(χ) ≈ ξ] ≥
2

3
. (3.11)
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Before describing it formally, let us intuitively explain how the hierarchy of partial recon-
struction algorithms Am is constructed: The Am are built recursively in a “zig-zag” way simul-
taneously with a hierarchy of stopping times:

These stopping times have the task to estimate times when the random walk S is sufficiently
close back to the origin, at least up to a certain time horizon. For this estimation, one may
use only an initial piece of the color record χ. To find “higher level” stopping times, we try to
reconstruct a piece of scenery both at the present candidate location and at the starting point,
using a “lower level” partial reconstruction algorithm. If the two obtained pieces of scenery have
a high overlap with each other, then there is a good chance that the candidate location and the
starting point are close to each other. This is the “zig” part of the “zig-zag” recursion.

The “zag” part of the recursion uses the stopping times as follows to construct a “higher
level” partial reconstruction algorithm Am: Whenever the stopping times indicate that one
might be sufficiently close to the origin, one collects “typical signals” which one expects to be
characteristic of the local environment in the scenery. The data obtained in this way are then
matched together similarly to playing a puzzle game. This procedure is the heart of the whole
reconstruction method.

To get the whole construction started, one needs some initial stopping times which indicate
that one might be sufficiently close to the origin. A simple way to get such times is the following:
Whenever one observes a sufficiently long block of 1’s in the color record, then one has a high
chance to be close to the origin. (Remember: We conditioned on seeing a long block of 1’s at
an initial piece of the color record.) This is the reason why we introduce the modified measure
P̃ , since with respect to P̃ one can be (almost) sure to have a big block of 1’s in the scenery
close to the origin. However, the such constructed stopping times are not reliable enough to
base the first partial reconstruction algorithm on them. Instead, these stopping times are used
as ingredients to construct more reliable stopping times.

We treat the “zig” part and the “zag” part of the recursion separately, starting with the
formal specification of the “zig” part: Given an abstract partial reconstruction algorithm f , we
build stopping times out of it:

The specification of the stopping times depends on a fixed, sufficiently large parameter α ∈ N.
Informally speaking, α influences how many stopping times in each step should be valuable, and
what the time horizon for the m-th partial reconstruction algorithm in the hierarchy should be.
The parameter α is chosen fixed but large enough; recall Subsection 2.1.

Definition 3.6 Let m ≥ 1. Let a function f : CN → C[−5·2
nm ,5·2nm ] be given. Assume that f(χ)

depends only on χd[0, 2 · 212αnm [. We define the random set

Tf (χ) :=
{

t ∈ [0, 212αnm+1 − 2 · 212αnm [
∣

∣ ∃w ∈ C2·2
nm

: w 4 f(χ) and w 4 f(θt(χ))
}

. (3.12)

We define a sequence Tf = (Tf,k)k≥0 of G-adapted stopping times with values in [0, 212αnm+1 ]:
Let t(0) < . . . < t(|Tf (χ)|−1) be the elements of Tf (χ) arranged in increasing order. For k ∈ N,
we set

Tf,k(χ) :=

{

t(2 · 22nm+1k) + 2 · 212αnm if 2 · 22nm+1k < |Tf (χ)|,
212αnm+1 otherwise.

(3.13)

Observe that the stopping times Tf (χ) depend only on χd[0, 212αnm+1 [.
In the next definition, we introduce events Em

stop,τ ; they specify what the stopping times
should fulfill: There should be sufficiently many of them, they should be separated by at least
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2 · 22nm , and they should stop the random walk sufficiently close to the origin. Furthermore,
given any abstract partial reconstruction algorithm f , we define an event Em

reconst,f ; it measures
whether f correctly reconstructs a piece of the scenery around the origin.

Definition 3.7 Let m ∈ N.

1. Given a sequence τ = (τk)k∈N of G-adapted stopping times, we define

Em
stop,τ :=

2αnm
⋂

k=0

{

τk(χ) < 212αnm , |S(τk(χ))| ≤ 2nm , τj(χ) + 2 · 22nm ≤ τk(χ) for j < k
}

.

(3.14)

2. We set for f : CN → C[−5·2
nm ,5·2nm ]:

Em
reconst,f := {ξd[−2nm , 2nm ] 4 f(χ) 4 ξd[−9 · 2nm , 9 · 2nm ]} . (3.15)

Roughly speaking, the following theorem states: there are stopping times “to get started”
which solve their task with high probability:

Theorem 3.8 There exists a sequence of G-adapted stopping times T 1 = (T 1
k )k∈N with values

in [0, 212αn1 ] and a constant c4 > 0, such that

P̃
[

(E1
stop,T 1)

c
]

≤ e−c4n0 . (3.16)

The next theorem states that the “zig”-part of the construction works correctly with high
probability. As a premise, the “zig”-part needs the underlying “lower level” partial recon-
struction algorithm f to work correctly when f is applied at the beginning. Furthermore, the
“zig”-part needs f to have a sufficiently high probability to work correctly on the given scenery
ξ whenever it is applied again. Informally speaking, the reason is: In the “zig”-part we can only
reconstruct, if we know where we are. The idea is to start the whole lower-level reconstruction
procedure again whenever we want to find out whether we are close to the origin. As mentioned
before, if the result has a large overlap with the piece we have already reconstructed, we can be
rather sure that we are close to the origin.

Theorem 3.9 Under the assumptions of Definition 3.6, we have that

P

[

(Em+1
stop,Tf

)c ∩ Em
reconst,f ∩

{

P
[

Em
reconst,f | ξ

]

≥
1

2

}]

≤ e−nm+1 . (3.17)

We remark: in the “zig part” (Theorem 3.9) we work with the event Em+1
stop,Tf

, while in the “zag

part” (Theorem 3.10 below) we work with Em
stop,Tf

.
Intuitively, in order to successfully recognize locations close to the origin, we need not only

the “lower level” reconstruction to work correctly the first time (i.e. Em
reconst,f needs to hold),

but also the scenery must be such that whenever one starts the “lower level” reconstruction
again, one has a sufficiently high chance to reconstruct again a correct piece; this is why we need
the event “P [Em

reconst,f | ξ] ≥ 1/2”.
Finally the heart of the reconstruction algorithm consists of the “zag”-part: there are partial

reconstruction algorithms Algnm which take an initial piece of the color record as input data,
and abstract “lower level” stopping times τ as “argument procedures”. Intuitively, the following
theorem states that the algorithms Algnm reconstruct correctly with high probability, provided
the “argument procedures” τ fulfill their specification Em

stop,τ .
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Theorem 3.10 For every m ∈ N, there is a map

Algnm : [0, 212αnm ]N × C2·2
12αnm

→ C[−5·2
nm ,5·2nm ] (3.18)

such that for every vector τ = (τk)k∈N of G-adapted stopping times with values in [0, 212αnm ] one
has

P
[

(Em
reconst,Algnm (τ,·))

c ∩ Em
stop,τ

]

≤ c5e
−c6nm (3.19)

for some positive constants c6 and c5, where Algnm(τ, ·) : χ 7→ Algnm(τ(χ), χd[0, 2 · 212αnm [).

To motivate the allowed range for the abstract arguments τ in this theorem, recall that Tf,k(χ)
in (3.13) take their values in [0, 212αnm+1 ].

Note that Theorems 3.9 and 3.10 use the original probability measure P , while Theorem 3.8
uses the modified probability measure P̃ .

An algorithm Algn is defined in the next Section 4, but its correctness, i.e. Theorem 3.10, is
proven in Section 6, below. Theorems 3.9 and 3.8 are proven below in separate Sections 7 and 8,
respectively. Right now we show how to use these three theorems: Provided these three theorems
are true, the hypothesis of Theorem 3.5 holds, i.e. there exists a sequence of measurable maps
Am : CN → C[−5·2

nm ,5·2nm ] such that (3.9) is valid. We take the maps Algnm and the sequences
of stopping times T 1, Tf from Theorems 3.8, 3.9, and 3.10 to define recursively maps Am. Then
we prove: the properties guaranteed by Theorems 3.8, 3.9, and 3.10 imply that the sequence of
maps (Am)m≥1 satisfies (3.9). We are ready to describe the “zig-zag”-recursion formally:

Definition 3.11 We define Am : CN → C[−5·2
nm ,5·2nm ] and sequences Tm = (Tmk )k∈N of G-

adapted stopping times by simultaneous recursion over m ≥ 1:

• T 1 is chosen using Theorem 3.8.

• Am(χ) := Algnm(Tm(χ), χd[0, 2 · 212αnm [), with Algnm taken from Theorem 3.10.

• Tm+1 := TAm, with the notation of Definition 3.6.

Recall Definition (3.10) of the events Em. From now on, we use our specific choice for Am

from Definition 3.11. Using (3.15), we rewrite (3.10) in the form

Em = Em
reconst,Am . (3.20)

Theorem 3.12 For the sequence (Am)m≥1 as defined in Definition 3.11 and (Em)m∈N as in
(3.20), the bound (3.9) is valid.

All theorems of this section together yield the proof of our main theorem:
Proof of Theorem 1.1. By Theorem 3.12, (3.9) holds; then (3.11) holds by Theorem 3.5;

moreover (3.7) holds by Theorem 3.3; finally Theorem 3.1 implies the claim (1.1) of Theorem
1.1.
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4 Heart of the Reconstruction Procedure:

Definition of the Algorithm Algn

This section contains the heart of the reconstruction procedure: for every n ∈ N, we define an
algorithm Algn; it is designed to reconstruct long pieces of scenery with high probability. In
Section 6 below we show that it fulfills the formal specification given in Theorem 3.10.

Informally speaking, the observation χ allows us to collect many pieces of “puzzle words”.
These puzzle words are chosen to have size c1n with a fixed parameter c1; recall Subsection
2.1. To obtain them, we collect triples of words (w1, w2, w3) which occur in sequence in the
observations χ soon after a stopping time τ(k); an initial piece of χ is represented below by
a formal argument η. We put those words w2 into our puzzle which are already uniquely
determined by w1 and w3. This means that w1 and w3 should be be very “characteristic signals”;
if w1 and w3 could be read at very different locations in the scenery close to a stopping time,
then it is improbable that they will enclose always the same word w2. Frequently, w2 turns out
to be a ladder word: Whenever one reads a w2 in the context w1w2w3 along a non-ladder path
sufficiently close to the origin, one reads with high probability a different word w′2 in the context
w1w

′
2w3, too, along a different path with the same starting point and the same end point; but

then w2 is not collected as a puzzle word.
Here is the formal construction: We take input data τ ∈ [0, 212αn]N and η ∈ C2·2

12αn
. A side

remark: although for formal reasons there are infinitely many τ(k) given in the input data, the
construction below actually uses only the first 2αn of them.

Definition 4.1 We define for m ≥ 0 the random sets:

PrePuzzlen(τ, η) := (4.1)
{

(w1, w2, w3) ∈ (Cc1n)3 | ∃k ∈ [0, 2αn[: w1w2w3 v ηd[τ(k), τ(k) + 22n]
}

,

PuzzlenI (τ, η) := (4.2)
{

(w1, w2, w3) ∈ PrePuzzlen(τ, η) | ∀(w1, w
′
2, w3) ∈ PrePuzzlen(τ, η): w′2 = w2

}

,

PuzzlenII(τ, η) := (4.3)

{w2 ∈ C
c1n | ∃w1, w3 ∈ C

c1n: (w1, w2, w3) ∈ PuzzlenI (τ, η)} .

Let us informally explain why for the reconstruction to work we need more colors then possible
steps of the random walk: A ladder word should be very characteristic for the location where
it occurs, at least within a large neighborhood of the origin. To illustrate this, take a “typical”
finite sequence c1, . . . , cl of colors in C in the observation χ. Look at all locations x in the
scenery ξ where one can observe this sequence c1, . . . , cl of colors by following some admissible
path starting at x. As l → ∞, we want that these locations x to get very rare. However, this
will not be the case if there are too few possible colors, compared to the number |M| of possible
steps of the random walk. More formally, the condition |C| > |M| on the number of possible
colors is used in Lemma 6.38, below.

Let us explain the idea behind the following constructions: Although many of the words w2

in “PuzzleII” turn out to be ladder words of a central piece in the true scenery ξ, some of them
are not: There are “garbage words” in the puzzle. We play a “puzzle-game” with the words in
“PuzzleII”: We try to fit larger and larger pieces together. In order to distinguish “real” pieces
from “garbage” pieces, we need some “seed words” which are guaranteed (with high probability)
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not to be garbage words; every piece that fits to a piece containing a seed word has a high chance
not to be garbage, too. This is what the set SeedII defined below is good for. We identify “seed”
words as “puzzle” words that occur in the observations almost immediately after a stopping
time τ(k), when we expect the random walk to be close to the origin.

Recall the abbreviation h = l|M|. Formally, we proceed as follows:

Definition 4.2

SeednI (τ, η) := (4.4)
{

(w1, w2, w3) ∈ PuzzlenI (τ, η)

∣

∣

∣

∣

∃k ∈ [0, 2αn[ ∃j ∈ [0, 7c1nl] :
w1w2w3 ≡ ηd(τ(k) + j + [0, 3c1n[)

}

,

SeednII(τ, η) := {w2 ∈ C
c1n | (w1, w2, w3) ∈ SeednI (τ, η)} , (4.5)

SeednIII(τ, η) := (4.6)
{

u ∈ SeednII(τ, η)

∣

∣

∣

∣

∃v ∈ SeednII(τ, η) :
(ud([0, c2nl←] ∩ l←Z))→ = (vd([0, c2nl→] ∩ l→Z))←

}

,

Neighborsn(τ, η) := (4.7)
{

(w1, w2) ∈ (Cc1n)2 | ∃k ∈ [0, 2αn[, w ∈ Ch−1 : w1ww2 v ηd[τ(k), τ(k) + 22n]
}

.

Let us explain what “SeedIII” is intended for: We need to identify the orientation of the pieces
(whether they are to be read “forward” or “backward”). This task consists of two problems:
The identification of the relative orientation of two pieces with respect to each other, and the
identification of the absolute orientation with respect to the “true” scenery ξ. Of course, we
have no chance to identify the absolute orientation if the random walk is symmetric; we even
bother about identifying the absolute orientation only in the very unsymmetric case l→ 6= l←.
The set SeedIII helps us to identify the absolute orientation in this case: Suppose we read every
l→-th letter in a word from the left to the right, and every l←-th letter in the same word from
the right to the left; then every l→l←-th letter appears in both words, when at least one letter
is read both times. This turns out to be characteristic enough to identify the reading directions
“left” and “right” in the case l→ 6= l←. The fixed parameter c2 influences the length of the
sample pieces in this procedure.

The relation “Neighbors” serves as an estimation for the geometric neighborship relation be-
tween ladder words: ladder words that occur closely together in the observation χ are expected to
occur on geometrically neighboring intervals in the “true” scenery ξ. The next definition defines
a “true” geometric neighborship relation .n. We try to reconstruct the corresponding “true”
neighborship relation for ladder words in a piece of ξ using only the “estimated” neighborship
relation “Neighbors”.

Recall that µ∗k denotes the k-fold convolution of µ; in particular

suppµ∗k :=

{

k
∑

i=1

si

∣

∣

∣

∣

∣

∀i : si ∈ suppµ

}

. (4.8)

Definition 4.3 Let I, J be right ladder intervals. By definition, I .n J means |I| = |J | = c1n
and min J − max I ∈ suppµ∗h. Similarly for I ′, J ′ being left ladder intervals, I ′ /n J ′ means
|I ′| = |J ′| = c1n and max J ′ −min I ′ ∈ suppµ∗h.
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The next definition is the heart of our method: We describe how to obtain reconstructed pieces
of sceneries. All pieces of scenery w ∈ C [−5·2

n,5·2n] are tested as candidates in a sequence
of “Filters”: Reconstructed ladder words should be in “PuzzleII”, the “estimated” and the
“reconstructed” neighborship relation should be consistent with each other, the reconstructed
pieces should contain “SeedIII” words, and no piece of the puzzle should be used twice.

Only candidate pieces that pass all Filters are considered as a solution of the partial recon-
struction problem.

Definition 4.4 Let Filterni (τ, η), i = 1, . . . , 5, denote the set of all w ∈ C [−5·2
n,5·2n] which fulfill

the following condition 1., . . . , 5., respectively:

1. For every right ladder interval I ⊆ [−5 ·2n, 5 ·2n], |I| = c1n, one has (wdI)→ ∈ PuzzlenII(τ).

2. For all right ladder intervals I, J ⊆ [−5 · 2n, 5 · 2n]:
if I .n J , then ((wdI)→, (wdJ)→) ∈ Neighborsn(τ, η).

3. For all right ladder intervals I, J ⊆ [−5 · 2n, 5 · 2n], |I| = |J | = c1n:
if ((wdI)→, (wdJ)→) ∈ Neighborsn(τ, η), then there is q ∈ N such that I .n J + ql→.

4. For every right modulo class Z ∈ Z/l→Z there exists a right ladder interval I ⊆ Z ∩ [−2 ·
2n, 2 · 2n] such that (wdI)→ ∈ SeednIII(τ, η).

5. For all right ladder intervals I, J ⊆ [−5 · 2n, 5 · 2n], |I| = |J | = c1n:
if (wdI)→ = (wdJ)→, then I = J .

We set

SolutionPiecesn(τ, η) :=
5
⋂

i=1

Filterni (τ, η). (4.9)

The output of the algorithm Algn could be any of these pieces w ∈ SolutionPiecesn(τ, η); we
choose one of them, if it exists.

Definition 4.5 We define Algn(τ, η) as follows:

• If SolutionPiecesn(τ, η) is nonempty, then we define Algn(τ, η) to be its lexicographically
smallest element.

• Otherwise Algn(τ, η) is defined to be the constant scenery (1)j∈[−5·2n,5·2n].

We could have equally well taken any element of SolutionPiecesn(τ, η) in Definition 4.5; we
choose the lexicographically smallest one just for definiteness.

5 Proofs concerning the Skeleton Structure

In this section, we prove most of the theorems of Section 3, which deals with the skeleton
structure.

We start with a quite standard lemma:

Lemma 5.1 The shift Θ : Ω→ Ω, (ξ, S) 7→ (ξ(·+ S(1)), S(·+ 1)− S(1)) is measure-preserving
and ergodic with respect to P .
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On page 397 in [9], Kalikov remarks (without proof) that the shift operator in a more general
situation is K, not only ergodic. However, for completeness, we describe a proof of the lemma.
We are grateful to an anonymous referee for a simplification in the subsequent proof of ergodicity.

Proof. The shift Θ is measure-preserving: Since the distribution of ξ is invariant under
(deterministic) translations, and since S(1) is independent of ξ, we get: ξ(·+S(1)) has the same
distribution as ξ. Furthermore, (S(t+1)−S(1))t∈N has the same distribution as S. Since ξ, S(1)
and (S(t+1)−S(1))t∈N are independent, ξ(·+S(1)) and (S(t+1)−S(1))t∈N are independent,
too. Consequently Θ(ξ, S) has the same distribution as (ξ, S).
To prove that Θ is ergodic, let A be a Θ-invariant event. Given ε > 0, there is N ∈ N and an
event Bε with P [A4Bε] < ε, such that Bε depends only on the first N steps S(1), . . . , S(N)
of the random walk and the piece of the scenery (ξ(i))−N≤i≤N close to the origin. Here A4Bε

denotes the symmetric difference of sets. Using A4(Bε ∩Θ
−nBε) ⊆ (A4Bε)∪Θ

−n(A4Bε), we
get |P [Bε ∩Θ−nBε]− P [A]| < 2ε (uniformly) for all n ∈ N. On the other hand, limn→∞ P [Bε ∩
Θ−nBε] = P [Bε]

2, since after many time steps with high probability, the random walk is very
far from the origin: limn→∞ P [|S(n)| > C] = 1 for all C > 0, and conditioned on |S(n)| > C for
sufficiently large C = C(N), the events Bε and Θ−nBε are independent. Thus

P [A]2 = lim
ε→0

P [Bε]
2 = lim

ε→0
lim
n→∞

P [Bε ∩Θ−nBε] = P [A], (5.1)

i.e. P [A] ∈ {0, 1}.
Proof of Theorem 3.1. The idea of this proof is to apply the reconstruction function AB

to all the shifted observations θk(χ) for each k ∈ N. Every time one does this, one gets either a
scenery or the state fail as result.

Given AB : CN → CZ ∪ {fail} as in the hypothesis of the theorem, we define measurable
functions AkB : CN → CZ, k ∈ N, as follows:

• If there exists j ∈ [0, k[ such that AB(θ
j(χ)) 6= fail and

∣

∣

∣

{

j′ ∈ [0, k[
∣

∣

∣
AB(θ

j′(χ)) 6= fail, AB(θ
j′(χ)) ≈ AB(θ

j(χ))
}
∣

∣

∣
(5.2)

>
∣

∣

∣

{

j′ ∈ [0, k[
∣

∣

∣
AB(θ

j′(χ)) 6= fail, AB(θ
j′(χ)) 6≈ AB(θ

j(χ))
}∣

∣

∣
,

then let j0 be the smallest j with this property, and define AkB(χ) := AB(θ
j0(χ)).

• Else define AkB(χ) to be the constant scenery (1)j∈Z.

Finally define the measurable function A : CN → CZ by

A(χ) :=

{

limk→∞AkB(χ) if this limit exists pointwise,
(1)j∈Z otherwise.

(5.3)

We check that the such defined function A fulfills the claim (3.1) of Theorem 3.1:
Let us give the general idea: by hypothesis (3.1) and an ergodicity argument, ”on the long run”
the proportion of sceneries AB(θ

k(χ)) (for k ∈ N) which are equivalent to ξ is strictly bigger
than the proportion of sceneries which are not equivalent to ξ. More formally, define for k ∈ Z
the Bernoulli variables Xk

sce and Xk
wrong sce: we set Xk

sce equal to 1 iff AB(θ
k(χ)) 6= fail and

AB(θ
k(χ)) ≈ ξ. Similarly, Xk

wrong sce is equal to 1 iff AB(θ
k(χ)) 6= fail and AB(θ

k(χ)) 6≈ ξ.
Define

Y k
sce :=

1

k

k−1
∑

i=0

Xi
sce and Y k

wrong sce :=
1

k

k−1
∑

i=0

Xi
wrong sce. (5.4)
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Observe that if Y k
sce > Y k

wrong sce holds, then AkB(χ) ≈ ξ. As a consequence of Lemma 5.1, the

sequences (Xk
sce)k≥0 and (Xk

wrong sce)k≥0 are stationary and ergodic, since they can be viewed as

a measurable function of the sequence k 7→ Θk(ξ, S). Note that ξ ≈ ξ(·+ S(k)). By the ergodic
theorem, we have almost surely:

Y k
sce

k→∞
−→ P

[

AB(θ
k(χ)) 6= fail, AB(χ) ≈ ξ

]

, (5.5)

Y k
wrong sce

k→∞
−→ P

[

AB(θ
k(χ)) 6= fail, AB(χ) 6≈ ξ

]

. (5.6)

Thus by the assumption (3.1) there exists a.s. a (random) k0 such that for all k ≥ k0 we have
Y k
sce > Y k

wrong sce and hence AkB(χ) = A
k0
B (χ) ≈ ξ; recall that we chose the smallest possible j0 in

the definition of AkB. Thus a.s. A(χ) ≈ ξ.
The following lemma tells us that a large block of 1’s in the real scenery is very probable

whenever we see a large initial block of 1’s in the observations. It is proven in Section 8.1, below.

Lemma 5.2 There exists c3 > 0 such that PB [BigBlock] ≥ 1− e−c3n
12
0 .

Proof of Theorem 3.3. Assume A′ : CN → CZ is a measurable map satisfying (3.6):

PB[A
′(χ) ≈ ξ |BigBlock] ≥

2

3
. (5.7)

So,

PB
[{

A′(χ) ≈ ξ
}

∩ BigBlock
]

≥
2

3
PB [BigBlock] . (5.8)

By Lemma 5.2 it follows, since n0 is large enough (see Subsection 2.1):

PB[A
′(χ) ≈ ξ] ≥

2

3

(

1− e−c3n
12
0

)

>
1

2
. (5.9)

Now, by definition of PB,

PB[A
′(χ) ≈ ξ] = P

[

A′
(

χ ◦Θn20
0

)

≈ ξ ◦Θn20
0

∣

∣

∣
EB(n

20
0 )
]

. (5.10)

Obviously ξ ◦Θn20
0 ≈ ξ. Thus

P
[

A′
(

χ ◦Θn20
0

)

≈ ξ
∣

∣

∣
EB(n

20
0 )
]

>
1

2
. (5.11)

We define AB : CN → CZ ∪ {fail}:

AB(χ) :=

{

A′(χ ◦Θn20
0 ) if EB(n

20
0 ) holds,

fail otherwise;
(5.12)

this is well defined since EB(n
20
0 ) ∈ σ(χ). By (5.11), the such defined AB satisfies (3.7).

The following lemma claims that P̃ is absolutely continuous with respect to P , and it provides
an upper bound for the Radon-Nikodym derivative dP̃ /dP . This lemma is also proven in Section
8.1, below.

Lemma 5.3 For all events E ⊆ Ω we have

P̃ (E) ≤ |C|4ln
20
0 +1P (E). (5.13)
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Proof of Theorem 3.5. For pieces of scenery ψ, φ, we define the piece of scenery Φ(ψ, φ) as
follows: If ψ 41 φ, then Φ(ψ, φ) denotes the unique piece of scenery with Φ(ψ, φ) ≈ φ such that
ψ ⊆ Φ(ψ, φ); otherwise we set Φ(ψ, φ) := φ. We take Am as in the hypothesis of the theorem
and χ ∈ CN. With the abbreviation ξm := Am(χ), we define recursively

ζ1 := ξ1, (5.14)

ζm+1 := Φ(ζm, ξm+1), (5.15)

A′(χ) :=

{

limm→∞ ζm if this limit exists pointwise on Z,
(1)j∈Z else.

(5.16)

(By convention, a sequence (ζm)m∈N of pieces of sceneries converges pointwise to a scenery ζ if
the following holds: lim infm→∞ domain(ζm) = Z, and for every z ∈ Z there is mz > 0 such that
for all m ≥ mz one has ζm(z) = ζ(z).) Being a pointwise limit of measurable maps, the map
A′ : CN → CZ is measurable. For the purpose of the proof, we abbreviate ξm := ξd[−2nm , 2nm ]

and ξ
m

:= ξd[−9 · 2nm , 9 · 2nm ] and we define the events

Em
1fit :=

{

ξm 41 ξ
m+1

}

. (5.17)

We claim:

1. lim infm→∞Em
1fit holds P̃ -a.s.,

2. If the event lim infm→∞Em
1fit ∩

⋂∞
m=1E

m occurs, then A′(χ) ≈ ξ.

These two statements together with the hypothesis (3.9) imply the claim (3.11) of the theorem.
Proof of claim 1.: By Lemma 5.3 we may replace “P̃ -a.s.” in the claim by “P -a.s.”. If

I1 6= I2 are fixed integer intervals with |I1| = |I2|, then P [ξdI1 ≈ ξdI2] ≤ 2c12e
−c13|I| holds for

some constants c12, c13 > 0, even if I1 and I2 are not disjoint. (See also the similar Lemma 6.33,
in particular estimate (6.66), below. The factor 2 makes the notation consistent with this lemma;
recall the binary choice: ξdI1 ≈ ξdI2 means ξdI1 ≡ ξdI2 or ξdI1 ≡ (ξdI2)

↔.) We apply this for
I1 = [−2nm , 2nm ] and all integer intervals I2 ⊆ [−9 ·2nm+1 , 9 ·2nm+1 ] with |I1| = |I2| = 2 ·2nm+1,
I1 6= I2; there are at most 18·2nm+1 choices of I2. We obtain P [(Em

1fit)
c] ≤ 18·2nm+1 ·2c12e

−2c132nm ,
which is summable over m; recall nm+1 = o(2nm) as m→∞. Hence (Em

1fit)
c occurs P -a.s. only

finitely many times by the Borel-Cantelli lemma; this proves claim 1.
Next we prove the second claim: By the assumption made there, there is a (random) M such

that the events Em
1fit and E

m hold for all m ≥M . Let m ≥M . In the considerations below, we
use several times the following rule: For pieces of sceneries α, β, γ, δ:

If α 4 β 4 γ 4 δ and α 41 δ, then β 41 γ. (5.18)

In particular, this applies to

ξm 41 ξ
m+1

and ξm 4 ξm 4 ξ
m

4 ξm+1 4 ξm+1 4 ξ
m+1

; (5.19)

we obtain ξm 41 ξ
m+1. By the definition of ζm and Φ, we know ζm ≈ ξm; hence we obtain

ζm 41 ξ
m+1. Using the definition of Φ again, we see ζm ⊆ Φ(ζm, ξm+1) = ζm+1. Using (5.18),

(5.19), ζm ≈ ξm, ζm+1 ≈ ξm+1 again, we get

ζm 41 ξ
m

41 ζ
m+1 41 ξ

m+1
and ζm 41 ξ

m+1
. (5.20)
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Let hm : Z → Z, m ≥ M , denote the unique translation or reflection that maps ζm onto a

subpiece of ξ
m
. As a consequence of ζm ⊆ ζm+1, ξ

m
⊆ ξ

m+1
, and (5.20) we see that hm does

not depend on m for m ≥ M . Hence hm maps ζ :=
⋃

m≥M ζm to a subpiece of ξ =
⋃

m≥M ξ
m
;

thus ζ 4 ξ. In fact the domain of ζ is Z; to see this we observe that domain(ζ) contains all
(hm)−1[domain(ξ

m
)] = (hm)−1[−9 · 2nm , 9 · 2nm ], which cover all of Z. To summarize, we have

shown that (ζm)m≥M converges pointwise to a scenery ζ ≈ ξ; thus A′(χ) = ζ ≈ ξ by the
definition of A′(χ). This finishes the proof of the second claim and also the proof of Theorem
3.5.

Definition 5.4 We define events of sceneries

ΞI :=
{

ξ ∈ CZ
∣

∣

∣
P
[

(E1
stop,T 1)

c
∣

∣

∣
ξ
]

≤ e−c4n0/2
}

, (5.21)

ΞII :=
∞
⋂

m=1

{

ξ ∈ CZ
∣

∣

∣

∣

If P [Em | ξ] ≥
1

2
, then P

[

(Em+1
stop,Tm+1)

c ∩ Em
∣

∣

∣
ξ
]

≤ e−nm+1/2

}

=
∞
⋂

m=1

{

ξ ∈ CZ
∣

∣

∣

∣

P

[

(Em+1
stop,Tm+1)

c ∩ Em ∩

{

P [Em | ξ] ≥
1

2

} ∣

∣

∣

∣

ξ

]

≤ e−nm+1/2

}

, (5.22)

ΞIII :=
∞
⋂

m=1

{

ξ ∈ CZ
∣

∣

∣
P
[

(Em)c ∩ Em
stop,Tm | ξ

]

≤ c
1/2
5 e−c6nm/2

}

, (5.23)

Ξ := ΞI ∩ ΞII ∩ ΞIII, (5.24)

where c5 and c6 are taken from Theorem 3.10 and c4 is taken from Theorem 3.8.

Note the similarity between these events and the bounds in (3.16), (3.17) and (3.19). The
following lemma provides a link between bounds with and without conditioning on the scenery
ξ:

Lemma 5.5 Let A be an event, r ≥ 0, and Q be a probability measure on Ω such that Q[A] ≤ r2.
Then

Q [Q[A|ξ] > r] ≤ r. (5.25)

Proof of Lemma 5.5. This follows directly from

r2 ≥ Q[A] ≥

∫

{Q[A|ξ]>r}
Q[A|ξ] dQ ≥ rQ [Q[A|ξ] > r] . (5.26)

Lemma 5.6 For some constant c14 > 0 it holds:

P̃ [ξ /∈ Ξ] ≤ e−c14n0 . (5.27)

Proof of Lemma 5.6. Using the bound (3.16), Lemma 5.5 for Q = P̃ , the fact P̃ [· | ξ] =
P [· | ξ], and the definition (5.21) of ΞI, we obtain for a sufficiently small constant c14 > 0

P̃ [ξ /∈ ΞI] ≤ e
−c4n0/2 ≤

e−c14n0

3
; (5.28)
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recall that n0 was chosen large enough, see Subsection 2.1. As a consequence of the bounds
(3.17) and (3.19) we know

P

[

(Em+1
stop,Tm+1)

c ∩ Em ∩

{

P [Em | ξ] ≥
1

2

}]

≤ e−nm+1 , (5.29)

P
[

(Em)c ∩ Em
stop,Tm

]

≤ c5e
−c6nm . (5.30)

We obtain by the bound (5.29), Lemmas 5.3 and 5.5 with Q = P , and (5.22):

P̃ [ξ /∈ ΞII] ≤ |C|4ln
20
0 +1P [ξ /∈ ΞII] ≤ |C|

4ln20
0 +1

∞
∑

m=1

e−nm+1/2 ≤
e−c14n0

3
. (5.31)

Here we used again that n0 is large, and that (nm)m∈N grows fast; see Definition 3.4. The same
argument yields, this time using (5.30) and (5.23):

P̃ [ξ /∈ ΞIII] ≤ |C|4ln
20
0 +1P [ξ /∈ ΞIII] ≤ |C|

4ln20
0 +1

∞
∑

m=1

c
1/2
5 e−c6nm/2 ≤

e−c14n0

3
. (5.32)

The combination of (5.28), (5.31), (5.32), and (5.24) proves Lemma 5.6.

Lemma 5.7 For all ξ ∈ Ξ and all m ∈ N the following holds for some constants c15 > 0,
c16 > 0:

P [Em | ξ] ≥ 1−
m
∑

k=0

c16e
−c15nk ≥

1

2
(5.33)

and
P [Em \ Em+1 | ξ] ≤ c16e

−c15nm+1 . (5.34)

Proof of Lemma 5.7. Let ξ ∈ Ξ. We prove (5.33) and (5.34) simultaneously by induction
over m: For m = 1 we obtain, since ξ ∈ ΞI and ξ ∈ ΞIII; see (5.21) and (5.23):

P [E1 | ξ] ≥ P [E1
stop,T 1 | ξ]− P [(E

1)c ∩ E1
stop,T 1 | ξ]

≥ 1− e−c4n0/2 − c
1/2
5 e−c6n1/2 ≥ 1−

1
∑

m=0

c16e
−c15nm ≥

1

2
; (5.35)

for some constants c16, c15; recall that n1 ≥ n0 and n0 is large enough by Subsection 2.1. Thus
(5.33) holds for m = 1. Let m ≥ 1. Using ξ ∈ ΞII, (5.22), and our induction hypothesis (5.33),
we see P [(Em+1

stop,Tm+1)
c ∩ Em | ξ] ≤ e−nm+1/2. Hence we obtain (5.34), using ξ ∈ ΞIII and (5.23):

P [Em \ Em+1 | ξ] ≤ P
[

(Em+1)c ∩ Em+1
stop,Tm+1

∣

∣

∣
ξ
]

+ P
[

(Em+1
stop,Tm+1)

c ∩ Em
∣

∣

∣
ξ
]

≤ c
1/2
5 e−c6nm+1/2 + e−nm+1/2 ≤ c16e

−c15nm+1 . (5.36)

Consequently we get, using our induction hypothesis (5.33) again:

P [Em+1 | ξ] ≥ P [Em | ξ]− P [Em \ Em+1 | ξ] ≥ 1−
m+1
∑

k=0

c16e
−c15nk ≥

1

2
; (5.37)

this completes our induction step.
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Lemma 5.8 For some constant c17 > 0 and for all ξ ∈ Ξ,

P̃

[ ∞
⋃

m=1

(Em)c

∣

∣

∣

∣

∣

ξ

]

≤ e−c17n0 . (5.38)

Proof of Lemma 5.8. By Lemma 5.7 we have for ξ ∈ Ξ:

P

[

k
⋃

m=1

(Em)c

∣

∣

∣

∣

∣

ξ

]

≤ P
[

(E1)c | ξ
]

+
k
∑

m=1

P [Em \Em+1 | ξ] ≤
k
∑

m=0

c16e
−c15nm ≤ e−c17n0 , (5.39)

where c17 < c15 is a small positive constant; recall that n0 is large. In the limit as k →∞, this
yields the result (5.38).

Proof of Theorem 3.12. Using Lemma 5.6 we have

P̃

[ ∞
⋃

m=1

(Em)c

]

≤ P̃ [ξ /∈ Ξ] + P̃

[

{ξ ∈ Ξ} ∩
∞
⋃

m=1

(Em)c

]

(5.40)

≤ e−c14n0 +

∫

{ξ∈Ξ}
P̃

[ ∞
⋃

m=1

(Em)c

∣

∣

∣

∣

∣

ξ

]

dP̃

≤ e−c14n0 + sup
ξ∈Ξ

P̃

[ ∞
⋃

m=1

(Em)c

∣

∣

∣

∣

∣

ξ

]

.

We bound the argument of the last supremum, using Lemma 5.8:

P̃

[ ∞
⋃

m=1

(Em)c

∣

∣

∣

∣

∣

ξ

]

= P

[ ∞
⋃

m=1

(Em)c

∣

∣

∣

∣

∣

ξ

]

≤ e−c17n0 . (5.41)

The combination of (5.40) and (5.41) yields, since n0 is large (by Subsection 2.1):

P̃

[ ∞
⋃

m=1

(Em)c

]

≤ e−c14n0 + e−c17n0 ≤
1

3
. (5.42)

6 Playing Puzzle: Correctness of the Algorithm Algn

In this section we prove Theorem 3.10 by showing that the Algorithm Algn defined in Definition
4.5 fulfills the specification described by this theorem: Let n = nm, m ∈ N. A remark concerning
notation: Events defined in this section are labeled with an upper index n, not m, since the
“hierarchy level” m plays no role here, in contrast to the “Skeleton” section. Only events that
also occur in the “Skeleton” section keep their old index m. Hopefully, this should not cause
any confusion.

Let τ = (τk)k∈N denote a fixed vector of G-adapted stopping times with values in [0, 212αn].
We abbreviate Input := (τ(χ), χd[0, 2 · 212αn[).
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Definition 6.1 We define the following events:

En
xi does it := {ξd[−5 · 2

n, 5 · 2n] ∈ SolutionPiecesn(Input)} , (6.1)

En
all pieces ok :=

{

∀w ∈ SolutionPiecesn(Input) :
ξd[−2n, 2n] 4 w 4 ξd[−9 · 2n, 9 · 2n]

}

. (6.2)

Lemma 6.2
En
xi does it ∩ E

n
all pieces ok ⊆ E

m
reconst,Algn(τ,·) (6.3)

Proof of Lemma 6.2. When the event En
xi does it holds, then the set SolutionPiecesn(Input) is

not empty. Thus Algn(Input) is the lexicographically smallest element of SolutionPiecesn(Input).
When the event En

all pieces ok also holds, then ξd[−2n, 2n] 4 Algn(Input) 4 ξd[−9 · 2n, 9 · 2n].
Here is the main theorem of this section; it states that the events En

xi does it and E
n
all pieces ok

occur very probably whenever the stopping times τ fulfill their task specified by Em
stop,τ :

Theorem 6.3 For some constant c6 > 0, c5 > 0:

P
[

Em
stop,τ \ (E

n
xi does it ∩ E

n
all pieces ok)

]

≤ c5e
−c6n. (6.4)

This theorem is proven the following three subsections. We split the proof into a purely combi-
natoric part and a probabilistic part. The combinatoric part (Subsection 6.1 below for En

xi does it

and Subsection 6.2 below for En
all pieces ok) shows that whenever some more “basic” events (named

Bn
... below, where “. . .” stands for a varying label) and Em

stop,τ occur, then the events En
xi does it

and En
all pieces ok occur, too. In the probabilistic part (Subsection 6.3 below) we show that these

basic events Bn
... are highly probable, at least when Em

stop,τ occurs.
The Proof of Theorem 3.10 is an immediate consequence of Lemma 6.2 and Theorem 6.3.

6.1 Combinatorics concerning E
n
xi does it

In this subsection, we show that a piece of ξ centered at the origin passes all the tests specified
by the Filteri, provided some basic events Bn

... (specified below) hold.

Definition 6.4 For n ∈ N we define the following events:

Bn
sig rl :=







For every right ladder path π ∈ [−2 · l22n, 2 · l22n][0,c1n/2[ and for
every admissible piece of path π′ ∈ AdPath(2 · l22n, c1n/2):
If ξ ◦ π = ξ ◦ π′, then π(c1n/2− 1) ≥ π′(c1n/2− 1).







, (6.5)

Bn
sig rr :=







For every right ladder path π ∈ [−2 · l22n, 2 · l22n][0,c1n/2[ and for
every admissible piece of path π′ ∈ AdPath(2 · l22n, c1n/2):
If ξ ◦ π = ξ ◦ π′, then π(0) ≤ π′(0).







. (6.6)

Let Bn
sig ll and B

n
sig lr be defined just as B

n
sig rl and B

n
sig rr with “right ladder path” replaced by “left

ladder path” and with “≤” and “≥” exchanged in (6.5) and (6.6). We set

Bn
signals := Bn

sig rl ∩B
n
sig rr ∩B

n
sig ll ∩B

n
sig lr, (6.7)

En
signals II :=







For every ladder path π ∈ [−2 · l22n, 2 · l22n][0,c1n[ and for every
admissible piece of path π′ ∈ AdPath(2 · l22n, c1n):
If ξ ◦ π = ξ ◦ π′, then π(c1n/2) = π′(c1n/2).







. (6.8)
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Lemma 6.5 Bn
signals ⊆ E

n
signals II.

Proof of Lemma 6.5. Assume that the event Bn
signals occurs. Let π ∈ [−2 · l22n, 2 · l22n][0,c1n[

be a right ladder path and π′ ∈ AdPath(2 · l22n, c1n). Assume that ξ ◦ π = ξ ◦ π′ holds. Looking
at the first half of π and π′ only (with the first points (0, π(0)), (0, π′(0)) dropped), we see
π(c1n/2) ≥ π′(c1n/2), since Bn

sig rl holds. Similarly, looking at the second half of π and π′ only,
we infer π(c1n/2) ≤ π′(c1n/2), since Bn

sig rr holds. Therefore π(c1n/2) and π′(c1n/2) coincide.
The case of left ladder paths is treated similarly. This shows that En

signals II holds.

Definition 6.6 By definition, the event Bn
all paths,τ occurs if and only if the following holds:

every admissible piece of path R ∈ [−12 ·2n, 12 ·2n][0,3c1n[ occurs in the random walk S with start
at most 22n time steps after some stopping time τ(k), k < 2αn. More formally:

Bn
all paths,τ :=

{

∀R ∈ AdPaths(12 · 2n, 3c1n) ∃k ∈ [0, 2αn[ ∃j ∈ [0, 22n − 3c1n] :

TimeShiftτ(k)+j(R) ⊆ S

}

. (6.9)

The following auxiliary lemma helps us to show below that the true scenery ξ passes the test
Filter1. Roughly speaking, it tells us that sufficiently many ladder words occur in the puzzle.
This is important, since playing our puzzle game would lead to a failure if pieces were missing.

Lemma 6.7 Assume that the event Bn
all paths,τ ∩B

n
signals∩E

m
stop,τ holds. Let I ⊆ [−6 ·2n, 6 ·2n] be

a right (or left) ladder interval with |I| = 3c1n, and let w1, w2, w3 ∈ C
c1n with (ξdI)→ = w1w2w3

(or (ξdI)← = w1w2w3 in the case of a left ladder interval). Then (w1, w2, w3) ∈ PuzzlenI (Input).

Proof of Lemma 6.7. Assume that I is a right ladder interval; the case of left ladder intervals
can be treated in the same way by exchanging “left” and “right”. Let I = I1 ∪ I2 ∪ I3, where I1,
I2, and I3 denote the left, middle, and right third of I, respectively; thus (ξdIi)→ = wi, i = 1, 2, 3.
Since the event Bn

all paths,τ holds, the straight path which steps through the elements of I from
the left to the right in 3c1n steps is realized at least once by the random walk (S(t))t≥0 within
time 22n of a stopping time τ(k), k < 2αn. Observing ξ along such a straight path generates the
word w1w2w3. Thus

(w1, w2, w3) ∈ PrePuzzlen(Input). (6.10)

Let w′2 be such that (w1, w
′
2, w3) ∈ PrePuzzlen(Input). In order to prove the claim (w1, w2, w3) ∈

PuzzlenI (Input) it remains to show: w2 = w′2. When the event Em
stop,τ holds, the stopping times

of τ(k), k < 2αn, all stop the random walk (S(t))t≥0 somewhere in the interval [−2n, 2n].
Within time 22n the random walk moves at most a distance l22n. Because of w1w

′
2w3 ∈

PrePuzzlen(Input), the word w1w
′
2w3 occurs somewhere in the observations at most 22n time

steps after a stopping time τ(k), k < 2αn. Within time 22n after a stopping time, the random
walk cannot be further away from the origin than l22n + 2n ≤ 2 · l22n, since the event Em

stop,τ

holds. Thus there exists an admissible piece of path R′ : [0, 3c1n[→ [−2 · l22n, 2 · l22n] such that
ξ ◦ R′ = w1w

′
2w3. Let R : [0, 3c1n[→ I ⊆ [−2 · l22n, 2 · l22n] denote the right ladder path which

passes through I from the left to the right. We know ξ ◦ R′d[0, c1n[= ξ ◦ Rd[0, c1n[= w1 and
(ξ ◦R′d[2c1n, 3c1n[)→ = (ξ ◦Rd[2c1n, 3c1n[)→ = w3. Furthermore, the event En

signals II ⊇ B
n
signals

holds; see Lemma 6.5. Abbreviating x := c1n/2 and y := 5c1n/2, this implies R′(x) = R(x)
and R′(y) = R(y). But Rd[x, y] is a right ladder path; thus R′d[x, y] must be the same right
ladder path, since only right ladder paths can travel equally fast to the right as R does. Hence
w2 = (ξ ◦ Rd[c1n, 2c1n[)→ = (ξ ◦ R′d[c1n, 2c1n[)→ = w′2. This finishes the proof of Lemma 6.7.
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Corollary 6.8 If the event Bn
all paths,τ∩B

n
signals∩E

m
stop,τ holds, then ξd[−5·2

n, 5·2n] ∈ Filtern1 (Input).

Proof of Corollary 6.8. Assume that Bn
all paths,τ ∩ B

n
signals ∩ E

m
stop,τ holds, and let I2 ⊆

[−5 · 2n, 5 · 2n], |I2| = c1n, be a right ladder interval. Set I1 := I2 − c1nl→ and I3 := I2 + c1nl→;
these are right ladder intervals adjacent to the left and to the right of I2, respectively. Thus
I := I1 ∪ I2 ∪ I3 is a right ladder interval, |I| = 3c1n. Since n ≥ n0 and n0 is large enough, we
obtain I ⊆ [−6·2n, 6·2n]. We set wi := (ξdIi)→, i = 1, 2, 3. We have (w1, w2, w3) ∈ PuzzlenI (Input)
by Lemma 6.7; thus w2 ∈ PuzzlenII(Input). This finishes the proof of Corollary 6.8.

The following definitions are analogous to the definition of Filtern2 and Filtern3 , with the “re-
constructed candidate” w replaced by the true scenery ξ, and with the domain [−5 · 2n, 5 · 2n]
replaced by the larger domain [−9 · 2n, 9 · 2n]. We insert the corresponding statements for left
ladder intervals, too; this turns out to be useful only in the next subsection.

Definition 6.9

En
neighbor I := (6.11)










For all right ladder intervals I, J ⊆ [−9 · 2n, 9 · 2n]: if I .n J , then
((ξdI)→, (ξdJ)→) ∈ Neighborsn(τ, η).
For all left ladder intervals I, J ⊆ [−9 · 2n, 9 · 2n]: if I /n J , then
((ξdI)←, (ξdJ)←) ∈ Neighborsn(τ, η).











,

En
neighbor II := (6.12)


























For all right ladder intervals I, J ⊆ [−9 · 2n, 9 · 2n], |I| = |J | = c1n:
if ((ξdI)→, (ξdJ)→) ∈ Neighborsn(τ, η), then there is q ∈ N such that
I .n J + ql→.
For all left ladder intervals I, J ⊆ [−9 · 2n, 9 · 2n], |I| = |J | = c1n: if
((ξdI)←, (ξdJ)←) ∈ Neighborsn(τ, η), then there is q ∈ N such that I /nJ−ql←.



























.

Lemma 6.10 If the event Bn
all paths,τ holds, then the event En

neighbor I holds too, and consequently
ξd[−5 · 2n, 5 · 2n] ∈ Filtern2 (Input).

Proof of Lemma 6.10. Assume that the event Bn
all paths,τ holds. We treat only the case

of right ladder intervals; the case of left ladder intervals can be treated in the same way by
exchanging right with left, → with ←, and .n with /n.

Let I, J ⊆ [−9 · 2n, 9 · 2n] be right ladder intervals such that I .n J . We need to prove
((ξdI)→, (ξdJ)→) ∈ Neighborsn(Input). Let il := min I, ir := max I, jl := min J , and jr :=
max J . Since I .nJ , there exists an admissible piece of path consisting of h+1 = l|M|+1 points
starting in ir and ending in jl. Since I.nJ we have |I|, |J | = c1n. Thus there exists an admissible
piece of path R : [0, 2c1n + h − 1[→ [il, jr] starting at il and ending in jr; furthermore we can
require that Rd[0, c1n[ and Rd(c1n+h−1+[0, c1n[) are right ladder paths. Set w1 = (ξdI)→ and
w2 = (ξdJ)→; then ξ ◦R = w1ww2 where w ∈ Ch−1. Since n ≥ n0 holds and n0 is large enough,
we have h ≤ c1n. Thus the piece of path R has length shorter than or equal to 3c1n. The range
rng(R) of R fulfills rng(R) ⊆ [−10 · 2n, 10 · 2n], and since Bn

all paths,τ holds, the random walk

(S(t))t≥0 “follows the path” R at least once within time 22n after a stopping time of τ . In other
words, there exists k ∈ [0, 2αn[ and j ∈ [0, 22n−2c1n−h+1] such that for all i ∈ [0, 2c1n+h−1[
we have S(τ(k) + j + i) = R(i). Thus we get ξ ◦ Sd(τ(k) + j + [0, 2c1n+ h− 1[) ≡ w1ww2. This
implies that (w1, w2) ∈ Neighborsn(Input) and thus ((ξdI)→, (ξdJ)→) ∈ Neighborsn(Input).
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The following elementary number theoretic lemma serves to replace admissible pieces of path
with more than h steps by admissible pieces of path with h steps, up to a sequence of maximal
steps in one direction:

Lemma 6.11 Let s = (sj)j=1,...,K ∈M
K , K ∈ N. Then there is (rj)j=1,...,h ∈M

h with

h
∑

j=1

rj + (K − h)l→ −
K
∑

j=1

sj ∈ l→N. (6.13)

Similarly, there is (r′j)j=1,...,h ∈M
h with

h
∑

j=1

r′j − (K − h)l← −
K
∑

j=1

sj ∈ −l←N. (6.14)

Proof. In order to treat (6.13) and (6.14) simultaneously, let l↔ denote either l→ or −l←. For
a ∈M let na denote the number of j = 1, . . . ,K such that sj = a. Let n′a ∈ [0, |l↔|[∩(na+ l↔Z)
denote the remainder of na modulo l↔. Then

∑

a∈M n′a ≤ h. Choose any list (rj)j=1,...,h ∈M
h

having n′a entries a for every a ∈M \ {l↔} and h−
∑

a∈M\{l↔} n
′
a entries l↔. Set

q :=
1

l↔

∑

a∈M
(na − n

′
a)(l↔ − a) ∈ N; (6.15)

note (l↔ − a)/l↔ ≥ 0 and na − n
′
a ∈ |l↔|N. Then

K
∑

j=1

(l↔ − sj) =
∑

a∈M
na(l↔ − a) (6.16)

= ql↔ +
∑

a∈M
n′a(l↔ − a) = ql↔ +

h
∑

j=1

(l↔ − rj),

which implies the claim (6.13) or (6.14), respectively.

Lemma 6.12 If the event En
signals II ∩ E

m
stop,τ holds, then the event En

neighbor II holds, too, and
consequently ξd[−5 · 2n, 5 · 2n] ∈ Filtern3 (Input).

Proof. Assume that the events En
signals II and E

m
stop,τ hold. We treat here the case of right

ladder intervals:
Let I, J ⊆ [−9 · 2n, 9 · 2n] be right ladder intervals with |I| = |J | = c1n, and assume

((ξdI)→, (ξdJ)→) ∈ Neighborsn(Input). We need to show I .n J + ql→ for some q ∈ N.
Using Definition 4.7 of Neighborsn and the abbreviations w1 := (ξdI)→ and w2 := (ξdJ)→, we

see: There is an admissible piece of path R : [0, 2c1n+ h− 1[→ Z with the following properties:

• R is realized by the random walk S in during some time interval D ⊆ τ(k) + [0, 22n],
|D| = 2c1n + h − 1, for some k ∈ [0, 2αn[. This means: R equals SdD when time-shifted
back to the origin.

• Observing the scenery ξ along R produces w1ww2 for some w ∈ Ch−1; i.e.: ξ ◦R = w1ww2.
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We know |τ(k)| ≤ 2n since the event Em
stop,τ holds; thus R takes all its values in [−(2n +

l22n), 2n + l22n] ⊆ [−2 · l22n, 2 · l22n], since the random walk cannot travel faster than distance
l per step. We examine the first c1n steps of R: (ξ ◦ Rd[0, c1n[)→ = w1 = (ξdI)→ implies
R(c1n/2) = min I + c1nl→/2, since the event En

signals II holds; note that x := min I + c1nl→/2 is
the point in the middle of a right ladder path walking through I. The same argument applies to
the last c1n steps of R: (ξ◦Rd(c1n+h−1+[0, c1n[))→ = w2 = (ξdJ)→ implies R(3c1n/2+h−1) =
min J + c1nl→/2 =: y; y is the point in the middle of J . The path R travels from x to y in
K := c1n + h − 1 ≥ h steps, using some step sizes (sj)j=1,...,K ∈ M

K . As a consequence of

(6.13) in Lemma 6.11, there is (rj)j=1,...,h ∈ M
h with

∑h
j=1 rj + (K − h)l→ −

∑K
j=1 sj = ql→

for some q ∈ N. Since max I − x = (c1n/2 − 1)l→ and y − min J = c1nl→/2, we obtain
min J −max I = y − x − (c1n − 1)l→ =

∑K
j=1 sj − (c1n − 1)l→ =

∑h
j=1 rj − ql→. This means

I .n (J + ql→), as we wanted to show.
Summarizing, this implies ξd[−5 · 2n, 5 · 2n] ∈ Filtern3 (Input) and the first statement in the

definition of En
neighbor II, which treats right ladder intervals.

The proof for left ladder intervals can be treated analogously. Altogether, we see that the
event En

neighbor II is valid.

Definition 6.13 We define the event

Bn
seed I :=







For every modulo class Z ∈ Z/l→Z there exists k ∈ [0, 2αn[ such
that S(τ(k) + h) ∈ Z, Sd(τ(k) + h+ [0, 3c1nl←]) is a right ladder
path, and Sd(τ(k)+h+3c1nl←+[0, 3c1nl→]) is a left ladder path.







. (6.17)

Lemma 6.14 If the events Bn
all paths,τ , B

n
signals, B

n
seed I and E

m
stop,τ hold, then ξd[−5 · 2

n, 5 · 2n] ∈
Filtern4 (Input).

Proof of Lemma 6.14. Assume that the event Bn
all paths,τ ∩ B

n
signals ∩ B

n
seed I ∩ E

m
stop,τ holds.

Let Z ∈ Z/l→Z. Since Bn
seed I holds, there exists a k ∈ [0, 2αn[ such that S(τ(k) + h) ∈ Z, R1 :=

Sd(τ(k) + h+ [0, 3c1nl←]) is a right ladder path, and R2 := Sd(τ(k) + h+3c1nl←+ [0, 3c1nl→])
is a left ladder path. Since Em

stop,τ holds, we know S(τ(k)) ∈ [−2n, 2n]. Thus the random walk S
cannot leave the interval [−2·2n, 2·2n] during the time interval τ(k)+[h+3c1nl←+3c1nl→], since
(h+3c1nl←+3c1nl→)l < 2n, and the random walk cannot travel faster than l per step. Thus R1

andR2 take all their values in [−2·2n, 2·2n]. Note that the right ladder pathR1 and the left ladder
path walk R2 traverse precisely the same interval, R1 using step size l→ to the right, and R2 with
step size −l← back. The same is true when we restrict R1 and R2 to the smaller time intervals
[t1, t

′
1] := τ(k) + h+ c1nl←+ [0, c2nl←] and [t2, t

′
2] := τ(k) + h+3c1nl←+2c1nl→+ [−c2nl→, 0],

respectively: We have S(t1) = S(t′2) =: a, and S(t′1) = S(t2) =: b, and Sd[t1, t
′
1] is a right ladder

path: it traverses [a, b] from the left to the right, while on Sd[t2, t
′
2] it is a left ladder path; it

traverses [a, b] in opposite direction. In particular, reading only every l←th letter in χd[t1, t
′
1]

and only every l→th letter in χd[t2, t
′
2] yield the same word, only in reversed direction:

(χd([t1, t
′
1] ∩ (t1 + l←Z))→ = (ξd([a, b] ∩ (a+ l→l←Z)))→ = (χd[t2, t

′
2] ∩ (t1 + l←Z))←. (6.18)

We consider the words u1u2u3 := χd(t1−c1n+[0, 3c1n[) and v1v2v3 := χd(t2−c1n+[0, 3c1n[) with
ui, vi ∈ C

c1n; note that t1 − c1n+ [0, 3c1n[⊆ domain(R1) and t2 − c1n+ [0, 3c1n[⊆ domain(R2).
We get (u1, u2, u3), (v1, v2, v3) ∈ PuzzlenI (Input) by Lemma 6.7. Hence we obtain (w1, w2, w3) ∈
SeednI (Input) by Definition (4.4), since the words u1u2u3 and v1v2v3 occur in the observations
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sufficiently close to a stopping time τ(k); more specifically: t1− c1n, t2− c1n ∈ τ(k) + [0, 7c1nl].
Consequently u2, v2 ∈ SeednII(Input) by Definition (4.5). Finally we observe

(u2d([0, c2nl←] ∩ l←Z))→ = (ξd([a, b] ∩ (a+ l→l←Z)))→ = (v2d([0, c2nl→] ∩ l→Z))← (6.19)

by (6.18). Thus we have shown u2 ∈ SeednIII(Input), see (4.6). Since u2 = ξ ◦ Sd(t1 + [0, c1n[),
and since Sd(t1 + [0, c1n[) is a right ladder path with values in Z ∩ [−2 · 2n, 2 · 2n], this implies
ξd[−5 · 2n, 5 · 2n] ∈ Filtern4 (Input).

Definition 6.15 For n ∈ N and and a finite set J̃ ⊂ N, we define the following event:

Bn
unique fit(J̃) :=















For every i, j ∈ {1, . . . , l2}, every i-spaced interval I ⊆ [−11 ·
2n, 11 ·2n]\ J̃ , and every j-spaced interval J ⊆ [−11 ·2n, 11 ·2n]\ J̃
with |I| = |J | ≥ c2n holds (ξdI)← 6= (ξdJ)→, and if I 6= J , then
(ξdI)→ 6= (ξdJ)→.















, (6.20)

We abbreviate Bn
unique fit := Bn

unique fit(∅).

In this section, only the case J̃ = ∅ is needed. However, in Section 8 below, the case J̃ 6= ∅
is important, too, due to the presence of a “modified” part of the scenery close to the origin.

Lemma 6.16 If the event Bn
unique fit holds, then ξd[−5 · 2

n, 5 · 2n] ∈ Filtern5 (Input).

Proof. Using c2 ≤ c1 (see Subsection 2.1), this follows immediately from Definition 6.15 of
the event Bn

unique fit, and of Definition 4.4 of Filtern5 .

Theorem 6.17 Bn
all paths,τ ∩B

n
signals ∩B

n
seed I ∩B

n
unique fit ∩ E

m
stop,τ ⊆ E

n
xi does it

Proof. We collect the statements of Lemmas/Corollary 6.5, 6.8, 6.10, 6.12, 6.14, and 6.16 in
the following list:

Bn
signals ⊆ En

signals II,

Bn
all paths,τ ∩B

n
signals ∩ E

m
stop,τ ⊆ {ξd[−5 · 2n, 5 · 2n] ∈ Filtern1 (Input)},

Bn
all paths,τ ⊆ {ξd[−5 · 2n, 5 · 2n] ∈ Filtern2 (Input)},

En
signals II ∩ E

m
stop,τ ⊆ {ξd[−5 · 2n, 5 · 2n] ∈ Filtern3 (Input)},

Bn
all paths,τ ∩B

n
signals ∩B

n
seed I ∩ E

m
stop,τ ⊆ {ξd[−5 · 2n, 5 · 2n] ∈ Filtern4 (Input)},

Bn
unique fit ⊆ {ξd[−5 · 2n, 5 · 2n] ∈ Filtern5 (Input)}.

The theorem is an immediate consequence these statements, using (6.1) and (4.9).

6.2 Combinatorics concerning E
n
all pieces ok

In this subsection, we show that a piece w that passes all the Filteri occurs in the true scenery
ξ near the origin, provided some “basic” events Bn

... hold.

Definition 6.18 Given a finite set J̃ ⊂ N, we define the events

Bn
recogn straight(J̃) := (6.21)






For every R ∈ AdPaths(11 · 2n, c1n) with R(c1n− 1)−R(0) /∈ {(c1n− 1)l→,−(c1n− 1)l←}
there is R̄ ∈ AdPaths(12 · 2n, c1n) such that R(0) = R̄(0), R(c1n − 1) = R̄(c1n − 1), and

(R̄ takes at least one value in J̃ , or ξ ◦R 6= ξ ◦ R̄).







.
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In the case J̃ = ∅, we abbreviate Bn
recogn straight := Bn

recogn straight(∅).

En
only ladder :=







For all (w1, w2, w3) ∈ PuzzlenI (Input) and every admissible piece of
path R : [0, 3c1n[→ [−11 · 2n, 11 · 2n] with ξ ◦ R = w1w2w3 holds:
w2 is a ladder word of ξd[−11 · 2n, 11 · 2n].







. (6.22)

Lemma 6.19 We have

Bn
all paths,τ ∩B

n
recogn straight ⊆ E

n
only ladder. (6.23)

Proof of Lemma 6.19. Assume that the event Bn
all paths,τ ∩ B

n
recogn straight holds. Let

(w1, w2, w3) ∈ PuzzlenI (Input), and let R : [0, 3c1n[→ [−11 · 2n, 11 · 2n] be an admissible piece
of path with ξ ◦ R = w1w2w3. We prove by contradiction that the event En

only ladder holds:
Assume w2 is not a ladder word of ξd[−11 · 2n, 11 · 2n]. Since Bn

recogn straight holds, there exists

an admissible piece of path R̄ : [c1n, 2c1n[→ [−11 · 2n, 11 · 2n] such that R(c1n) = R̄(c1n) and
R(2c1n − 1) = R̄(2c1n − 1), but w2 6= (ξ ◦ R̄)→ =: w′2. Let Ř : [0, 3c1n[→ [−11 · 2n, 11 · 2n] be
the admissible piece of path which on [c1n, 2c1n[ is equal to R̄ and otherwise is equal to R. We
have ξ ◦ Ř = w1w

′
2w3. Since Bn

all paths,τ holds, too, this implies that the random walk S follows

the path of Ř within time 22n from a stopping time of τ(k), k < 2αn. The same is valid for R,
maybe with a different stopping time τ(k′). In other words: w1w

′
2w3 ∈ PrePuzzlen(Input) and

(w1, w2, w3) ∈ PrePuzzlen(Input). This implies the contradiction (w1, w2, w3) /∈ PuzzlenI (Input);
thus we have proved Lemma 6.19.

Definition 6.20 We define the events

Bn
outside out := (6.24)
{

For every admissible piece of path
R ∈ ([−2·l22n, 2·l22n]\[−10·2n, 10·2n])[0,c1n/2[: ξ◦R is not strongly equivalent
to any ladder word of length c1n/2 of ξd[−9 · 2n, 9 · 2n].

}

,

En
mod class := (6.25)


















For all w ∈ Filtern1 (Input) and for all right ladder intervals I ⊆ [−2 · 2n, 2 · 2n], |I| = c1n:
If there is a right ladder interval Jr ⊆ [−2 · 2n, 2 · 2n] with wdI ≡ ξdJr, then
ξd([−2n, 2n] ∩ (Jr + l→Z)) v wd(I + l→Z) v ξd([−9 · 2n, 9 · 2n] ∩ (Jr + l→Z)), and
if l→ = l← and if there is a (left) ladder interval Jl ⊆ [−2 · 2n, 2 · 2n] with (wdI)↔ ≡ ξdJl,
then ξd([−2n, 2n] ∩ (Jl + lZ)) v (wd(I + lZ))↔ v ξd([−9 · 2n, 9 · 2n] ∩ (Jl + lZ)).



















.

Informally speaking, the meaning of the event En
mod class is the following: If a “reconstructed”

piece of scenery w contains a correct “seed piece” wdI over a sufficiently long ladder word,
then the whole modulo class generated by I is reconstructed correctly. The reconstruction may
generate the wrong orientation, but this is only allowed if left ladder intervals and right ladder
intervals coincide, and if already the “seed piece” wdI is reversed compared with the true scenery
ξ.

The next lemma formalizes the intuitive idea of “playing a puzzle game”: We start with a
seed word as reconstructed piece; then we append successively pieces of our puzzle that match to
an ending of the growing reconstructed piece. This procedure continues until the reconstructed
piece is large enough.
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Lemma 6.21 We have

Bn
outside out ∩B

n
unique fit ∩ E

n
only ladder ∩ E

m
stop,τ ⊆ E

n
mod class (6.26)

Proof of Lemma 6.21. Assume that the events on the left hand side of (6.26) hold. We
claim that then En

mod class holds, too. To prove this claim, let w ∈ Filtern1 (Input), and let I ⊆
[−2 · 2n, 2 · 2n], |I| = c1n be a right ladder interval. Assume that J ⊆ [−2 · 2n, 2 · 2n] is a ladder
interval. We assume one of the following two cases:

A) J is a right ladder interval, and wdI ≡ ξdJ ;

B) l→ = l← and (wdI)↔ ≡ ξdJ .

We treat both cases simultaneously as far as possible; in order to unify notation, let ·∼ denote
the reversion operation ·↔ in case B and the identity operation in case A. We set Z := J+l→Z ∈
Z/l→Z; then it remains to show:

ξd([−2n, 2n] ∩ Z) v (wd(I + l→Z))∼ v ξd([−9 · 2n, 9 · 2n] ∩ Z). (6.27)

To prove the right hand side of (6.27), we prove by induction over all right ladder intervals I ′

with I ⊆ I ′ ⊆ [−5 · 2n, 5 · 2n]:

(wdI ′)∼ v ξd([−9 · 2n, 9 · 2n] ∩ Z). (6.28)

Once we have proven this, the right hand side of (6.27) follows from the special case I ′ =
[−5 · 2n, 5 · 2n] ∩ (I + l→Z).

The induction starts with I = I ′: in this case (6.28) holds since our assumption A) or B),
respectively, implies (wdI)∼ v ξd([−9 ·2n, 9 ·2n]∩Z). For the induction step, assume that (6.28)
holds for some I ′. We enlarge I ′ by a single new point: let I ′′ = I ′∪{i} ⊆ [−5·2n, 5·2n]∩(I+l→Z)
be a right ladder interval, i /∈ I ′. Let Ii ⊆ I ′′ be a right ladder interval with |Ii| = c1n and
i ∈ Ii. Using w ∈ Filtern1 (Input) we see w2 := (wdIi)→ ∈ PuzzlenII(Input). Hence there are
w1, w3 ∈ C

c1n such that (w1, w2, w3) ∈ PuzzlenI (Input) ⊆ PrePuzzlen(Input). Thus w1w2w3 occurs
in the observation χ at most 22n time steps after a stopping time τ(k), k < 2αn; say w1w2w3

is read there in χ while the random walk follows an admissible piece of path R : [0, 3c1n[→ Z;
(we shifted the time domain of R back to the origin). Since the event Em

stop,τ holds, we have
|S(τ(k))| ≤ 2n. Within time 22n the random walk cannot travel farther than distance l22n; thus
R has all its values in [−(2n+ l22n), 2n+ l22n] ⊆ [−2 · l22n, 2 · l22n]. Consider the ladder interval
I ′i := Ii \ {i} = Ii ∩ I

′, |I ′i| = c1n− 1 ≥ c1n/2: the induction hypothesis (6.28) implies (wdI ′i)
∼ v

ξd([−9 ·2n, 9 ·2n]∩Z); say (wdI ′i)
∼ ≡ ξdD′ for some right ladder interval D′ ⊆ [−9 ·2n, 9 ·2n]∩Z.

Furthermore, w′2 := (wdI ′i)→ is a subword of w2 = (wdIi)→ and thus also a subword of ξ ◦ R.
Hence we see, using that the event Bn

outside out holds: R cannot take all of its values outside
[−10 · 2n, 10 · 2n]; thus it has all its values in [−10 · 2n− 3c1nl, 10 · 2

n+3c1nl] ⊆ [−11 · 2n, 11 · 2n].
Since the event En

only ladder holds, w2 = (wdIi)→ is a ladder word of ξd[−11 · 2n, 11 · 2n]; say
w2 = (ξdD)→ for some right ladder interval D ⊆ [−11 · 2n, 11 · 2n] (we call this “case A1”), or
w2 = (ξdD)← for some left ladder interval D ⊆ [−11 · 2n, 11 · 2n] (call this “case B1”). Thus w

′
2

occurs as a (possibly reversed) ladder word

• as a subword of (ξdD)→ in case A1, or as a subword of (ξdD)← in case B1;

• as w′2 = (ξdD′)→ in case A, or as w′2 = (ξdD′)← in case B.
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Since the event Bn
unique fit holds, this implies D′ ⊆ D, and furthermore the reading directions

have to coincide: If case A holds, then case A1 occurs, and if case B holds, then case B1 occurs.
Let T : Z → Z denote the translation (case A) or reflection (case B) that transports wdIi to
ξdD. Then T transports wdI ′i to ξdD

′, and thus – using once more that Bn
unique fit holds – T

is also the map that transports wdI ′ to a subpiece of ξd([−9 · 2n, 9 · 2n] ∩ Z) according to the
induction hypothesis (6.28). Hence T transports wd(Ii∪ I

′) = wdI ′′ to an equivalent subpiece of
ξd[−11 ·2n, 11 ·2n]. To see that T [wdI ′′] is already a subpiece of ξd([−9 ·2n, 9 ·2n]∩Z), we proceed
as follows: T maps the nonempty seed interval I ⊆ [−2 ·2n, 2 ·2n] to J ⊆ [−2 ·2n, 2 ·2n]∩Z; thus
it has the form T (z) = ±z+a with |a| ≤ 4 ·2n. Consequently T maps the domain [−5 ·2n, 5 ·2n]
of w to a subset of [−9 · 2n, 9 · 2n]. This shows (wdI ′′)∼ v ξd([−9 · 2n, 9 · 2n]∩Z), which finishes
our induction step and also the proof of the right hand side of the claim (6.27).

To prove the left hand side of (6.27), we observe that T−1 maps [−2n, 2n] to a subset of
[−5 · 2n, 5 · 2n]. Since T maps I to J , it maps the modulo class I + l→Z to Z = J + l→Z; thus
T−1 maps [−2n, 2n] ∩ Z to a subset of (I + l→Z) ∩ [−5 · 2n, 5 · 2n] = (I + l→Z) ∩ domain(w).
Since T−1 maps a subpiece of ξd([−9 · 2n, 9 · 2n] ∩ Z) to wd(I + l→Z), this implies the left hand
side of the claim (6.27). This finishes the proof of Lemma 6.21.

Definition 6.22 We define the event

En
seed II :=







Every u ∈ SeednII(Input) is a left or right ladder word of ξd[−2 ·
2n, 2 · 2n]. If l→ 6= l←, then every u ∈ SeednIII(Input) is a right
ladder word of ξd[−2 · 2n, 2 · 2n].







. (6.29)

Lemma 6.23 We have

Bn
unique fit ∩B

n
signals ∩B

n
all paths,τ ∩B

n
recogn straight ∩ E

m
stop,τ ⊆ E

n
seed II. (6.30)

Proof of Lemma 6.23. Assume that the events on the left hand side of (6.30) hold. In order
to show that the En

seed II holds, let w2 ∈ SeednII(Input). We need to show that w2 is a ladder word
of ξd[−2 · 2n, 2 · 2n]. Using (4.5), we take w1, w3 ∈ C

c1n with (w1, w2, w3) ∈ SeednI (Input); thus
w1w2w3 ≡ ηd(τ(k)+j+[0, 3c1n[) for some k < 2αn and j ∈ [0, 7c1nl]. Since E

m
stop,τ holds, we have

|S(τ(k))| ≤ 2n. Using 2n+7c1nl
2+3c1ln ≤ 2·2n−c1nl, we see that the random walk S is located

inside the interval [−2 · 2n + c1nl, 2 · 2
n − c1nl] during the time interval τ(k) + 7c1nl+ [0, 3c1n[.

The word w1w2w3 is read along an admissible piece of path, say R ∈ AdPath(2 · 2n− c1nl, 3c1n)
with ξ ◦ R = w1w2w3; (the time interval is shifted back to the origin). The event En

only ladder

holds by Lemma 6.19, and we have (w1, w2, w3) ∈ PuzzlenI (Input); hence w2 is a ladder word
of ξd[−11 · 2n, 11 · 2n]; say w2 = ξ ◦ π for a ladder path π : [0, c1n[→ [−11 · 2n, 11 · 2n]. Let
π′ = Rd[c1n, 2c1n[ be the middle piece of R, along which one observes (ξ ◦ π′)→ = w2 = ξ ◦ π.
Since the event En

signals II holds by Lemma 6.5, we get π′((3/2)c1n) = π(c1n/2); thus π takes
least one value in [−(2 ·2n−c1nl), 2 ·2

n−c1nl]; therefore all the values of π are in [−2 ·2n, 2 ·2n].
Thus w2 is a ladder word of ξd[−2 · 2n, 2 · 2n].

For the rest of the proof we assume l→ 6= l← and let u ∈ SeednIII(Input). It remains to
show: u is a right ladder word of ξd[−2 · 2n, 2 · 2n]. Using Definition (4.6) of SeednIII, we choose
v ∈ SeednII(Input) with (ud(l←Z ∩ [0, c2nl←]))→ = (vd(l→Z ∩ [0, c2nl→]))←. From the first part
of the proof we get: u and v are ladder words of ξd[−2 · 2n, 2 · 2n], since u, v ∈ SeednII(Input). We
distinguish three cases:

1. u is a right ladder word;
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2. u and v are left ladder words;

3. u is a left ladder word and v is a right ladder word.

We need to show that case 1. holds; thus we prove that the cases 2. and 3. lead to a contradiction:
In case 2., let u = (ξdI)← and v = (ξdJ)← for some left ladder intervals I, J ⊆ [−2 ·2n, 2 ·2n],

|I| = |J | = c1n. We get (ud(l←Z ∩ [0, c2nl←]))→ = (ξdI ′)← for some l2←-spaced interval I ′ ⊆ I,
|I ′| = c2n + 1. Similarly, (vd(l→Z ∩ [0, c2nl→]))← = (ξdJ ′)→ for some l←l→-spaced interval
J ′ ⊆ J , |J ′| = c2n+1. Thus (ξdI ′)← = (ξdJ ′)→, which is incompatible with the event Bn

unique fit.
In case 3., let u = (ξdI)← for some left ladder interval I ⊆ [−2 · 2n, 2 · 2n] and v = (ξdJ)→

for some right ladder interval J ⊆ [−2 · 2n, 2 · 2n], |I| = |J | = c1n. We get again (ud(l←Z ∩
[0, c2nl←]))→ = (ξdI ′)← for some l2←-spaced interval I ′ ⊆ I, |I ′| = c2n + 1. This time we have
(vd(l→Z ∩ [0, c2nl→]))← = (ξdJ ′)← for some l2→-spaced interval J ′ ⊆ J , |J ′| = c2n + 1. Since
l2← 6= l2→, we have I ′ 6= J ′. We obtain (ξdI ′)← = (ξdJ ′)←, which is incompatible with the event
Bn
unique fit.
Thus cases 2. and 3. cannot occur. Summarizing, we have proven that the event En

seed II holds.

Definition 6.24 If l→ = l←, we define the event

En
dist := (6.31)
{

For all ladder intervals I, J ⊆ [−9 · 2n, 9 · 2n], |I| = |J | = c1n: if at least one
of ((ξdI)→, (ξdJ)→), ((ξdI)→, (ξdJ)←), ((ξdI)←, (ξdJ)→), or ((ξdI)←, (ξdJ)←) is in
Neighborsn(Input), then distance(I, J) ≤ 3 · lc1n.

}

In the case l→ 6= l←, we set En
dist to be the sure event.

Lemma 6.25 Bn
signals ∩ E

m
stop,τ ⊆ E

n
dist

Proof of Lemma 6.25. Assume that the event Bn
signals ∩E

m
stop,τ holds, and that l→ = l← = l.

Let I, J ⊆ [−9 · 2n, 9 · 2n], |I| = |J | = c1n, be right ladder intervals, and assume that there is a
(w1, w2) among ((ξdI)→, (ξdJ)→), ((ξdI)→, (ξdJ)←), ((ξdI)←, (ξdJ)→), or ((ξdI)←, (ξdJ)←) with
(w1, w2) ∈ Neighborsn(Input). By definition (4.7), some word w1ww2 with w ∈ C

h−1 occurs in the
observations χ at most 22n time steps after a stopping time τ(k), k < 2αn. Since Em

stop,τ holds, the
random walk remains in the interval [−2 · l22n, 2 · l22n] during that time interval; say the random
walk follows an admissible piece of path R : [0, 2c1n+h−1[→ [−2 · l22n, 2 · l22n] while producing
the observations ξ ◦R = w1ww2; (we shifted the time domain back to the origin). R consists of
the three pieces π′1 = Rd[0, c1n[, π

′ = Rd(c1n + [0, h − 1[), and π′2 = Rd(c1n + h − 1 + [0, c1n[)
with ξ ◦π′1 = w1, (ξ ◦π

′)→ = w, and (ξ ◦π′2)→ = w2. Let x1 := c1n/2 and x2 := (3/2)c1n+h−1
be the points in the middle of the domain of π′1 and π′2, respectively. Then

|π′1(x1)− π
′
2(x2)| ≤ (c1n+ h− 1)l, (6.32)

since the path R cannot travel faster than l per step. The event En
signals II holds by Lemma 6.5.

Let π1 : [0, c1n[→ I and π2 : c1n + h − 1 + [0, c1n[→ J be ladder paths with range I and J ,
respectively; we choose these paths to be left or right ladder paths according to whether the
reading direction is “←” or “→”. Hence, using ξ◦π1 = w1 = ξ◦π′1 and (ξ◦π2)→ = w2 = (ξ◦π′2)→,
we obtain π′1(x1) = π1(x1) and π

′
2(x2) = π2(x2). Consequently (6.32) implies

distance(I, J) ≤ |π1(x1)− π2(x2)| ≤ 3 · lc1n. (6.33)
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Summarizing, we have shown that the event En
dist holds.

The following event En
mod γ ok compares modulo classes (modulo some γ) in “reconstructed”

pieces w with modulo classes in the “true” scenery ξ. Roughly speaking, it states that all
modulo classes are reconstructed correctly, and either all of them are reconstructed in the correct
orientation (“case A”), or all of them are reversed (“case B”). Even more, reversion is only
allowed for symmetric maximal jumps of the random walk. Our goal is to show that this event
holds for γ = 1 (at least if the basic events B... hold), but as intermediate steps, other values of
γ are relevant, too.

Definition 6.26 For all divisors γ ≥ 1 of l→, we define the event

En
mod γ ok := (6.34)






























For all w ∈ SolutionPiecesn(Input) there is a bijection ιγ : Z/γZ → Z/γZ such
that (at least) one of the following two cases holds:

A) ∀Z ∈ Z/γZ: ξd([−2n, 2n] ∩ ιγ(Z)) v wdZ v ξd([−9 · 2
n, 9 · 2n] ∩ ιγ(Z))

B) l→ = l← and
∀Z ∈ Z/γZ: ξd([−2n, 2n] ∩ ιγ(Z)) v (wdZ)↔ v ξd([−9 · 2n, 9 · 2n] ∩ ιγ(Z))
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Lemma 6.27 For γ = l→, we have En
seed II ∩ E

n
mod class ∩ E

n
dist ∩B

n
unique fit ⊆ E

n
mod l→ ok.

Proof of Lemma 6.27. Assume that the event En
seed II∩E

n
mod class∩E

n
dist∩B

n
unique fit holds.

Let w ∈ SolutionPiecesn(Input). Let Z ∈ Z/l→Z. In order to define ι(Z) = ιl→(Z), we proceed
as follows: Since w ∈ Filter4(Input), there exists a right ladder interval I ⊆ Z ∩ [−2 · 2n, 2 · 2n]
such that (wdI)→ ∈ SeednIII(τ, η). We choose such an I. Then (wdI)→ is a left or right ladder
word of ξd[−2 · 2n, 2 · 2n], since the event En

seed II holds. More specifically: for some right ladder
interval J ⊆ [−2 · 2n, 2 · 2n], at least one of the following two cases holds true:

Case A(Z): wdI ≡ ξdJ ,
Case B(Z): l→ = l← and (wdI)↔ ≡ ξdJ .

We define ι(Z) := J + l→Z ∈ Z/l→Z. Since the event En
mod class holds, we get

for Case A(Z): ξd([−2n, 2n] ∩ ι(Z)) v wdZ v ξd([−9 · 2n, 9 · 2n] ∩ ι(Z)),
for Case B(Z): ξd([−2n, 2n] ∩ ι(Z)) v (wdZ)↔ v ξd([−9 · 2n, 9 · 2n] ∩ ι(Z)).

We claim that one of the following two cases occurs:

Case A: For all modulo classes Z ∈ Z/l→Z holds Case A(Z);
Case B: For all modulo classes Z ∈ Z/l→Z holds Case B(Z).

This is obvious for l→ 6= l←, since then Case B(Z) cannot occur. To prove the claim for l→ = l←,
we proceed as follows: For Z ∈ Z/lZ, let TZ : Z → Z denote a translation (Case A(Z)) or
reflection (Case B(Z)) which transports wdZ to a subpiece of ξd[−9 ·2n, 9 ·2n]∩ι(Z). Let Z,W ∈
Z/lZ. We choose two right ladder intervals I1 ⊆ Z ∩ [4 · 2

n, 5 · 2n], I2 ⊆W ∩ [4 · 2
n, 5 · 2n], |I1| =

|I2| = c1n, with I1 .n I2; such intervals exist, since suppµ∗h meets every modulo class (modulo
l) and since n ≥ n0 is large enough. We abbreviate I ′1 := TZ [I1] and I

′
2 := TW [I2]. Since w ∈

Filter2(Input) one has ((wdI1)→, (wdI2)→) ∈ Neighborsn(Input). Let XZ denote the symbol “→”
in the Case A(Z) and “←” in the Case B(Z). Then ((wdI1)→, (wdI2)→) = ((ξdI ′1)XZ

, (ξdI ′2)XW
).

Since the event En
dist holds, this implies distance(I ′1, I

′
2) ≤ 3·lc1n. However, TZ maps [−5·2n, 5·2n]
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to [−9 · 2n − l, 9 · 2n + l]; (the extra summand l arises since TZ was specified only by its action
on a modulo class). Thus it maps I1, I2 ⊆ [4 · 2n, 5 · 2n] to a subset of [4 · 2n − l, 9 · 2n + l] in the
Case A(Z), and to a subset of [−9 · 2n − l,−4 · 2n + l] in the Case B(Z). The same statement
holds with Z replaced by W . The intervals [4 · 2n − l, 9 · 2n + l] and [−9 · 2n − l,−4 · 2n + l] are
farther apart than 3 · lc1n ≥ distance(I ′1, I

′
2); thus either both TZ and TW must be translations,

or both must be reflections. Summarizing, we have shown so far that Case A holds or Case B
holds.

It only remains to show that ι : Z/l→Z→ Z/l→Z is bijective. Since Z/l→Z is finite, it suffices
to show that ι is injective: Let Z,W ∈ Z/l→Z with ι(Z) = ι(W ). Using the above maps TZ ,
TW again, we know

TZ [Z ∩ domain(w)] = TZ [Z ∩ [−5 · 2n, 5 · 2n]] ⊆ ι(Z) ∩ [−9 · 2n, 9 · 2n], (6.35)

TW [W ∩ domain(w)] = TW [W ∩ [−5 · 2n, 5 · 2n]] ⊆ ι(W ) ∩ [−9 · 2n, 9 · 2n]. (6.36)

The sets on the right hand of (6.35) and (6.36) coincide; thus TZ [Z ∩ [−5 · 2n, 5 · 2n]] and
TW [W ∩ [−5 ·2n, 5 ·2n]] overlap at least in K ∩ ι(Z) for some interval K of length 2n. We choose
any right ladder interval D ⊆ K∩ ι(Z) with |D| = c1n and set D1 := T−1Z [D] and D2 := T−1W [D].
Then

Case A: (wdD1)→ = (ξdD)→ = (wdD2)→,
Case B: (wdD1)→ = (ξdD)← = (wdD2)→;

thus w ∈ Filter5(Input) implies D1 = D2; hence Z = D1 + l→Z = D2 + l→Z = W . This shows
that ι is indeed injective.

The next lemma contains a “step down” procedure in order to arrange correctly larger and
larger modulo classes in a reconstructed piece of scenery w. Here is a rough idea for the rather
complex construction:

Suppose we have already correctly reconstructed large pieces of the scenery ξ restricted to
modulo classes (mod γ, say) up to a translation (and possibly a global reflection for all classes).
Our task is to identify the relative translation between different modulo classes.

We start with a “reference” ladder word; it occurs over both, a ladder interval I in the
reconstructed “candidate” scenery w, and a ladder interval J in the “true” scenery ξ (possibly
reflected). Then we look for the rightmost “neighboring” ladder words that occur not in the same
modulo class as the reference word, both in the candidate scenery and in the true scenery; we
use here the “estimated” neighborship relation “Neighbors”. Taking the rightmost “neighboring”
words as our new starting point, we repeat this construction until we are sure after γ steps to
re-enter the modulo class that we started with; say we arrive at ladder intervals Iγ and Jγ ,
respectively. In this way we obtain two “chains” (Ii) and (Ji) of neighboring ladder intervals;
(Ji) belongs to the the “true” scenery, and (Ii) belongs to the “reconstructed candidate” w.

Using the Definition of the tests “Filter2/3”, and of the events Eneighbor I/II, we know that
the “estimated” and the “geometric” neighborship relations coincide at least when taking only
rightmost neighbors as above; this holds for both, the “reconstructed” piece w and for the
“true” scenery ξ. The distance between Iγ and I equals the distance between Jγ and J , since
this distance is not affected by a relative translation between different modulo classes; recall
that Iγ and I belong to the same class modulo γ, and so do Jγ and J . Having identified the
starting point and the end point of our two chains of intervals, there also no ambiguity left
for the relative position of the intervals in between in the chain; but then we have successfully
reconstructed the larger modulo class spanned by the whole chain (Ii).
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This construction is repeated recursively until we have correctly reconstructed the whole piece
of scenery.

We describe the procedure formally:

Lemma 6.28 Assume that the events Bn
unique fit, E

n
neighbor I, and E

n
neighbor II hold true. Let γ > 1

be a divisor of l→ and assume that the event En
mod γ ok is valid. Then there is a divisor γ ′ of l→

with 1 ≤ γ′ < γ such that the event En
mod γ′ ok is valid, too.

Proof. Let γ be as in the hypothesis of the lemma. Every modulo class Z ∈ Z/γZ is a union of
modulo classes Z ′ ∈ Z/l→Z. Furthermore, every such modulo class Z ′ ∈ Z/l→Z has a nonempty
intersection with suppµ∗h. (One can see this as follows: Since 1 is the greatest common divisor
of the elements of suppµ, every integer can be written in the form βl→ +

∑K
j=1 sj with β ∈ Z,

K ∈ N, and sj ∈ suppµ for 1 ≤ j ≤ K. By Lemma 6.11 it suffices to take K = h; thus we get
Z = suppµ∗h + l→Z, which is equivalent to the above claim.)

Since we assume γ > 1, the set difference Z \ γZ contains at least one Z ∈ Z/γZ as a subset;
thus Z \ γZ has at least one element in common with suppµ∗h. Let M→ := max[(Z \ γZ) ∩
suppµ∗h] and M← := −min[(Z \ γZ) ∩ suppµ∗h]. Define γ′ to be the greatest common divisor
of γ and M→; thus γ′ < γ since M→ /∈ γZ.

Let w ∈ SolutionPiecesn(Input). According to Definition (6.34) of En
mod γ ok we have to distin-

guish two cases A and B; however, we treat both cases simultaneously as far as possible. We
set

ζ :=

{

ξd[−9 · 2n, 9 · 2n] in case A of (6.34),
(ξd[−9 · 2n, 9 · 2n])↔ in case B of (6.34).

(6.37)

For Z ∈ Z/γZ we set ι̃γ(Z) := ±ιγ(±Z) with “+” in case A and “−” in case B; here the bijection
ιγ : Z/γZ→ Z/γZ is taken from Definition (6.34) of the event En

mod γ ok. The introduction of ι̃γ
takes care of the inversion of modulo classes in ζ in case B. Since the event En

mod γ ok is valid, we
have for all Z ∈ Z/γZ:

ζd(ι̃γ(Z) ∩ [−2n, 2n]) v wdZ v ζdι̃γ(Z). (6.38)

For Z ∈ Z/γZ, let TZ : Z→ Z denote the translation which transports wdZ to some TZ [wdZ] ⊆
ζdι̃γ(Z); in particular TZ [Z] = ι̃γ(Z). TZ is uniquely determined, since the event Bn

unique fit holds.
Of course, TZ also depends on γ, but we suppress this in the notation, since γ is considered
fixed for the moment. For W ∈ Z/γZ, we set T̃W := (Tι̃−1

γ (W ))
−1; thus T̃W [W ] = ι̃−1γ (W ). For

later use, we note
ζd(ι̃γ(Z) ∩ [−2n, 2n]) ⊆ TZ [wdZ] ⊆ ζdι̃γ(Z). (6.39)

We define
ζ ′ :=

⋃

Z∈Z/γZ
TZ [wdZ] ⊆ ζ. (6.40)

Note that [−2n, 2n] ⊆ domain(ζ ′). For (nonempty) ladder intervals I and J , we abbreviate
TI := TI+γZ and T̃J := T̃J+γZ.

Let the following data be given: u ∈ {w, ζ ′}, a right ladder interval I contained in the domain
of u with |I| = c1n, and k ∈ [0, γ]. We define Seq(I, u, k) to denote the set of all (I0, . . . , Ik)
with the following properties:

1. I0 = I;

2. I0, . . . , Ik are right ladder intervals contained in the domain of u with |Ij | = c1n, 0 ≤ j ≤ k.
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3. For all j ∈ [0, k[: Ij + γZ 6= Ij+1 + γZ.

4. For all j ∈ [0, k[: ((udIj)→, (udIj+1)→) ∈ Neighborsn(Input).

Of course Seq(I, u, k) also depends on γ, Input, and n, but these parameters are considered fixed
for the moment.

Let MaxSeq(I, u, k) denote the set of all (Ij)j=0,...,k ∈ Seq(I, u, k) for which min Ik −min I0
is maximal.

Given a modulo class Z ∈ Z/γZ, we take a fixed right ladder interval J ⊆ ι̃−1γ (Z)∩ [0, (c1n+

1)l→] ⊆ ι̃−1γ (Z) ∩ domain(ζ ′), |J | = c1n. Furthermore, we set I := T̃JJ ⊆ Z ∩ domain(w).
J serves as a “reference” interval in the “true” (only possibly reflected) piece of scenery ζ ′,

while I serves as a “reference” interval in the “reconstructed” piece of scenery w.
We prove by induction over k:

• MaxSeq(I, w, k) contains a unique element (Ij)j=0,...,k, namely

Ij =M→j + (c1n− 1)l→j + I. (6.41)

• MaxSeq(J, ζ ′, k) contains a unique element (Jj)j=0,...,k, too, namely

Jj =Mj + (c1n− 1)l→j + J, (6.42)

where M =M→ in case A and M =M← in case B.

This is obvious for k = 0. Here is the induction step k − 1 7→ k:
If (Ij)j=0,...,k, (Jj)j=0,...,k are given by (6.41) and (6.42), then

(Ij)j=0,...,k ∈ Seq(I, w, k) and (Jj)j=0,...,k ∈ Seq(J, ζ ′, k). (6.43)

To see this, we check the conditions 1.–4. in the definition of Seq:

1. This is obvious.

2. The only nontrivial claims are Jj ⊆ domain(ζ ′) and Ij ⊆ domain(w), 0 ≤ j ≤ k. To prove
the first claim, we observe |minJ − min Jj | ≤ (M + c1nl)k ≤ 2c1nlγ ≤ 2c1nl

2; thus we
obtain for all i ∈ Jj : |i| ≤ 2c1nl

2+(c1n+1)l→ ≤ 2n; hence Jj ⊆ [−2n, 2n] ⊆ domain(ζ ′). To
prove the second claim, we observe that J+[−2n/2, 2n/2] ⊆ [−2n, 2n] = domain(ζ ′) (recall
n ≥ n0, and n0 is large enough). We apply the translation T̃J to J+([−2n/2, 2n/2]∩γZ) to
obtain I+([−2n/2, 2n/2]∩γZ) = T̃J [J+([−2n/2, 2n/2]∩γZ)] ⊆ domain(w) = [−5·2n, 5·2n].
This implies I + [−2n/2+ γ, 2n/2− γ] ⊆ [−5 · 2n, 5 · 2n], since [−5 · 2n, 5 · 2n] is an interval;
consequently Ij ⊆ I + [−2n/2+ γ, 2n/2− γ] ⊆ domain(w), which proves the second claim.

3. This is a consequence of min Ij+1−max Ij =M→ /∈ γZ and min Jj+1−max Jj =M /∈ γZ.

4. Because of min Ij+1 − max Ij = M→ ∈ suppµ∗h we get Ij .n Ij+1; thus the fact w ∈
Filtern2 (Input) implies ((wdIj)→, (wdIj+1)→) ∈ Neighborsn(Input); see Definition 4.4. Sim-
ilarly min Jj+1 − max Jj = M→ ∈ suppµ∗h in case A and min Jj+1 − max Jj = M← ∈
−suppµ∗h in case B. Hence we get Jj .n Jj+1 in case A and −Jj /n −Jj+1 in case B; this
implies ((ζ ′dJj)→, (ζ ′dJj+1)→) ∈ Neighborsn(Input) in both cases, since the event En

neighbor I

holds; see Definition 6.9.
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Thus the conditions 1.–4. are indeed valid.
To check the defining property of MaxSeq, consider another sequence

(I ′j)j=0,...,k ∈ Seq(I, w, k) and (J ′j)j=0,...,k ∈ Seq(J, ζ ′, k). (6.44)

Using our induction hypotheses

MaxSeq(I, w, k − 1) = {(Ij)j=0,...,k−1}, (6.45)

MaxSeq(J, ζ ′, k − 1) = {(Jj)j=0,...,k−1} (6.46)

and

(I ′j)j=0,...,k−1 ∈ Seq(I, w, k − 1), (J ′j)j=0,...,k−1 ∈ Seq(J, ζ ′, k − 1), (6.47)

we know

min Ik−1 −min I0 ≥ min I ′k−1 −min I ′0, (6.48)

min Jk−1 −min J0 ≥ min J ′k−1 −min J ′0, (6.49)

with equality only if (I ′j)j=0,...,k−1 = (Ij)j=0,...,k−1 or (J ′j)j=0,...,k−1 = (Jj)j=0,...,k−1.
We treat first case of the I’s: Using ((wdI ′k−1)→, (wdI

′
k)→) ∈ Neighborsn(Input) and w ∈

Filtern3 (Input) we get I ′k−1 .n I
′
k + al→ for some a ∈ N; thus

min I ′k −max I ′k−1 ≤ min I ′k + al→ −max I ′k−1 ≤M→ (6.50)

by the maximality of M→ and Ik + γZ 6= Ik−1 + γZ; (see condition 3. in the definition of Seq,
and recall l→ ∈ γZ). Hence

min I ′k −min I ′0 = (min I ′k −max I ′k−1) + (c1n− 1)l→ + (min I ′k−1 −min I ′0) (6.51)

≤ M→ + (c1n− 1)l→ + (min Ik−1 −min I0) = min Ik −min I0.

This proves
(Ij)j=0,...,k ∈ MaxSeq(I, w, k). (6.52)

Furthermore, using our induction hypothesis, equality in (6.51) can hold only if (I ′j)j=0,...,k−1 ∈
MaxSeq(I, w, k−1) and min I ′k−max I ′k−1 =M→, which is equivalent to (I ′j)j=0,...,k = (Ij)j=0,...,k.

We treat (Jj)j=0,...,k similarly: Since the event En
neighbor II holds, ((ζ ′dJ ′k−1)→, (ζ

′dJ ′k)→) ∈
Neighborsn(Input) implies

J ′k−1 .n J
′
k + al→ in case A, (6.53)

−J ′k−1 /n −J
′
k − al← in case B (6.54)

for some a ∈ N; see Definition (6.12). This implies in both cases A and B, analogously to (6.50):

min J ′k −max J ′k−1 ≤ min J ′k + al→ −maxJ ′k−1 ≤M (6.55)

by the maximality of M ; recall that M = M→ in case A and M = M← in case B, and that
l→ = l← ∈ γZ holds in case B; furthermore recall that J ′k and J ′k−1 belong to different classes
modulo γ. We repeat arguments similar to (6.51):

min J ′k −min J ′0 = (min J ′k −max J ′k−1) + (c1n− 1)l→ + (min J ′k−1 −min J ′0) (6.56)

≤ M + (c1n− 1)l→ + (min Jk−1 −min J0) = min Jk −min J0,
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with equality only if (J ′k)j=0,...,k ∈ MaxSeq(J, ζ ′, k−1) and min J ′k−max J ′k−1 =M . This proves
in analogy to (6.52):

MaxSeq(J, ζ ′, k) = {(Jj)j=0,...,k}. (6.57)

Since ι̃γ is bijective, the facts TIjIj ⊆ domain(ζ ′), (ζ ′dTIjIj)→ = (wdIj)→, and (Ij)j ∈ Seq(I, w, k)
imply

(TIjIj)j ∈ Seq(J, ζ ′, k). (6.58)

Similarly, T̃JjJj ⊆ domain(w), (wdT̃JjJj)→ = (ζ ′dJj)→, and (Jj)j ∈ Seq(J, ζ ′, k) imply

(T̃JjJj)j ∈ Seq(I, w, k). (6.59)

Now we set k = γ. Observe that Iγ + γZ = I0 + γZ and Jγ + γZ = J0 + γZ; hence TI0 = TIγ
and T̃J0 = T̃Jγ . Thus, using (6.52), (6.57), (6.58), (6.59), and the defining property of MaxSeq,
we obtain

min Iγ −min I0 = minTIγIγ −minTI0I0 (6.60)

≤ min Jγ −min J0

= min T̃JγJγ −min T̃J0J0

≤ min Iγ −min I0.

Since the first and last term in (6.60) are identical, equality holds everywhere in (6.60). Hence,
using (6.57), (6.58), and the defining property of MaxSeq again, we see

(TIjIj)j ∈ MaxSeq(J, ζ ′, γ) (6.61)

and thus (TIjIj)j = (Jj)j , since MaxSeq(J, ζ ′, γ) is a singleton. Furthermore the facts (6.41),
(6.42), γ 6= 0, and TI0 = TIγ imply M→ =M , since

0 = (min Iγ −min I0)− (min Jγ −min J0) =M→γ −Mγ. (6.62)

A side remark: consequently case B cannot occur wheneverM→ 6=M←. Using (6.41) and (6.42)
again, we see that all translations TIj , j = 0, . . . , γ, coincide: TIj = TI . We observe

(I0 ∪ . . . ∪ Iγ) + γZ = I + {jM→ | j = 0, . . . , γ}+ γZ = I + γ ′Z; (6.63)

recall that γ′ was defined to be the greatest common divisor ofM→ and γ. Thus we have shown:
the translations TZ , Z ∈ Z/γZ, depend only on the rougher modulo class Z ′ = Z+γ′Z ∈ Z/γ′Z;
hence TZ+γ′Z := TZ and ιγ′ : Z/γ′Z → Z/γ′Z, ιγ′(Z ′) :=

⋃

Z⊆Z′,Z∈Z/γZ ιγ(Z) are well-defined.
Since ιγ : Z/γZ → Z/γZ is a bijection, ιγ′ is a bijection, too. In analogy to ι̃γ , we introduce
ι̃γ′(Z

′) := ±ιγ′(±Z ′), (“+” in case A, “−” in case B). As a consequence of (6.39), we obtain for
all Z ′ ∈ Z/γ′Z:

ζd(ι̃γ′(Z
′) ∩ [−2n, 2n]) ⊆ TZ′ [wdZ

′] ⊆ ζdι̃γ′(Z
′). (6.64)

Hence the event En
mod γ′ ok is valid. This finishes the proof of Lemma 6.28.

Lemma 6.29 En
mod l→ ok ∩B

n
unique fit ∩ E

n
neighbor I ∩ E

n
neighbor II ⊆ E

n
mod 1 ok.

Proof. Assume that En
mod l→ ok ∩B

n
unique fit ∩ E

n
neighbor I ∩ E

n
neighbor II holds. Let Γ denote the

(random) set of all divisors γ ≥ 1 of l→ for which the event En
mod γ ok is valid. Γ 6= ∅, since

En
mod l→ ok holds. The smallest element of Γ cannot be bigger than 1 by Lemma 6.28; thus it

must be equal to 1. This means that En
mod 1 ok holds.
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Lemma 6.30 For γ = 1, we have En
mod 1 ok ⊆ E

n
all pieces ok.

Proof. This is obvious, since there is only the trivial “modulo class” Z = ι1(Z) = Z remaining
for γ = 1: In case A, one has ξd[−2n, 2n] v w v ξd[−9 · 2n, 9 · 2n], and in case B, one has
ξd[−2n, 2n] v w↔ v ξd[−9 · 2n, 9 · 2n].

Theorem 6.31 Bn
seed I ∩B

n
unique fit ∩B

n
all paths,τ ∩B

n
outside out ∩B

n
recogn straight ∩B

n
signals ∩E

m
stop,τ ⊆

En
all pieces ok

Proof. We collect the results of Lemmas 6.5, 6.10, 6.12, 6.19, 6.21, 6.23, 6.25, 6.27, 6.29,
and 6.30 in the following list:

Bn
signals ⊆ En

signals II,

Bn
all paths,τ ⊆ En

neighbor I,

En
signals II ∩ E

m
stop,τ ⊆ En

neighbor II,

Bn
all paths,τ ∩B

n
recogn straight ⊆ En

only ladder,

Bn
outside out ∩B

n
unique fit ∩ E

n
only ladder ∩ E

m
stop,τ ⊆ En

mod class,

Bn
unique fit ∩B

n
signals ∩B

n
all paths,τ ∩B

n
recogn straight ∩ E

m
stop,τ ⊆ En

seed II,

Bn
signals ∩ E

m
stop,τ ⊆ En

dist,

En
seed II ∩ E

n
mod class ∩ E

n
dist ∩B

n
unique fit ⊆ En

mod l→ ok,

En
mod l→ ok ∩B

n
unique fit ∩ E

n
neighbor I ∩ E

n
neighbor II ⊆ En

mod 1 ok,

En
mod 1 ok ⊆ En

all pieces ok.

The claim of the theorem is a simple combination of these inclusions.

6.3 Probabilistic estimates for basic events

In this subsection we show that the “basic events” B... occur very probably. Together with the
result of the previous subsections this shows that the partial reconstruction algorithms Algn

yield with high probability a correctly reconstructed piece of scenery.
We start with an elementary auxiliary lemma:

Lemma 6.32 Let f : I0 → J be a finite injection without fixed points. Then there is I ′ ⊆ I0
with |I ′| ≥ |I0|/3 and f [I ′] ∩ I ′ = ∅.

Proof. We construct recursively finite sequences (Ik) and (I ′k), for k − 1 < |I0|/3, of subsets
of I0. The “loop invariants” of the recursion are: f [Ik] ∩ I

′
k = ∅, f [I ′k] ∩ Ik = ∅, f [I ′k] ∩ I

′
k = ∅,

Ik ∩ I
′
k = ∅, |I ′k| = k, and |Ik| ≥ |I0| − 3k.

The recursion starts with the given I0 and with I ′0 = ∅. In the (k + 1)st step, k < |I0|/3,
we choose any point x ∈ Ik, and define I ′k+1 := I ′k ∪ {x}. If f−1(x) exists, then we set Ik+1 :=
Ik \ {x, f(x), f

−1(x)}; else we set Ik+1 := Ik \ {x, f(x)}.
Note that the validity of the above “loop invariants” is indeed preserved by the recursion;

the fact f(x) 6= x is used for the third loop invariant.
Finally we set I ′ := I ′k for k := min{j ∈ N | 3j ≥ |I0|}; then I ′ ⊆ I0 is well-defined and fulfills
the claims in Lemma 6.32.

Lemma 6.33 There exists constants c18, c19 > 0 not depending on n such that for all finite
J̃ ⊂ N one has

P
[

(Bn
unique fit(J̃))

c
]

≤ c18e
−c19n. (6.65)
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Proof. Let i, j ∈ {1, . . . , l2}, and let I ⊆ [−11 · 2n, 11 · 2n] \ J̃ be a i-spaced interval, and
J ⊆ [−11 · 2n, 11 · 2n] \ J̃ be a j-spaced interval with |I| = |J | ≥ 1. Let f : I → J be a
monotonically increasing or decreasing bijection, but not the identity map; thus the case I = J
can only occur if f is decreasing.

We claim: For some constants c12 > 0 and c13 > 2 log 2/c2 (not depending on i, j, I, or J)
we have

P [ξ ◦ f = ξdI] ≤ c12e
−c13|I|. (6.66)

Note that ξ ◦ f = ξdI is equivalent to (ξdJ)→ = (ξdI)→ if f is increasing, and it is equivalent to
(ξdJ)→ = (ξdI)← if f is decreasing.

Before proving (6.66), let us show how it implies (6.65): There are at most l2 choices for (i, j),
and given (i, j), there are at most (22 ·2n+1)2 ≤ 500 ·22n choices for (I, J) with |I| = |J | = c2n;
finally there is one binary choice: f is increasing or decreasing. If ξ ◦ f 6= ξdI holds for all of
these choices (with the trivial exception I = J and f = id), then the event Bn

unique fit is valid;
note that it suffices to consider |I| = |J | = c2n instead of |I| = |J | ≥ c2n, since it suffices to
consider subintervals of I, J consisting only of c2n points. Hence (6.66) implies (6.65):

P
[

(Bn
unique fit)

c
]

≤ l2 · 500 · 22n · 2 · c12e
−c13c2n = c18e

−c19n, (6.67)

where c18 := 1000l2c12 and c19 := c13c2 − 2 log 2 > 0.
We prove (6.66) next: unless f is the identity map, it can have at most a single fixed point,

since it is the restriction of some affine-linear map to the ladder interval I. Remove this fixed
point from I, if it exists; call I0 the set of all remaining points. By Lemma 6.32, there is I ′ ⊆ I0
with |I ′| ≥ |I0|/3 ≥ (|I|−1)/3 and f [I ′]∩I ′ = ∅. Hence ξdf [I ′] and ξdI ′ are independent random
pieces of scenery; thus

P [ξ ◦ f = ξdI] ≤ P
[

ξ ◦ fdI ′ = ξdI ′
]

= |C|−|I
′| ≤ |C|−(|I|−1)/3; (6.68)

thus (6.66) follows with c13 := (log |C|)/3 and c12 := |C|1/3. Note that c13c2 − 2 log 2 > 0 since
c2 was required to be large enough; recall Subsection 2.1.

Lemma 6.34 Let P ′ be a probability distribution on Ω such that S has the same distribution
with respect to both measures P and P ′, and let τ be a sequence of G-adapted stopping times.
Then there exist constants c20, c21 > 0 not depending on n such that:

P ′
[

(Bn
all paths,τ )

c ∩ Em
stop,τ

]

≤ c21e
−c20n. (6.69)

We use this lemma twice below: Once for P ′ = P in this section, and in Section 8 for P ′ = P̃ ,
which was defined in (3.5). Note that the following proof does not need any assumptions on the
distribution of the scenery ξ; knowing the distribution of the random walk S suffices.

Proof of Lemma 6.34. Let k < 2αn and R ∈ AdPath(12 · 2n, 3c1n). We set

Bn,k
R :=

{

∃j ∈ [0, 22n − 3c1n] : TimeShiftτ(k)+j(R) ⊆ S
}

, (6.70)

Em
stop,τ,k :=

{

τk(χ) < 212αnm , |S(τk(χ))| ≤ 2nm ,
τj(χ) + 2 · 22nm ≤ τk(χ) for j < k

}

, (6.71)

An,kR := Em
stop,τ,k \B

n,k
R . (6.72)
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Note that Bn
all paths,τ =

⋂

R∈AdPath(12·2n,3c1n)
⋃2αn−1
k=0 Bn,k

R and Em
stop,τ ⊆ E

m
stop,τ,k for k ≤ 2αn, and

thus

Em
stop,τ \B

n
all paths,τ ⊆

⋃

R∈AdPath(12·2n,3c1n)

2αn−1
⋂

k=0

An,kR . (6.73)

In the following, R runs over the set AdPath(12 · 2n, 3c1n):

P ′
[

(Bn
all paths,τ )

c ∩ Em
stop,τ

]

≤ |AdPath(12 · 2n, 3c1n)|max
R

P ′
[

2αn−1
⋂

k=0

An,kR

]

, (6.74)

|AdPath(12 · 2n, 3c1n)| ≤ 25 · 2n|M|3c1n, (6.75)

P ′
[

2αn−1
⋂

k=0

An,kR

]

=

2αn−1
∏

k=0

P ′



An,kR

∣

∣

∣

∣

∣

∣

⋂

j<k

An,jR



 , (6.76)

P ′



An,kR

∣

∣

∣

∣

∣

∣

⋂

j<k

An,jR



 ≤ P ′



(Bn,k
R )c

∣

∣

∣

∣

∣

∣

Em
stop,τ,k ∩

⋂

j<k

An,jR



 ; (6.77)

the last statement follows from the elementary fact P ′[A∩B|C] ≤ P ′[A|B∩C]. We have Cn,k
R :=

Em
stop,τ,k ∩

⋂

j<k A
n,j
R ∈ Fτk , i.e. one can decide whether the event Cn,k

R holds by observing ξ and

S(0), . . . , S(τk). Furthermore, if Cn,k
R holds, then |S(τk(χ))| ≤ 2n, and as a consequence of the

local Central Limit Theorem [5], Theorem 5.2 (page 132) we get: there is a constant c22 > 0 such
that for all x, y with |x| ≤ 12 · 2n and |y| ≤ 2n: P [y + S(j) = x for some j ∈ [0, 22n − 3c1n]] ≥
c222

−n; note that y + S is a random walk starting in the point y, and recall that n = nm ≥ n0;
thus 22n − 3c1n ≥ 22n/2 holds by our choice of n0 in Subsection 2.1. Also, the random walk
need not be aperiodic; it suffices that it can reach every integer, i.e. that the greatest common
divisor of the elements of |M| is 1. Thus by the strong Markov property:

inf
|x|≤12·2n

P ′
[

S(τ(k) + j) = x for some j ∈ [0, 22n − 3c1n]
∣

∣

∣
Cn,k
R

]

≥ c222
−n. (6.78)

Once it is in the starting point x, the probability that S follows an admissible path R ∈
AdPath(12 · 2n, 3c1n) for the next 3c1n − 1 steps is bounded from below by µ3c1nmin . Here
µmin := min{µ({x}) |x ∈ M} is the smallest positive probability for a jump. Therefore, us-
ing the strong Markov property again:

P ′
[

Bn,k
R

∣

∣

∣
Cn,k
R

]

≥ c222
−nµ3c1nmin . (6.79)

We combine (6.74)–(6.77) and (6.79) to obtain

P ′
[

Em
stop,τ \B

n
all paths,τ

]

≤ 25 · 2n|M|3c1n(1− c222
−nµ3c1nmin )2

αn
(6.80)

≤ 25 · 2n|M|3c1n exp
{

−c222
−nµ3c1nmin 2αn

}

≤ 25 exp
{

n(log 2 + 3c1 log |M|)− c22e
n(α log 2+3c1 log µmin−log 2)

}

.

Now α > 1− 3c1 log2 µmin by our choice of α in Subsection 2.1; thus the right hand side of the
last inequality converges to 0 superexponentially fast as n → ∞. Note that we may choose an
upper bound c21e

−c20n for the right hand side in (6.80), where neither c21 nor c20 depend on α
or c1. This is true since n ≥ n0, and n0 was chosen large enough, depending on c1 and α; recall
Subsection 2.1. This proves the lemma.



Reconstructing a Random Scenery 476

Lemma 6.35 There exists a constant c23 > 0 not depending on n such that:

P [(Bn
outside out)

c] ≤ 160e−c23n. (6.81)

Proof of Lemma 6.35. The set [−2 · l22n, 2 · l22n]\ [−10 ·2n, 10 ·2n] contains less than 4 · l ·22n

points, and for every fixed starting point the number of admissible paths with c1n/2 points is
equal to |M|c1n/2−1. Hence there are less than 4 · l22n|M|c1n/2 paths R ∈ AdPaths(2 · l22n, c1n/2)
with R(i) /∈ [−10 · 2n, 10 · 2n] for all i = 0, . . . , c1n/2. On the other hand, there are less
than 40 · 2n ladder words of length c1n/2 in [−9 · 2n, 9 · 2n]. The colors ξ ◦ R that a path
in R ∈ AdPaths(22n, c1n/2) with R(i) /∈ [−10 · 2n, 10 · 2n] for all i = 0, . . . , c1n/2 − 1 reads
are independent of the colors inside [−9 · 2n, 9 · 2n]. Thus the probability that a given path
R ∈ AdPaths(22n, c1n/2) with R(i) /∈ [−10 · 2n, 10 · 2n] for all i = 0, . . . , c1n/2− 1 reads the same
colors as a fixed ladder word in [−9 · 2n, 9 · 2n] is |C|−c1n/2. Thus

P [(Bn
outside out)

c] ≤ 160l23n|M|c1n/2|C|−c1n/2. (6.82)

Since |M| < |C|, the last expression becomes exponentially decreasing in n since c1 > 6/ log |C||M|
since c1 was chosen large enough; see Subsection 2.1. This proves the lemma.

We prepare the treatment of the event Bn
recognstraight(J̃) by the following combinatoric lemma:

Lemma 6.36 Let c24 := 1/(2|M|(l→ + l←)). There are two intervals I1, I2 ⊆ [0, c1n[ with
|I1| = |I2| ≥ c24c1n−1 such that the following statement is valid: For all R ∈ AdPaths(11·2n, c1n)
with R(c1n − 1) − R(0) /∈ {(c1n − 1)l→,−(c1n − 1)l←}, there is I ∈ {I1, I2} and an admissible
path R̄ ∈ AdPaths(12 · 2n, c1n) with the following properties:

• R(0) = R̄(0), R(c1n− 1) = R̄(c1n− 1).

• At least one of the following holds:

1. for all (i, j) ∈ I × I with j < i: R̄(i) /∈ {R(j), R̄(j)};

2. for all (i, j) ∈ I × I with i < j: R̄(i) /∈ {R(j), R̄(j)}.

Proof. We define k := bc24c1nc, I
′ := [1, 2k] ⊆ [0, c1n[, I1 := [1, k], and I2 := [k + 1, 2k]. We

observe |I1|, |I2| ≥ c24c1n− 1 and I1, I2 ⊆ [0, c1n[.
Let R ∈ AdPaths(11 · 2n, c1n) be not a ladder path. We show first: There are R′, R′′ ∈

AdPaths(12 · 2n, c1n) such that R′(0) = R′′(0) = R(0), R′(c1n− 1) = R′′(c1n− 1) = R(c1n− 1),
R′dI ′ and R′′dI ′ are ladder paths, and R′′dI ′ = r + R′dI ′ for some r 6= 0, i.e. R′′dI ′ is obtained
from R′dI ′ by a spatial translation.

To prove this claim, let d = (di)i=1...,c1n−1 ∈ M
c1n−1, di := R(i) − R(i − 1), be the jump

sizes in R. Every other d̃ ∈ Mc1n−1 with
∑c1n−1

i=1 d̃i =
∑c1n−1

i=1 di gives rise to an admissible
path R̃ ∈ AdPaths(12 · 2n, c1n), too, with R̃(0) = R(0), R̃(c1n− 1) = R(c1n− 1), and with jump
sizes d̃i = R̃(i) − R̃(i − 1); namely R̃(i) := R(0) +

∑i
j=1 d̃j . Since R̃ has its starting point and

end point in [−11 · 2n, 11 · 2n] and since c1nl < 2n, the path R̃ can indeed not leave the range
[−12 · 2n, 12 · 2n].

There are at most |M| possible values for di, but there are c1n possible indices i; thus at
least one value a ∈M occurs in the di at least c1n/|M| times. We choose 2k(a+ l←) ≥ 0 indices
i with di = a and replace them by l→, and we choose 2k(l→ − a) ≥ 0 different indices i with
di = a and replace them by −l←; note that 2k(a+ l←) + 2k(l→ − a) = 2k(l→ + l←) ≤ c1n/|M|.
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We end up with a new vector d̃ ∈ Mc1n−1 with
∑c1n−1

i=1 d̃i =
∑c1n−1

i=1 di, since 2k(l← + l→)a =
2k(a+ l←)l→ + 2k(l→ − a)(−l←). d̃ contains at least 2k entries with value l→, or it contains at
least 2k entries with value −l←, since already the described replacement procedure has produced
sufficiently many such entries. However, not all entries of d̃ can equal l→; similarly not all its
entries can equal −l←, since R is not a ladder path. We permute the entries of d̃i in two
different ways; the resulting vectors are called d′ and d′′: First to obtain d′, permute the entries
in d̃ such that the first 2k permuted entries d′i, i = 1, . . . , 2k either all equal l→ or all equal
−l←; the order of the remaining entries is irrelevant. Second to obtain d′′, transpose the first
entry d′1 with a different entry d′i 6= d′1. Let R′ and R′′ be admissible pieces of paths with
R′(0) = R′′(0) = R(0) and step sizes d′i = R′(i) − R′(i − 1) and d′′i = R′′(i) − R′′(i − 1),
respectively. Recall I ′ = [1, 2k]; then R′dI ′ and R′′dI ′ are ladder paths, and R′′dI ′ is obtained
from translating R′dI ′ by r := d′′1 − d

′
1 6= 0. Thus our first claim holds.

R′dI ′ is a right ladder path or a left ladder path. Without loss of generality, we assume
that it is a right ladder path; the case of left ladder paths can be treated similarly by reversing
directions in the arguments below. Furthermore, we assume without loss of generality r > 0;
otherwise we exchange R′ with R′′.

We are ready to prove the claim of the lemma; recall that k is a point in the middle of I ′.
There are two cases:

• If R(k) > R′(k), then we take I := I1 and R̄ := R′. Since R′dI is a right ladder path, it
moves with maximal speed l→ to the right. R cannot move faster than that to the right;
thus R(j) > R′(i) and R′(j) > R′(i) for all i, j ∈ I with i < j.

• If R(k) ≤ R′(k), then R(k) < r + R′(k) = R′′(k); this time we take I := I2 and R̄ := R′′.
The same argument as above yields R(j) < R′′(i) and R′′(j) < R′′(i) for all i, j ∈ I with
j < i.

This proves Lemma 6.36.

Lemma 6.37 There exist positive constants c25 and c26 not depending on n such that for all
finite J̃ ⊂ N one has

P
[

(Bn
recogn straight(J̃))

c
]

≤ c25e
−c26n. (6.83)

Proof of Lemma 6.37. Let AdPaths∼n denote the set of all R ∈ AdPaths(11 · 2n, c1n) with
R(c1n) − R(0) /∈ {(c1n − 1)l→,−(c1n − 1)l←}. (Roughly speaking, AdPaths∼n consists of “non-
straight” paths.) Given R ∈ AdPaths∼n , we take I = I(R) ⊆ [0, c1n[ and R̄ ∈ AdPaths(12·2n, c1n)
as in Lemma 6.36. Without loss of generality assume that condition 1. in Lemma 6.36 is satisfied.
We prove for all I ′ ⊆ I by induction on |I ′|:

P [(ξ ◦R)dI ′ = (ξ ◦ R̄)dI ′] = |C|−|I
′|. (6.84)

This is obvious for I ′ = ∅. For other I ′, let I ′′ := I ′ \max I ′. Then ξ(R̄(max I ′)) is independent
of (ξ ◦RdI ′′, ξ ◦ R̄dI ′′), since they are generated by disjoint parts of the scenery. Thus

P [(ξ ◦R)dI ′ = (ξ ◦ R̄)dI ′] = P [ξ(R(max I ′)) = ξ(R̄(max I ′))] · P [(ξ ◦R)dI ′′ = (ξ ◦ R̄)dI ′′]

= |C|−1|C|−|I
′′| = |C|−|I

′|. (6.85)

By taking I ′ = I, we conclude P [(ξ ◦R)dI = (ξ ◦ R̄)dI] ≤ |C|−|I|.
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It does not suffice to multiply the last bound with the bound 23 · 2n|M|c1n ≥ |AdPaths(11 ·
2n, c1n)|: the product may sometimes be bigger than 1.

To overcome this difficulty, we partition AdPaths∼n 3 R into equivalence classes [R]: we put
two paths into the same class if and only if they are mapped to the same value by the map
R 7→ (R(0), R(c1n − 1), I(R), RdI(R)); here I(R) ∈ {I1, I2} is taken from Lemma 6.36. We
bound the number of equivalence classes from above: For our purposes, a simple but rough
bound suffices: There are at most 25 · 2n choices for each of R(0), R(c1n− 1), and R(min I(R)),
and there is a binary choice I(R) ∈ {I1, I2}; finally given R(min I(R)), there are not more
than |M|k choices for RdI(R), where again k = bc24c1nc = |I(R)|. Altogether the number
of equivalence classes is bounded by c272

3n|M|k, where c27 := 2 · 253. We may choose a map
AdPaths∼n → AdPaths(12 ·2n, c1n), R 7→ R̄ such that R̄ depends only of the equivalence class [R]
and fulfills the claim in Lemma 6.36.

We observe

(Bn
recogn straight(J̃))

c ⊆ (Bn
recogn straight)

c ⊆ {∃R ∈ AdPaths∼n : ξ ◦RdI(R) = ξ ◦ R̄dI(R)}; (6.86)

recall the definition (6.21) of the event Bn
recogn straight(J̃). Thus we get

P [(Bn
recogn straight(J̃))

c] ≤ P [∃R ∈ AdPaths∼n : ξ ◦RdI(R) = ξ ◦ R̄dI(R)] (6.87)

≤
∑

[R]

P [ξ ◦RdI(R) = ξ ◦ R̄dI(R)]

≤ c272
3n(|M|/|C|)k ≤ c27(|C|/|M|) exp{(3 log 2− c24c1 log(|C|/|M|))n}.

We emphasize: the sum in the last but one expression runs over equivalence classes [R], not over
paths R; the event {ξ ◦ RdI(R) = ξ ◦ R̄dI(R)} does not depend on the choice of R ∈ [R]. We
have c24c1 log(|C|/|M|) − 3 log 2 ≥ 1; recall from Subsection 2.1 that c1 is large enough. The
estimate (6.87) proves the lemma with c26 = 1, c25 = c27|C|/|M|.

Lemma 6.38 There exist constants c28 > 0, c29 > 0 such that:

P
[

(Bn
signals)

c
]

≤ c29e
−c28n. (6.88)

Proof of Lemma 6.38. We show that

P [Bn
sig rr] ≥ 1− c30e

−c28n (6.89)

for some constants c30 > 0 and c28 > 0. The proof for Bn
sig rl, B

n
sig lr, and Bn

sig ll can be done

analogously. Take a right ladder path π ∈ [−2 · l22n, 2 · l22n][0,c1n/2[ and an admissible piece of
path π′ ∈ AdPath(2 · l22n, c1n/2) with π(0) > π′(0). We show by induction over j ∈ [0, c1n/2[
with the abbreviation I = [0, j + 1[ and I ′ = [0, j[:

P
[

ξ ◦ πdI ′ = ξ ◦ π′dI ′
]

= |C|−j . (6.90)

Indeed, (6.90) is trivial for j = 0. For the step j 7→ j+1, we observe that π(j) is right of all π(i)
and π′(i), i < j, since π is a right ladder path and π(0) > π′(0). Thus ξ ◦ π(j) is independent
of the family (ξ ◦ πdI ′, ξ ◦ π′dI ′). Therefore, using our induction hypothesis,

P [ξ ◦ πdI = ξ ◦ π′dI] (6.91)

= P [ξ ◦ πdI ′ = ξ ◦ π′dI ′] · P [ξ ◦ π(j) = ξ ◦ π′(j)] = |C|−j−1.
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For j = c1n/2 we obtain that

P [ξ ◦ πd[0, c1n/2[= ξ ◦ π′d[0, c1n/2[] ≤ |C|
−c1n/2. (6.92)

There are not more than 4 · l22n + 1 ≤ 5 · l22n such π and not more than 5 · l22n|M|c1n/2 such
π′. Therefore

P [(Bn
sig r)

c] ≤ (5 · l22n)2|M|c1n/2|C|−c1n/2 (6.93)

holds; consequently (6.89) is valid with c29 = 25 · l2 and c28 := 1 ≤ c1 log(|C|/|M|)/2 − 4 log 2.
The last inequality holds, since |C| > |M| and c1 was chosen large enough; see Subsection 2.1.

Lemma 6.39 There exist constants c31 > 0 and c32 > 0 such that:

P
[

(Bn
seed I)

c ∩ Em
stop,τ

]

≤ c32e
−c31n. (6.94)

Proof. We proceed similarly to the proof of Lemma 6.34. In the following, Z runs over all
classes Z ∈ Z/l→Z. We set for all Z (compare with Definition (6.17) of Bn

seed I):

Bn,k
Z :=

{

S(τ(k)+h) ∈ Z, Sd(τ(k)+h+ [0, 3c1nl←]) is a right ladder path,
and Sd(τ(k) + h+ 3c1nl← + [0, 3c1nl→]) is a left ladder path.

}

, (6.95)

An,kZ := Em
stop,τ,k \B

n,k
Z , (6.96)

where Em
stop,τ,k is given by (6.71). Note that Bn

seed I =
⋂

Z

⋃2αn−1
k=0 Bn,k

Z and still Em
stop,τ ⊆ E

m
stop,τ,k

for k < 2αn; thus

Em
stop,τ \B

n
seed I ⊆

⋃

Z

2αn−1
⋂

k=0

An,kZ . (6.97)

We obtain

P
[

Em
stop,τ \B

n
seed I

]

≤ l→max
Z

P

[

2αn−1
⋂

k=0

An,kZ

]

= l→max
Z

2αn−1
∏

k=0

P



An,kZ

∣

∣

∣

∣

∣

∣

⋂

j<k

An,jZ



 , (6.98)

P



An,kZ

∣

∣

∣

∣

∣

∣

⋂

j<k

An,jZ



 ≤ P



(Bn,k
Z )c

∣

∣

∣

∣

∣

∣

Em
stop,τ,k ∩

⋂

j<k

An,jZ



 . (6.99)

Since h + 3c1nl← + 3c1nl→ < 2 · 22n, we have Cn,k
Z := Em

stop,τ,k ∩
⋂

j<k A
n,j
Z ∈ Fτ(k). Using

Lemma 6.11, we know l→Z + suppµh = Z; hence c33 := infx∈Z P [x+ S(h) ∈ Z] > 0; (note that
the random walk x + S starts in the point x). Moreover, given that S(h) ∈ Z, the probability
to follow a right ladder path in Z in the subsequent 3c1nl← steps is µ({l→})c1nl← , and the
probability to follow then a left ladder path in the next 3c1nl→ steps is µ({−l←})c1nl→ .

Thus by the strong Markov property:

P
[

Bn,k
Z | Cn,k

Z

]

≥ c33µ({l→})
3c1nl←µ({−l←})

3c1nl→ = c33e
−c34c1n, (6.100)

where c34 := −3l← logµ({l→}) − 3l→ log µ({−l←}). We combine (6.98), (6.99) and (6.100) to
obtain

P
[

Em
stop,τ \B

n
seed I

]

≤ l→(1− c33e
−c34c1n)2

αn
≤ l→ exp

{

−c33e
−c34c1n2αn

}

. (6.101)
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We have c34c1 < α log 2, since α was chosen large enough; see Subsection 2.1. Thus the right
hand side of the last inequality converges to 0 superexponentially fast as n → ∞. This proves
the lemma, since n ≥ n0 and n0 was chosen large enough.
Finally we reap the results of this section:
Proof of Theorem 6.3. By Theorems 6.17 and 6.31 we have

En
xi does it ∩ E

n
all pieces ok ⊇ (6.102)

Bn
seed I ∩B

n
unique fit ∩B

n
all paths ∩B

n
outside out ∩B

n
recogn straight ∩B

n
signals ∩ E

m
stop,τ , (6.103)

hence

Em
stop,τ \ (E

n
xi does it ∩ E

n
all pieces ok) ⊆ (Bn

unique fit)
c ∪ ((Bn

all paths)
c ∩ Em

stop,τ )

∪ (Bn
outside out)

c ∪ (Bn
recogn straight)

c ∪ (Bn
signals)

c ∪ ((Bn
seed I)

c ∩ Em
stop,τ ). (6.104)

Thus Theorem 6.3 follows from the main Lemmas 6.33, 6.34, 6.35, 6.37, 6.38, and 6.39 of this
subsection.

7 How to find back:

Correctness of the stopping times Tf

In this section, we prove Theorem 3.9.

Definition 7.1 Let T = (Tk)k∈N be a sequence of G-adapted stopping times. We define the
events

Em
no error,T :=

{

∀k ≥ 0 : if Tk(χ) < 212αnm , then |S(Tk(χ))| ≤ 2nm
}

, (7.1)

Em
enough back :=

{

Up to time 212αnm/8, S visits 0 at least
23αnm times

}

. (7.2)

We abbreviate

Ξmreconst,f :=

{

ξ ∈ CZ
∣

∣

∣

∣

P
[

Em
reconst,f | ξ

]

≥
1

2

}

; (7.3)

recall Definition (3.15) of the event Em
reconst,f .

Lemma 7.2 For some constant c35 and all m ≥ 0:

1− P
[

Em
enough back

]

≤ c352
−αnm . (7.4)

Proof of Lemma 7.2. Let (Xi)i≥1 denote the time difference between the (i + 1)st and
the i-th visit of S at the origin. By recurrence, (Xi)i≥1 is a.s. well defined, and by the strong
Markov property it is i.i.d. with respect to P . Since S starts in the origin, X1 is the first return
time to the origin, and

∑j
i=1Xi is (a.s.) the time of the j-th visit at the origin. For the sake of

this proof, we abbreviate: x = 212αnm/8 and y = 23αnm . Using

(

Em
enough back

)c
=

{

y
∑

i=1

Xi ≥ x

}

⊆







(

y
∑

i=1

X
1/3
i

)3

≥ x







(7.5)
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and the Chebyshev-Markov inequality, we obtain the claim (7.4):

1− P
[

Em
enough back

]

≤ P

[

y
∑

i=1

X
1/3
i ≥ x1/3

]

≤ x−1/3E

[

y
∑

i=1

X
1/3
i

]

(7.6)

= x−1/3yE
[

X
1/3
1

]

= 2E
[

X
1/3
1

]

2−αnm .

The fact E
[

X
1/3
1

]

<∞ is an immediate consequence of a lemma proved on page 382 of [24]. In

our context, this lemma states that there exists a constant c58 > 0 such that P [S(k) 6= 0; k =
1, 2, . . . , n] ≤ c58n

−1/2 for all n > 0.

Definition 7.3 Let v(k), k ≥ 0, denote the (k + 1)st visit of S to the origin. We introduce a
random set T′f (ξ, χ) and an event Em+1

when back recog:

T′f (ξ, χ) :=
{

t ∈ N
∣

∣ ξd[−2nm , 2nm ] 4 f(θt(χ)) 4 ξd[−9 · 2nm , 9 · 2nm ]
}

, (7.7)

Em+1
when back recog,f :=

{

For more than 1/4 of the points k ∈ [0, 22αnm+1 [ holds
v(k2αnm+1) ∈ T′f (ξ, χ)

}

. (7.8)

Lemma 7.4 If the event Em
reconst,f holds, then Tf (χ) ⊇ T′f (ξ, χ) ∩ [0, 212αnm+1 − 2 · 212αnm [.

Proof. We know ξd[−2nm , 2nm ] 4 f(χ) by Em
reconst,f . Let t ∈ T′f (ξ, χ), t < 212αnm+1−2 ·212αnm .

Then we also have ξd[−2nm , 2nm ] 4 f(θtχ). Hence t ∈ Tf (χ); to this end recall Definition (3.12)
of the random set Tf (χ). This implies the lemma.

Lemma 7.5 Assume that the events Em+1
no error,Tf

∩ Em+1
enough back ∩ E

m+1
whenback recog,f and Tf (χ) ⊇

T′f (ξ, χ) ∩ [0, 212αnm+1 − 2 · 212αnm [ hold. Then Em+1
stop,Tf

holds, too.

Proof. Using Em+1
enough back, we know

v(k2αnm+1) ∈ [0, 212αnm+1/8] ⊆ [0, 212αnm+1 − 2 · 212αnm [ (7.9)

for all k ∈ [0, 22αnm+1 [. Since the event Em+1
when back recog,f holds, we obtain |Tf (χ)| ≥ |T′f (ξ, χ) ∩

[0, 212αnm+1 −2 ·212αnm [| ≥ 22αnm+1/4. By Definition (3.13) of the stopping times Tf , this yields
Tf,k(χ) < 212αnm+1 for all k < (22αnm+1/4)/(2 · 22nm+1) = 22(α−1)nm+1/8. The event Em+1

no error,Tf

holds, and 22(α−1)nm+1/8 ≥ 2αnm+1 ; recall that α and nm+1 ≥ n0 are large (see Section 2.1).
Hence we obtain |S(Tf,k(χ))| ≤ 2nm+1 for all k ∈ [0, 2αnm+1 [; recall (7.1). Using Definition (3.13)
again, we see that Tf,j(χ) + 2 · 22nm+1 ≤ Tf,k(χ) is automatically fulfilled for j < k whenever
Tf,k(χ) < 212αnm+1 , which is the case at least for k ∈ [0, 2αnm+1 [. Summarizing, we have proven
that the event Em+1

stop,Tf
holds; recall its definition (3.14).

Lemma 7.6 P
[(

Em+1
when back recog,f

)c
∩
{

ξ ∈ Ξmreconst,f

} ]

≤ 0.92
2αnm+1

.

Proof. We define Bernoulli random variables Yk, k ≥ 0, by Yk := 1 if v(k2αnm+1) ∈ T′f (ξ, χ),
and Yk := 0 else. Note that v ((k + 1)2αnm+1)−v(k2αnm+1) ≥ 2αnm+1 > 2·212αnm . Also note that

Em+1
when back recog,f =

{

2−2αnm+1
∑22αnm+1−1

k=0 Yk > 1/4
}

. Because of the strong Markov property
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of the random walk (S(k))k≥0 we have that conditioned under ξ the variables (Yk)k≥0 are i.i.d.;
recall that f(χ) depends at most on χd[0, 2 · 212αnm [. If furthermore ξ ∈ Ξmreconst,f holds, then
E[Yk | ξ] ≥ 1/2. Hence we obtain for these ξ, using the exponential Chebyshev inequality for

the binomial variable
∑22αnm+1−1

k=0 Yk:

P
[(

Em+1
whenback recog,f

)c ∣
∣

∣
ξ
]

= P



2−2αnm+1

22αnm+1−1
∑

k=0

Yk ≤
1

4

∣

∣

∣

∣

∣

∣

ξ



 (7.10)

≤ E
[

e1/4−Y1

∣

∣

∣
ξ
]22αnm+1

≤

(

e1/4 + e−3/4

2

)22αnm+1

≤ 0.92
2αnm+1

.

This yields the claim of the lemma:

P
[(

Em+1
whenback recog,f

)c
∩
{

ξ ∈ Ξmreconst,f
}

]

(7.11)

≤ P
[(

Em+1
when back recog,f

)c ∣
∣

∣
ξ ∈ Ξmreconst,f

]

≤ 0.92
2αnm+1

.

Lemma 7.7 P
[

(Em+1
no error,Tf

)c ∩ Em
reconst,f

]

≤ 1
3e
−nm+1 .

Proof. Let υi denote the (i+1)st time when the random walk S visits a point of Z\[−2nm+1 +
2l212αnm , 2nm+1 − 2l212αnm ]. We set

Em+1
wrong,i :=

{

∃w ∈ C2·2
nm

: w 4 ξd[−9 · 2nm , 9 · 2nm ] and w 4 f(θυi(χ))
}

. (7.12)

If the event Em+1
wrong,i occurs, then our procedure might fail to estimate correctly the location of

the random walk: we might be misled to think that at time υi + 2 · 212αnm we are close to the
origin while we are not.

We claim that the following holds:

(Em+1
no error,Tf

)c ∩ Em
reconst,f ⊆

212αnm+1−1
⋃

i=0

Em+1
wrong,i. (7.13)

Indeed: If (Em+1
no error,Tf

)c holds, then |S(Tf,k(χ))| > 2nm+1 for some k with Tf,k < 212αnm+1 (see

(7.1)); thus |S(Tf,k(χ)− 2 · 212αnm)| > 2nm+1 − 2l212αnm , since S cannot travel faster than speed
l. This means Tf,k(χ) − 2 · 212αnm = υi for some i < 212αnm+1 . Using Definition 3.6 of Tf,k(χ),
this implies υi ∈ Tf (χ); hence there is w ∈ C2·2

nm
such that w 4 f(χ) and w 4 f(θυi(χ)).

Assuming that the event Em
reconst,f holds, too, this implies w 4 f(χ) 4 ξd[−9 · 2nm , 9 · 2nm ]; see

(3.15). This yields that Em+1
wrong,i holds; recall (7.12). Summarizing, we have shown that (7.13)

holds.
For all i, f(θυi(χ)) depends only on χd[υi, υi+2·212αnm [, and S does not visit [−9·2nm , 9·2nm ]

in this time interval [υi, υi + 2 · 212αnm [, since the distance between [−9 · 2nm , 9 · 2nm ] and
Z\[−2nm+1 + 2l212αnm , 2nm+1 − 2l212αnm ] is larger than 2l212αnm , and since the random walk
cannot travel faster than l steps per time unit.
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Thus by the strong Markov property and by independence of S and ξ, we get: χd[υi, υi +
212αnm ] is independent of ξd[−9 ·2nm , 9 ·2nm ]; therefore f(θυi(χ)) is independent of ξd[−9 ·2nm , 9 ·
2nm ], too.

The probability that a random word of length 2 · 2nm which has i.i.d. letters with uniform
distribution in C is equal to a word which is independent of it is equal to |C|−2·2

nm
. There are

at most 37 · 2nm words of a fixed length in ξd[−9 · 2nm , 9 · 2nm ] and also in f(θυk(χ)), counting
all reversed words, too. Thus there are at most 37222nm pairs of such words. It follows that

P
[

Em+1
wrong,i

]

≤ 37222nm |C|−2·2
nm
. (7.14)

Hence we get the claim of the lemma, using (7.13):

P
[

(Em+1
no error,Tf

)c ∩ Em
reconst,f

]

≤
212αnm+1−1
∑

i=0

P
[

Em+1
wrong,i

]

≤ 212αnm+1 · 37222nm |C|−2·2
nm
≤

1

3
e−nm+1 . (7.15)

For the last inequality, recall that nm ≥ n0 is large enough, and note that |C|−2·2
nm

is the leading
term of the last but one expression; also recall that nm+1 = 2b

√
nmc is of a much smaller order

than 2nm .
Proof of Theorem 3.9. By Lemmas 7.4 and 7.5, we know Em+1

no error,Tf
∩ Em+1

enough back ∩

Em+1
when back recog,f ∩ E

m
reconst,f ⊆ E

m+1
stop,Tf

. Using some Boolean algebra, this implies

(Em+1
stop,Tf

)c ∩ Em
reconst,f ∩

{

ξ ∈ Ξmreconst,f
}

(7.16)

⊆
(

Em+1
enough back

)c
∪
(

(Em+1
no error,Tf

)c ∩ Em
reconst,f

)

∪
((

Em+1
whenback recog,f

)c
∩
{

ξ ∈ Ξmreconst,f
}

)

.

Consequently, using Definition (7.3) of Ξmreconst,f and Lemmas 7.2, 7.6, and 7.7:

P

[

(Em+1
stop,Tf

)c ∩ Em
reconst,f ∩

{

P
[

Em
reconst,f | ξ

]

≥
1

2

}]

(7.17)

≤ P
[(

Em+1
enough back

)c]

+ P
[

(Em+1
no error,Tf

)c ∩ Em
reconst,f

]

+ P
[(

Em+1
when back recog,f

)c
∩
{

ξ ∈ Ξmreconst,f
}

]

≤ c352
−αnm+1 +

1

3
e−nm+1 + 0.92

2αnm+1
≤ e−nm+1 ;

recall that α and nm+1 ≥ n0 are large (see Section 2.1). This proves Theorem 3.9.

8 Getting started: The first stopping times

In this section, we prove Theorem 3.8 and the related Lemmas 5.2 and 5.3.

8.1 Properties of the modified measure P̃

As a preparation of the construction of the first stopping times, we prove some properties of
the modified measure P̃ . This measure and the closely related measure PB were introduced in
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Definition 3.2, using an event BigBlock and events EB(k). Recall that the event EB(k) holds if
there is an initial piece of k 1’s in the observation χ, while BigBlock holds if there is a sufficiently
large interval of 1’s in the scenery ξ sufficiently close to the origin.

Almost all the proofs using the measure P̃ will not explicitly use its definition (3.5), but only
the following properties of P̃ (and n0):

Lemma 8.1 The probability measure P̃ fulfills:

1. ξ and S are independent with respect to P̃ ;

2. The common distributions of (S, ξd(Z\J1)) with respect to P̃ and with respect to P coincide.

3. With respect to P̃ , the restriction ξdJ1 is independent of ξd(Z \ J1).

4. P̃ [BigBlock] = 1.

Proof of Lemma 8.1. We abbreviate k := n200 .

1. We observe first that ξ ◦ Θk and the event EB(k) are both measurable with respect to
the σ-field σ(ξ, (S(j))j≤k), and S ◦Θk is measurable with respect to σ((S(j)− S(k))j>k).
Since σ(ξ, (S(j))j≤k) and σ((S(j) − S(k))j>k) are independent with respect to P , this
implies that ξ ◦Θk and S ◦Θk are independent with respect to P [ · |EB(k)]. Hence ξ and
S are independent with respect to the image measure PB = (P [ · |EB(k)]) ◦ (Θ

k)−1. Since
BigBlock ∈ σ(ξ), this implies part 1.

2. By the independence proven in 1., it suffices to show the two claims LP̃ (S) = LP (S) and
LP̃ (ξd(Z \ J1)) = LP (ξd(Z \ J1)):

• With respect to P , S ◦ Θk and S both have i.i.d. µ-distributed increments and the
starting point 0; thus their distributions coincide. By the above argument, S ◦Θk and
EB(k) are independent with respect to P . Hence the laws of S ◦Θk with respect to P
and with respect to P [ · |EB(k)] coincide with the law LP (S) of S with respect to P .
Hence LP (S) = LP [ · |EB(k)](S ◦ Θ

k) = LPB (S). Since ξ and S are independent with
respect to PB, and since BigBlock ∈ σ(ξ), we obtain the first claim LP̃ (S) = LP (S).

• We condition on fixed values of ξd[−lk, lk] and Sd[0, k]:

We know that ξ ◦ Θk is a translation of ξ by S(k) steps, which is not more than kl;
this translation maps [−lk, lk] to a subset of J1. Thus (ξ ◦ Θk)d(Z \ J1) is obtained
by translating a (S(k)-dependent) subpiece of ξd(Z\ [−lk, lk]). Thus by our i.i.d. and
independence assumptions for ξ and S we get: (ξ ◦Θk)d(Z \ J1) has the distribution
LP (ξd(Z \ J1)) = νZ\J1 with respect to P [ · |ξd[−lk, lk], Sd[0, k]]. Furthermore, (ξ ◦
Θk)d(Z\J1) and (ξ ◦Θk)dJ1 are independent with respect to P [ · |ξd[−lk, lk], Sd[0, k]].

Since EB(k) depends only on ξd[−lk, lk] and Sd[0, k], this implies

LPB
(ξd(Z \ J1)) = LP [ · |EB(k)]((ξ ◦Θ

k)d(Z \ J1)) = νZ\J1 , (8.1)

and ξd(Z \ J1) is independent of ξdJ1 with respect to PB. Since the event BigBlock
depends only on ξdJ1, this independence implies

LP̃ (ξd(Z \ J1)) = LPB
(ξd(Z \ J1)) = νZ\J1 = LP (ξd(Z \ J1)); (8.2)

recall our choice of P̃ . This proves our second claim.
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3. We have just seen: BigBlock ∈ σ(ξdJ1), and the random pieces ξd(Z \ J1) and ξdJ1 are
mutually independent with respect to PB. These two facts imply part 3.

4. This is an immediate consequence of the definition P̃ = PB[ · |BigBlock].

Definition 8.2 For k, κ ∈ N, let ΞBlock(k, κ) be the event of sceneries

ΞBlock(k, κ) :=

{

ξ ∈ CZ
∣

∣

∣

∣

There is an integer interval J0 ⊆ [−lk, lk] with |J0| ≥ κ such
that ξdJ0 = (1)j∈J0 is a constant piece of scenery with value 1.

}

.

(8.3)

We are mostly interested in the case k = n200 , κ = n40.

Lemma 8.3 If κ ∈ 2N is large enough, k ≥ κ2, k ∈ N, and if ξ is a scenery with ξ /∈
ΞBlock(k, κ), then P [EB(k)| ξ] ≤ e−c7k/κ

2
with some constant c7 > 0. As a consequence,

P [EB(k)| ξ /∈ ΞBlock(k, κ)] ≤ e
−c7k/κ2

.

Proof. Let ξ ∈ CZ \ ΞBlock(k, κ). The idea of the proof is to split the time interval [0, k]
into pieces of size κ2. Let us examine at first one of these time intervals of size κ2: A typical
length scale for the distance that the random walks travels in this time interval is κ; in particular
the probability that it travels farther than distance κ is bounded away from 0, at least if κ is
large enough. If the random walk travels that far, it gets close by a point not colored with “1”,
assuming that ξ /∈ ΞBlock(k, κ). (Note that the random walk does not leave the interval [−lk, lk]
up to the time horizon k.) But once the random walk is close enough to a point not colored
with “1”, the probability to hit this point a few steps later is bounded away from 0, too. Thus
in every κ2-sized interval the random walk has a probability bounded away from 0 to see not
only the color 1. There are roughly k/κ2 such intervals in [0, k]; thus the probability to see only
1’s up to the time horizon k is exponentially small in k/κ2.

Formally, we proceed as follows: We define stopping times (τj)j=0,...,bκ−2kc−1:

τj := inf
{

t ∈ [jκ2, (j + 1/2)κ2] | ξd[S(t), S(t) + l→] is not constant 1
}

. (8.4)

In other words, τj is the smallest time in the interval [jκ2, (j + 1/2)κ2] when there is a point
sufficiently close to the right of the location of the random walker which is not colored with “1”.
If no such time exists, τj =∞. We claim: For some constant c8 > 0 holds

P
[

τj <∞ | ξ, Sd[0, jκ
2]
]

≥ c8. (8.5)

This means: Uniformly in ξ ∈ CZ \ ΞBlock(k, κ) and in the history of the random walker up to
time jκ2, the chance that the random walk will get sufficiently close to a point not colored by
“1” during the next κ2/2 steps is bounded from below by a positive constant.

To prove (8.5), we observe by the Markov property, ∆j := S((j + 1/2)κ2) − S(jκ2) has the

distribution µ∗κ
2/2 with respect to the conditional law P ′j := P [· | ξ, Sd[0, jκ2]]; recall that κ

is even. Since µ∗κ
2/2 has the standard deviation c9κ for some constant c9, the Central Limit

Theorem implies
P [∆j ≥ κ] ≥ c10 (8.6)
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for large enough κ. Here c10 denotes a fixed positive constant less than P [X ≥ c−19 ], and X is a
standard normal random variable. Observe that whenever ξ ∈ CZ \ΞBlock(k, κ) and ∆j ≥ κ hold
(i.e. in the interval of interest the random walk S moves at least the distance κ to the right),
then τj is finite (i.e. the random walk passes close to a point which is not colored with 1). This
is true since ξ ∈ CZ \ ΞBlock(k, κ) implies that ξd[S((j + 1/2)κ2), S((j + 1/2)κ2) + κ] cannot be
a constant piece 1, and since the random walk does not perform jumps to the right larger than
l→. Since the jump distribution µ is not supported on a strict sublattice γZ of Z, there is a fixed
L ∈ N such that [0, l→] ⊆

⋃L
`=0 supp(µ

∗`). If the event {τj < ∞} holds, then ξ is not constant
1 on the interval [S(τj), S(τj) + l→]. Let Aj denote the event that χd[jκ2, (j + 1)κ2] is constant
1. Then we have for some constant 1 > c11 > 0 and κ2/2 ≥ L:

P ′j [A
c
j ] ≥ P ′j [τj <∞]P ′j [∃` ∈ [0, L] : χ(τj + `) 6= 1 | τj <∞] (8.7)

≥ c8P
′
j [∃` ∈ [0, L] : χ(τj + `) 6= 1 | τj <∞] ≥ c11.

Hence we obtain by the Markov property:

P [EB(k) | ξ] ≤ P





bκ−2kc−1
⋂

j=0

Aj

∣

∣

∣

∣

∣

∣

ξ



 = E





bκ−2kc−1
∏

j=0

P ′j [Aj ]

∣

∣

∣

∣

∣

∣

ξ



 ≤ (1− c11)
bκ−2kc. (8.8)

This proves Lemma 8.3

Proof of Lemma 5.2. Let σ2 := Var [S(1)] be the variance of the single step distribution µ.
Consider the integer interval I := [−2σn100 , 2σn

10
0 ] ∩ Z; then

P [ξdI = (1)j∈I ] = |C|
−|I| ≥ |C|−4σn

10
0 −1. (8.9)

The first submartingale inequality states P [max0≤j≤tXj > λ] ≤ E[Xt]/λ, for λ > 0 and nonneg-
ative submartingales Xt. Recall that S2 is a submartingale, since x 7→ x2 is convex. Applying
the submartingale inequality yields:

P
[

∃j ∈ [0, n200 ] : S(j) /∈ I
]

= P

[

max
0≤j≤n20

0

S(j)2 > 4σ2n200

]

≤ (4σ2n200 )−1E
[

S(n200 )2
]

=
1

4
.

(8.10)
If S(j) ∈ I is valid for all j ∈ [0, n200 ] and if ξdI = (1)j∈I holds, then χd[0, n200 ] = (1)j∈[0,n20

0 ].

Thus (8.9) and (8.10) and the independence of S and ξ imply

P
[

EB(n
20
0 )
]

≥
3

4
|C|−4σn

10
0 −1. (8.11)

Hence we get for some constant c3 > 0, using Lemma 8.3 and the abbreviations Ξc
Block =

CZ \ ΞBlock(n
20
0 , n

4
0) and EB = EB(n

20
0 ):

P [ξ ∈ Ξc
Block|EB] ≤

P [EB| ξ ∈ Ξc
Block]

P [EB]
≤

4

3
|C|4σn

10
0 +1e−c7n

12
0 ≤ e−c3n

12
0 . (8.12)

The shift operation Θn20
0 applied to (ξ, S) cannot shift the scenery ξ by more than ln200 steps,

and every shift of the interval [−ln200 , ln
20
0 ] by not more than ln200 steps is contained in J1. Thus

the shifted event Θ−n
20
0 BigBlock occurs whenever the event ξ ∈ ΞBlock holds; thus (8.12) implies

P [Θ−n
20
0 BigBlockc | EB] ≤ e

−c3n12
0 , which is equivalent to the claim of Lemma 5.2.
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Proof of Lemma 5.3. Define Ω′ := CZ\J1 ×Ω2 and write Ω = CZ ×Ω2 = C
J1 × CZ\J1 ×Ω2 =

CJ1 × Ω′. Then by definition of the measure P and by Lemma 8.1 we have P = νJ1 ⊗ PΩ′ and
P̃ = P̃J1 ⊗ PΩ′ where PΩ′ and P̃J1 , respectively, are the marginal distributions of P̃ on Ω′ and
CJ1 , respectively. Thus we have for all measurable cylinder-sets of the form E = {e1}×E2 ⊂ Ω,
where e1 ∈ C

J1 and E2 ⊆ Ω′:

P̃ [E] = P̃J1 [{e1}]PΩ′ [E2] ≤ |C|
4ln20

0 +1νJ1 [{e1}]PΩ′ [E2] = |C|
4ln20

0 +1P [E] (8.13)

where the inequality follows because ν is the uniform distribution on C, |J1| = 4ln200 +1, and P̃J1

is bounded from above by one. Since CJ1 is finite, every measurable subset of Ω can be written
as a finite disjoint union of sets of the above form {e1} × E2 with e1 ∈ C

J1 and E2 ⊆ Ω′. This
proves the result.

8.2 The stopping times T
0

We start with the definition of a sequence T 0 =
(

T 0
k

)

k≥0 of G-adapted stopping times with values

in [0, 212αn0 ]. Roughly speaking, these times search for long blocks of 1’s in the observation χ.
Here is intuitive idea behind this construction: Since we conditioned on a large block of 1’s to
occur in the true scenery ξ close to the origin, observing a long block of 1’s at a later time
indicates with high probability that the random walk has returned close to the origin. This is
true only up to a certain time horizon, since long blocks of 1’s in the true scenery will occur
far from the origin, as well. In turns out that the appropriate time horizon is of length 212αn0 .
Hence we define our first stopping times and the corresponding events as follows.

Definition 8.4 Let the random set T0(χ) be defined as follows:

T0(χ) :=
{

t ∈ [0, 212αn0 − n70[
∣

∣ χd [t, t+ n70] is constant 1
}

. (8.14)

We arrange the elements of T0(χ) in increasing order: t0(0) < . . . < t0(|T0(χ)| − 1). We set

T 0
k (χ) :=

{

t0(2 · 2
2n0k) + n70 if 2 · 22n0k < |T0(χ)|,

212αn0 otherwise.
(8.15)

Finally, we define the following variant of the event E0
stop,T 0 defined in (3.14):

Ẽ0
stop,T 0 =

2αn0
⋂

k=0

{

T 0
k (χ) < 212αn0 , |S(T 0

k (χ))| ≤ 2n0/2, T 0
j (χ) + 2 · 22n0 ≤ T 0

k (χ) for j < k
}

.

(8.16)

Comparing this Definition (8.16) with the Definition (3.14) of the event E0
stop,T 0 ,

E0
stop,T 0 =

2αn0
⋂

k=0

{

T 0
k (χ) < 212αn0 , |S(T 0

k (χ))| ≤ 2n0 , T 0
j (χ) + 2 · 22n0 ≤ T 0

k (χ) for j < k
}

,

(8.17)
one sees the only difference between the two events: The new event Ẽ0

stop,T 0 requires the random

walk S to be much closer to the origin at the stopping times T 0 than the old event E0
stop,T 0 does,

using the new length scale 2n0/2 rather than 2n0 . In particular, we have

Ẽ0
stop,T 0 ⊆ E

0
stop,T 0 . (8.18)
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Theorem 8.5 For some positive constants c36 and c37 it holds

P̃
[

E0
stop,T 0

]

≥ P̃
[

Ẽ0
stop,T 0

]

≥ 1− c36e
−c37n0 . (8.19)

We prepare the proof of Theorem 8.5 by some definitions and lemmas. We use again the ab-
breviation J1 = [−2ln200 , 2ln

20
0 ]. Analogously to Definition (7.2), we define events Ẽ0

enough back,I :

Definition 8.6 Let I ⊆ J1 be an integer interval. We define

Ẽ0
enough back,I :=

{

Up to time 212αn0/4, S visits the interval I at least 23αn0 times
}

. (8.20)

Next we will see that these ”frequent returns” to the interval I in the first time steps have
large probability.

Lemma 8.7 For some constants c38 > 0 and c39 > 0, the following holds: If I ⊆ J1, |I| ≥ l, is
an integer interval, then

P̃ [Ẽ0
enough back,I ] ≥ 1− c38e

−c39n0 . (8.21)

Proof. Let TI := inf{t | S(t) ∈ I} be the entrance time of S into I. We show first: For some
positive constants c40 and c41 (depending at most on the distribution µ of S(1)) we have:

P̃
[

TI ≥ 212αn0/8
]

≤ c40e
−c41n0 . (8.22)

If 0 ∈ I, this is trivial, since S starts in 0. Otherwise I contains only positive numbers, or it
contains only negative numbers; without loss of generality we assume the first possibility. Let
z = min I ∈]0, 2ln200 ]. Consider the interval J :=]− 2n0 , z[ ⊆ ]− 2n0 , 2n0 [, and consider the exit
time H := inf{t | S(t) /∈ J} of J . Note that H is a.s. finite.

On the one hand, we know
P̃ [H ≥ t] ≤ c42e

−c432−2n0 t (8.23)

for some constants c42, c43 > 0 depending at most on the variance of S(1), since in every time
interval of size 22n0 the random walk has a positive probability to exit J , bounded away from
0. In particular, for t = 212αn0/8 the probability in (8.23) is superexponentially small in n0, if
α is large enough (see Subsection 2.1).

On the other hand, since S is a martingale and since S has jump sizes bounded by l, we get
P̃ [S(H) > 0] ≥ 1− (z + l)2−n0 . Furthermore, using again that S has jump sizes bounded by l,
we know the following: If S(H) > 0, then S(H) ∈ I and TI = H, since z is the leftmost point
in I and |I| ≥ l; the random walk cannot cross I without touching it.

Altogether, we have the following upper bound for the left hand side in (8.22):

P̃ [H ≥ 212αn0/8 or S(H) < 0] ≤ c40e
−c41n0 . (8.24)

for some positive constants c40 and c41.
Provided the random walk visits a point x ∈ I, the probability to visit this point again at

least 23αn0 times in the subsequent 212αn0/8 time steps is at least 1 − c282
−αn0 . This follows

from Lemma 7.2, using the strong Markov property of the random walk; recall that the law of
S with respect to P and with respect to P̃ coincide. Combining this with (8.22) yields claim
(8.21) of Lemma 8.7.
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We remark: Lemma 8.7 holds not only for deterministic intervals I, but also for random ones,
provided that I and S are independent. We use this below for the following specific choice of I,
which depends on the scenery ξ, but not on S:
P̃ -a.s. there is a (random) integer interval J0 ⊆ J1 = [−2ln200 , 2ln

20
0 ] with |J0| ≥ n

4
0 such that

ξdJ0 is constant 1; recall Definition 3.2. Just for definiteness we take the rightmost such J0. Let

I = I(ξ) :=
{

z ∈ J0
∣

∣ dist(z,Z \ J0) > n40/4
}

; (8.25)

then I is P̃ -a.s. well defined, and it is an integer interval containing |I| ≥ n40/2 ≥ l points.
The following is a modification of Definition 7.3. We define those times t, for which the

random walk is in the random set I(ξ) and does not travel further than distance n40/4 in the
next n70 steps. Correspondingly, we define a new version of the event Ewhen back recog given in
Definition 7.3, that specifies that sufficiently many of the visits to I(ξ) fulfill this requirement.

Definition 8.8 Let w(k), k ≥ 0, denote the (k + 1)st visit to the (random) set I(ξ) by the
random walk S. We introduce a random set T0′ and an event Ẽ0

when back recog:

T0′ :=
{

t ∈ N
∣

∣ S(t) ∈ I(ξ) and |S(j)− S(t)| ≤ n40/4 for 0 ≤ j − t ≤ n70
}

, (8.26)

Ẽ0
when back recog :=

{

For more than 1/4 of the points k ∈ [0, 22αn0 [ holds w(k2αn0) ∈ T0′ } .
(8.27)

Furthermore, we set

Ẽ0
no error,T 0 := {∀k ∈ N : If T 0

k (χ) < 212αn0 , then |S(T 0
k (χ))| ≤ 2n0/2}. (8.28)

Note that (8.28) uses again the length scale 2n0/2, in contrast to the length scale 2nm in Definition
(7.1).
We prove the following modification of Lemma 7.6, that shows that Ẽ0

when back recog is a likely
event.

Lemma 8.9 P̃
[(

Ẽ0
when back recog

)c]

≤ 0.92
2αn0 .

Proof. We observe as in (8.10) by the submartingale inequality:

P [|S(j)| ≤ n40/4 for 0 ≤ j ≤ n70] ≥ 1− 42n−80 E
[

S(n70)
2
]

= 1−
16Var[S(1)]

n0
≥

1

2
, (8.29)

since n0 is large enough; see Subsection 2.1. Let Yk denote the indicator function of the event
{w(k2αn0) ∈ T0′}; the Yk are P̃ -a.s. well defined. As a consequence of the strong Markov
property, the Yk, k ∈ [0, 22αn0 [, are i.i.d. Bernoulli random variables; note that the stopping
times w(k2αn0), k ∈ N, have at least the spacing 2αn0 > n70. Furthermore P̃ [Yk = 1] ≥ 1/2,
since this probability equals the left hand side in (8.29); recall that the laws of S with respect
to P and with respect to P̃ coincide. The claim of the Lemma now follows by the same large
deviation argument as in (7.10).

Next, we claim the following analogue of Lemma 7.4:

Lemma 8.10 The inclusion T0 ⊇ T0′ ∩ [0, 212αn0 − n70[ holds P̃ -almost surely.
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Proof. Assume that the event BigBlock holds; this occurs P̃ -almost surely. Then I(ξ) is well
defined. Let t ∈ T0′, t < 212αn0 −n70. Then S(t) ∈ I(ξ), and during the subsequent n70 steps, the
random walk S cannot leave the interval J0, since it does not travel farther than n40/4 (recall
definition (8.26)), and since Z \ J0 is more distant than this from I(ξ) (recall the definition
of I(ξ)). Since ξdJ0 is constant 1 by definition (3.4) of the event BigBlock, this implies that
Sd[t, t+ n70] is constant 1; i.e. t ∈ T0.

The following Lemma is a slight modification of Lemma 7.5; except little differences, the
proofs are also very similar.

Lemma 8.11 Assume that the events

Ẽ0
no error,T 0 ∩ Ẽ

0
enough back,I(ξ) ∩ Ẽ

0
when back recog and T0(χ) ⊇ T0′ ∩ [0, 212αn0 − n70[ (8.30)

hold. Then Ẽ0
stop,T 0 holds, too.

Proof. Using Ẽ0
enough back,I(ξ), we know

w(k2αn0) ∈ [0, 212αn0/4] ⊆ [0, 212αn0 − n70[ (8.31)

for all k ∈ [0, 22αn0 [. Since the event Ẽ0
when back recog holds, we obtain the following by the second

hypothesis in (8.30):
|T0(χ)| ≥

∣

∣T0′ ∩ [0, 212αn0 − n70[
∣

∣ ≥ 22αn0/4. (8.32)

By Definition (8.15) of the stopping times T 0, this yields T 0
k (χ) < 212αn0 for all k < (22αn0/4)/(2·

22n0) = 22(α−1)n0/8. The event Ẽ0
no error,T 0 holds, and 22(α−1)n0/8 ≥ 2αn0 ; recall that α and n0

are large (see Section 2.1). Hence we obtain |S(T 0
k (χ))| ≤ 2n0/2 for all k ∈ [0, 2αn0 [. Using

Definition (8.15) again, we conclude that T 0
j (χ) + 2 · 22n0 ≤ T 0

k (χ) is valid for j < k whenever

T 0
k (χ) < 212αn0 , which is the case at least for k ∈ [0, 2αn0 [. Summarizing, we have proven that

the event Ẽ0
stop,T 0 holds; recall its definition (8.16).

Next we defines those sceneries that do not contain long (i.e. longer than n20) blocks of ones
around the origin apart from those contained in J1.

Definition 8.12 We define the event of sceneries

Ξ0
no blocks :=

{

ξ ∈ CZ
∣

∣

∣

∣

For every (integer) interval J ⊆ [−2l212αn0 , 2l212αn0 ] \ J1
with |J | = n20 it holds: ξdJ is not constant 1.

}

(8.33)

These sceneries turn out to be sufficiently likely.

Lemma 8.13 For some positive constants c44, c45 holds P̃ [ξ ∈ Ξ0
no blocks] ≥ 1− c44e

−c45n0.

Proof. For every fixed interval J ⊆ [−2 · l212αn0 , 2 · l212αn0 ] \ J1 with |J | = n20 we have

P̃ [ξdJ is constant 1] = |C|−n
2
0 , (8.34)

which is superexponentially small in n0. Furthermore, there are less than 4l212αn0 such intervals.
Thus P̃ [ξ /∈ Ξ0

no blocks] ≤ 4l212αn0 |C|−n
2
0 , which is still superexponentially small in n0. This

implies the lemma. Note that we may choose c44, c45 independent of α for n0 large enough, even
though 4l212αn0 |C|−n

2
0 does depend on α (see Subsection 2.1).
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Lemma 8.14 For some constants c46, c47 > 0 holds

P̃ [(Ẽ0
no error,T 0)

c] ≤ c46e
−c47n0 . (8.35)

Proof. Let X be defined by

X := {x ∈ Z|x+ [−ln70, ln
7
0] ⊆ [−2l212αn0 , 2l212αn0 ] \ J1}. (8.36)

As a consequence of Lemma 8.3 (with the parameters k = n70 and κ = n20) we know for every
ξ ∈ CN such that ξd[−ln70, ln

7
0] contains no block of 1’s of length n20:

Pξ[ξ ◦ Sd[0, n
7
0] is constant 1] ≤ e

−c7n3
0 . (8.37)

Let t ∈ N and let ξ ∈ Ξ0
no blocks. Using the Markov property of the random walk, (8.37) implies

the following:
Pξ[ξ ◦ Sd(t+ [0, n70]) is constant 1 | S(t) ∈ X ] ≤ e

−c7n3
0 . (8.38)

If t < 212αn0 and |S(t)| > 2n0/2 holds, then we know S(t) ∈ X ; note that J1 = [−2ln200 , 2ln
20
0 ]

has a distance larger than ln70 from Z \ [−2n0/2, 2n0/2], and recall that S cannot travel faster
than with speed l, and that n0 is large by Subsection 2.1.

Thus (8.38) implies

Pξ[(E
0
no error,T 0)

c] (8.39)

≤ Pξ[There is t < 212αn0 such that |S(t)| > 2n0/2 and ξ ◦ Sd(t+ [0, n70]) is constant 1]

≤ 212αn0e−c7n
3
0 ≤ e−n0 ;

for the last inequality recall that n0 was chosen large enough, depending on α (see Subsection
2.1). Combining this with Lemma 8.13 yields for some positive constants c46, c47:

P̃ [(Ẽ0
no error,T 0)

c] ≤ P̃ [ξ /∈ Ξ0
no blocks] +

∫

{ξ∈Ξ0
no blocks}

Pξ[(E
0
no error,T 0)

c] dP̃ ≤ c46e
−c47n0 . (8.40)

Proof of Theorem 8.5. From Lemmas 8.10 and 8.11 we know that

P̃ [(Ẽ0
stop,T 0)

c] ≤ P̃ [(Ẽ0
no error,T 0)

c] + P̃ [(Ẽ0
enough back,I(ξ))

c] + P̃ [(Ẽ0
when back recog)

c]. (8.41)

Hence the claim of Theorem 8.5 is a consequence of Lemmas 8.7, 8.9, and 8.14.

8.3 The stopping times T
1

Unfortunately, the constructed stopping times T 0 are not good enough as arguments for the
first reconstruction Algorithm “Algn”: We cannot construct more than roughly exp(constn40)
reliable stopping times based on the way we build the T 0 stopping times; our actual construction
uses only 2αn0 ¿ exp(constn40) of these stopping times. If we were using too many stopping
times of the type T 0, we could not guarantee that they really stop the random walk with high
probability close to the origin. However, the number exp(constn40) is much too small to collect
a sufficiently large puzzle for reconstructing at least the modified piece ξdJ1 in the scenery using
our reconstruction algorithm. To illustrate this fact, we remark that we have only roughly an
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upper bound dP̃ /dP ≤ exp(constn200 ); see Lemma 5.3. A modification of the parameters does
not solve this problem. The reconstruction algorithm “Algn” needs as input data sufficiently
reliable stopping times, which stop the random walk close to the origin; but the stopping times
T 0 are not reliable enough for this purpose. Thus we need an essentially improved series of
stopping times T 1 to get the reconstruction algorithm started.

Our construction of T 1 is partially parallel to the construction of the partial reconstruction
algorithm Algn, but it is also partially parallel to the construction of the stopping times Tf and
T 0: Roughly speaking, we collect a set of typical signals (“a puzzle”) at the very beginning and
another one at a candidate time. Instead of matching the pieces together, we just compare the
two puzzles: If the puzzles have a sufficiently high overlap, then they were generated with high
probability at roughly the same location.

Fortunately, many constructions of the previous sections can be used again, up to small
modifications: There are extra complications due to the presence of a modified domain J1. We
keep the presentation rather close to the previous sections to show the parallelism. Here is the
formal definition of the “new” puzzles and of T 1:

Definition 8.15 We set, using the abbreviation Input0 := (T 0(χ), χd[0, 2 · 212αn0 [):

Puzzlen0

III(χ) := (8.42)
{

(w1, w2, w3) ∈ Puzzlen0

I (Input0)
∣

∣∃k ∈ [0, 2αn0 [: w1w2w3 v χd(T
0
k (χ) + [0, 2n0/l])

}

,

Puzzlen0

IV(χ) :=
{

w2 ∈ C
c1n0 | ∃w1, w3 ∈ C

c1n0 : (w1, w2, w3) ∈ Puzzlen0

III(χ)
}

, (8.43)

T1(χ) :=

{

t ∈ [0, 212αn1 − 2 · 212αn0 [

∣

∣

∣

∣

|Puzzlen0

IV(χ) ∩ Puzzlen0

IV(θ
tχ)| ≥ 2n0/3

and |Puzzlen0

IV(θ
tχ)| ≤ 50 · 2n0

}

. (8.44)

Finally we define another sequence T 1 =
(

T 1
k

)

k≥0 of G-adapted stopping times with values in

[0, 212αn1 ]: Let t1(0) < . . . < t1(|T1(χ)| − 1) be the elements of T1(χ) arranged in increasing
order. For k ∈ N, we set

T 1
k (χ) :=

{

t1(2 · 2
2n1k) + 2 · 212αn0 if 2 · 22n1k < |T1(χ)|,

212αn1 otherwise.
(8.45)

Note that T 0(χ) only depends on χd[0, 212αn0 [; thus Puzzlen0

IV(χ) only depends on χd[0, 2 ·212αn0 [,
since 2n0/l ≤ 212αn0 .

The reason why we introduce PuzzleIII and PuzzleIV, rather than using PuzzleI and PuzzleII
again, is explained intuitively before Lemma 8.23, below.

Next we introduce sets to control the position of the words in Puzzlen0

IV(χ). The idea behind
the following construction is roughly that from words read in J1 we obtain information that could
be potentially misleading. Moreover, the sets CenterII and CenterIII defined below will serve as
potential upper and lower bounds, respectively, for the sets of puzzle words Puzzlen0

IV(χ). Hence
with their help we will control the overlap between the words in Puzzlen0

IV(χ) and in Puzzlen0

IV(θ
tχ).

Definition 8.16 Using the abbreviation J1 = [−2ln200 , 2ln
20
0 ] from Definition 3.2 again, we
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define the following random sets:

CorPaths :=










R ∈ Z[0,c1n0[

∣

∣

∣

∣

∣

∣

∣

R is an admissible piece of path, for every admissible piece of path
R′ : [0, c1n0[→ Z with R′(0) = R(0) and R′(c1n0−1) = R(c1n0−1)
holds ξ ◦ R′ = ξ ◦ R, and there is such a path R′ which takes at
least one value in J1.











, (8.46)

Corrupted := {ξ ◦R ∈ Cc1n0 |R ∈ CorPaths} , (8.47)

CenterI := {w ∈ C
c1n0 | w is a (left or right) ladder word of ξd([−11 · 2n0 , 11 · 2n0 ] \ J1)} ,

(8.48)

CenterII := CenterI ∪ Corrupted, (8.49)

CenterIII :=

{

w ∈ Cc1n0 |
w is a right ladder word of

ξd([−2 · 2n0/2, 2 · 2n0/2] \ [−2n0/2, 2n0/2])

}

. (8.50)

For the following lemma it will be helpful to recall the Definition 6.15 of the event Bn0

unique fit(J1).
This events basically says that no two i– resp. j– spaced words ξdI, resp. ξdJ in [−11 ·2n0 ,−11 ·
2n0 ] \ J1 look the same, no matter of they are both read in the same or in different directions.

Lemma 8.17 There exist constants c18, c19 > 0 such that the following holds:

P̃
[

(Bn0

unique fit(J1))
c
]

≤ c18e
−c19n0 . (8.51)

Proof. We observe that the event Bn0

unique fit(J1), introduced in Definition 6.15, depends only on
the part ξd(Z \ J1) of the scenery outside the region J1. Since the probability measures P and
P̃ coincide on the σ-algebra generated by ξd(Z \ J1) and S according to part 2 in Lemma 8.1,
this implies

P̃
[

(Bn0

unique fit(J1))
c
]

= P
[

(Bn0

unique fit(J1))
c
]

. (8.52)

Thus the claim (8.51) follows from Lemma 6.33.
The next lemma controls the size of our upper and lower bounds CenterII and CenterIII,

respectively.

Lemma 8.18 |CenterI| ≤ 46 · 2n0, |Corrupted| ≤ n410 , and thus |CenterII| ≤ 50 · 2n0. If the event
Bn0

unique fit(J1) holds, then |CenterIII| ≥ 2n0/3.

Proof. The first statement is obvious, since there are at most 23 · 2n0 choices for the leftmost
point of a ladder interval in [−11 · 2n0 , 11 · 2n0 ], and there is the binary choice “left” or “right”.

We show |Corrupted| ≤ n410 next: The number of pairs (R(0), R(c1n0 − 1)) ∈ Z2 with R ∈
CorPaths is bounded by (|J1|+c1n0l)

2 ≤ n410 ; recall that n0 was chosen to be large (see Subsection
2.1). Furthermore, every such pair gives rise to at most a single element of Corrupted, since
different paths R,R′ ∈ CorPaths with the same starting point and the same end point generate
the same word ξ◦R = ξ◦R′ by Definition (8.46). This shows |Corrupted| ≤ n410 ≤ 4 ·2n0 , since n0
is large enough by Subsection 2.1. Using the definition of CenterII, we obtain |CenterII| ≤ 50 ·2n0 .

Finally we show |CenterIII| ≥ 2n0/3. We observe that [−2 · 2n0/2, 2 · 2n0/2] \ [−2n0/2, 2n0/2] is
disjoint from J1. Assuming that Bn0

unique fit(J1) holds, this implies that all right ladder intervals

I1, I2 ⊆ [−2 · 2n0/2, 2 · 2n0/2] \ [−2n0/2, 2n0/2], with I1 6= I2 |I1| = |I2| = c1n0 ≥ c2n0 generate
pairwise different ladder words (ξdI1)→ 6= (ξdI2)→. Since there are at least 2n0/2− c1n0 ≥ 2n0/3
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such ladder intervals (n0 is large enough; see Subsection 2.1), there are as least as many ladder
words w ∈ CenterIII.

The T 1 stopping times should not erroneously stop the random walk too far from the origin:
If the random walk at time t is at a location x far away from the origin, we want the puzzle
Puzzlen0

IV(θ
tχ) collected there to have only a small overlap with the puzzle Puzzlen0

IV(χ) collected
at the starting point, provided Puzzlen0

IV(θ
tχ) is not anyway too large. The next lemma helps us

to control this event, using the potential upper bound CenterII of Puzzlen0

IV(χ).

Lemma 8.19 For every x ∈ Z with |x| > 2 · 2n0 +2l212αn0 and for every t ∈ [0, 212αn1 [ it holds:

P̃
[

S(t) = x, |Puzzlen0

IV(θ
tχ)| ≤ 50 · 2n0 , and |CenterII ∩ Puzzlen0

IV(θ
tχ)| ≥ 2n0/3

]

≤ exp{−2n0/4}.
(8.53)

Proof. We set

Outsidex,t :=

{

Puzzlen0

IV(θ
tχ) if S(t) = x and |Puzzlen0

IV(θ
tχ)| ≤ 50 · 2n0 ,

∅ else.
(8.54)

The random set Puzzlen0

IV(θ
tχ) only depends on χd[t, t+2 · 212αn0 [, and the random walk cannot

travel a longer distance than 2l212αn0 during the time interval [t, t+ 2 · 212αn0 [. Given S(t) = x
and |x| > 2 · 2n0 +2l212αn0 , the random walk S cannot enter the interval [−2 · 2n0 , 2 · 2n0 ] during
the time interval [t, t+2 ·212αn0 [; thus Outsidex,t depends only on S and ξd(Z\ [−2 ·2n0 , 2 ·2n0 ]).
Hence, using Lemma 8.1 and J1 ⊆ [−2·2n0 , 2·2n0 ], the random piece of scenery ξd[−2·2n0 , 2·2n0 ]
and the random set Outsidex,t are independent with respect to P̃ . Let Ir denote the set of all
right ladder intervals I ⊆ [−2 · 2n0 , 2 · 2n0 ] \ J1 with |I| = c1n0. We define Il similarly with
“right ladder intervals” replaced by “left ladder intervals”. We partition Ir into c1n0l→ subsets,
I ′r(1), . . . , I

′
r(c1n0l→):

I ′r(k) := {I ∈ Ir | min I ∈ k + c1n0l→Z} (8.55)

Let k ∈ [1, c1n0l→] be fixed. Note that the cardinality N := |I ′r(k)| fulfills the bounds

2n0

c1n0l→
≤

4 · 2n0

c1n0l→
− |J1| − 2c1n0 ≤ N ≤

4 · 2n0

c1n0l→
. (8.56)

Furthermore, the elements of I ′r(k) are pairwise disjoint; thus the family (ξdI)I∈I′r(k) is i.i.d. and

independent of Outsidex,t (with respect to P̃ ). For I ∈ Ir, we set X
r
I := 1 for (ξdI)→ ∈ Outsidex,t,

and Xr
I := 0 otherwise. Similarly for J ∈ Il, let X

l
J denote the indicator function of the event

{(ξdJ)← ∈ Outsidex,t}. Then, conditioned on a given value of Outsidex,t, the Bernoulli random
variables Xr

I , I ∈ I
′
r(k), are i.i.d. with respect to P̃ [ · |Outsidex,t]. Furthermore we have, using

|Outsidex,t| ≤ 50 · 2n0 :

P̃ [Xr
I = 1 | Outsidex,t] ≤ |Outsidex,t||C|

−|I| ≤ 50e(log 2−c1 log |C|)n0 =: p. (8.57)

We set Y r
k :=

∑

I∈I′r(k)X
r
I . Consequently this random variable is stochastically dominated

by a Binomial(N, p)–distributed random variable; note that Y r
k is binomially distributed with

respect to the conditional measure P̃ [ · |Outsidex,t]. A rough but simple large deviation estimate
suffices for our purposes: Using the exponential Chebyshev inequality, we have for a > 0 and
σ := log(a/p) > 0:

P̃ [Y r
k ≥ Na] ≤ E[eσY

r
k−Na] ≤ (peσ(1−a) + (1− p)e−σa)N = ((1 + a− p)paa−a)N (8.58)

≤ (eapaa−a)N = exp{Na(1− log(a/p))}
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In particular, we obtain for the choice a = N−12n0/3/(4c1n0l→) ≥ 2−2n0/3/16 (where we have
used (8.56)), using (8.57): σ = log(a/p) ≥ (c1 log |C| −

5
3 log 2)n0 − log 800 ≥ c1(log |C|)n0/2 + 1;

the last inequality holds by our choice of c1 and n0 (see Subsection 2.1). Hence we obtain:

P̃

[

∑

I∈Ir
Xr
I ≥

2n0/3

4

]

≤
c1n0l→
∑

k=1

P̃ [Y r
k ≥ Na] ≤ c1n0l→ exp{Na(1− log(a/p))}

≤ c1n0l→ exp

{

−
log |C|

8l→
2n0/3

}

≤
1

2
exp{−2n0/4}. (8.59)

The same argument works for left ladder intervals, too:

P̃





∑

J∈Il
X l
J ≥

2n0/3

4



 ≤
1

2
exp{−2n0/4}. (8.60)

We know |Corrupted| ≤ n410 ≤ 2n0/3/2 (see Lemma 8.18), and hence

|CenterII∩Outsidex,t| ≤ |CenterI∩Outsidex,t|+ |Corrupted| ≤ |CenterI∩Outsidex,t|+
2n0/3

2
(8.61)

by Definition (8.49) of CenterII. Combining this with (8.60) and (8.59), we obtain

P̃
[

|CenterII ∩ Outsidex,t| ≥ 2n0/3
]

≤ P̃

[

|CenterI ∩ Outsidex,t| ≥
2n0/3

2

]

(8.62)

≤ P̃

[

∑

I∈Ir
Xr
I ≥

2n0/3

4

]

+ P̃





∑

J∈Il
X l
J ≥

2n0/3

4



 ≤ exp{−2n0/4}.

The claim (8.53) is an immediate consequence of this bound and the Definition (8.54) of
Outsidex,t.

The following is a modified version of Lemma 6.37. To this end it may be useful to recall
Definition (6.21) of the event Bn0

recogn straight(J1). Up to a possible perturbation by J1, this event
describes that ladder paths can be distinguished from non-ladder paths by some uniqueness
property of their color record.

Lemma 8.20 There exist positive constants c25 and c26 not depending on n0 such that:

P̃
[

(Bn0

recogn straight(J1))
c
]

≤ c25e
−c26n0 . (8.63)

Proof. The main difference between Lemma 6.37 and Lemma 8.20 is the usage of the modified
measure P̃ instead of P . However, the event Bn0

recogn straight(J1), introduced in definition (6.21),
only depends on the part ξd(Z \ J1) of the scenery outside J1. Indeed: Given R ∈ AdPaths(11 ·
2n0 , c1n0) with R(c1n0 − 1) − R(0) /∈ {(c1n0 − 1)l→, (c1n0 − 1)l←}, there are two cases: Either
some R̄ ∈ AdPaths(12 ·2n0 , c1n0) with R̄(0) = R(0) and R̄(c1n0−1) = R(c1n0−1) takes at least
one value in J1 (“case 1”), or no such R̄ touches J1 (“case 2”).

• In case 1, we do not need to evaluate ξ ◦R of ξ ◦ R̄ in order to check the defining condition
(6.21) of Bn0

recogn straight(J1).
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• In case 2, ξ ◦R and ξ ◦ R̄ depend only on ξd(Z \ J1).

On the other hand, the distributions of ξd(Z \ J1) with respect to P and with respect to P̃ are
the same by Lemma 8.1. Thus

P̃ [(Bn0

recogn straight(J1))
c] = P [(Bn0

recogn straight(J1))
c] ≤ c25e

−c26n0 (8.64)

follows from Lemma 6.37. This proves the claim (8.63).
We need the following modification of Definition 6.18:

Definition 8.21

Ẽn0

only ladder :=















For all (w1, w2, w3) ∈ Puzzlen0

I (Input0) and every admissible piece
of path R : [0, 3c1n0[→ [−11 · 2n0 , 11 · 2n0 ] with ξ ◦ R = w1w2w3

holds: w2 is a ladder word of ξd[−11 · 2n0 , 11 · 2n0 ], or w2 ∈
Corrupted.















. (8.65)

Here is an analogue of Lemma 6.19; recall the definition (6.9) of the events Bn
all paths,τ :

Lemma 8.22 We have

Bn0

all paths,T 0 ∩B
n0

recogn straight(J1) ⊆ Ẽ
n0

only ladder. (8.66)

Proof. The proof is partially similar to the proof of Lemma 6.19. Assume the event Bn0

all paths,T 0∩

Bn0

recogn straight(J1) holds, and let (w1, w2, w3) ∈ Puzzlen0

I (Input0), R ∈ AdPaths(11 · 2n0 , 3c1n0)

with ξ ◦R = w1w2w3. We prove by contradiction that Ẽn0

only ladder holds: Assume that w2 is not
a ladder word of ξd[−11 · 2n0 , 11 · 2n0 ] and w2 /∈ Corrupted. We distinguish two cases: Either
the middle piece Rd[c1n0, 2c1n0[ of R belongs to CorPaths when being time-shifted back to the
origin (“case 1”), or it does not (“case 2”).

• In case 1, w2 = (ξ ◦Rd[c1n0, 2c1n0[)→ ∈ Corrupted by Definition (8.47), which contradicts
our assumption.

• In case 2, using Definition (8.46) of CorPaths, there is an admissible piece of path R′ :
[c1n0, 2c1n0[→ Z with R′(c1n0) = R(c1n0) and R′(2c1n0 − 1) = R(2c1n0 − 1) such
that w′2 := (ξ ◦ R′)→ 6= (ξ ◦ Rd[c1n0, 2c1n0[)→ (“case 2.1”), or all admissible paths
R′ : [c1n0, 2c1n0[→ Z with R′(c1n0) = R(c1n0) and R′(2c1n0 − 1) = R(2c1n0 − 1) do
not touch J1 and fulfill ξ ◦R′ = ξ ◦Rd[c1n0, 2c1n0[ (“case 2.2”).

– In case 2.1, we take a path R′ with the properties mentioned above. Let Ř :
[0, 3c1n0[→ [−11 · 2n0 , 11 · 2n0 ] be the admissible piece of path which on [c1n0, 2c1n0[
is equal to R′ and otherwise is equal to R. We have ξ ◦ Ř = w1w

′
2w3. Since

Bn0

all paths,T 0 holds (recall its definition (6.9)), this implies that the random walk S

follows the path of Ř within time 22n0 from a stopping time of T 0
k , k < 2αn0 .

The same is valid for R, maybe with a different stopping time T 0
k′ . In other words:

(w1, w
′
2, w3) ∈ PrePuzzlen0(Input0) and (w1, w2, w3) ∈ PrePuzzlen0(Input0). This im-

plies the contradiction (w1, w2, w3) /∈ Puzzlen0

I (Input0).

– In case 2.2, we use that Rd[c1n0, 2c1n0[ is not a ladder path, since w2 is not a ladder
word of ξd[−11 · 2n0 , 11 · 2n0 ]. This case contradicts the occurrence of the event
Bn0

recogn straight(J1), using the definition (6.21) of this event and the defining condition
of case 2.2.
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Thus all cases lead to a contradiction; this proves the Lemma.
Roughly speaking, next lemma shows that PuzzleIV collects ladder words on a length scale

O(2n0) away from the origin, only perturbed by a few “corrupted” words, provided the “typical”
events Ẽn0

only ladder and E0
stop,T 0 hold. Formally, the statement gets stronger by using E0

stop,T 0

rather than the smaller event Ẽ0
stop,T 0 ; but this fact is not essential.

However, it is essential to use Puzzlen0

III or Puzzlen0

IV rather than Puzzlen0

I or Puzzlen0

II : We can
be sure that Puzzlen0

IV collects its words at most in a neighborhood of the origin of size O(2n0),
provided that the stopping times T 0 fulfill their specification, i.e. provided the event E0

stop,T 0

holds. On the other hand, Puzzlen0

II may collect words up to the length scale O(22n0) away
from the origin, even if the stopping times T 0 fulfill their specification. Recall that for Puzzlen0

II ,
words are collected on a time scale O(22n0) away from the stopping times T 0. Here, it does
not help us that Puzzlen0

II still typically collects words on a length scale O(2n0) away from the
origin, due to the scaling in the central limit theorem. To see this, recall that we are searching
for overlaps |Puzzlen0

IV(χ) ∩ Puzzlen0

IV(θ
tχ)| of the small size 2n0/3 only. If we were using PuzzleII

rather than PuzzleIV, such an overlap could arise in the tails, and we had to deal with the length
scale O(22n0), which is much too large.

Lemma 8.23 If Ẽn0

only ladder ∩ E
0
stop,T 0 holds, then Puzzlen0

IV(χ) ⊆ CenterII.

Proof. Assume that Ẽn0

only ladder ∩E
0
stop,T 0 holds, and let w2 ∈ Puzzlen0

IV(χ). Take w1, w3 ∈ C
c1n0

with (w1, w2, w3) ∈ Puzzlen0

III(χ) by (8.43). Then by (8.42), (w1, w2, w3) ∈ Puzzlen0

I (Input0),
and w1w2w3 occurs in the observations χ at most 2n0/l time steps after some stopping time
T 0
k (χ), 0 ≤ k < 2αn0 . Since E0

stop,T 0 holds, we have |S(T 0
k )| ≤ 2n0 ; thus w1w2w3 is read in χ

while the random walk follows some admissible piece of path R with values in [−2 ·2n0 , 2 ·2n0 ] ⊆
[−11·2n0 , 11·2n0 ]. Since Ẽn0

only ladder holds, this implies: w2 is a ladder word of ξd[−11·2n0 , 11·2n0 ],
or w2 ∈ Corrupted. If w2 is a ladder word of ξd[−11 · 2n0 , 11 · 2n0 ], we distinguish two cases:

• If w2 is a ladder word of ξd([−11 · 2n0 , 11 · 2n0 ] \ J1), then w2 ∈ CenterI.

• If w2 is a ladder word of ξd[−11 · 2n0 , 11 · 2n0 ], but not of ξd([−11 · 2n0 , 11 · 2n0 ] \ J1),
then also w2 ∈ Corrupted. To see this, we use the Definitions (8.46) and (8.47), and the
following fact: If π is a ladder path and π̄ is an admissible piece of path with the same
length, starting point, and end point as π, then π̄ = π.

In any case, we have w2 ∈ CenterI ∪ Corrupted = CenterII.
Next we will show that the events we defined have sufficiently large probability.

Lemma 8.24 There exist constants c20, c21 > 0 such that:

P̃
[

(Bn0

all paths,T 0)
c ∩ E0

stop,T 0

]

≤ c21e
−c20n0 . (8.67)

Proof. This is a special case of Lemma 6.34, applied to τ = T 0 and P ′ = P̃ . The hypothesis
of Lemma 6.34 is fulfilled, since part 2 in Lemma 8.1 implies that the distribution of S with
respect to P and with respect to P̃ coincide.

Recall Definition (7.1): E1
no error,T 1 = {∀k ∈ N : If T 1

k (χ) < 212αn1 , then |S(T 1
k (χ))| ≤ 2n1}.

Lemma 8.25 For some constants c48, c49 > 0 holds P̃
[

E1
no error,T 1

]

≥ 1− c48e
−c49n0.
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Proof. Using Definition 8.15 of T 1, we obtain:

P̃
[

E1
no error,T 1

]

(8.68)

≥ P̃

[

For all t ∈ [0, 212αn1 [ it holds: if |Puzzlen0

IV(χ) ∩ Puzzlen0

IV(θ
tχ)| ≥ 2n0/3 and

|Puzzlen0

IV(θ
tχ)| ≤ 50 · 2n0 , then |S(t+ 212αn0)| ≤ 2n1

]

For i = 0, 1, the random walk S cannot travel farther than l212αni within time 212αni . Since n0
is large (recall Subsection 2.1) and n1 = 2b

√
n0c, we know 2 ·2n0 +2l212αn0 < 2n1− l212αn0 . Thus

for all t ∈ [0, 212αn1 [, we have |S(t+212αn0)| ≤ 2n1 or 2 · 2n0 +2l212αn0 < |S(t)| ≤ l212αn1 ; recall
that S(0) = 0. Thus the right hand side in (8.68) is greater than or equal to

P̃

[

There does not exist t ∈ [0, 212αn1 [, such that |Puzzlen0

IV(χ)∩Puzzlen0

IV(θ
tχ)| ≥ 2n0/3

and |Puzzlen0

IV(θ
tχ)| ≤ 50 · 2n0 and 2 · 2n0 + 2l212αn0 < |S(t)| ≤ l212αn1

]

≥ P̃





Puzzlen0

IV(χ) ⊆ CenterII, and there does not exist t ∈ [0, 212αn1 [, such that

|CenterII ∩ Puzzlen0

IV(θ
tχ)| ≥ 2n0/3 and |Puzzlen0

IV(θ
tχ)| ≤ 50 · 2n0 and

2 · 2n0 + 2l212αn0 < |S(t)| ≤ l212αn1





≥ P̃ [Puzzlen0

IV(χ) ⊆ CenterII]−
212αn1−1
∑

t=0

P̃





|CenterII ∩ Puzzlen0

IV(θ
tχ)| ≥ 2n0/3,

|Puzzlen0

IV(θ
tχ)| ≤ 50 · 2n0 , and

2 · 2n0 + 2l212αn0 < |S(t)| ≤ l212αn1



 . (8.69)

Using Lemma 8.19, each summand in the last sum has the upper bound 2l212αn1 · exp{−2n0/4};
note that there are at most 2l212αn1 possible values for x = S(t) with 2 · 2n0 + 2l212αn0 < |x| ≤
l212αn1 . Furthermore, the occurrence of the events E0

stop,T 0 , B
n0

recogn straight(J1) and Bn0

all paths,T 0

implies Puzzlen0

IV(χ) ⊆ CenterII by Lemma 8.22 and Lemma 8.23. Thus the right hand side in
(8.69) has the lower bound

P̃ [E0
stop,T 0 ∩B

n0

recogn straight(J1) ∩B
n0

all paths,T 0 ]− 212αn1 · 2l212αn1 · exp{−2n0/4}

≥ P̃ [E0
stop,T 0 ]− P̃ [(B

n0

recogn straight(J1))
c]

− P̃ [(Bn0

all paths,T 0)
c ∩ E0

stop,T 0 ]− 2l exp{24(log 2)αn1 − 2n0/4}. (8.70)

We estimate the last expression, using Theorem 8.5, Lemmas 8.20 and 8.24, and the fact n1 =
2b
√
n0c (recall Definition 3.4). We obtain the following lower bound for the right hand side in

(8.70):

1− c36e
−c37n0 − c25e

−c26n0 − c21e
−c20n0 − 2l exp{24(log 2)α2b

√
n0c − 2n0/4} ≥ 1− c48e

−c49n0 .
(8.71)

For the last step, note that exp{24(log 2)α2b
√
n0c−2n0/4} is superexponentially small in n0. The

constants c48 and c49 need not depend on α, since n0 was chosen large and α-dependent (see
Subsection 2.1).

The following definition introduces a variant Bn0

all paths II of the event Bn0

all paths,T 0 . Instead of

the time scale O(22n0) after a stopping time, it uses the time scale O(2n0), and instead of the
length scale O(2n0), it uses the length scale O(2n0/2). We need to use the new event Bn0

all paths II

rather than using exclusively the old event Bn0

all paths,T 0 , since we have to deal with PuzzleIV
rather than using PuzzleII again, as was explained above: We need to control whether the
random walk follows sufficiently many admissible paths within the shorter time horizon O(2n0)
after a T 0-stopping time.
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Definition 8.26 We define the event

Bn0

all paths II :=

{

∀R ∈ AdPaths(3 · 2n0/2, 3c1n0) ∃k ∈ [0, 2αn0 [ ∃j ∈ [0, 2n0/l] :

TimeShiftT
0
k (χ)+j(R) ⊆ S

}

. (8.72)

The next lemma provides yet another modification of Lemma 6.34. Up to a change of pa-
rameters, its proof is very similar to the proof of Lemma 6.34.

Lemma 8.27 There exist constants c50, c51 > 0 not depending on n0 such that:

P̃
[

(Bn0

all paths II)
c ∩ Ẽ0

stop,T 0

]

≤ c50e
−c51n0 . (8.73)

Here, it is important to use the stricter specification Ẽ0
stop,T 0 of the stopping times T 0 rather

than E0
stop,T 0 : Knowing the location of the random walker only on a scale O(2n0) rather than

O(2n0/2) will not suffice: Within O(2n0) after a stopping time, the random walker will typically
move only a distance O(2n0/2) and thus might be still too far from the origin, unless we assume
the stricter bound |S(T 0

k )| = O(2n0/2).
Proof of Lemma 8.27. Let k < 2αn0 and R ∈ AdPaths(3 · 2n0/2, 3c1n0). We set

Bn0,k
R :=

{

∃j ∈ [0, 2n0/l] : TimeShiftT
0
k+j(R) ⊆ S

}

(8.74)

Ẽ0
stop,T 0,k :=

{

T 0
k (χ) < 212αn0 , |S(T 0

k (χ))| ≤ 2n0/2,
T 0
j (χ) + 2 · 22n0 ≤ T 0

k (χ) for j < k

}

, (8.75)

An0,k
R := Ẽ0

stop,T 0,k \B
n0,k
R . (8.76)

In the following calculations, R runs over the set AdPaths(3 · 2n0/2, 3c1n0):

Ẽ0
stop,T 0 \B

n0

all paths II,T 0 =

(

2αn0
⋂

k=0

Ẽ0
stop,T 0,k

)

\

(

⋂

R

2αn0−1
⋃

k=0

Bn0,k
R

)

=
⋃

R

2αn0−1
⋂

k=0

[(

2αn0
⋂

k′=0

Ẽ0
stop,T 0,k′

)

\Bn0,k
R

]

⊆
⋃

R

2αn0−1
⋂

k=0

An0,k
R . (8.77)

Taking the probability of these events, we estimate:

P̃
[

(Bn0

all paths II,T 0)
c ∩ Ẽ0

stop,T 0

]

≤ |AdPaths(3 · 2n0/2, 3c1n0)|max
R

P̃

[

2αn0−1
⋂

k=0

An0,k
R

]

, (8.78)

|AdPaths(3 · 2n0/2, 3c1n0)| ≤ 7 · 2n0/2|M|3c1n0 , (8.79)

P̃

[

2αn0−1
⋂

k=0

An0,k
R

]

=
2αn0−1
∏

k=0

P̃



An0,k
R

∣

∣

∣

∣

∣

∣

⋂

j<k

An0,j
R



 , (8.80)

P̃



An0,k
R

∣

∣

∣

∣

∣

∣

⋂

j<k

An0,j
R



 ≤ P̃



(Bn0,k
R )c

∣

∣

∣

∣

∣

∣

Ẽ0
stop,T 0,k ∩

⋂

j<k

An0,j
R



 ; (8.81)

the last statement follows from the elementary fact P̃ [A ∩ B|C] ≤ P̃ [A|B ∩ C]. We have

Cn0,k
R := Ẽ0

stop,T 0,k ∩
⋂

j<k A
n0,j
R ∈ FT 0

k
, i.e. one can decide whether the event Cn0,k

R holds by
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observing ξ and S(0), . . . , S(T 0
k ). Furthermore, if Cn0,k

R holds, then |S(T 0
k (χ))| ≤ 2n0/2. As

consequence of the local Central Limit Theorem we get: there is a constant c22 > 0 such that
for all x, y with |x| ≤ 3 · 2n0/2 and |y| ≤ 2n0/2 one has

P̃ [y + S(j) = x for some j ∈ [0, 2n0/l − 3c1n0]] ≥ c222
−n0/2; (8.82)

note that 2n0/l − 3c1n0 has the order of magnitude 2n0 . Thus by the strong Markov property:

inf
|x|≤3·2n0/2

P̃
[

S(T 0
k + j) = x for some j ∈ [0, 2n0/l]

∣

∣

∣
Cn0,k
R

]

≥ c522
−n0/2 (8.83)

for some constant c52 > 0. Once it is in the starting point x, the probability that S follows an
admissible path R ∈ AdPaths(3 ·2n0/2, 3c1n0) for the next 3c1n0−1 steps is bounded from below
by µ3c1nmin . Here µmin := min{µ({x}) |x ∈ M} is the smallest positive probability for a jump.
Therefore, using the strong Markov property again:

P̃
[

Bn0,k
R

∣

∣

∣
Cn0,k
R

]

≥ c522
−n0/2µ3c1n0

min . (8.84)

We combine (8.78)–(8.81) and (8.84) to obtain

P̃
[

Ẽ0
stop,T 0 \B

n0

all paths II

]

≤ 7 · 2n0/2|M|3c1n0(1− c522
−n0/2µ3c1n0

min )2
αn0

≤ 7 exp

{

n0

(

log 2

2
+ 3c1 log |M|

)

− c52e
n0(α log 2+3c1 log µmin−(log 2)/2)

}

, (8.85)

where we used 1−x ≤ e−x for x = c522
−n0/2µ3c1n0

min ≤ 1. Now α log 2+3c1 logµmin−(log 2)/2 > 0
by our choice of α in Subsection 2.1; thus the right hand side of the last inequality converges to
0 superexponentially fast as n0 →∞. Note that we may choose an upper bound c50e

−c51n0 for
the right hand side in 8.85, where neither c50 nor c51 depend on α or c1. This is true since n0
was chosen large enough, depending on c1 and α; recall Subsection 2.1. This proves the lemma.

Next we modify Definition 6.4 to define two new events. Roughly speaking, these events
measure whether within a certain space horizon but outside the “corrupted” region J1, any
ladder word can be read along admissible paths only roughly at one single location, thus making
ladder words very characteristic for their location.

Definition 8.28

B̃n0

signals :=







For every right ladder path π ∈ ([−2l22n0 , 2l22n0 ] \ J1)
[0,c1n0/2[ and

for every admissible piece of path π′ ∈ AdPath(2l22n0 , c1n0/2):
If ξ◦π = ξ◦π′, then π(0) ≤ π′(0) and π(c1n0/2−1) ≥ π′(c1n0/2−1).







, (8.86)

Ẽn0

signals II :=







For every right ladder path π ∈ ([−2l22n0 , 2l22n0 ] \ J1)
[0,c1n0[ and

for every admissible piece of path π′ ∈ AdPath(2l22n0 , c1n0):
If ξ ◦ π = ξ ◦ π′, then π(c1n0/2) = π′(c1n0/2).







. (8.87)

Note that π′ in the last two definitions may well have some of its values in J1. We prove the
following modification of Lemma 6.38:
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Lemma 8.29 There exist constants c28 > 0, c29 > 0 not depending on n0 such that:

P̃
[

(B̃n0

signals)
c
]

≤ c29e
−c28n0 . (8.88)

Proof. Take a right ladder path

π ∈ ([−2l22n0 , 2l22n0 ] \ J1)
[0,c1n0[ (8.89)

and an admissible piece of path π′ ∈ AdPath(2 · l22n, c1n/2) with π(0) > π′(0). We show by
induction over j ∈ [0, c1n/2[ with the abbreviation I = [0, j + 1[ and I ′ = [0, j[:

P̃
[

ξ ◦ πdI ′ = ξ ◦ π′dI ′
]

= |C|−j . (8.90)

Indeed, (8.90) holds for j = 0. For the induction step j 7→ j+1, we note that π(j) is right of all
π(i) and π′(i), i < j, since π is a right ladder path and π(0) > π′(0). Thus ξ◦π(j) is independent
of the family (ξ ◦ πdI ′, ξ ◦ π′dI ′) with respect to P̃ , even if π′ touches the “corrupted” domain
J1. This is true because π does not touch J1, and ξdJ1 is independent of ξd(Z \ J1) by Lemma
8.1. Therefore, using our induction hypothesis,

P̃ [ξ ◦ πdI = ξ ◦ π′dI] (8.91)

= P̃ [ξ ◦ πdI ′ = ξ ◦ π′dI ′] · P̃ [ξ ◦ π(j) = ξ ◦ π′(j)] = |C|−j−1.

For j = c1n0/2 we obtain that

P̃ [ξ ◦ πd[0, c1n0/2[= ξ ◦ π′d[0, c1n0/2[] ≤ |C|
−c1n0/2. (8.92)

A similar inductive argument, processing the path π in reverse direction, i.e. “from the right
to the left”, shows that the bound (8.92) also holds when the above condition π(0) > π ′(0) is
replaced by π(c1n0/2 − 1) < π′(c1n0/2 − 1). There are not more than 4 · l22n0 + 1 ≤ 5 · l22n0

possible choices for the right ladder path π, and not more than 5 · l22n0 |M|c1n0/2 choices for the
admissible path π′. We conclude:

P̃ [(B̃n0

signals)
c] ≤ 5 · l22n0 · 5 · l22n0 |M|c1n0/2 · |C|−c1n0/2. (8.93)

This implies the claim (8.88), since |C| > |M| and c1 was chosen large enough; recall Subsection
2.1.

The following lemma is a variant of Lemma 6.5, which takes care of the “corrupted” domain
J1.

Lemma 8.30 B̃n0

signals ⊆ Ẽ
n0

signals II.

Proof of Lemma 8.30. Assume that the event B̃n0

signals occurs. Let π ∈ ([−2 · l22n0 , 2 · l22n0 ] \

J1)
[0,c1n0[ be a right ladder path and π′ ∈ AdPath(2·l22n0 , c1n0). Assume that ξ◦π = ξ◦π′ holds.

Looking at the first half of π and π′ only (with the first points (0, π(0)), (0, π′(0)) dropped), we
see π(c1n0/2) ≥ π′(c1n0/2), since B̃

n0

signals holds. By the same argument, looking at the second
half of π and π′ only, we infer π(c1n0/2) ≤ π′(c1n0/2). Therefore π(c1n0/2) and π′(c1n0/2)
coincide. This shows that Ẽn0

signals II holds.
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Lemma 8.31
Assume that the event Bn0

all paths,T 0 ∩ B̃
n0

signals ∩ E
0
stop,T 0 holds. Let I ⊆ [−6 · 2n0 , 6 · 2n0 ] \ J1 be a

right ladder interval with |I| = 3c1n0, and let w1, w2, w3 ∈ C
c1n0 with (ξdI)→ = w1w2w3. Then

(w1, w2, w3) ∈ Puzzlen0

I (Input0).

This lemma is only a small modification of Lemma 6.7; except of the extra care needed for
handling the corrupted domain J1, its proof is almost the same.
Proof of Lemma 8.31. Given a right ladder interval I as in the assumption of the lemma, we
decompose it into three pieces: Let I = I1 ∪ I2 ∪ I3, where I1, I2, and I3 denote the left, middle,
and right third of I, respectively; thus (ξdIi)→ = wi, i = 1, 2, 3. Since the event Bn0

all paths,T 0

holds, the straight path which steps through the elements of I from the left to the right in 3c1n0
steps is realized at least once by the random walk (S(t))t≥0 within time 22n0 of a stopping time
T 0
k , k < 2αn0 . Observing ξ along such a straight path generates the word w1w2w3. Thus

(w1, w2, w3) ∈ PrePuzzlen0(Input). (8.94)

Let w′2 be such that (w1, w
′
2, w3) ∈ PrePuzzlen0(Input). In order to prove the claim (w1, w2, w3) ∈

Puzzlen0

I (Input) it remains to show: w2 = w′2. When the event E0
stop,T 0 holds, the stopping times

of T 0
k , k < 2αn0 , all stop the random walk (S(t))t≥0 somewhere in the interval [−2n0 , 2n0 ].

Within time 22n0 the random walk moves at most a distance l22n0 . Because of w1w
′
2w3 ∈

PrePuzzlen0(Input), the word w1w
′
2w3 occurs somewhere in the observations at most 22n0 time

steps after a stopping time T 0
k , k < 2αn0 . Within time 22n0 after a stopping time, the random

walk cannot be further away from the origin than l22n0 +2n0 ≤ 2 · l22n0 , since the event E0
stop,T 0

holds. Thus there exists an admissible piece of path R′ : [0, 3c1n0[→ [−2 · l22n0 , 2 · l22n0 ] such
that ξ ◦R′ = w1w

′
2w3. Let R : [0, 3c1n0[→ I ⊆ [−2 · l22n0 , 2 · l22n0 ] denote the right ladder path

which passes through I from the left to the right. Note that R does not meet the “corrupted”
domain J1, although we need not assume that R′ does not meet J1. We know ξ ◦R′d[0, c1n0[=
ξ◦Rd[0, c1n0[= w1 and (ξ◦R′d[2c1n0, 3c1n0[)→ = (ξ◦Rd[2c1n0, 3c1n0[)→ = w3. Furthermore, the
event Ẽn0

signals II ⊇ B̃n0

signals holds; see Lemma 8.30. Abbreviating x := c1n0/2 and y := 5c1n0/2,
this implies R′(x) = R(x) and R′(y) = R(y). But Rd[x, y] is a right ladder path; thus R′d[x, y]
must be the same right ladder path, since only right ladder paths can travel equally fast to the
right as R does. Hence w2 = (ξ ◦Rd[c1n0, 2c1n0[)→ = (ξ ◦R′d[c1n0, 2c1n0[)→ = w′2. This finishes
the proof of Lemma 8.31.
Next we show that under appropriate conditions CenterIII is indeed a lower bound for Puzzlen0

IV(χ).

Lemma 8.32 If the event Bn0

all paths,T 0 ∩ B
n0

all paths II ∩ B̃
n0

signals ∩ E
0
stop,T 0 holds, then CenterIII ⊆

Puzzlen0

IV(χ).

Proof. Assume that Bn0

all paths,T 0 ∩ B
n0

all paths II ∩ B̃
n0

signals ∩ E
0
stop,T 0 holds, and let w2 ∈ CenterIII.

Then w2 = (ξdI)→ for some right ladder interval I ⊆ [−2 · 2n0/2, 2 · 2n0/2] \ [−2n0/2, 2n0/2],
|I| = c1n0. We take the larger right ladder interval I ′ ⊇ I, |I ′| = 3c1n0, with c1n0 extra points
to the left of I and another c1n0 extra points to the right of I; then I ′ ⊆ [−3·2n0/2, 3·2n0/2]\J1 ⊆
[−6·2n0 , 6·2n0 ]\J1; note that dist(J1,Z\[−2n0/2, 2n0/2]) > c1n0l and dist([−2·2n0/2, 2·2n0/2],Z\
[−3 · 2n0/2, 3 · 2n0/2]) > c1n0l; recall that n0 is chosen large enough (Subsection 2.1). Then
(ξdI ′)→ = w1w2w3 for some w1, w3 ∈ C

c1n0 . Using that the events Bn0

all paths,T 0 , B̃
n0

signals, and

E0
stop,T 0 hold, Lemma 8.31 implies (w1, w2, w3) ∈ Puzzlen0

I (Input0). Let R denote the (unique)

right ladder path R : [0, 3c1n0[→ I ′. Since Bn0

all paths II holds, the random walk S follows R
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(time-shifted) at most 2n0/l time steps after some stopping time T 0
k (χ), k ∈ [0, 2αn0 [. Then

ξ ◦ R = w1w2w3; thus (w1, w2, w3) ∈ Puzzlen0

III(χ) by Definition (8.42); hence w2 ∈ Puzzlen0

IV(χ)
by Definition (8.43). This proves the lemma.

Definition 8.33 We set

E1
center :=

{

|CenterIII ∩ Puzzlen0

IV(χ)| ≥ 2n0/3 and |Puzzlen0

IV(χ)| ≤ 50 · 2n0
}

, (8.95)

Ξ1
center :=

{

ξ ∈ CZ
∣

∣

∣

∣

P [E1
center | ξ] ≥

1

2

}

. (8.96)

The sets E1
center and Ξ1

center play an analogous role for the stopping times T 1 as Em
reconst,f and

Ξmreconst,f play for the “higher level” stopping times in Section 7.

Lemma 8.34 For some positive constants c53 and c54 holds P̃ [ξ ∈ Ξ1
center] ≥ 1− c53e

−c54n0 .

Proof. We claim first that

Bn0

all paths,T 0 ∩B
n0

all paths II ∩ B̃
n0

signals ∩E
0
stop,T 0 ∩B

n0

recogn straight(J1)∩B
n0

unique fit(J1) ⊆ E
1
center (8.97)

holds. To prove this, assume that the intersection of events on the left hand side in (8.97) occurs.
Since the Bn0

all paths,T 0 , B
n0

all paths II B̃
n0

signals, and E0
stop,T 0 occur, Lemma 8.32 implies |CenterIII ∩

Puzzlen0

IV(χ)| = |CenterIII|. Using that the event Bn0

unique fit(J1), Lemma 8.18 yields |CenterIII| ≥

2n0/3, and we conclude |CenterIII ∩ Puzzlen0

IV(χ)| ≥ 2n0/3. From Lemma 8.22 we know that
the event Ẽn0

only ladder occurs, since Bn0

all paths,T 0 ∩ B
n0

recogn straight(J1) occurs. Using this and the

occurrence of the event E0
stop,T 0 , Lemma 8.23 implies |Puzzlen0

IV(χ)| ≤ |CenterII|, and finally

Lemma 8.18 yields |CenterII| ≤ 50 · 2n0 . Summarizing, we know |Puzzlen0

IV(χ)| ≤ 50 · 2n0 . Thus
we have shown that the event E1

center occurs; this proves the claim (8.97). Taking probabilities
and using Ẽ0

stop,T 0 ⊆ E
0
stop,T 0 , we get

P̃
[

E1
center

]

≥ P̃
[

Bn0

all paths,T 0 ∩B
n0

all paths II ∩ B̃
n0

signals ∩ E
0
stop,T 0 ∩B

n0

recogn straight(J1) ∩B
n0

unique fit(J1)
]

≥ P̃
[

Ẽ0
stop,T 0

]

− P̃
[

(Bn0

all paths,T 0)
c ∩ E0

stop,T 0

]

− P̃
[

(Bn0

all paths II)
c ∩ Ẽ0

stop,T 0

]

− P̃
[

(B̃n0

recogn straight(J1))
c
]

− P̃
[

(B̃n0

signals)
c
]

− P̃
[

(Bn0

unique fit(J1))
c
]

≥ 1− c55e
−c54n0 (8.98)

for some positive constants c55 and c54 by Theorem 8.5 and Lemmas 8.24, 8.27, 8.20, 8.29, and
8.17. Hence we obtain the following:

1

2
P̃ [ξ /∈ Ξ1

center] =
1

2
P̃

[

P [(E1
center)

c | ξ] >
1

2

]

≤ P̃ [(E1
center)

c] ≤ c55e
−c54n0 ; (8.99)

recall that P̃ [·|ξ] and P [·|ξ] coincide.
The following definition is yet another modification Definition 7.3.
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Definition 8.35 Let v(k) denote again the (k + 1)st visit of S to the origin. We define

T1′(ξ, χ) :=

{

t ∈ N
∣

∣

∣

∣

|CenterIII ∩ Puzzlen0

IV(θ
tχ)| ≥ 2n0/3

and |Puzzlen0

IV(θ
tχ)| ≤ 50 · 2n0

}

, (8.100)

E1
when back recog :=

{

For more than 1/4 of the points k ∈ [0, 22αn1 [
holds v(k2αn1) ∈ T1′(ξ, χ)

}

. (8.101)

Here is yet another analogue to Lemma 7.4:

Lemma 8.36 If the event Bn0

all paths,T 0 ∩ B
n0

all paths II ∩ B̃
n0

signals ∩ E
0
stop,T 0 holds, then T1(χ) ⊇

T1′(ξ, χ) ∩ [0, 212αn1 − 2 · 212αn0 [.

Proof. Assuming that the event Bn0

all paths,T 0 ∩ B
n0

all paths II ∩ B̃
n0

signals ∩ E
0
stop,T 0 holds, we know

CenterIII ⊆ Puzzlen0

IV(χ) by Lemma 8.32; thus |Puzzlen0

IV(χ) ∩ Puzzlen0

IV(θ
tχ)| ≥ |CenterIII ∩

Puzzlen0

IV(θ
tχ)| for all t. This implies the claim T1(χ) ⊇ T1′(ξ, χ) ∩ [0, 212αn1 − 2 · 212αn0 [ of

the lemma; recall Definition (8.44) of T1(χ).
The following lemma is another variant of Lemma 7.5; only the stopping times Tf and T′f

are replaced by T1 and T1′, respectively, and Tf is replaced by T 1.

Lemma 8.37 Assume that the events
E1
no error,T 1 ∩ E

1
enough back ∩ E

1
when back recog and T1(χ) ⊇ T1′(ξ, χ) ∩ [0, 212αn1 − 2 · 212αn0 [ hold.

Then E1
stop,T 1 holds, too.

Proof. Using that the event E1
enough back holds, we know

v(k2αn1) ∈ [0, 212αn1/8] ⊆ [0, 212αn1 − 2 · 212αn0 [ (8.102)

for all k ∈ [0, 22αn1 [; recall the definition (7.2) of the event E1
enough back, and recall that v(k2αn1)

denotes the k2αn1-st return time of the random walk S to the origin.
Since the event E1

when back recog holds, we obtain |T1(χ)| ≥ |T1′(ξ, χ)∩ [0, 212αn1 −2 ·212αn0 [| ≥

22αn1/4. By Definition (8.45) of the stopping times T 1, this yields T 1
k (χ) < 212αn1 for all

k < (22αn1/4)/(2 · 22n1) = 22(α−1)n1/8. The event E1
no error,T 1 holds, and 22(α−1)n1/8 ≥ 2αn1 ;

recall that α and n1 ≥ n0 are large (see Section 2.1). Hence we obtain |S(T 1
k (χ))| ≤ 2n1 for all

k ∈ [0, 2αn1 [; recall the definition (7.1) of the event E1
no error,T 1 . Using Definition (8.45) again, we

see that T 1
j (χ) + 2 · 22n1 ≤ T 1

k (χ) is automatically fulfilled for j < k whenever T 1
k (χ) < 212αn1 ,

which is the case at least for k ∈ [0, 2αn1 [. Summarizing, we have proven that the event E1
stop,T 1

holds; recall its definition (3.14).
The following Lemma is another modification of Lemma 7.6.

Lemma 8.38 We have the bound

P̃
[(

E1
when back recog

)c
∩
{

ξ ∈ Ξ1
center

} ]

≤ 0.92
2αn1

. (8.103)

Proof. We define the indicator functions Yk = 1{v(k2αn1 )∈T1′(ξ,χ)}, k ≥ 0. In particular,

E1
when back recog =

{

2−2αn1
∑22αn1−1

k=0 Yk > 1/4
}

holds. Note that v ((k + 1)2αn1) − v(k2αn1) ≥

2αn1 > 2 · 212αn0 . Recall that P and P̃ differ only in the distribution of the scenery ξ, but not
in the law of the random walk S. In particular, P [·|ξ] = P̃ [·|ξ] holds. By the strong Markov
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property of the random walk (S(k))k≥0, conditioned under ξ, the variables (Yk)k≥0 are i.i.d.
Bernoulli variables. Furthermore, we have E[Yk | ξ] = P [E1

center | ξ] ≥ 1/2 whenever ξ ∈ Ξ1
center.

Just as in (7.10), the exponential Chebyshev inequality implies for these sceneries ξ:

P̃
[(

E1
when back recog

)c ∣
∣ ξ
]

≤

(

e1/4 + e−3/4

2

)22αn1

≤ 0.92
2αn1

. (8.104)

Taking the expectation with respect to P̃ , this implies the claim (8.103), just as in (7.11).

Proof of Theorem 3.8. Recall that Ẽ0
stop,T 0 ⊆ E0

stop,T 0 . Using this and Lemmas 8.36 and
8.37, we get

E1
no error,T 1 ∩E

1
enough back∩E

1
when back recog∩B

n0

all paths,T 0 ∩B
n0

all paths II∩ B̃
n0

signals∩ Ẽ
0
stop,T 0 ⊆ E

1
stop,T 1 .

(8.105)
Since E1

enough back depends only on S but not on ξ, we have P̃ [(E1
enough back)

c] = P [(E1
enough back)

c].
Thus, using Lemmas 8.25, 7.2, 8.38, 8.34, 8.24, 8.27, 8.29, and Theorem 8.5, we know

P̃ [(E1
stop,T 1)

c] (8.106)

≤ P̃ [(E1
no error,T 1)

c] + P̃ [(E1
enough back)

c] + P̃
[(

E1
when back recog

)c
∩
{

ξ ∈ Ξ1
center

}]

+ P̃
[

ξ /∈ Ξ1
center

]

+ P̃ [(Bn0

all paths,T 0)
c ∩ E0

stop,T 0 ] + P̃ [(Bn0

all paths II)
c ∩ Ẽ0

stop,T 0 ]

+ P̃ [(B̃n0

signals)
c] + P̃ [(Ẽ0

stop)
c]

≤ c48e
−c49n0 + c352

−αn1 + 0.92
2αn1

+ c53e
−c54n0 + c21e

−c20n0

+ c50e
−c51n0 + c29e

−c28n0 + c36e
−c37n0

≤ e−c4n0 ,

since n0 is chosen large enough (see Subsection 2.1)
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