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equation

dX(t) =

(

AX(t) +

∫ t

0
K(t− s)X(s) ds

)

dt+Σ(t) dW (t) (0.1)

where K and Σ are continuous matrix–valued functions defined on R+, and (W (t))t≥0 is a
finite-dimensional standard Brownian motion. It is shown that when the entries of K are all
of one sign on R+, that (i) the almost sure exponential convergence of the solution to zero,
(ii) the p-th mean exponential convergence of the solution to zero (for all p > 0), and (iii) the
exponential integrability of the entries of the kernel K, the exponential square integrability
of the entries of noise term Σ, and the uniform asymptotic stability of the solutions of the
deterministic version of (0.1) are equivalent. The paper extends a result of Murakami which
relates to the deterministic version of this problem.
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1 Introduction

In recent years, several researchers have investigated the almost sure and p-th mean exponen-
tial asymptotic stability of solutions of stochastic differential equations and stochastic delay
differential equations with bounded delay. Among the extensive literature on this topic, we cite
[11, 13, 14, 15, 20, 10], and [16], though this list is by no means exhaustive.

However, comparatively little research has been carried out examining the exponential asymp-
totic stability of solutions of Itô-Volterra equations, in which the delay is unbounded. In
particular, if solutions are asymptotically stable in an almost sure or p-th mean sense, it would
be interesting to see whether the convergence still occurs at an exponential rate, or whether
the extra “inertia” introduced into the system via an unbounded delay retards the convergence
rate.

This question has partial, but satisfactory answers in the deterministic theory. The question
as to whether slower than exponential convergence of solutions of linear, time homogeneous
Volterra equations with unbounded delay was possible was raised by Lakshmikantham and
Corduneannu [6]. More specifically, they asked whether the uniform asymptotic stability of
the zero solution implied its exponential asymptotic stability, as is the case for deterministic
equations with bounded delay. The question was answered in the negative in two seminal papers
of Murakami; the scalar case is covered in [25]; the general finite dimensional case in [24]. He
proved, for the Volterra equation

x′(t) = Ax(t) +

∫ t

0
K(t− s)x(s) ds, (1.1)

that when the zero solution is uniformly asymptotically stable, it is also exponentially asymp-
totically stable if and only if

∫ ∞

0
‖K(s)‖eγs ds <∞, for some γ > 0 (1.2)

whenever the entries of the kernel do not change sign on R+.

The existence of such sharp results for deterministic Volterra equations indicates that it should
be possible for Itô-Volterra equations to exhibit non-exponential asymptotic stability. Results
towards this end are established in [3], in which an almost sure non-exponential lower bound
on the solution of a linear scalar Itô-Volterra equation with multiplicative noise

dX(t) = (−aX(t) +

∫ t

0
k(t− s)X(s) ds) ds+ σX(t) dB(t)

is established. Using results developed in the deterministic theory in [2], the first two authors
of this paper will present corresponding non-exponential upper bounds elsewhere. In each case,
the kernel k violates (1.2) above.
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In this paper, we study the exponential asymptotic stability of the linear Itô-Volterra equation
with additive noise:

dX(t) = (AX(t) +

∫ t

0
K(t− s)X(s) ds) dt+Σ(t) dW (t), (1.3)

where A, K are d× d matrices Σ is a d× r matrix and

W (t) = (W 1(t),W 2(t), . . . ,W r(t))

is an r-dimensional Brownian motion where each of the component Brownian motions W j(t)
are independent. The moment asymptotic stability of the solution of this equation has been
studied by Mizel and Trutzer [22]. The Gaussian character of the solution, and stationarity of
the solution of (1.3) in the bounded delay case is studied in [9], [23]. Almost sure asymptotic
stability is studied in [1]; exponential asymptotic stability is studied in [19], and [18] for nonlin-
ear bounded delay problems. Sufficient conditions under which nonlinear Itô-Volterra equations
are exponentially asymptotically stable are established in Mao [17] (we contrast the results ob-
tained in this latter paper with results obtained here presently). Some properties of infinite
dimensional versions of this equation are studied in [5], in the context of heat conduction in
materials with memory. The solutions of (1.3) are Gaussian processes, if the initial conditions
are deterministic or Gaussian and independent of the driving Brownian motion W . Further-
more, the solutions can be represented in terms of the fundamental matrix solution (denoted
by Z(t)) of the deterministic version of (1.3), viz.,

x′(t) = Ax(t) +

∫ t

0
K(t− s)x(s) ds. (1.4)

This representation means that the mean vector and variance-covariance matrix can be written
in terms of Z and Σ.

The first result of this note (Theorem 3.3), makes use of this representation. We show that if
∫ ∞

0
‖K(s)‖eγ1s ds <∞, for some γ1 > 0, (1.5)

and
∫ ∞

0
‖Σ(s)‖2e2γ2s ds <∞, for some γ2 > 0, (1.6)

then the uniform asymptotic stability of the zero solution of (1.4) implies that there exists
constants Mp(X0) ≥ 0, βp > 0 for each p > 0 such that

E[‖X(t)‖p] ≤Mp(X0)e
−βpt, t ≥ 0. (1.7)

This result is used in Theorem 3.4 to establish that the uniform asymptotic stability of (1.4)
in conjunction with (1.6), (1.5) imply the existence of an a.s. negative top Liapunov exponent
for all solutions, in that there exists β0 > 0, such that

lim sup
t→∞

1

t
log ‖X(t)‖ ≤ −β0, a.s. (1.8)
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Thus all solutions of (1.3) are exponentially convergent to zero, in both a p-th mean and an
almost sure sense.

The result uses the idea of Theorem 4.3.1 in [13] (for stochastic differential equations) that
E[‖X(t)‖2] ≤ C2(X0)e

−β2t for some β2 > 0 implies a.s. exponential asymptotic stability. In
contrast to Mao [17] (for unbounded delay integrodifferential equations), and Liao and Mao [19]
and Mao [18] (for bounded delay equations) it is unnecessary for Σ to be bounded above in
a pointwise sense— indeed, (1.6) shows, to the contrary, that Σ need only be exponentially
bounded “on average”. Moreover, we do not require a pointwise exponential decay on the
kernel K required in Mao [17] in order to guarantee exponential stability. In fact, as discussed
below, it is our purpose to show here that the conditions (1.6) and (1.5) are, under the same
circumstances which apply to the deterministic theory, the optimal ones required to ensure
exponential stability.

The second type of result of the paper (Theorems 4.1, 4.3) give conditions under which the
exponential convergence of solutions of (1.3) imply results about the kernel or noise terms.
Theorem 4.1 shows that (1.5) together with (1.8) imply (1.6). Thus, under (1.5) and the uniform
asymptotic stability of the zero solution of (1.4), we get exponential asymptotic stability if and
only if the noise declines exponentially. This phenomenon is alluded to in Liu and Mao [10] for
stochastic differential equations, and, in part, forms the subject of Mao’s paper on polynomial
stability of stochastic differential equations [12]. The proof of Theorem 4.3 is closely modelled on
that of Theorem 4.1, and, as in that result, the Gaussian properties of the process

∫ t
0 Σ(s) dW (s)

are crucial. We show that (1.5) together with (1.7) implies (1.6).

Theorem 5.1 constitutes the equivalences that can be drawn between (1.5), (1.6), and (1.7) and
(1.8), and is the main result of the paper. In the first part of this proof, we show that the a.s.
exponential convergence of all solutions (1.8) is equivalent to (1.6), (1.5) when the zero solution
of (1.3) is uniformly asymptotically stable, provided that the entries of K do not change sign.
In conjunction with Theorem 3.4, this follows by proving that a.s. convergence of solutions of
(1.3) at an exponential rate implies the exponential convergence of solutions of (1.4). Theorem
2 in [24] then establishes (1.5). Therefore, Theorem 4.1, together with (1.5) and the exponential
convergence of solutions yields (1.6).

Next we establish that p-th mean exponential convergence of all solutions (1.7) is equivalent
to (1.6), (1.5) when the zero solution of (1.3) is uniformly asymptotically stable, providing
that the entries of K do not change sign on R+. Theorem 3.4 proves the reverse implication;
Theorem 4.3 the forward implication. Consequently, we have proven when the entries of K do
not change sign, that (1.6), (1.5), and the uniform asymptotic stability of the zero solution of
(1.1), is equivalent to (1.7) and (1.8) for the problem (1.3).

The organisation of the note is as follows: the problem to be studied is formally stated in
Section 2, alongside background theory and definitions. Theorems 3.3 and 3.4 are proven in
Section 3. Section 4 covers the proof of Theorems 4.1 and 4.3. The equivalences captured by
Theorems 5.1 are established in Section 5.
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2 Background Material

We first fix some standard notation. As usual, let x ∨ y denote the maximum of x, y ∈ R, and
x ∧ y their minimum.

Denote by C(I; J) the space of continuous functions taking the finite dimensional Banach space
I onto the finite dimensional Banach space J . Let d be a positive integer. Let (Rd)n be the
n-fold Cartesian product of Rd with itself. Let Md,d(R) denote the space of all d× d matrices
with real entries. We say that the function f : R+ →Mn,m(R) is in L1(R+) if each of its entries
is a scalar Lebesgue integrable function, and in L2(R+) if each of its entries is a scalar square
integrable function. The convolution of the function f with g is denoted by f ∗g. The transpose
of any matrix A is denoted AT ; the trace of a square matrix is denoted by tr(A). Further denote
by Id the identity matrix in Md,d(R). Let ‖x‖ stand for the Euclidean norm of x ∈ Rd, and
‖x‖1 be the sum of the absolute values of the components of x. If A = (Aij) ∈Md,r(R), A has
operator norm denoted by ‖A‖, and given by

‖A‖ = sup{‖Ax‖ : x ∈ Rr, ‖x‖ = 1}.

It further has Frobenius norm, denoted by ‖A‖F , and defined as follows: if A = (ai,j), is an
d× r matrix, then

‖A‖F =





d
∑

i=1

r
∑

j=1

|ai,j |
2





1/2

= tr(AAT )
1

2 .

Since Md,r(R) is a finite dimensional Banach space, ‖ · ‖, ‖ · ‖F are equivalent, so there exist
positive universal constants c1(d, r) ≤ c2(d, r) such that

c1(d, r)‖A‖ ≤ ‖A‖F ≤ c2(d, r)‖A‖, A ∈Md,r(R). (2.1)

We first turn our attention to the deterministic Volterra equation (1.1), where A and K are in
C(R+;Md,d(R) ∩ L1(R+). For any t0 ≥ 0 and φ ∈ C([0, t0],Rd), there is a unique Rd-valued
function x(t), which satisfies (1.1) on [t0,∞) and for which x(t) = φ(t) for t ∈ [0, t0]. We denote
such a solution by x(t; t0, φ). The function x(t) ≡ 0 is a solution of (1.1) and is called the zero
solution of (1.1).

Consider now the matricial equation

Z ′(t) = AZ(t) +

∫ t

0
K(t− s)Z(s) ds, t ≥ 0 (2.2)

with Z(0) = Id. The unique Z ∈ C(R+;Md,d(R)) which satisfies (2.2) is called the resolvent,
or principal matrix solution for (1.1).

Existence and uniqueness results for deterministic Volterra equations are covered in [7].

In this paper, we will consider d-dimensional linear stochastic integro-differential equations with
stochastic perturbations of the form

dX(t) =

(

AX(t) +

∫ t

0
K(t− s)X(s) ds

)

dt+Σ(t) dW (t) (2.3)

5



on t ≥ 0 where (W (t))t≥0 is an r-dimensional Brownian motion on a complete filtered probability
space (Ω,F , (Ft)t≥0,P), where the filtration is the natural one Ft = σ{W (s) : 0 ≤ s ≤ t}.
X has deterministic initial condition X0 = x, A ∈ Md,d(R), Σ ∈ C(R+;Md,r(R)) and K ∈
C(R+;Md,d(R)) ∩ L1(R+).

The existence and uniqueness of a continuous solution of (2.3) is covered in Berger and Mizel [4],
for instance. We can also represent the solution of (2.3) in terms of the resolvent of (1.1).

Lemma 2.1. Under the above conditions on K and Σ, if X(0) = X0 is deterministic, there
exists a unique a.s. continuous solution to (2.3) on every interval of R+. Moreover, if Z
satisfies (2.2), with Z(0) = Id, then

X(t) = Z(t)X0 +

∫ t

0
Z(t− s)Σ(s) dW (s) (2.4)

for all t ≥ 0.

Proof. The proof follows the line of reasoning in Küchler and Mensch [9], or Mohammed [23].

Remark 2.2.

¿From Lemma 2.1, it is immediate that X is a Gaussian process with expectation vector

EX(t) = Z(t)X0 (2.5)

and covariance matrix

ρ(s, t) = E
[

(X(s)− EX(s))(X(t)− EX(t))T
]

=

∫ s∧t

0
Z(s− u)Σ(u)Σ(u)TZ(t− u)T du. (2.6)

This can be seen by fixing t and adapting the line of argument of Problem 6.2 p.355 in [8].

We recall the various standard notions of stability of the zero solution required for our analysis;
the reader may refer further to Miller [21]. Here, and subsequently, if t0 ∈ R+ and φ ∈
C([0, t0],Rn), we define |φ|t0 = max0≤s≤t0 ‖φ(s)‖1.

The zero solution of (1.1) is said to be uniformly stable (US), if, for every ε > 0, there exists
δ(ε) > 0 such that t0 ∈ R+ and φ ∈ C([0, t0],Rn) with |φ|t0 < δ(ε) implies ‖x(t; t0, φ)‖1 < ε
for all t ≥ t0. The zero solution of (1.1) is said to be uniformly asymptotically stable (UAS)
if is US and there exists δ > 0 with the following property: for each ε > 0 there exists a
T (ε) > 0 such that t0 ∈ R+ and φ ∈ C([0, t0],Rn) with |φ|t0 < δ implies ‖x(t, t0, φ)‖1 < ε
for all t ≥ t0 + T (ε). The zero solution of (1.1) is said to exponentially asymptotically stable
(ExAS) if there exists C > 0 and λ > 0 independent of t0 ∈ R+ and φ ∈ C([0, t0],Rn), such
that ‖x(t, t0, φ)‖1 ≤ C|φ|t0e

−λ(t−t0) for all t ≥ t0.

The properties of the resolvent Z are deeply linked to the stability of the zero solution of (1.1).
It is shown in [21] that the zero solution of (1.1) is UAS if and only if Z ∈ L1(R+).
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We now make precise the notion of p-th mean and a.s. exponential convergence of solutions of
(1.3).

Definition 2.3. The Rd valued stochastic process (X(t))t≥0 is p-th mean exponentially con-
vergent, for p > 0, if there exists βp > 0 such that

lim sup
t→∞

1

t
log(E[‖X(t)‖p]) ≤ −βp.

The definition of a.s. exponential convergence has a similar form:

Definition 2.4. The Rd valued stochastic process (X(t))t≥0 is almost surely exponentially
convergent, if there exists β0 > 0 such that

lim sup
t→∞

1

t
log ‖X(t)‖ ≤ −β0, a.s.

This definition is, in turn, equivalent to the following: for every ε > 0, there exists Ωε ⊂ Ω,
with P[Ωε] = 1, and an a.s. finite random variable C(ε) > 0 such that for all ω ∈ Ωε we have

‖X(t)(ω)‖ ≤ C(ε)(ω)e−(β0−ε)t, t ≥ 0.

The definitions are, of course, closely based on those of p-th mean and almost sure exponential
asymptotic stability. It is not appropriate, however, to talk about the “stability of the zero
solution” of (2.3), as the process X(t) = 0 for all t ≥ 0 is not a solution of (2.3). If however, we
view the random contribution in (2.3) as a perturbation, we may ask whether the equilibrium
solution of the unperturbed problem (1.1) is asymptotically stable in the presence of this per-
turbation, and determine the conditions under which the solutions are exponentially convergent
to the equilibrium solution of the unperturbed problem.

As evidenced by Lemma 2.1, the solution of the Itô-Volterra equation (2.3) relies strongly on
that of the deterministic Volterra equation (1.1). The exponential asymptotic stability of this
problem has been studied by Murakami [24]. We summarise his results here. Firstly, the
uniform asymptotic stability of the zero solution, together with the exponential integrability of
the kernel imply exponential asymptotic stability of solutions of (1.1).

Lemma 2.5. If the zero solution of (1.1) is uniformly asymptotically stable, and (1.5) holds,
then the zero solution of (1.1) is exponentially asymptotically stable.

Lemma 2.6. Suppose that all of the entries of K ∈ L1(R+) do not change sign on R+. If there
exists C > 0 and λ > 0 such that the fundamental matrix solution of (2.2) satisfies

‖Z(t)‖ ≤ Ce−λt, t ≥ 0, (2.7)

then there exists γ1 > 0 such that (1.5) holds.

Therefore, if the entries of K do not change sign, and the zero solution of (1.1) is uniformly
asymptotically stable, the exponential convergence of all solutions of (1.1) is equivalent to (2.7),
which is in turn equivalent to (1.5).
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3 Sufficient conditions for exponential convergence of solutions

The following estimate is used throughout this section.

Lemma 3.1. Suppose that f ∈ C(R+;R+) ∩ L1(R+) satisfies
∫ ∞

0
f(t)eγt dt <∞, for some γ > 0.

If λ > 0, and λ′ = λ ∧ γ, then

∫ t

0
e−λ(t−s)f(s) ds ≤ e−λ

′t

∫ ∞

0
eγsf(s) ds.

Proof. We consider the cases 0 < λ < γ, 0 < γ ≤ λ separately. If 0 < λ < γ, then λ′ = λ, and
we have

∫ t

0
e−λ(t−s)f(s) ds ≤ e−λt

∫ t

0
eγsf(s) ds ≤ e−λ

′t

∫ ∞

0
eγsf(s) ds,

proving the result in this case. For 0 < γ ≤ λ, we have λ′ = γ, so

∫ t

0
e−λ(t−s)f(s) ds = e−γt

∫ t

0
e−(λ−γ)(t−s)eγsf(s) ds

≤ e−γt
∫ t

0
eγsf(s) ds ≤ e−λ

′t

∫ ∞

0
eγsf(s) ds,

which gives the result.

Proposition 3.2. Suppose that the zero solution of (1.1) is uniformly asymptotically stable,
and that (1.5), (1.6) hold. Then there exists λ′ > 0 and M = M(X0) > 0 such that the solution
of (2.3) satisfies

E[‖X(t)‖2] ≤M(X0)e
−2λ′t, t ≥ 0. (3.1)

Proof. With Z(t) defined by (2.2), and Z(0) = Id, the uniform asymptotic stability of the zero
solution of (1.1), together with (1.5) ensures the existence of C > 0 and λ > 0 such that (2.7)
holds, by Lemma 2.5 above. Hence by (2.1) and (2.7)

‖Z(t− u)Σ(u)‖ ≤ ‖Z(t− u)‖‖Σ(u)‖ ≤ Ce−λ(t−u) 1

c1(d, r)
‖Σ(u)‖F ,

for all 0 ≤ u ≤ t, so
‖Z(t− u)Σ(u)‖2F ≤ C ′1e

−2λ(t−u)‖Σ(u)‖2F , (3.2)

where C ′1 = C2c2(d,r)2

c1(d,r)2
. By Lemma 2.1 and Remark 2.2 (specifically, equations (2.5) and (2.6)),

we have

E[X(t)X(t)T ] = Z(t)X0(Z(t)X0)
T +

∫ t

0
Z(t− u)Σ(u)(Z(t− u)Σ(u))T du. (3.3)
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Since ‖x‖2 = tr(xxT ) for any x ∈ Rd, (3.2) together with (3.3) yields

E[‖X(t)‖2]

= ‖Z(t)X0‖
2 +

∫ t

0
tr
(

Z(t− u)Σ(u)(Z(t− u)Σ(u))T
)

du

≤ ‖Z(t)‖2‖X0‖
2 +

∫ t

0
‖Z(t− u)Σ(u)‖2F du

≤ C2e−2λt‖X0‖
2 + C ′1

∫ t

0
e−2λ(t−u)‖Σ(u)‖2F du. (3.4)

Let
λ′ = λ ∧ γ2. (3.5)

¿From Lemma 3.1, (1.5), and (3.5), we obtain

∫ t

0
e−2λ(t−u)‖Σ(u)‖2F du ≤ e−2λ′t

∫ ∞

0
e2γ2u‖Σ(u)‖2F du. (3.6)

Applying this to (3.4) gives

E[‖X(t)‖2] ≤ C2e−2λt‖X0‖
2 + C ′1e

−2λ′t

∫ ∞

0
e2γ2u‖Σ(u)‖2F du

≤M(X0)e
−2λ′t,

where M(X0) = C2‖X0‖
2 + C ′1

∫∞

0 e2γ2u‖Σ(u)‖2F du. This establishes the result.

This calculation enables us to obtain an exponential upper bound on E[‖X(t)‖p] for every p > 0.

Theorem 3.3. Suppose that the zero solution of (1.1) is uniformly asymptotically stable, and
that (1.5), (1.6) hold. Then there exists λ′ > 0 and Mp = Mp(X0) > 0 such that for each p > 0,
the solution of (2.3) satisfies

E[‖X(t)‖p] ≤Mp(X0)e
−λ′pt, t ≥ 0. (3.7)

Proof. We consider the cases p > 2, and 0 < p ≤ 2 separately. The case 0 < p ≤ 2 follows
directly from Liapunov’s inequality, and (3.1), to wit:

E[‖X(t)‖p] ≤ E[‖X(t)‖2]p/2 ≤Mp(X0)e
−λ′pt,

where we define Mp(X0) = M(X0)
p/2.

The case p ≥ 2 is less trivial. For p ≥ 2, there existsm ∈ N,m ≥ 2, such that 2(m−1) ≤ p < 2m.
We now seek an upper bound on E[‖X(t)‖2m], which in turn gives us an upper bound on
E[‖X(t)‖p].
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Using the inequality (x + y)2m ≤ 22m−1(x2m + y2m), x, y ≥ 0, together with Lemma 2.1 and
(2.5), we obtain

E[‖X(t)‖2m] ≤ 22m−1(‖E[X(t)]‖2m + E[‖Y (t)‖2m]), (3.8)

where Y (t) =
∫ t
0 Z(t−s)Σ(s) dW (s). Define σ ∈ C(R+×R+;Md,r(R)) by σ(s, t) = Z(t−s)Σ(s)

for 0 ≤ s ≤ t. Then

‖Y (t)‖2 =
d
∑

i=1





r
∑

j=1

∫ t

0
σi,j(s, t) dW

j(s)





2

.

For n ∈ N, k ∈ N, we may use the inequality

(

n
∑

i=1

|xi|

)k

≤ nk
n
∑

i=1

|xi|
k,

twice (first with n = d, k = m, and then with n = r, k = 2m) to get

‖Y (t)‖2m ≤ dm
d
∑

i=1





r
∑

j=1

∫ t

0
σ(s, t) dW j(s)





2m

≤ dm
d
∑

i=1

r2m
r
∑

j=1

(∫ t

0
σi,j(s, t) dW

j(s)

)2m

.

Since
∫ t

0
σi,j(s, t) dW

j(s) ∼ N

(

0,

∫ t

0
σi,j(s, t)

2 ds

)

,

we must have

E[‖Y (t)‖2m] ≤ dm · r2m ·
(2m)!

m!2m

d
∑

i=1

r
∑

j=1

(∫ t

0
σi,j(s, t)

2 ds

)m

. (3.9)

To obtain an upper bound on this summation, note that the definition of the Frobenius norm,
together with (3.2) gives

σi,j(s, t)
2 = (Z(t− s)Σ(s))2i,j ≤ ‖Z(t− s)Σ(s)‖2F ≤ C ′1e

−2λ(t−s)‖Σ(s)‖2F ,

for all 0 ≤ s ≤ t. Therefore, from (3.9), we have

E[‖Y (t)‖2m] ≤ dm · r2m ·
(2m)!

m!2m
· (C ′1)

m · dr ·

(∫ t

0
e−2λ(t−s)‖Σ(s)‖2F ds

)m

,

which, employing (3.6), and defining Lm(d, r) by

Lm(d, r) = dm · r2m ·
(2m)!

m!2m
· (C ′1)

m · dr

(∫ ∞

0
e2γ2u‖Σ(u)‖2F du

)m

.
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yields
E[‖Y (t)‖2m] ≤ Lm(d, r) · e

−2λ′mt, (3.10)

where λ′ is given by (3.5). Using (2.7), we have

‖E[X(t)]‖2m ≤ ‖Z(t)‖2m‖X0‖
2m ≤ C2me−2λmt‖X(0)‖2m. (3.11)

Taking (3.8), (3.10), and (3.11) together, and using (3.5), we find that

E[‖X(t)‖2m] ≤ L′m(d, r)e
−2λ′mt,

where L′m(d, r,X0) = 22m−1(C2m‖X(0)‖2m + Lm(d, r)). Recalling that m = m(p) is defined to
be the integer satisfying 2(m− 1) ≤ p < 2m, using Liapunov’s inequality, we get

E[‖X(t)‖p] ≤ E[‖X(t)‖2m]p/2m ≤ L′m(d, r,X0)
p/2me−λ

′pt.

Hence, we have (3.7) with Mp(X0) = L′m(p)(d, r,X0)
p/2m(p), where 2m(p) is the minimal even

integer greater than p.

We can use the exponential estimates obtained above in the following adaptation of a result
of Mao. Under the conditions which assure exponential convergence in p-th mean, we can also
guarantee that the solution converges almost surely to zero exponentially fast.

Theorem 3.4. Suppose that (1.5), (1.6) hold, and that the zero solution of (1.1) is uniformly
asymptotically stable. Then there exists β0 > 0 such that

lim sup
t→∞

1

t
log ‖X(t)‖ ≤ −β0, a.s. (3.12)

Proof. By the hypotheses of the theorem, Proposition 3.2 ensures that there exists M =
M(X0) > 0 and λ > 0 (where λ satisfies (2.7)) such that

E[‖X(t)‖2] ≤M(X0)e
−2λ′t

where λ′ > 0 satisfies (3.5); i.e., the process (X(t))t≥0 satisfies (3.1). To prove (3.12), we first
show that there exists M ′ = M ′(X0) > 0, λ3 > 0 such that

E
[

sup
n−1≤t≤n

‖X(t)‖2
]

≤M ′e−λ3(n−1). (3.13)

For each t > 0, there exists n ∈ N such that n− 1 ≤ t < n. Since

X(t) = X(n− 1) +

∫ t

n−1
AX(s) + (K ∗X)(s) ds+

∫ t

n−1
Σ(s) dW (s),

11



taking the triangle inequality, squaring, using the inequality (x + y + z)2 ≤ 32(x2 + y2 + z2),
taking suprema, using Jensen’s inequality on the Riemann integral term, and finally taking
expectations yields

E
[

sup
n−1≤t≤n

‖X(t)‖2
]

≤ 32

(

E[‖X(n− 1)‖2] + E
∫ n

n−1

(

‖A‖‖X(s)‖+

∫ s

0
‖K(s− u)‖‖X(u)‖ du

)2

ds

+ E

[

sup
n−1≤t≤n

∥

∥

∥

∥

∫ t

n−1
Σ(s) dW (s)

∥

∥

∥

∥

2
]

)

. (3.14)

To obtain an exponentially decaying upper bound on the second term on the right hand side
of (3.14), we may use the Cauchy-Schwarz inequality, together with the inequality (x + y)2 ≤
2(x2 + y2), to obtain

∫ n

n−1

(

‖A‖‖X(s)‖+

∫ s

0
‖K(s− u)‖‖X(u)‖ du

)2

ds

≤ 2

∫ n

n−1
‖A‖2‖X(s)‖2

+

(∫ s

0
‖K(s− u)‖

1

2 e
γ1
2

(s−u)‖K(s− u)‖
1

2 e−
γ1
2

(s−u)‖X(u)‖ du

)2

ds

≤ 2

∫ n

n−1

(

‖A‖2‖X(s)‖2

+

∫ s

0
‖K(u)‖eγ1u du

∫ s

0
‖K(s− u)‖e−γ1(s−u)‖X(u)‖2 du

)

ds.

Taking expectations across the above inequality, and using (1.5), (3.1) yields

E
∫ n

n−1

(

‖A‖‖X(s)‖+

∫ s

0
‖K(s− u)‖‖X(u)‖ du

)2

ds

≤ 2M

∫ n

n−1

(

‖A‖2e−2λ′s +K

∫ s

0
‖K(u)‖e−γ1ue−2λ′(s−u) du

)

ds,

where K =
∫∞

0 ‖K(u)‖eγ1u du. Next, define λ2 = λ′ ∧ γ1. Using the same kind of argument as
in Lemma 3.1, we obtain

∫ s

0
‖K(s− u)‖e−γ1ue−2λ′(s−u) du ≤ e−2λ2s

∫ ∞

0
‖K(u)‖eγ1u du.
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Therefore,

E
∫ n

n−1

(

‖A‖‖X(s)‖+

∫ s

0
‖K(s− u)‖‖X(u)‖ du

)2

ds

≤ 2M

(

‖A‖2 +

(∫ ∞

0
‖K(u)‖eγ1u du

)2)∫ n

n−1
e−2λ2s ds

≤ 2M

(

‖A‖2 +

(∫ ∞

0
‖K(u)‖eγ1u du

)2) 1

2λ2
e−2λ2(n−1). (3.15)

Next, we obtain an exponential upper bound on the third term on the right hand side of (3.14).
By the Burkholder-Davis-Gundy inequality, there exists C4 > 0 such that

E

[

sup
n−1≤t≤n

∥

∥

∥

∥

∫ t

n−1
Σ(s) dW (s)

∥

∥

∥

∥

2
]

≤ C4

∫ n

n−1
‖Σ(s)‖2F ds ≤ C4

∫ ∞

n−1
‖Σ(s)‖2F ds.

But, for any t ≥ 0, (1.6) implies

∫ ∞

t
‖Σ(s)‖2F ds ≤

∫ ∞

t
e2γ2(s−t)‖Σ(s)‖2F ds ≤ e−2γ2t

∫ ∞

0
e2γ2s‖Σ(s)‖2F ds.

Therefore,

E

[

sup
n−1≤t≤n

∥

∥

∥

∥

∫ t

n−1
Σ(s) dW (s)

∥

∥

∥

∥

2
]

≤ C4e
−2γ2(n−1)

∫ ∞

0
e2γ2s‖Σ(s)‖2F ds. (3.16)

Setting λ3 = λ2 ∧ (2γ2), and inserting the estimates (3.1), (3.15), and (3.16) into (3.14) gives
(3.13), with M ′ = M ′(X0) given by

M ′(X0) = 32

(

M(X0) + 2M(X0)

(

‖A‖2 +

(∫ ∞

0
‖K(u)‖eγ1u du

)2) 1

2λ2

+ C4

∫ ∞

0
e2γ2s‖Σ(s)‖2F ds

)

.

The proof now follows directly by applying the line of reasoning in Mao, Theorem 4.3.1, [13],
and sequels in [16]: indeed we obtain

lim sup
t→∞

1

t
log ‖X(t)‖ ≤ −

λ3

2
, a.s.

Setting β0 = λ3/2 = (λ2/2) ∧ γ2 = λ′ ∧ γ1 ∧ γ2 = λ ∧ γ1 ∧ γ2 > 0, we are done.

The above result establishes an upper bound on the almost sure exponential rate of decay of
the solution (−β0); the estimate is β0 = λ∧γ1∧γ2, where λ is the exact top Liapunov exponent
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of resolvent of the deterministic problem (1.1). Based on the asymptotic behaviour of linear
stochastic differential equations with damped noise, we conjecture that a better— perhaps
optimal— estimate for β0 is λ ∧ γ2; however, to date we have been unable to prove this result.
Another reasonable conjecture is that β0 = γ1 ∧ γ2. However, the following counterexample
shows that this conjecture cannot be true, in general.

Let a, µ, α ∈ R, and consider the scalar version of equation (1.1) with A = −a, K(t) = αe−µt.
Let a > 0, µ > 0, and α < 0. Suppose moroever that

−α >

(

µ− a

2

)2

> 0, µ > a.

Then the equation β2 + β(a+ µ) + (aµ− α) = 0 has two complex-valued solutions with

<e(β) = −
µ+ a

2
,

where <e(β) is the real part of the complex number β. Next, it is easy to reformulate the
resolvent equation (2.2) with Z(0) = 1 as the following second-order initial value problem:

Z ′′(t) + (µ+ a)Z ′(t) + (aµ− α)Z(t) = 0, t > 0,

Z(0) = 1, Z ′(0) = −a.

Therefore λ = (µ+ a)/2.

Next, notice that we can choose γ1 to be any number less than µ. In particular, we may choose
ε ∈ (0, µ− a) and set γ1 = µ− ε/2. Therefore, λ < γ1.

If Σ(t) ≡ 0, we can interpret γ2 = ∞; therefore, for the equation (2.3), the conjecture that
β0 = γ1 ∧ γ2 is equivalent to β0 = γ1. On the other hand, as Σ is identically zero, β0 = λ. As
λ < γ1, we have β0 = γ1 > λ = β0, a contradiction.

In the case where Σ(t) 6≡ 0, it is still possible to show (using the same underlying deterministic
equation) that the conjecture β0 = γ1 ∧ γ2 does not hold in general; the proof requires an
amount of explicit calculation, and will not be given here. However, the plan of the of the
proof is simple: the scalar Itô-Volterra equation (2.3) can be reformulated as a two-dimensional
linear stochastic differential equation, with solution Y (t) = (Y1(t), Y2(t)), where Y1(t) = X(t),
Y2(t) =

∫ t
0 e
−µ(t−s)X(s) ds. The solution of this SDE can be written explicitly in terms of Φ,

the fundamental matrix solution of

Φ′(t) =

(

−a α
1 −µ

)

Φ(t), t > 0, Φ(0) =

(

1 0
0 1

)

.

Indeed, we have

Φ(t)−1Y (t) =

(

x
0

)

+

∫ t

0
Φ(s)−1

(

Σ(t)
0

)

dB(s), t ≥ 0.
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The size of the stochastic perturbation on the righthand side can be estimated using the mar-
tingale time change theorem. Once this is done, the rate of decay to zero of Y1(t) = X(t) can
be readily determined.

In the case when Σ(t) obeys (1.6) with γ2 > γ1, the above calculation yields the estimate
β0 = λ, since γ1 > λ. However, this is once again inconsistent with β0 = γ1 ∧ γ2 = γ1, because
γ1 > λ.

4 Necessary conditions for exponential convergence of solutions

We now turn our attention to conditions which must hold if the solution of (2.3) is exponentially
convergent in an almost sure sense, or a p-th mean sense. We start with an almost sure result,
and then modify the analysis to tackle the p-th mean case.

Theorem 4.1. Suppose that (1.8) and (1.5) hold for the equation (2.3). Then (1.6) holds.

Proof. Let β0 be defined by (1.8), γ1 > 0 by (1.5). Let γ2 be a positive constant satisfying
γ2 < β0 ∧ γ1, and define the process Y (t) = eγ2tX(t). Hence (1.8) implies

lim sup
t→∞

1

t
log ‖Y (t)‖ ≤ −(β0 − γ2) < 0, a.s.,

which means that
lim
t→∞

Y (t) = 0, Y (t) ∈ L1(R+) a.s. (4.1)

Further define K̃(t) = eγ2tK(t). This gives K̃(t) ∈ L1(R+), by (1.5). Integration by parts on
the process Y , and (2.3) gives, on rearrangement,

∫ t

0
eγ2sΣ(s) dW (s) = Y (t)−X0

− (γ2Id +A)

∫ t

0
Y (s) ds−

∫ t

0

∫ s

0
K̃(s− u)Y (u) du ds. (4.2)

Consider the limit as t→∞ on the right hand side of (4.2). By (4.1), the first and third terms
have almost sure limits as t → ∞. Since K̃(t) ∈ L1(R+), and Y (t) ∈ L1(R+) (by (4.1)), the
fourth term has almost sure limit as t→∞. Therefore

lim
t→∞

∫ t

0
eγ2sΣ(s) dW (s)

exists almost surely. Thus, for i = 1, . . . , d, the i-th component converges almost surely, i.e.,

lim
t→∞

Ui(t)
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exists, a.s, where

Ui(t) =
r
∑

j=1

∫ t

0
eγ2sΣi,j(s) dW

j(s).

Further define

Σ̃i(s)
2 =

r
∑

j=1

Σ2
i,j(s).

Now, suppose that there exists i ∈ {1, . . . , d} such that

∫ ∞

0
e2γ2sΣ̃i(s)

2 ds =∞. (4.3)

for all γ2 > 0. Then, there exists an increasing sequence of times tn ↗ ∞ with t0 = 0 and
which satisfies

∫ tn+1

tn

e2γ2sΣ̃i(s)
2 ds = 1

for n ≥ 0. Next, set

Zn =
r
∑

j=1

∫ tn+1

tn

eγ2sΣi,j(s) dW
j(s).

By construction, and the independence of the Brownian motions W j , the sequence of random
variables Zn are identically and independently distributed (indeed, standardised) Gaussian
random variables. Hence

∞
∑

n=1

E[Z2
n] =∞. (4.4)

Since Ui(t) has an almost sure limit as t→∞, we have, by definition of Zn,

∞
∑

n=1

Zn exists a.s. (4.5)

This introduces a contradiction, as (4.4), (4.5) are inconsistent, by Kolmogorov’s Three Series
theorem. Hence (4.3) must be false for all i = 1, . . . , d, and some γ2 > 0. Thus, there exists
γ2 > 0 such that

d
∑

i=1

∫ ∞

0
e2γ2sΣ̃i(s)

2 ds <∞.

Using the definition of Σ̃i(s), we have (1.6), by the invoking the definition of the Frobenius
norm, and appealing to the equivalence of norms on Md,r(R).

Before we can prove the corresponding result for p-th mean exponentially convergent solutions
of (2.3), we need the following technical result.
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Lemma 4.2. Suppose Ni ∼ N (0, v2
i ) for i = 1, . . . , d, and

Z =

( d
∑

i=1

N2
i

)1/2

.

Then there exists a vi-independent constant D1 > 0 such that

E[Z2] ≤ D1E[|Z|]2.

Proof. By the equivalence of norms on Rd, there exist d-dependent positive constants c1 ≤ c2
such that for x1, x2, . . . , xd ∈ R,

c1

d
∑

i=1

|xi| ≤

( d
∑

i=1

x2
i

)1/2

≤ c2

d
∑

i=1

|xi|. (4.6)

Applying (4.6) yields

E[|Z|] ≥ c1

d
∑

i=1

E|Ni|.

Since Ni ∼ N (0, v2
i ), there exists a vi-independent constant c3 > 0 such that E[|Ni|] = c3vi.

Hence, using (4.6), and the fact that Ni ∼ N (0, v2
i ), we obtain

E[|Z|]2 ≥ c21c
2
3

( d
∑

i=1

vi

)2

≥
c21c

2
3

c22

d
∑

i=1

v2
i =

c21c
2
3

c22
E[Z2].

Putting D1 =
c22
c2
1
c2
3

gives the result.

This enables us to establish the corresponding p-th mean result, for p ≥ 1.

Theorem 4.3. Suppose for some p ≥ 1 that there exists βp > 0, Mp > 0 such that

E[‖X(t)‖p] ≤Mpe
−βpt, t ≥ 0, (4.7)

and that (1.5) holds for (2.3). Then (1.6) holds.

Proof. By (4.7) and Liapunov’s inequality, there exists M1 > 0, β1 > 0 such that

E[‖X(t)‖] ≤M1e
−β1t.

Choose γ2 > 0 such that γ2 < β1 ∧ γ1, where γ1 > 0 is defined by (1.5). Define Y (t) as in
Theorem 4.1 above. Then

E[‖Y (t)‖] ≤M1e
−(β1−γ2)t.

Hence
lim
t→∞

E[‖Y (t)‖] = 0, E[‖Y (t)‖] ∈ L1(R+).
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Defining K̃ as in Theorem 4.1 means that K̃(t) ∈ L1(R+). Taking the triangle inequality across
(4.2), using Hölder’s inequality, and then taking expectations yields

E
[∥

∥

∥

∥

∫ t

0
eγ2sΣ(s) dW (s)

∥

∥

∥

∥

]

≤ E‖Y (t)‖+ ‖X0‖

+ ‖γ2Id +A‖

∫ t

0
E[‖Y (s)‖] ds+

∫ t

0

∫ s

0
‖K̃(s− u)‖E[‖Y (u)‖] du ds. (4.8)

Every term on the right hand side of (4.8) is uniformly bounded on R+; the first term is
bounded as t 7→ E[‖Y (t)‖] is continuous on R+ and has zero limit at infinity; the second
term is constant; the third is bounded as E[‖Y (t)‖] ∈ L1(R+), while the fourth is bounded as
(‖K‖ ∗ E[‖Y ‖])(t) ∈ L1(R+). Thus, there exists D2 > 0 such that

E
[∥

∥

∥

∥

∫ t

0
eγ2sΣ(s) dW (s)

∥

∥

∥

∥

]

≤ D2. (4.9)

Next, observe that
∥

∥

∥

∥

∫ t

0
eγ2sΣ(s) dW (s)

∥

∥

∥

∥

2

=
d
∑

i=1

Ni(t)
2,

where each of the random variables

Ni(t) =

∫ t

0

r
∑

j=1

eγ2sΣi,j(s) dW
j(s)

is normally distributed with zero mean, and variance

vi(t)
2 =

∫ t

0

r
∑

j=1

e2γ2sΣi,j(s)
2 ds.

Therefore, we may apply Lemma 4.2 and (4.8) to get

∫ t

0
e2γ2s‖Σ(s)‖2F ds =

d
∑

i=1

r
∑

j=1

∫ t

0
e2γ2sΣi,j(s)

2 ds

= E

[

∥

∥

∥

∥

∫ t

0
eγ2sΣ(s) dW (s)

∥

∥

∥

∥

2
]

≤ D1E
[∥

∥

∥

∥

∫ t

0
eγ2sΣ(s) dW (s)

∥

∥

∥

∥

]2

≤ D1D
2
2.

Taking limits as t→∞ both sides gives the desired result (1.6).
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5 Necessary and sufficient conditions for exponential conver-

gence of solutions

We now use Theorems 3.3-4.3 above to draw equivalences between the statements

(i) (1.5), (1.6), the uniform asymptotic stability of the zero solution of (1.4);

(ii) (1.7) for all p > 0;

(iii) (1.8).

for the problem (2.3), under an additional condition on the kernel K. The condition we use is
that the each entry of K does not change sign on R+. This ensures that we can employ Lemma
2.6 above.

We prove the equivalence between (i) and (iii) first, before turning to the equivalence between
(i) and (ii).

Theorem 5.1. Suppose that the entries of K do not change sign on R+. Then the following
are equivalent for the problem (2.3):

(i) There exists β0 > 0, such that

lim sup
t→∞

1

t
log ‖X(t)‖ ≤ −β0, a.s.

for all solutions of (2.3).

(ii) There exists λ′ > 0, such that for every p > 0 there exists Mp(X0) > 0 for which

E[‖X(t)‖p] ≤Mp(X0)e
−λ′pt, t ≥ 0,

for all solutions of (2.3).

(iii) There exist γ1 > 0, γ2 > 0 such that
∫ ∞

0
‖K(s)‖eγ1s ds <∞,

∫ ∞

0
‖Σ(s)‖2e2γ2s ds <∞,

and the zero solution of (1.1) is uniformly asymptotically stable.

Proof. We first show that (iii) and (i) are equivalent.

The implication (iii) implies (i) is the subject of Theorem 3.4, which leaves the implication (i)
implies (iii).

To establish this, consider d + 1 solutions of (2.3), X j(t) for j = 0, . . . , d which are associated
with the initial conditions X0(0) = 0, Xj(0) = ej , j = 1, . . . , d. Then, by (2.4), we have,

Z(t)ej = Z(t)Xj(0) = Xj(t)−X0(t)
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for j = 1, . . . , d. By hypothesis, there exists a.s. finite random variables Cj(ε) > 0 for every
ε ∈ (0, β0/2) such that

‖Xj(t)‖ ≤ Cje
−(β0−ε)t, t ≥ 0, a.s.

for j = 0, . . . , d. Thus, for j = 1, . . . , d, we get

‖Z(t)ej‖ ≤ ‖X
j(t)‖+ ‖X0(t)‖ ≤ C̃j(ε)e

−(β0−ε)t,

where C̃j(ε) = Cj(ε) + C0(ε). Hence, there exists an almost surely finite random variable
C̃(ε) > 0 such that

‖Z(t)‖ ≤ C̃(ε)e−(β0−ε)t, t ≥ 0, a.s.

Since Z is deterministic, we have

lim sup
t→∞

1

t
log ‖Z(t)‖ ≤ −(β0 − ε),

Thus for every ε ∈ (0, β0/2), there exists a deterministic constant C(ε) such that

‖Z(t)‖ ≤ C(ε)e−(β0−2ε)t, t ≥ 0.

In particular, with ε = β0/4, and C = C(β0/4), we have

‖Z(t)‖ ≤ Ce−
β0
4
t, t ≥ 0. (5.1)

This immediately ensures the uniform asymptotic stability of the zero solution of (1.1). Since
the entries of K do not change sign on R+, (5.1) taken together with Lemma 2.6 implies (1.5).
The hypothesis (i) in conjunction with (1.5) force (1.6), by Theorem 4.1. All the parts of (iii)
are satisfied, proving the forward implication.

We now turn to the proof of the equivalence of (i) and (ii); since (i) and (iii) have already
been shown to be equivalent, the proof that (i) and (ii) are equivalent now suffices to prove the
theorem.

The implication (ii) implies (i) is the subject of Theorem 3.3. We prove the implication (i)
implies (ii) as follows: since (i) is true, we have

E[‖X(t)‖] ≤M1(X0)e
−λ′t.

Thus, by choosing Xj
0 = ej to be the initial condition associated with the solution X j(t),

j = 1, . . . , d, we get

‖Z(t)ej‖ = ‖E[Xj(t)]‖ ≤ E[‖Xj(t)‖] ≤M1(ej)e
−λ′t.

Therefore, there exists λ′ > 0, C > 0 such that

‖Z(t)‖ ≤ Ce−λ
′t, t ≥ 0. (5.2)

Therefore, the zero solution of (1.1) is uniformly asymptotically stable. Since the entries of K
do not change sign on R+, and (5.2) holds, Lemma 2.6 implies that (1.5) holds. Since (i), (1.5)
are true, Theorem 4.3 now implies that (1.6) is true for some γ2 > 0. All the conditions of (ii)
are therefore satisfied, and the result proven.
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