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Abstract: Let X be the fractional Brownian motion of any Hurst index H ∈ (0, 1) (resp.
a semimartingale) and set α = H (resp. α = 1

2). If Y is a continuous process and if m is a
positive integer, we study the existence of the limit, as ε→ 0, of the approximations

Iε(Y,X) :=

{∫ t

0
Ys

(

Xs+ε −Xs

εα

)m

ds, t ≥ 0

}

of m-order integral of Y with respect to X. For these two choices of X, we prove that the
limits are almost sure, uniformly on each compact interval, and are in terms of the m-th
moment of the Gaussian standard random variable. In particular, if m is an odd integer, the
limit equals to zero. In this case, the convergence in distribution, as ε → 0, of ε−

1
2 Iε(1, X)

is studied. We prove that the limit is a Brownian motion when X is the fractional Brownian
motion of index H ∈ (0, 1

2 ], and it is in term of a two dimensional standard Brownian motion
when X is a semimartingale.
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1 Introduction

In this paper we investigate the accurate convergence of some approximations of m-order
integrals which appear when one performs stochastic calculus with respect to processes which
are not semimartingales, for instance the fractional Brownian motion. We explain below our
main motivation of this study.

1.1 Preliminaries

Recall that the fractional Brownian motion with Hurst index 0 < H < 1 is a continu-
ous centered Gaussian process B

H
= {BH

t : t ≥ 0} with covariance function given by

Cov(B
H

s , B
H

t ) = 1
2(s

2H + t2H − |s − t|2H). It is well known that B
H

is a semi-martingale

if and only if H = 1
2 (see [16], pp. 97-98). Moreover, if H > 1

2 , B
H

is a zero quadratic varia-
tion process. Hence, for H ≥ 1

2 , a Stratonovich type formula involving symmetric stochastic
integrals holds (see, for instance [17] or [5]):

f(B
H

t ) = f(0) +

∫ t

0
f ′(B

H

s )d◦B
H

s . (1.1)

On the other hand, if 0 < H < 1
2 , some serious difficulties appear. It is a quite technical

computation to prove that (1.1) is still valid when H > 1
6 (see [8] or [3]). In fact, for H > 1

6 ,
in [8] was proved, on the one hand,

f(B
H

t ) = f(0) +

∫ t

0
f ′(B

H

s )d◦B
H

s −
1

12

∫ t

0
f (3)(B

H

s )d◦(3)B
H

s +
1

120

∫ t

0
f (5)(B

H

s )d◦(5)B
H

s

and on the other hand,
∫ t

0
f (3)(B

H

s )d◦(3)B
H

s =

∫ t

0
f (5)(B

H

s )d◦(5)B
H

s = 0,

where, for X,Y continuous processes and m ≥ 1, the m-order symmetric integral is given by
∫ t

0
Ysd

◦(m)Xs := lim
ε→0

prob
1

2

∫ t

0
(Ys + Ys+ε)

(Xs+ε −Xs)
m

ε
ds, (1.2)

and the m-forward integral is given by
∫ t

0
Ysd

−(m)Xs := lim
ε→0

prob

∫ t

0
Ys

(Xs+ε −Xs)
m

ε
ds, (1.3)

(ifm = 1, we write
∫ t
0 Ysd

◦Xs (resp.
∫ t
0 Ysd

−Xs) instead of
∫ t
0 Ysd

◦(1)Xs (resp.
∫ t
0 Ysd

−(1)Xs) ).
In [8] one studies, for the fractional Brownian motion, the existence of the m-order sym-

metric integrals. According to evenness of m, it is proved that

• if mH = 2nH > 1 then integral
∫ t
0 f(B

H

s )d◦(2n)B
H

s exists and vanishes;

• if mH = (2n− 1)H > 1
2 then integral

∫ t
0 f(B

H

s )d◦(2n−1)B
H

s exists and vanishes.

Moreover it is also emphasized that integrals
∫ t
0 f(B

H

s )d◦(2n)B
H

s (resp.
∫ t
0 f(B

H

s )d◦(2n−1)B
H

s )
do not exist in general if 2nH ≤ 1 (resp. (2n − 1)H ≤ 1

2). This last statement is in fact a
direct consequence of results of the present paper (as it is mentioned in the proof of Theorem
4.1 in [8]). An important consequence is that H = 1

6 is a barrier of validity for the formula
(1.1) (see [1], [3], [4], [7] and [8]).
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1.2 First order approximation: almost sure convergence

In the definitions (1.2) and (1.3), limits are in probability. One can ask a natural question: is it
possible to have almost sure convergence? For instance, in [10], the almost sure convergence of
a generalized quadratic variation of a Gaussian process is proved using a discrete observation
of one sample path; in particular, their result applies to the fractional Brownian motion.
Here, we prove (see Theorems 2.1 and 2.2 below for precise statements) that, as ε→ 0,

∫ t

0
Ys f(

Xs+ε −Xs

εα
)ds (1.4)

converge almost surely, uniformly on each compact interval, to an explicit limit when f
belongs to a sufficiently large class of functions (including the case of polynomial functions,

for instance f(x) = xm), Y is any continuous process, X = B
H

is the fractional Brownian
motion with H ∈ (0, 1) (resp. X = Z a semimartingale) and α = H (resp. α = 1

2). Let us
remark that the case when X is a semimartingale is a non Gaussian situation unlike was the
case in [10] or other papers (at our knowledge).
If m = 2n is an even integer the previous result suffices to study the existence of 2n-order
integrals for the fractional Brownian motion with all 0 < H < 1. Indeed, by choosing
f(x) = x2n, we can write the following equivalent, as ε ↓ 0:

1

ε

∫ t

0
Ys(B

H

s+ε −B
H

s )2n ∼ ε
2nH−1 (2n)!

2nn!

∫ t

0
Ysds, if

∫ t

0
Ysds 6= 0.

On the other hand, if m = 2n− 1 is an odd integer, we need to refine our analysis (especialy
for Hurst index 0 < H ≤ 1

2) because, in this case, we do not have an almost sure non-zero
equivalent.

1.3 Second order approximation: convergence in distribution

Set Y ≡ 1 and f(x) = xm in (1.4), with m ≥ 3 an odd integer. For the two same choices of

X (that is X = B
H

with α = H or X a semimartingale with α = 1
2), we have, for all T > 0,

a.s., ∀t ∈ [0, T ], lim
ε→0

∫ t

0

(

Xs+ε −Xs

εα

)m

ds = 0.

After correct renormalization, is it possible to obtain the convergence in distribution of
our approximation? We prove (see Theorems 2.4 and 2.5 below for precise statements) that
the family of processes

{

1√
ε

∫ t

0

(

Xs+ε −Xs

εα

)m

ds : t ≥ 0

}

(1.5)

converges in distribution, as ε→ 0, to an explicit limit:

• If X = BH is the fractional Brownian motion with H ∈ (0, 1
2 ], we obtain a Brownian

motion and our approach is different to those given by [6] or [19];

• If X is a semimartingale, we express the limiting process in terms of a two-dimensional
standard Brownian motion. This also give an example of a non-Gaussian situation when
the convergence in distribution is studied.
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We can see that
{

∫ t

0

(

B
H

s+ε −B
H

s

εH

)m

ds, ε > 0

}

equals in law to

{

∫ t
ε

0

(

B
H

s+1 −B
H

s

)m
ds, ε > 0

}

by using the self-similarity of the fractional Brownian motion (that is, for all c > 0, B
H

ct equals

in law - as a process - to c
H
B

H

t ).
In [6], the authors study the convergence in distribution (but only for finite dimensional

marginals) of the discrete version of our problem, that is of the sum
∑[t/ε]

n=1 f(B
H

n+1 − B
H

n )
with f a real function. On the other hand, in [19], the Hermite rank of f is used to discuss

the existence of the limit in distribution of
∫ t/ε
0 f(B

H

s+1 − B
H

s )ds for H > 1
2 (recall that, in

the present paper, we assume that H is smaller than 1
2).

2 Statement of results

2.1 Almost sure convergence

In the following, we shall denote by N a standard Gaussian random variable independent of
all processes which will appear, by B

H
the fractional Brownian motion with Hurst index H

and by B = B
1
2 the Brownian motion.

Theorem 2.1 Assume that H ∈ (0, 1). Let f : R → R be a function satisfying for all x, y ∈ R

|f(x)− f(y)| ≤ L|x− y|a(1 + x2 + y2)b, (L > 0, 0 < a ≤ 1, b > 0), (2.1)

and {Yt : t ≥ 0} be a continuous stochastic process. Then, as ε→ 0,

∫ t

0
Ys f(

B
H

s+ε −B
H

s

εH
)ds→ E [f(N)]

∫ t

0
Ysds, (2.2)

almost surely, uniformly in t on each compact interval.

The following result contains a similar statement for continuous martingales:

Theorem 2.2 Let f : R → R be a polynomial function. Assume that {Yt : t ≥ 0} is
a continuous process and that {Jt : t ≥ 0} is an adapted locally Hölder continuous paths
process. Let {Zt : t ≥ 0} be a continuous martingale given by Zt = Z0 +

∫ t
0 JsdBs. Then, as

ε→ 0,

∫ t

0
Ys f(

Zs+ε − Zs√
ε

)ds→
∫ t

0
YsE [f(N Js)|Fs] ds (2.3)

almost surely, uniformly in t on each compact interval. Here, Ft = σ(Js, s ≤ t).

Remarks: 1. For instance, if f(x) = xm then the right hand side of (2.3) equals to
E [Nm]

∫ t
0 Ys J

m
s ds.

2. A similar result holds for continuous semimartingales of type Zt = Z0+
∫ t
0 JsdBs+

∫ t
0 Ksds

because the finite variation part
∫ t
0 Ksds does not have any contribution to the limit. 2
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If we apply Theorem 2.1 with f(x) = x, we obtain, almost surely on each compact interval,

lim
ε→0

1

εH

∫ t

0
Ys(B

H

s+ε −B
H

s )ds = 0.

In the following result, we prove that, by replacing ε−H by ε−1, we obtain a non-zero limit
for integrands of the form Ys = g(B

H

s ):

Corollary 2.3

1) Assume that g ∈ C2(R) and that H belongs to [ 12 , 1). Then

∫ t

0
g(B

H

s )
B

H

s+ε −B
H

s

ε
ds

converges, as ε→ 0, almost surely, on each compact interval. Consequently, the forward
integral

∫ t
0 g(B

H

s )d−B
H

s can be defined path to path.

2) Assume that g ∈ C3(R) and that H belongs to [ 13 , 1). Then

1

2

∫ t

0
(g(B

H

s+ε) + g(B
H

s ))
B

H

s+ε −B
H

s

ε
ds

converges, as ε → 0, almost surely, on each compact interval. Consequently, the sym-
metric integral

∫ t
0 g(B

H

s )d◦B
H

s can be defined path to path.

3) Let {Zt : t ≥ 0} be a continuous martingale as in Theorem 2.2. Assume that g ∈ C2(R).
Then

∫ t

0
g(Zs)

Zs+ε − Zs

ε
ds

converges, as ε→ 0, almost surely, on each compact interval, to the classical Itô integral
∫ t
0 g(Zs)dZs.

Remarks: 1. In [2], it is proved, for g regular enough, that

∫ t

0
g(B

H

s )d◦B
H

s =

∫ t

0
g(B

H

s )δB
H

s +TrDg(B
H

)t, (2.4)

where
∫ t
0 g(B

H

s )δB
H

s denotes the usual divergence integral with respect to B
H
and TrDg(B

H
)t

is defined as the limit in probability, as ε→ 0, of

1

2ε

∫ t

0
g′(B

H

s ) [R(s, (s+ ε) ∧ t)−R(s, (s− ε) ∨ 0)] ds

with R(s, t) = Cov(B
H

s , B
H

t ). For any H ∈ (0, 1), it is a simple computation to see that the

previous limit exists almost surely, on each compact interval and equals toH
∫ t
0 g
′(B

H

s )s2H−1ds.
Consequently, by using (2.4) and the part 2 of Corollary 2.3, we see that the divergence inte-

gral
∫ t
0 g(B

H

s )δB
H

s can be defined path-wise.

2. In [20], it was introduced a path-wise stochastic integral with respect to B
H

when the
integrator has γ-Hölder continuous paths with γ > 1−H. When the integrator is of the form
g(B

H

t ), the condition on γ implies that H > 1
2 (see p. 354). Hence, the first two parts of

Corollary 2.3 could be viewed as improvements of the results in [20]. 2
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2.2 Convergence in distribution

Let m be an odd integer. It is well known that the monomial xm may be expanded in terms
of the Hermite polynomials:

xm =
m
∑

k=1

ak,mHk(x), with Hk(x) = (−1)kex2

2
dk

dxk

(

e−
x2

2

)

, k = 0, 1, 2, . . . (2.5)

Note that the sum begin with k = 1 since m is odd (for instance x = H1(x), x
3 = 3H1(x) +

H3(x) and so on).

Theorem 2.4 Let m ≥ 3 be an odd integer and assume that H belongs to (0, 1
2 ]. Then, as

ε→ 0,

{ 1√
ε

∫ t

0

(

B
H

s+ε −B
H

s

εH

)m

ds : t ≥ 0} L−→{√cm,Hβt : t ≥ 0}. (2.6)

Here {βt : t ≥ 0} denotes a one-dimensional standard Brownian motion starting from 0 and
cm,H is given by

cm,H := 2
m
∑

k=1

a2
k,m

k!

∫ ∞

0

[

(x+ 1)
2H

+ |x− 1|2H − 2x
2H
]k
dx,

where the coefficients ak,m are given by (2.5).

Remark: Let us note that if 0 < H < 1
2 ,

(x+ 1)
2H

+ |x− 1|2H − 2x
2H ∼ H(2H − 1)x

−2(1−H)
, as x→∞,

and if H = 1
2 ,

(x+ 1)
2H

+ |x− 1|2H − 2x
2H

= 0, as x ≥ 1.

Hence cm,H <∞ if and only if 0 < H ≤ 1
2 . 2

Finally, let us state the result concerning martingales:

Theorem 2.5 Let m ≥ 3 be an odd integer and assume that σ is an element of C2(R;R).
Let {Zt : t ≥ 0} be a continuous martingale given by Zt = Z0+

∫ t
0 σ(Bs)dBs. Then, as ε→ 0,

{ 1√
ε

∫ t

0

(

Zs+ε − Zs√
ε

)m

ds : t ≥ 0} L−→{
∫ t

0
σ(β(1)

s )md(κ1β
(1)
s + κ2β

(2)
s ) : t ≥ 0}. (2.7)

Here {(β(1)
t , β

(2)
t ) : t ≥ 0} denotes a two-dimensional standard Brownian motion starting from

(0,0) and κi, i = 1, 2 are some constants.
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3 Proofs

3.1 Proof of almost sure convergence

The idea to obtain almost sure convergence is firstly, to verify L2-type convergence and
secondly, to use a Borel-Cantelli type argument and the regularity of paths (see Lemma 3.1
below).

To begin with, let us recall a classical definition: the local Hölder index γ0 of a con-
tinuous paths process {Wt : t ≥ 0} is the supremum of the exponents γ verifying, for any
T > 0:

P ({ω : ∃L(ω) > 0, ∀s, t ∈ [0, T ], |Wt(ω)−Ws(ω)| ≤ L(ω)|t− s|γ}) = 1. (3.1)

We can state now the following almost sure convergence criterion which will be used in proving
Theorems 2.1 and 2.2:

Lemma 3.1 Let f : R → R be a function satisfying (2.1), {Wt : t ≥ 0} be a locally Hölder
continuous paths process with index γ0 and {Vt : t ≥ 0} be a bounded variation continuous
paths process. Set

W
(f)

ε (t) :=

∫ t

0
f(
Ws+ε −Ws

εγ0
)ds, t ≥ 0, ε > 0, (3.2)

and assume that for each t ≥ 0, as ε→ 0,

∥

∥

∥
W

(f)

ε (t)− Vt

∥

∥

∥

2

L2
= O(εα), with α > 0. (3.3)

Then, for any t ≥ 0, limε→0 W
(f)

ε (t) = Vt almost surely, and if f is non-negative, for any
continuous process {Yt : t ≥ 0}, as ε→ 0,

∫ t

0
YsdW

(f)

ε (s)→
∫ t

0
YsdVs (3.4)

almost surely, uniformly in t on every compact interval.

Proof. We split the proof in several steps.
Step 1. We set, for n ∈ N∗, εn := n−2/α. For every δ > 0

P
(

|W (f)

εn (t)− Vt| > δ
)

≤ 1

δ2
E
[

(W
(f)

εn (t)− Vt)
2
]

≤ cst.

δ2
εαn.

Since
∑

εαn < +∞, we deduce, by applying Borel-Cantelli lemma that, for each t ≥ 0,

limn→∞W
(f)

εn (t) = V (t) almost surely.
Step 2. Fix ε > 0 and consider n ∈ N∗ such that εn+1 < ε ≤ εn. Let us fix ω ∈ Ω. We

shall denote, for each t ≥ 0,

W
(f)

ε (t)(ω) = W
(f)

εn (t)(ω) + ξn(t)(ω) + ζn(t)(ω),

with

ξn(t)(ω) :=

∫ t

0

[

f(
W

(f)
s+ε(ω)−W

(f)
s (ω)

εγ0
)− f(

W
(f)
s+εn(ω)−W

(f)
s (ω)

εγ0
)

]

ds,
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ζn(t)(ω) :=

∫ t

0

[

f(
W

(f)
s+εn(ω)−W

(f)
s (ω)

εγ0
)− f(

W
(f)
s+εn(ω)−W

(f)
s (ω)

εγ0
n

)

]

ds.

We prove that ξn(t)(ω), ζn(t)(ω) tend to zero, as n→∞, hence we shall deduce that, for each

t ≥ 0, limε→0 W
(f)

ε (t) = V (t) almost surely.
For notational convention, we will drop the argument ω and the superscript (f). We can

write, for δ > 0,

|ξn(t)| ≤
cst.

εaγ0

∫ t

0
|Ws+ε −Ws+εn |a

[

1 +

(

Ws+ε −Ws

εγ0

)2

+

(

Ws+εn −Ws

εγ0

)2
]b

ds

≤ cst.

ε
(a+2b)γ0

n+1

|εn − εn+1|a(γ0−δ)ε2b(γ0−δ)
n t.

Since εn − εn+1 = O(n−1−2/α), we have |ξn(t)| = O(n−aγ0+δ(a+ 2a+4b
α

)) as n → ∞. Hence,
limn→∞ ξn(t) = 0 by choosing δ small enough. Similarly,

|ζn(t)| ≤ cst.

(

1

εγ0
− 1

εγ0
n

)a ∫ t

0
|Ws+εn −Ws|a

[

1 +

(

Wu+ε −Wu

εγ0

)2

+

(

Ws+εn −Ws

εγ0

)2
]b

ds

≤ cst.

ε2bγ0
n+1

(

1

εγ0
n+1

− 1

εγ0
n

)a

ε(a+2b)(γ0−δ)
n t.

Since ε−γ0
n − ε−γ0

n+1 = O(n−1−2γ0/α), we have |ζn(t)| = O(n−a+δ(a+ 2a+4b
α

)) as n → ∞. Again,
limn→∞ ζn(t) = 0 by choosing δ small enough.

Step 3. We will show that the exceptional set of the almost sure convergence W
(f)

ε (t) →
V (t) can be choosed independent of t. Let Ω∗ the set of probability 1, such that for every

ω ∈ Ω∗, limε→0 W
(f)

ε (t)(ω) = Vt(ω), ∀t ∈ Q∩R+. Fix such a ω ∈ Ω∗, t ∈ R+ and assume that
{sn} and {tn} are rational sequences such that sn ↑ t and tn ↓ t. Clearly,

W
(f)

ε (sn)(ω) ≤W
(f)

ε (t)(ω) ≤W
(f)

ε (tn)(ω).

First, letting ε goes to zero we get

Vsn(ω) ≤ lim inf
ε→0

W
(f)

ε (t)(ω) ≤ lim sup
ε→0

W
(f)

ε (t)(ω) ≤ Vtn(ω),

and then, letting n goes to infinity we deduce that for each ω ∈ Ω∗ and each t ∈ R+,
limε→0 W

(f)

ε (t)(ω) = Vt(ω).

Step 4. If f is non-negative we can apply Dini’s theorem to obtain that W
(f)

ε (t) converges
almost surely toward Vt, uniformly on every compact interval.

Step 5. Further, the reasoning is pathwise, hence we fix ω ∈ Ω, we drop the argument
ω and write small letters instead capital letters. Since w

(f)

ε simply converges toward v, the

distribution function of the measure dw
(f)

ε converges toward the distribution function of the

measure dv, hence dw
(f)

ε weakly converges toward dv. Clearly, the measure dv does not charge
points and the function s 7→ ys1[0,t](s) is dv-almost everywhere continuous. Consequentely,

lim
ε→0

∫ ∞

0
ys 1[0,t](s) dw

(f)

ε (s) =

∫ t

0
ys dvs.

The proof of the almost sure convergence criterion is done.
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Proof of Theorem 2.1.
First, let us note that if f satisfies (2.1) then the positive part f+ and the negative part

f− also satisfy (2.1). Hence by linearity, we can assume that f is a non-negative function. We

shall apply Lemma 3.1 to W = B
H
, the fractional Brownian motion which is a locally Hölder

continuous paths process with index H (as we can see by applying the classical Kolmogorov
theorem, see [15], p. 25) and to the process Vt = E [f(N)] t. We need to verify (3.3). First
we note that

Var(B
H

u+ε −B
H

u ) = ε
2H

and, if u+ ε ≤ u+
√
ε < v,

Cov(B
H

u+ε−B
H

u , B
H

v+ε−B
H

v ) = (v−u−ε)2H+(v−u+ε)2H−2(v−u)2H ≤ cst.ε2

(v − u)2−2H ≤ cst.ε
1+H

,

as we can see by using Taylor expansion. Hence, by classical linear regression we obtain, for
u+

√
ε < v,

B
H

v+ε −B
H

v

εH
= O(ε

1+H

)Nu,ε +
(

1 +O(ε
2(1+H)

)
)

Mu,ε, (3.5)

uniformly with respect to u, where Nu,ε =
B

H

u+ε−B
H

u

ε
H and Mu,ε are two independent standard

Gaussian random variables. We write

E







[

∫ t

0

(

f(
B

H

s+ε −B
H

s

εH
)− E [f(N)]

)

ds

]2






= T1(ε) + T2(ε) + T3, (3.6)

where

T1(ε) := 2

∫∫

[0,t]2
1u<v<u+

√
εE

[

f(
B

H

u+ε −B
H

u

εH
)f(

B
H

v+ε −B
H

v

εH
)

]

dudv,

T2(ε) := 2

∫∫

[0,t]2
1u+

√
ε<vE

[

f(
B

H

u+ε −B
H

u

εH
)f(

B
H

v+ε −B
H

v

εH
)

]

dudv and T3 := −E [f(N)]2 t2.

Using (2.1) (which implies that |f(x)| ≤ cst.(1+|x|a(1+x2)b)) and Cauchy-Schwarz inequality
we can prove that T1(ε) = O(

√
ε). Using again (2.1) and (3.5) we deduce that T2(ε) =

E [f(N)]2 t2 + O(ε
a(1+H)

). Replacing in (3.6) we see that (3.3) is verified, hence Lemma 3.1
applies. The proof of (2.2) is done.

Proof of Theorem 2.2.
By linearity it suffices to prove the result for f(x) = xm and by classical localization

argument (see for instance [8], p. 8), it suffices to prove the result for J bounded continuous
process. Recall that N denotes a standard Gaussian random variable.

Thanks to Theorem 2.1, (2.3) is true for the Brownian motion B = B
1
2 . More precisely,

as ε→ 0,
∫ t

0
Jm
s

(

Bs+ε −Bs√
ε

)m

ds→ E [Nm]

∫ t

0
Jm
s ds (3.7)

almost surely uniformly on each compact interval.
At this point we need the following technical but simple:

9



Lemma 3.2 Denote by P the set of finite sequences δ with values in {1, 2}. For δ ∈ P we

denote by k = k(δ) the length of the support of the sequence δ and n(δ) :=
∑k(δ)

j=1 δ(j). Let M
be a martingale, a < b be two real numbers and we shall denote

I
(M)
a,b,δ :=

∫ b

a
dM

(δ(1))

t1

∫ t1

a
dM

(δ(2))

t2 . . .

∫ tk−1

a
dM

(δ(k))

tk
, (3.8)

with the convention dM (1) = dM (Itô’s differential) and dM (2) = d[M,M ] (Riemann-Stieltjes
differential). Then, for each n ∈ N∗,

(Mb −Ma)
n =

∑

δ∈P,n(δ)=n

cn(δ)I
(M)
a,b,δ, (3.9)

where cn(δ) is a contant depending only on δ and n.

Proof. We make an induction with respect to n. If n = 1, Mb −Ma =
∫ b
a dMs. Assume

that (3.9) is true for n and we verify it for n+ 1:

(Mb −Ma)
n+1 = (n+ 1)

∫ b

a
(Ms −Ma)

ndMs +
n(n+ 1)

2

∫ b

a
(Ms −Ma)

n−1d[M,M ]s

= (n+1)

∫ b

a





∑

δ∈P,n(δ)=n

cn(δ)I
(M)
a,s,δ



 dMs+
n(n+ 1)

2

∫ b

a





∑

δ∈P,n(δ)=n−1

cn(δ)I
(M)
a,s,δ



 d[M,M ]s

=
∑

δ∈P,n(δ)=n+1

cn+1(δ)I
(M)
a,b,δ .

We can finish the proof of Theorem 2.2. By (3.9) we can write

Jm
s (Bs+ε −Bs)

m − (Zs+ε − Zs)
m =

∑

δ∈P,n(δ)=m

c(δ)(Jm
s I

(B)
s,s+ε,δ − I

(Z)
s,s+ε,δ),

where

Jm
s I

(B)
s,s+ε,δ − I

(Z)
s,s+ε,δ =

k
∑

j=1

∫ s+ε

s
J

δ(1)

s dB
(δ(1))

(t1) . . .

∫ tj−2

s
J

δ(j−1)

s dB
(δ(j−1))

(tj−1)

×
∫ tj−1

s
(J

δ(j)

s − J
δ(j)

tj )dB
(δ(j))

(tj)

∫ tj

s
J

δ(j+1)

tj+1
dB

(δ(j+1))
(tj+1) . . .

∫ tk−1

s
J

δ(k)

tk
dB

(δ(k))
(tk).

By hypothesis, paths of J are locally Hölder continuous and by using the isometry property
of Itô’s integral we can deduce (3.3): as ε→ 0,

E

{

[∫ t

0
Jm
s

(

Bs+ε −Bs√
ε

)m

ds−
∫ t

0

(

Zs+ε − Zs√
ε

)m

ds

]2
}

= O(εα), α > 0.

We need now the following simple modification of Lemma 3.1:
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Lemma 3.3 Let us made the same assumptions on the function f and on the process W as
in Lemma 3.1. Moreover, we assume that {W̃t : t ≥ 0} is another locally Hölder continuous

paths process with same index γ0 and assume that W̃
(f)

ε (t) denotes the associated process to
W̃ as in (3.2). If f is non-negative and if for each t ≥ 0, as ε→ 0,

∥

∥

∥
W

(f)

ε (t)− W̃
(f)

ε (t)
∥

∥

∥

2

L2
= O(εα), α > 0, (3.10)

then, we have

lim
ε→0

(

W
(f)

ε (t)− W̃
(f)

ε (t)
)

= 0 (3.11)

almost surely, uniformly on every compact interval.

The proof is straightforward and we leave it to the reader. Using this result, we obtain that

lim
ε→0

[∫ t

0
Jm
s

(

Bs+ε −Bs√
ε

)m

ds−
∫ t

0

(

Zs+ε − Zs√
ε

)m

ds

]

= 0 (3.12)

almost surely, uniformly on each compact interval. Combining (3.12) with (3.7), we get (2.3).

Proof of Corollary 2.3. To prove the first part, we set Ys = g′′(B
H

s ) and f(x) = x2 in
(2.2). Then, we obtain the existence of

lim
ε→0

∫ t

0
g′′(B

H

s )
(B

H

s+ε −B
H

s )2

ε
ds, almost surely, uniformly on each compact interval.

On the other hand, we can write, for a, b ∈ R, a < b,

g(b) = g(a) + g′(a)(b− a) +
g′′(θ)
2

(b− a)2,

with θa,b ∈ (a, b). Setting a = B
H

s and b = B
H

s+ε, integrating in s on [0, t] and dividing by ε
we get:

1

ε

∫ t

0
(g(B

H

s+ε)−g(B
H

s ))ds =
1

ε

∫ t

0
g′(B

H

s )(B
H

s+ε−B
H

s )ds+
1

2ε

∫ t

0
g′′(θ

B
H
s ,B

H

s+ε

)(B
H

s+ε−B
H

s )2ds.

By a simple change of variable we can transform the left-hand side as

1

ε

∫ t+ε

t
g(B

H

s )ds− 1

ε

∫ ε

0
g(B

H

s )ds,

which tends, as ε→ 0, almost surely uniformly on each compact interval toward g(B
H

t )−g(0).
The last term on the right-hand side of the previous equality converges, almost surely and
uniformly on each compact interval and therefore the term which remains on the right-hand
side is also forced to have a limit. The third part can be proved in a similar way.
Let us turn to the second part. By setting Ys = g(3)(B

H

s ) and f(x) = x3 in (2.2), we obtain
the existence of

lim
ε→0

∫ t

0
g(3)(B

H

s )
(B

H

s+ε −B
H

s )3

ε
ds, almost surely, uniformly on each compact interval.
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On the other hand, by setting Ys ≡ 1 and f(x) = |x|3 in (2.2) we obtain that

lim
ε→0

∫ t

0

|BH

s+ε −B
H

s |3
ε

ds < +∞, almost surely, ∀t > 0.

Consequently, it suffices to use the following Taylor formula

g(b) = g(a) +
g′(a) + g′(b)

2
(b− a)− g(3)(θ)

12
(b− a)3

and the dominated convergence, in order to conclude as previously.

3.2 Proofs of the convergence in distribution

Proof of Theorem 2.4. First, let us explain the main ideas in the simpliest situation of the
Brownian motion (H = 1

2). In this case we are studying M
T
(t) = T−1/2

∫ tT
0 (Bs+1 −Bs)

m ds
(see Step 1 below) and we write it, thanks to succesive applications of Itô’s formula and of the

stochastic version of Fubini theorem, as
∫ tT
0 R

T
(s)dBs plus a remainder which tends to zero

in L2, as T → ∞. Then we can show that limT→∞
∫ tT
0 R

T
(s)2ds = cst.t, hence, by Dubins-

Schwarz theorem, we obtain that M
T
→
√
cst.β, as T →∞, in the sense of finite dimensional

time marginals. Finally we prove the tightness. Let us remark that similar technics have been
used in [14], precisely in the proof of Proposition 3 (see also Step 10 below).

For the fractional Brownian motion case (0 < H < 1
2) technical difficulties appear because

the kernel K in its moving average representation (B
H

t =
∫ t
0 K(s, t)dBs) is singular at the

points s = 0 and s = t. Again we split the proof in several steps.
Step 1. By the self-similarity of the fractional Brownian motion, that is {BH

ct : t ≥
0} L= {cHBH

t : t ≥ 0}, for all c > 0, we can see that

{ 1√
ε

∫ t

0

(

B
H

s+ε −B
H

s

εH

)m

ds : t ≥ 0} L= {√ε
∫ t

ε

0

(

B
H

s+1 −B
H

s

)m
ds : t ≥ 0} = {M 1

ε

(t) : t ≥ 0},

where

M
T
(t) :=

1√
T

∫ tT

0

(

B
H

s+1 −B
H

s

)m
ds, t ≥ 0. (3.13)

Hence, to get (2.6) it suffices to prove that

{M
T
(t) : t ≥ 0} L−→{√cm,H βt : t ≥ 0}, as T →∞. (3.14)

Moreover, this convergence is a consequence of the following two facts:

i) as T →∞, {M
T
(t) : t ≥ 0} → {√cm,H βt : t ≥ 0} in law in sense of finite (3.15)

dimensional time marginals;

ii) for T ≥ 1, the family of distributions of processes M
T
is tight. (3.16)
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Step 2. Before proceeding with the proof of (3.15), let us show how the constant cm,H

appears. We claim that, for each t ≥ 0,

lim
T→∞

E
[

M
T
(t)2
]

= cm,Ht. (3.17)

Set G1 = B
H

u+1 −B
H

u , G2 = B
H

v+1 −B
H

v and θ(u, v) = Cov(G1, G2). We need to estimate the
expectation of the product Gm

1 G
m
2 . Thanks to (2.5), we have

E[Gm
1 G

m
2 ] =

∑

1≤k,`≤m

ak,ma`,mE[Hk(G1)H`(G2)] =
m
∑

k=1

a2
k,m

k!
θ(u, v)k.

Replacing this in the expression of the second moment of M
T
(t), we obtain, noting also that

θ(u, v) = 1
2(|v − u+ 1|2H + |v − u− 1|2H − 2|v − u|2H ),

E
[

M
T
(t)2
]

=
2

T

∫∫

0≤u<v≤tT
dudv

m
∑

k=1

a2
k,m

k!
θ(u, v)k

= 2

∫ t

0
dy

m
∑

k=1

a2
k,m

k!

∫ T (t−y)

0

[

(x+ 1)
2H

+ |x− 1|2H − 2x
2H
]k
dx,

by the change of variables x = v − u, y = u/T . Letting T goes to infinity we get on the right
hand side of the previous equality cm,Ht.

Step 3. We proceed now to the first technical notation which will be useful in the next
step. We write M

T
(t) = M

T
(b) +M (b)

T
(t), where

M (b)
T

(t) :=
1√
T

∫ tT

bT

(

B
H

s+1 −B
H

s

)m
ds, t ≥ 0. (3.18)

Choose an arbitrary, but fixed % > 0. Let us note that, by (3.17), we can choose b > 0 small
enough such that

lim
T→∞

E
[

M
T
(b)2

]

≤ %. (3.19)

Step 4. Let us recall (see, for instance, [1], p. 122) that the fractional Brownian motion
can be written as

B
H

t = At+ B̌
H

t = γ
H

∫ 0

−∞
[(t− s)

H− 1
2 − (−s)H−

1
2 ]dBs+γ

H

∫ t

0
(t− s)

H− 1
2 dBs, t ≥ 0, (3.20)

where, here and elsewhere we denote by γ
H
the constant Γ(H+ 1

2)
−1. We can write M (b)

T
(t) =

M̌ (b)
T

(t) +D(b)
T

(t), where

M̌ (b)
T

(t) :=
1√
T

∫ tT

bT

(

B̌
H

s+1 − B̌
H

s

)m
ds, t ≥ 0. (3.21)

Since the process A has absolutely continuous trajectories and using the fact that A and B̌
are independent as stochastic integrals on disjoint intervals, it is not difficult to prove that,
for each t ≥ 0,

lim
T→∞

E
[

D(b)
T

(t)2
]

= lim
T→∞

E
[

(M (b)
T

(t)− M̌ (b)
T

(t))2
]

= 0. (3.22)
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Step 5. By (3.21) and (3.20) we can write

M̌ (b)
T

(t) =
γ
H√
T

∫ tT

bT

(∫ s+1

0
(s+ 1− u)

H− 1
2 dBu −

∫ s

0
(s− u)

H− 1
2 dBu

)m

ds (3.23)

=
γ
H√
T

∫ tT

bT

(∫ s

0
[(s+ 1− u)

H− 1
2 − (s− u)

H− 1
2 ]dBu +

∫ s+1

s
(s+ 1− u)

H− 1
2 dBu

)m

ds, t ≥ 0.

We need to introduce a second technical notation. Let us denote:

Ň (b,c)
T

(t) :=
γ
H√
T

∫ tT

bT

(

∫ s

(s−c)∨0
[(s+ 1− u)

H− 1
2 − (s− u)

H− 1
2 ]dBu (3.24)

+

∫ s+1

s
(s+ 1− u)

H− 1
2 dBu

)m

ds, t ≥ 0,

where the positive constant c will be fixed and specified by the statement a) below. We shall
prove successively the following statements:

a) for each t ≥ 0, there exists c > 0 large enough, such that

lim sup
T→∞

E
[

(M̌ (b)
T

(t)− Ň (b,c)
T

(t))2
]

≤ cst.%; (3.25)

b) there exists two families of stochastic processes {R
T
(t) : t ≥ 0} and {S

T
(t) : t ≥ 0} such

that, for each t ≥ 0,

Ň (b,c)
T

(t) =

∫ tT

0
R

T
(s)dBs + S

T
(t), with lim

T→∞

E[S
T
(t)2] = 0; (3.26)

c) for each t ≥ 0,

lim
T→∞

Var

(∫ tT

0
R

T
(s)2ds

)

= 0. (3.27)

Step 6. Suppose for a moment that a), b), c) are proved and let us finish the proof of the
convergence in law in sense of finite dimensional time marginals (3.15). First, we can write,

∫ tT

0
R

T
(s)2ds− cm,H t = {

∫ tT

0
R

T
(s)2ds− E[

∫ tT

0
R

T
(s)2ds]}+ {E[

(∫ tT

0
R

T
(s)dBs

)2

]

−E[M̌ (b)
T

(t)2]}+ {E[M̌ (b)
T

(t)2 −M (b)
T

(t)2]}+ {E[M (b)
T

(t)2 −M
T
(t)2]}+ {E

[

M
T
(t)2
]

− cm,H t}.
By using (3.27) for the first term, (3.25)-(3.26) for the second term, (3.22) for the third term,
(3.19) for the forth term and (3.17) for the fifth one, we obtain

lim sup
T→∞

E[(

∫ tT

0
R

T
(s)2ds− cm,H t)2] ≤ cst.%,

or equivalently, for each t ≥ 0,

lim sup
T→∞

E[(a
(T )

(t)− a(t))2] ≤ cst.%, (3.28)
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with notations a
(T )

(t) :=
∫ tT
0 R

T
(s)2ds and a(t) := cm,Ht. Second, we fix d ∈ N∗ and 0 ≤ t1 <

t2 < . . . < td and we shall denote for any u ∈ Rd and f : R+ → R, u • f :=
∑d

j=1 ujf(tj). We
consider the characteristic functions:

|E [exp(iu •M
T
)]− E [exp(iu • (β ◦ a))]| ≤ E

[

| exp(iu • (M
T
−M (b)

T
))− 1|

]

+E
[

| exp(iu • (M (b)
T
− M̌ (b)

T
))− 1|

]

+ E
[

| exp(iu • (M̌ (b)
T
− Ň (b,c)

T
))− 1|

]

+E [| exp(iu • S
T
)− 1|] + |E[exp(iu •

∫ ·T

0
R

T
(s)dBs)]− E[exp(iu • (β ◦ a))]|.

By (3.19), (3.22), (3.25), (3.26) and using the classical inequality |eix − 1| ≤ |x|, we obtain,
for T large enough

|E [exp(iu •M
T
)]− E [exp(iu • (β ◦ a))]| ≤ cst.% (3.29)

+|E[exp(iu •
∫ ·T

0
R

T
(s)dBs)]− E[exp(iu • (β ◦ a))]|.

By Dubins-Schwarz theorem, we can write, for each T ,
∫ ·T
0 R

T
(s)dBs = β

(T )
◦ a

(T )
, with β

(T )

a one-dimensional standard Brownian motion starting from 0. Therefore, we have

|E[exp(iu •
∫ ·T

0
R

T
(s)dBs)]− E[exp(iu • (β ◦ a))]| (3.30)

≤ 2P(‖a
(T )
− a‖ > δ) + E

[

| exp(iu • (β
(T )
◦ a

(T )
))− exp(iu • β

(T )
◦ a))| : ‖a

(T )
− a‖ ≤ δ

]

≤ 2

δ2
E
[

‖a
(T )
− a‖2

]

+ ‖u‖E[ sup
‖v−w‖≤δ

‖(βv1 , . . . , βvd)− (βw1 , . . . , βwd
)‖].

Combining (3.29), (3.30) and letting %→ 0, (3.15) follows.
Step 7. We verify (3.16), that is, the tightness of the family of distributions of processes

M
T
. It suffices to verify the classical Kolmogorov criterion (see [15], p. 489):

sup
T≥1

E
[

(M
T
(t)−M

T
(s))4

]

≤ c
R
|t− s|2, ∀0 ≤ s, t ≤ R. (3.31)

Let s, t ∈ [0, R]. Then, by (3.13),

E
[

(M
T
(t)−M

T
(s))4

]

=
1

T 2

∫∫∫∫

[sT,tT ]4
E
[

(B
H

u1+1 −B
H

u1
)m(B

H

u2+1 −B
H

u2
)m(B

H

u3+1 −B
H

u3
)m

× (B
H

u4+1 −B
H

u4
)m
]

du1du2du3du4 =
1

T 2

∫∫∫∫

[sT,tT ]4
E [Gm

1 G
m
2 G

m
3 G

m
4 ] du1du2du3du4

where, as in Step 2, we denoted the standard Gaussian random variables Gi = B
H

ui+1 − B
H

ui ,
i = 1, 2, 3, 4. Let us also denote θij = Cov(Gi, Gj), i, j = 1, . . . , 4. We need to estimate the
expectation of the product Gm

1 G
m
2 G

m
3 G

m
4 . By using (2.5), we get

E [Gm
1 G

m
2 G

m
3 G

m
4 ] =

∑

k1,k2,k3,k4≥1

ak1,mak2,mak3,mak4,mE [Hk1(G1)Hk2(G2)Hk3(G3)Hk4(G4)]
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and we need to estimate E[Hk1(G1)Hk2(G2)Hk3(G3)Hk4(G4)]. Using the result in [18], p.
210, we can write

E [Hk1(G1)Hk2(G2)Hk3(G3)Hk4(G4)] (3.32)

=

{ k1!k2!k3!k4!
2qq!

∑

1 θi1j1 . . . θiqjq , if k1 + k2 + k3 + k4 = 2q and 0 ≤ k1, k2, k3, k4 ≤ q

0 otherwise,

where
∑

1 is the sum over all indices i1, j1, . . . , iq, jq ∈ {1, 2, 3, 4} such that i1 6= j1, . . . , iq 6= jq
and there are k1 indices 1, . . . , k4 indices 4. For instance E [H1(G1)H1(G2)H1(G3)H1(G4)] =
1
8(θ12θ34 + θ13θ24 + θ14θ23). Similarly, we can compute E [H3(G1)H3(G2)H3(G3)H3(G4)] in
terms of θij and so on. Since Gi have variance 1, we deduce, using the conditions on the
indices appearing in (3.32), that

E |Hk1(G1)Hk2(G2)Hk3(G3)Hk4(G4)| ≤ cst.
∑

{i,j}6={k,`}
|θij | |θk`|

Therefore, to get (3.31), we need to consider the following two type of terms: {i, j}∩{k, `} = ∅,
for instance i = 1, j = 2, k = 3, ` = 4, or {i, j} ∩ {k, `} 6= ∅, for instance i = 1, j = 2, k =
1, ` = 3. Clearly, by simple change of variables,

1

T 2

∫∫∫∫

[sT,tT ]4
|θ12| |θ34|du1du2du3du4 =

(

1

T

∫∫

[sT,tT ]2
|θ12|du1du2

)2

=

(

1

2T

∫∫

[sT,tT ]2

∣

∣

∣|u2 − u1 + 1|2H + |u2 − u1 − 1|2H − 2|u2 − u1|
2H
∣

∣

∣ du1du2

)2

=

(

1

2T

∫ tT

sT
du1

∫ (t−s)T

0

∣

∣

∣
(x+ 1)

2H
+ |x− 1|2H − 2x

2H
∣

∣

∣
dx

)2

≤ λ(t− s)2,

where λ := (1
2

∫∞
0 |(x+ 1)

2H
+ |x− 1|2H − 2x

2H |dx)2, and, similarly,

1

T 2

∫∫∫∫

[sT,tT ]4
|θ12| |θ13|du1du2du3du4

=
t− s

4T

∫∫∫

[sT,tT ]3

∣

∣

∣|u2 − u1 + 1|2H + |u2 − u1 − 1|2H − 2|u2 − u1|
2H
∣

∣

∣

×
∣

∣

∣
|u3 − u1 + 1|2H + |u3 − u1 − 1|2H − 2|u3 − u1|

2H
∣

∣

∣
du1du2du3 ≤ λ(t− s)2.

Hence (3.31) is verified so the family of distributions of processes M
T
is tight.

The proof of Theorem 2.4 will be finished once we prove statements a)-c) in Step 5.
Step 8. We prove (3.25) and at the same time we precise the choice of the constant c.

For notational convenience we will drop superscripts “(b)” or “(b,c)” during the proof. Using
again (3.23) and (3.24) we can write

M̌
T
(t)− Ň

T
(t) =

m
∑

k=1

(

m
k

)

P̌ (k)
T

(t), (3.33)
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with

P̌ (k)
T

(t) =
γ
H√
T

∫ tT

bT
ds

[

∫ (s−c)∨0

0
K(s, u)dBu

]k [
∫ s+1

(s−c)∨0
K(s, u)dBu

]m−k

and where we denoted

K(s, u) :=
{

(s+ 1− u)
H− 1

2 − (s− u)
H− 1

2 , if 0 ≤ u ≤ s

(s+ 1− u)
H− 1

2 , if s ≤ u ≤ s+ 1
. (3.34)

We shall prove that the second moment of each term in (3.33) can be made small enough and
then (3.25) will follows.

Step 9. We can write

E
[

P̌ (k)
T

(t)2
]

=
2γ2

H

T

[∫∫

bT<s<s′<s+c+1
∆(s, s′)dsds′ +

∫∫

bT<s,s+c+1<s′<tT
∆(s, s′)dsds′

]

(3.35)

where

∆(s, s′) = E







[

∫ (s−c)∨0

0
K(s, u)dBu

]k [
∫ (s′−c)∨0

0
K(s′, u)dBu

]k

(3.36)

×
[

∫ s+1

(s−c)∨0
K(s, u)dBu

]m−k [
∫ s′+1

(s′−c)∨0
K(s′, u)dBu

]m−k






and we shall study each term in (3.35). We need the following lemma:

Lemma 3.4 There exists a positive constant κ such that, for all s ≥ 0,

E

[

(∫ s+1

0
K(s, u)dBu

)2
]

=

∫ s+1

0
K(s, u)2du ≤ κ. (3.37)

Proof. By (3.34) and change of variables,

∫ s+1

0
K(s, u)2du =

∫ s

0
[(s+ 1− u)

H− 1
2 − (s− u)

H− 1
2 ]2du+

∫ s+1

s
(s+ 1− u)

2H−1
du =

∫ s

0
[(v+1)

H− 1
2 −vH−

1
2 ]2dv+

∫ 1

0
v

2H−1
dv ≤

∫ ∞

0
[(v+1)

H− 1
2 −vH−

1
2 ]2dv+

∫ 1

0
v

2H−1
dv = κ <∞.

By using Cauchy-Schwarz inequality and (3.37), we can prove that there exists c > 0 large
enough, such that

2γ2
H

T

∫∫

bT<s<s′<s+c+1
∆(s, s′)dsds′ ≤ cst.

(∫ ∞

c
[(v + 1)

H− 1
2 − v

H− 1
2 ]2dv

)k

≤ cst.c
1−k(2−2H) ≤ cst.%,
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since 1− k(2− 2H) < 0, for all k ≥ 1 (recall that H < 1
2).

Consider now the second term in (3.35). Since m is an odd integer, the expectation equals
zero for each even integer k, by independence of stochastic integrals on disjoint intervals.
Hence we need to consider only odd integers k. We can write, for bT < s, s+ c+1 < s′ < tT ,
using again the independence and (3.37),

∆(s, s′) ≤ cst.E
{

Xk
1 (X2 + Y1)

kY m−k
2

}

, (3.38)

where

X1 :=

∫ (s−c)∨0

0
K(s, u)dBu, X2 :=

∫ (s−c)∨0

0
K(s′, u)dBu

and

Y1 :=

∫ s′−c

(s−c)∨0
K(s′, u)dBu, Y2 :=

∫ s+1

(s−c)∨0
K(s, u)dBu.

We state the following simple result:

Lemma 3.5 Let m, k be odd integers and assume that (X1, X2), (Y1, Y2) are two independent
centered Gaussian random vectors. Set θ = Cov(X1, X2). Then

∣

∣

∣
E
[

Xk
1 (X2 + Y1)

kY m−k
2

]∣

∣

∣
≤ cst.

(

|θ|+ . . .+ |θ|k
)

.

Let us return to the study of the second term in (3.35). Using the upper result and (3.38),
it can be bounded as follows:

2γ2
H

T

∫∫

bT<s,s+c+1<s′<tT
∆(s, s′)dsds′ ≤ cst.

T

∫∫

bT<s,s+c+1<s′<tT
dsds′

(

|θ|+ . . .+ |θ|k
)

,

where, with the same notation as in previous lemma,

θ :=

∫ (s−c)∨0

0
du[(s+ 1− u)

H− 1
2 − (s− u)

H− 1
2 ][(s′ + 1− u)

H− 1
2 − (s′ − u)

H− 1
2 ]

=

∫ s

c∧s
dv[(v + 1)

H− 1
2 − v

H− 1
2 ][(v + 1 + s′ − s)

H− 1
2 − (v + s′ − s)

H− 1
2 ].

It suffices to show that there exists c > 0 large enough such that

1

T

∫∫

bT<s,s+c+1<s′<tT
|θ|jdsds′ ≤ cst.%, j = 1, . . . , k. (3.39)

If j = 1, by successive change of variables y = s
T and x = s′ − yT , we get

1

T

∫ tT

bT
ds

∫ tT

s+c+1
|θ|ds′ =

∫ t

b
dy

∫ (t−y)T

c+1
dx

×
∣

∣

∣

∣

∫ yT

c∨yT
dv[(v + 1)

H− 1
2 − v

H− 1
2 ][(x+ v + 1)

H− 1
2 − (x+ v)

H− 1
2 ]

∣

∣

∣

∣

≤ cst.

∫ ∞

0
dx

∫ ∞

c
dv[v

H− 1
2 − (v + 1)

H− 1
2 ][(x+ v)

H− 1
2 − (x+ v + 1)

H− 1
2 ]→c→∞ 0.
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If j ≥ 2, we make a similar reasoning. Hence (3.39) is verified and (3.25) follows.
Step 10. We prove now the statement b) in Step 5, that is (3.26). Again, we will drop the

superscripts “(b,c)”. Using (3.34), (3.24) can be written as

Ň
T
(t) =

γ
H√
T

∫ tT

bT
ds

(

∫ s+1

(s−c)∨0
K(s, u)dBu

)m

.

First we assume thatm = 3. By using succesively the classical Itô’s formula and the stochastic
version of Fubini theorem, we can write

(

∫ s+1

(s−c)∨0
K(s, u)dBu

)3

= 6

∫ s+1

(s−c)∨0
K(s, u)dBu

∫ u

(s−c)∨0
K(s, v)dBv

∫ v

(s−c)∨0
K(s, w)dBw

+3

∫ s+1

(s−c)∨0
K(s, u)dBu

∫ s+1

(s−c)∨0
K(s, v)2dv. (3.40)

Remark: The previous equality (3.40) can be also written in terms of multiple stochastic
integrals, as follows:

(∫

E
K(s, ·)dB

)3

= I1(K(s, ·))3 = I3(K(s, ·)⊗3) + 3 I1(K(s, ·)⊗2 ×(1) K(s, ·))

=

∫

E3

K(s, ·)⊗3dB + 3

∫

E
K(s, ·)dB

∫

E
K(s, ·)2dλ, with E = [(s− c) ∨ 0, s+ 1].

Here λ denotes the Lebesgue measure and the multiple integrals Ip, the tensor product f ⊗ g
and the contractions f ×(p) g are defined in [11] or [13]. 2

Therefore, by applying the stochastic version of Fubini theorem in (3.40), we get Ň
T
(t) =

∫ tT
0 R

T
(u)dBu + S

T
(t), where

R
T
(u) :=

6γ
H√
T

∫ u

(u−1−c)∨0
dBv

∫ v

(u−1−c)∨0
dBw

∫ (w+c)∧tT

(u−1)∨bT
dsK(s, u)K(s, v)K(s, w) (3.41)

+
3γ

H√
T

[

∫ u

(u−1−c)∨0
dv

∫ (v+c)∧tT

(u−1)∨bT
dsK(s, u)K(s, v)2 +

∫ u+c+1

u
dv

∫ (u+c)∧tT

(v−1)∨bT
dsK(s, v)2K(s, u)

]

.

It is not difficult to prove that E[S
T
(t)2] ≤ (cst./T )→ 0, as T →∞, by using successively the

stochastic version of Fubini theorem, (3.37) and Jensen inequality. Hence (3.26) is proved for
m = 3. For m an odd integer strictly bigger than 3, (3.26) is obtained by using Lemma 3.2
and a similar reasoning as previously (using eventually the notation with multiple integrals,
as in the previous remark).

Step 11. To end the proof of Theorem 2.4 we need to verify the statement c) in Step 5,
that is (3.27). Assume that m = 3, the general case being similar (by using Lemma 3.2). By
(3.41) we can write

R
T
(u) =

1√
T

{

∫ u

(u−1−c)∨0
B(u, v)dBv + C(u)

}

,
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where we use the following notations:

B(u, v) = 6γ
H

∫ v

(u−1−c)∨0
dBw

∫ (w+c)∧tT

(u−1)∨bT
dsK(s, u)K(s, v)K(s, w) =

∫ v

(u−1−c)∨0
D(u, v, w)dBw

and

C(u) = 3γ
H

[

∫ u

(u−1−c)∨0
dv

∫ (v+c)∧tT

(u−1)∨bT
dsK(s, u)K(s, v)2

+

∫ u+c+1

u
dv

∫ (u+c)∧tT

(v−1)∨bT
dsK(s, v)2K(s, u)

]

.

Firstly, by Itô formula and secondly, by the stochastic version of Fubini theorem we can write

∫ tT

0
R

T
(u)2du− E

[∫ tT

0
R

T
(u)2du

]

=
2

T

[

∫ tT

0
duC(u)

∫ u

(u−1−c)∨0
B(u, v)dBv

+

∫ tT

0
du

∫ u

(u−1−c)∨0
B(u, v)dBv

∫ v

(u−1−c)∨0
B(u, z)dBz

]

=
2

T

∫ tT

0
(E(v) + F(v))dBv.

Indeed, for instance the first term can be written as follows:

∫ tT

0
dBv

∫ (v+c+1)∧tT

v
duC(u)B(u, v) =

∫ tT

0
dBv

∫ (v+c+1)∧tT

v
duC(u)

×
∫ v

(u−1−c)∨0
D(u, v, w)dBw =

∫ tT

0
dBv

∫ v

(v−1−c)∨0
dBw

∫ (w+c+1)∧tT

v
duC(u)D(u, v, w).

Hence

Var

[∫ tT

0
R

T
(u)2du

]

≤ cst.

T 2

∫ tT

0
E
[

E(v)2 + F(v)2
]

dv.

By isometry formula we obtain

1

T 2

∫ tT

0
E
[

E(v)2
]

dv =
1

T 2

∫ tT

0
dv

∫ v

(v−1−c)∨0
dw

[

∫ (w+c+1)∧tT

v
duC(u)D(u, v, w)

]2

.

Using again the stochastic version of Fubini theorem we can write

1

3γ
H

C(u) =

∫ (u+c)∧tT

(u−1)∨bT
K(s, u)ds

∫ u

(s−c)∨0
K(s, v)2dv ≤ κ

∫ (u+c)∧tT

(u−1)∨bT
K(s, u)ds,

by (3.37). Hence, by using this last inequality, the stochastic version of Fubini theorem one

more time, (3.37) and also Jensen inequality, we get 1
T 2

∫ tT
0 E

[

E(v)2
]

dv ≤ cst./T . We can
prove a similar bound for the term containing E[F(v)2]. The convergence in the statement c)
is now established.

The proof of Theorem 2.4 is now complete for 0 < H < 1
2 .

For H = 1
2 , the proof can be performed in a similar way with several simplifications of

technical order (for instance, there are no more singularities at the extremities points 0 and t,
so we do not need to introduce neither parameters b and c, nor B̌, there are no more technical
estimates). Clearly, one uses the same ideas given at the begining of the proof and details are
left to the reader.
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Proof of Theorem 2.5. Once again we split the proof in several steps. As usual, by
localization, we assume that σ, σ′, σ′′ are bounded.

Step 1. Let us introduce the following processes:

Xε(t) :=
1√
ε

∫ t

0
σ(Bs)

m

(

Bs+ε −Bs√
ε

)m

ds, t ≥ 0 (3.42)

and

Yε(t) :=
1√
ε

[∫ t

0

(

Zs+ε − Zs√
ε

)m

ds−
∫ t

0
σ(Bs)

m

(

Bs+ε −Bs√
ε

)m

ds

]

, t ≥ 0. (3.43)

We shall prove that, as ε→ 0,

{Xε(t) : t ≥ 0} L−→
{

√

cm, 1
2

∫ t

0
σ(β(1)

s )mdβ(2)
s : t ≥ 0

}

(3.44)

and, for each T ∈ (0,∞),

lim
ε→0

E[ sup
t∈[0,T ]

|Yε(t)|2] = 0. (3.45)

By (3.44) and (3.45) we deduce (2.7) using the following (classical) simple result concerning
the convergence in distribution of a sum of two stochastic processes:

Lemma 3.6 Consider {Xε(t) : t ≥ 0} and {Yε(t) : t ≥ 0} two families of continuous real
stochastic processes, starting from 0, such that, as ε → 0, Xε converges to X in law as
processes and, for each T ∈ (0,∞), E[supt∈[0,T ] |Yε(t)|2] → 0. Then, as ε → 0, Xε + Yε

converges to X in law as processes.

Proof. It is a classical argument to show that, as ε→ 0, Xε + Yε converges to X in law in
sense of finite dimensional time marginals. Hence we need to verify the tightness for the family
of processes {Xε + Yε}ε>0 (see also [15], pp. 488). For a continuous function g : [0,∞) → R

we denote by ρT (g; δ) := sup{|g(t) − g(s)| : 0 ≤ s, t ≤ T with |s − t| ≤ δ} its modulus of
continuity. Since the process Xε starts from 0, its convergence in law is equivalent to the
following version of Prohorov’s criterion:

for each η, T > 0, lim
δ→0

lim sup
ε→0

P
(

ρT (Xε; δ) > η
)

= 0. (3.46)

Clearly, by Markov inequality,

P
(

ρT (Xε + Yε; δ) > η
)

≤ P(ρT (Xε; δ) >
η

2
) +

16

η2
E[ sup

t∈[0,T ]
|Yε(t)|2].

The conclusion follows by using again (3.46) and the L2-convergence of Yε.

Step 2. We prove here (3.44). By Theorem 2.4, (2.7) is true for the martingale Z = B.
This means that, for an odd integer m ≥ 3, as ε→ 0,

{Nε(t) : t ≥ 0} :=
{

1√
ε

∫ t

0

(

Bs+ε −Bs√
ε

)m

ds : t ≥ 0

}

L−→{
√

cm, 1
2
βt : t ≥ 0}. (3.47)

We will write that Nε(t) = Mε(t) + κ1Bt + Sε(t), t ≥ 0, with κ1 an explicit real constant, Mε a
martingale and, for each t ≥ 0, limε→0 E[Sε(t)

2] = 0. Moreover, we shall prove that:
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(i) for each t ≥ 0, limε→0[Mε, Mε](t) = κ2
2t in L2 so in probability

(with κ2 a positive constant);

(ii) for each t ≥ 0, limε→0[B, Mε](t) = 0 in probability;

(iii) for each t ≥ 0, limε→0[B, Mε]
(

[Mε, Mε]
−1(t)

)

= 0 in probability.

Before proving (i)-(iii) let us finish the proof of (2.7). Let us denote βε the Dubins-Schwarz
Brownian motion associated to Mε. (i)-(iii) and the asymptotic version of Knight’s theorem
(see [15], pp. 495-496) imply that, as ε→ 0,

{(Bt, βε(t)) : t ≥ 0} L−→{(β(1)
t , β

(2)
t ) : t ≥ 0}.

By (i) we deduce

{(Bt, Mε(t)) : t ≥ 0} L−→{(β(1)
t , κ2β

(2)
t ) : t ≥ 0},

where {(β(1)
t , β

(2)
t ) : t ≥ 0} denotes a two-dimensional Brownian motion starting from (0, 0).

Since σ is continuous we deduce, as ε→ 0,

{(σ(Bt)
m, Mε(t) + κ1Bt) : t ≥ 0} L−→{(σ(β(1)

t )m, κ1β
(1)
t + κ2β

(2)
t ) : t ≥ 0},

and, thanks to Lemma 3.6, as ε→ 0,

{(σ(Bt)
m, Nε(t)) : t ≥ 0} L−→{(σ(β(1)

t )m, κ1β
(1)
t + κ2β

(2)
t ) : t ≥ 0}.

Moreover, ∀t ≥ 0, ∀J predictable process bounded by 1, ∀ε > 0,

P

(

|
∫ t

0
JsdNε(s)| > R

)

≤ 1

R2
E

{

∣

∣

∣

∣

∫ t

0
JsdNε(s)

∣

∣

∣

∣

2
}

=
1

R2

1

εm+1
E

{

∣

∣

∣

∣

∫ t

0
Js(Bs+ε −Bs)

mds

∣

∣

∣

∣

2
}

=
2

R2

1

εm+1

∫∫

0<s<s′<t
dsds′E [JsJs′(Bs+ε −Bs)

m(Bs′+ε −Bs′)
m]

≤ cst.

R2

1

εm+1

∫∫

0<s<s′<s+ε<t
dsds′E

[

(Bs+ε −Bs)
2m(Bs′+ε −Bs′)

2m
]

1
2

+
2

R2

1

εm+1

∫∫

0<s<s+ε<s′<t
dsds′E [JsJs′(Bs+ε −Bs)

m] E [(Bs′+ε −Bs′)
m] .

by Cauchy-Schwarz inequality for the first term and by independence for the second term,

≤ cst.

R2

1

ε

∫∫

0<s<s′<s+ε<t
dsds′ + 0 ≤ cst.

R2
.

Therefore, using the result concerning the convergence in distribution of stochastic integrals
(see [12], p. 125), we obtain, as ε→ 0,

{∫ t

0
σ(Bs)

mdNε(s) : t ≥ 0

}

L−→
{∫ t

0
σ(β(1)

s )m(κ1dβ
(1)
s + κ2dβ

(2)
s ) : t ≥ 0

}

,

which is (3.44).
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Step 3. We shall prove the decomposition of Nε and (i)-(iii). As previously, we write down
the proof for m = 3. By using Itô’s formula and the stochastic version of Fubini theorem, we
can write

Nε(t) =
3

ε2

∫ t

0
ds

[

2

∫ s+ε

s
dBu

∫ u

s
dBv

∫ v

s
dBw +

∫ s+ε

s
dBu

∫ u

s
dv +

∫ s+ε

s
dv

∫ v

s
dBv

]

=
3

ε2

∫ t+ε

0
dBu

[

2

∫ u

(u−ε)∨0
dBv

∫ v

(u−ε)∨0
dBw

∫ w∧t

(u−ε)∨0
ds+

∫ u

(u−ε)∨0
dv

∫ v∧t

(u−ε)∨0
ds

+

∫ u+ε

u
dv

∫ u∧t

(v−ε)∨0
ds

]

=: Mε(t) + κ1Bt + Sε(t),

with

Mε(t) =
6

ε2

∫ t

0
dBu

∫ u

(u−ε)∨0
dBv

∫ v

(u−ε)∨0
dBw

∫ w

(u−ε)∨0
ds =:

∫ t

0
Rε(u)dBu,

with E[Mε(t)
2] = 3t+O(ε), as ε→ 0. To verify the L2-convergence of Sε toward 0 in this case

it is a simple computation (for general m we proceed as in Step 10 of the proof of Theorem
2.4). To verify (i) we write

∫ t

0
Rε(u)

2du− κ2
2t = {

∫ t

0
Rε(u)

2du− E[

∫ t

0
Rε(u)

2du]}+ {E[Mε(t)2]− κ2
2t}

Here we choose κ2 =
√
3 such that the second term tends to zero as ε → 0. On the other

hand, the first term equals Var
(

∫ t
0 Rε(u)

2du
)

and tends to zero as ε → 0, as we can see by

a similar reasoning in proving (3.27).
Clearly, by the stochastic version of Fubini theorem,

[B, Mε](t) =
6

ε2

∫ t

0
dBv

∫ v

(v−ε)∨0
dBw

∫ t

w
du

∫ w

(u−ε)∨0
ds.

Then, by isometry formula and Jensen inequality,

E
(

[B, Mε]
2(t)
)

≤ cst.

ε2

∫ t

0
dv

∫ v

(v−ε)∨0
dw

∫ t

w
du

∫ w

(u−ε)∨0
ds ≤ cst.ε

and the convergence in probability (ii) follows. Moreover, since limε→0[Mε, Mε](t) = cst.t, we
can obtain (iii).

Step 4. We turn now to the proof of (3.45). Again by Lemma 3.2, we split

Yε(t) :=
1

ε
m+1

2

∫ t

0
ds

∑

δ∈P,n(δ)=m

c(δ)
[

I
(Z)

s,s+ε,δ − σ(Bs)
mI

(B)

s,s+ε,δ

]

=:
∑

δ∈P,n(δ)=m

Y(δ)
ε (t)

Moreover, we can write Y (δ)
ε (t) =

∑k(δ)
j=1 Y

(δ,j)
ε (t), where

Y(δ,j)
ε (t) :=

1

ε
m+1

2

∫ t

0
ds

∫ s+ε

s
σ(Bs)

δ(1)
dB

(δ(1))
(t1) . . .

∫ tj−2

s
σ(Bs)

δ(j−1)
dB

(δ(j−1))
(tj−1)
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×
∫ tj−1

s
[σ(Bs)

δ(j) − σ(Btj )
δ(j)

]dB
(δ(j))

(tj)

×
∫ tj

s
σ(Btj+1)

δ(j+1)
dB

(δ(j+1))
(tj+1) . . .

∫ tk−1

s
σ(Btk)

δ(k)
dB

(δ(k))
(tk).

Fix δ ∈ P such that n(δ) = m and set i0 = inf{k ≥ 1 : δ(k) = 1}. We need to prove that, for
each j ∈ {1, . . . , k(δ)}, for each T ∈ (0,∞),

lim
ε→0

E[ sup
t∈[0,T ]

|Y(δ,j)
ε (t)|2] = 0. (3.48)

In the following we will distinguish four types of terms.
Step 5. Assume that i0 = 1. We illustrate the proof of (3.48) for m = 3, δ = (1, 2) and

j = 1, the general case being similar. In this case

Y((1,2),1)
ε (t) =

1

ε2

∫ t

0
ds

∫ s+ε

s
[σ(Bu)− σ(Bs)]dBu

∫ u

s
σ(Bv)

2dv.

Thanks to the stochastic version of Fubini theorem and also using Burkholder-Davis-Gundy
and Jensen inequalities,

E[ sup
t∈[0,T ]

|Y((1,2),1)
ε (t)|2] ≤ cst.

ε4

∫ T+1

0
duE

{

[

∫ u

(u−ε)∨0
dvσ(Bv)

2

∫ v∧t

(u−ε)∨0
ds(σ(Bu)− σ(Bs))]

2

}

≤ cst.E

[

sup
s,s′∈[0,T+1],|s−s′|<ε

|σ(Bs)− σ(Bs′)|2
]

,

since σ is bounded. Then (3.48) is a consequence of the following

Lemma 3.7 Under the hypothesis of Theorem 2.5,

E

[

sup
s,s′∈[0,T+1],|s−s′|<ε

|σ(Bs)− σ(Bs′)|2
]

≤ cst.ε.

Proof. We have |σ(Bs) − σ(Bs′)|2 ≤ ‖σ′‖2∞|Bs − Bs′ |2 ≤ cst.|Bs − Bs′ |2. Moreover, by
Doob’s inequality E

[

sups,s′ |σ(Bs)− σ(Bs′)|2
]

≤ cst.E
[

sups,s′ |Bs −Bs′ |2
]

≤ cst.ε.

Step 6. Assume that 1 < i0 < j. We make the proof of (3.48) for m = 5, δ = (2, 1, 2) and
j = 3. Clearly

Y((2,1,2),3)
ε (t) =

1

ε3

∫ t

0
ds

∫ s+ε

s
σ(Bu)

2du

∫ u

s
σ(Bv)dBv

∫ v

s
[σ(Bw)

2 − σ(Bs)
2]dw

= Y((2,1,2),3)
ε,1 (t) + Y((2,1,2),3)

ε,2 (t),

where

Y((2,1,2),3)
ε,1 (t) :=

1

ε3

∫ t

0
ds

∫ s+ε

s
σ(Bs)

2du

∫ u

s
σ(Bv)dBv

∫ v

s
[σ(Bw)

2 − σ(Bs)
2]dw,
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and

Y((2,1,2),3)
ε,2 (t) :=

1

ε3

∫ t

0
ds

∫ s+ε

s
[σ(Bu)

2 − σ(Bs)
2]du

∫ u

s
σ(Bv)dBv

∫ v

s
[σ(Bw)

2 − σ(Bs)
2]dw.

By the stochastic version of Fubini theorem we get

Y((2,1,2),3)
ε,1 (t) =

1

ε3

∫ t+ε

0
σ(Bv)dBv

∫ v

(v−ε)∨0
dw

∫ (w∧t)+ε

v
du

×
∫ w∧t

(u−ε)∨0
ds σ(Bs)

2[σ(Bw)
2 − σ(Bs)

2]

and

E[ sup
t∈[0,T ]

|Y((2,1,2),3)
ε,1 (t)|2] ≤ cst.

ε6

∫ T+1

0
dvE

{

σ(Bv)
2

[

∫ v

(v−ε)∨0
dw

∫ (w∧t)+ε

v
du

×
∫ w∧t

(u−ε)∨0
ds σ(Bs)

2[σ(Bw)
2 − σ(Bs)

2]

]3






≤ cst.E

[

sup
s,s′∈[0,T+1],|s−s′|<ε

|σ(Bs)− σ(Bs′)|2
]

,

which tends to zero, as ε → 0, by Lemma 3.7. In a similar way we prove that as ε → 0,

E[supt∈[0,T ] |Y((2,1,2),3)
ε,2 (t)|2]→ 0.

Step 7. Assume that i0 = j > 1 and we prove of (3.48) for m = 3, δ = (2, 1) and j = 2,
the general case being similar. In this case

Y((2,1),2)
ε (t) =

1

ε2

∫ t

0
ds

∫ s+ε

s
σ(Bu)

2du

∫ u

s
[σ(Bv)− σ(Bs)]dBv

=
1

ε2

∫ t

0
ds

∫ s+ε

s
σ(Bs)

2du

∫ u

s
[σ(Bv)− σ(Bs)]dBv

+
1

ε2

∫ t

0
ds

∫ s+ε

s
[σ(Bu)

2 − σ(Bs)
2]du

∫ u

s
[σ(Bv)− σ(Bs)]dBv.

As previously, by the stochastic version of Fubini theorem and thanks to Lemma 3.7, we show
that each term tends in L2 to zero, as ε→ 0.

Step 8. Finally, if i0 > j, we illustrate the proof for m = 3, δ = (2, 1) and j = 1. We can
write

Y((2,1),1)
ε (t) =

1

ε2

∫ t

0
ds

∫ s+ε

s
[σ(Bu)

2 − σ(Bs)
2]du

∫ u

s
σ(Bv)dBv

=
1

ε2

∫ t

0
ds

∫ s+ε

s
du

∫ u

s
2(σσ′)(Bw)dBw

∫ u

s
σ(Bv)dBv

+
1

ε2

∫ t

0
ds

∫ s+ε

s
du

∫ u

s
(σσ′)′(Bw)dw

∫ u

s
σ(Bv)dBv.

By using Itô’s formula we split again the first term in two terms and we can show that each
term tends in L2 to zero, as ε→ 0 using the same tools.
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