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1. Introduction and results

The motivation of this work comes from the paper of Chassaing and Schaeffer [2]. They
prove the rescaled radius of random quadrangulation converges (in law), as the number
of faces goes to infinity, to the width r′ = R′ − L′ of the one dimensional Integrated
Super Brownian Excursion (ISE) support [L′, R′] (see [1] and the reference therein for the
definition of the ISE). They also prove the convergence of moments. As pointed by Aldous
in [1], little is known about the law of r′. It is of particular interest to compute therefore
the law of r′ = R′ − L′ as well as its moments. We recall that L′ ≤ 0 ≤ R′ a.s., and that
by symmetry, R′ and −L′ are equally distributed. More precisely we give a sort of Laplace
transform of R′ in the following proposition, which is proved in section 4.

Proposition 1. For λ > 0, b > 0, we have

(1)

∫ ∞

0

dr

r3/2
e−λr P(R′ > br−1/4) =

6
√
π
√
λ

[sinh((λ/2)1/4b)]2
.

For b = 1, from the uniqueness of the Laplace transform, we deduce the function
r 7→ r−3/2P(R′ > r−1/4), hence the law of R′, is uniquely defined by the above equation.
However, this does not allow us to give explicitly the law of R′. We derive in section 4,
the first two moments of R′.

Corollary 2. We have

E[R′] = 3
23/4 Γ(5/4)√

π
and E[R′2] = 3

√
2π.

Multiplying equation (1) by bα−1, with α > 2, and integrating w.r.t. b on (0,+∞) gives
the following corollary.

Corollary 3. Let α > 2. Then, we have

E[R′α] = 24
√
π

Γ(α+ 1) ζ(α− 1)

23α/4 Γ((α− 2)/4)
.

In section 5, we prove the following result.

Proposition 4. For λ > 0, b > 0, c > 0, we have
∫ ∞

0

dr

r3/2
e−λr[1− P(R′ > br−1/4,

∣

∣L′
∣

∣ > cr−1/4)] =
√
2π [uλ,(c+b)/2(min(c, b))−

√

λ/2],

where uλ,r is the unique non-negative solution of the non-linear differential equation










u′′ = 2u2 − λ in (0, r),

u(0) = +∞,

u′(r) = 0.

Then, one can derive the expectation of R′ |L′| (see section 5).

Corollary 5. We have

E[R′
∣

∣L′
∣

∣] = −3
√
2π + 3

√

π/2

∫ ∞

1

dt√
t3 − 1

∫ ∞

1

(u+ 1) du√
u3 − 1(u+

√
u2 + u+ 1)

,

and
E[min(R′,

∣

∣L′
∣

∣)2] = 6
√
2π[1− α2

0/8],

where α0 =

∫ ∞

1

du√
u3 − 1

.
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We give the following numerical approximation (up to 10−3): E[R′] ' 2.580, Var(R′) '
0.863 and for r′ = R′ − L′, E[r′] ' 5.160 and Var(r′) ' 0.651.

To prove those results, we use the fact that the ISE has the same distribution (up to
a constant scaling) as the total mass of an excursion of the Brownian snake conditioned
to have a duration σ of length 1. Then we compute under the excursion measure of the
Brownian snake the joint law of σ,R′ and L′. In particular we use the special Markov
property of the Brownian snake and the connection between Brownian snake and PDE
The next section is devoted to the presentation of the Brownian snake and its link with
ISE.

2. Brownian snake and ISE

Let W be the set of stopped continuous paths (w, ζw) defined on R+ with values in R.
ζw ≥ 0 is called the lifetime of the path w, and w is a continuous path w = (w(t), t ≥ 0)
defined on R+ with values in R and constant for t ≥ ζw. We sometimes write w for (w, ζw).
We define

d(w,w′) = |ζw − ζw′ |+sup
t≥0

∣

∣w(t)− w′(t)
∣

∣ .

It is easy to check that d is a distance on W, and that (W, d) is a Polish space.
We shall denote by Nx[dW ] the excursion measure on W of the Brownian snake W =

(Ws, s ≥ 0) started at x ∈ R with underlying process a linear Brownian motion. We refer
to [5] for the definition and properties of the Brownian snake. We recall that under Nx, the
law of the lifetime process ζ = (ζs, s ≥ 0) is the Itô measure, n+, on positive excursions of
linear Brownian motion, where we take the normalization Nx[sups≥0 ζs > ε] = 1

2ε . Under
Nx, conditionally on the lifetime process, W is a continuous W-valued Markov process
started at the constant path (with lifetime zero) equal to x ∈ R. Conditionally, on the
lifetime process and on (Wu, u ∈ [0, s]), the law of Ws′ , with s′ ≥ s is as follow: the two
paths Ws and Ws′ coincide up to time m = infu∈[s,s′] ζu, and (Ws′(t+m), t ≥ 0) is a linear
Brownian motion, constant after ζs′ −m, which depends on (Wu, u ∈ [0, s]) only through
its starting point Ws′(m) = Ws(m).

We define σ = inf{s > 0; ζs = 0} the duration of the excursion. From the normalization
of Nx, we deduce that σ is distributed according to

Nx[σ ∈ [r, r + dr]] = n+(σ ∈ [r, r + dr]) =
dr

2
√
2π r3/2

, for r > 0.

It is easy to check that for any x ∈ R,

(2) Nx

[

1− e−λσ
]

=
√

λ/2.

The Brownian snake enjoys a scaling property: if λ > 0, the law of the process W
(λ)
s (t) =

λ−1Wλ4s(λ
2t) under Nx is λ−2Nλ−1x.

We now recall the connection between ISE and Brownian snake. There exists a unique

collection
(

N(r)
0 , r > 0

)

of probability measures on C(R+,W) such that:

(1) For every r > 0, N(r)
0 [σ = r] = 1.

(2) For every λ > 0, r > 0, F , nonnegative measurable functional on C(R+,W),

N(r)
0

[

F (W (λ))
]

= N(λ−4r)
0 [F (W )] .
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(3) For every nonnegative measurable functional F on C(R+,W),

(3) N0[F ] =

∫ ∞

0

dr

2
√
2πr3/2

N(r)
0 [F ].

We take the opportunity to stress a misprint in [3], where 1/2 is missing in the right

member of formula (3). The measurability of the mapping r 7→ N(r)
0 [F ] follows from the

scaling property 2. Under N(1)
0 , the distribution of W is characterized as under N0, except

that the lifetime process is distributed according to the normalized Itô measure of positive
excursions.

Let R = {Ws(t); 0 ≤ t ≤ ζs, 0 ≤ s ≤ σ} be the range of the Brownian snake. Since
we are in dimension one, using the continuity of the paths, we get that Nx-a.e., the
range is an interval which we denote by [L,R], with L ≤ x ≤ R. Notice we also have

R = {Ŵs; 0 ≤ s ≤ σ}, where Ŵs = Ws(ζs) is the end of the path Ws. We have henceforth

R = sup
0≤s≤σ

Ŵs, and L = inf
0≤s≤σ

Ŵs.

The law of the ISE is the law of the continuous tree associated to
√
2W , under N(1)

0 (see
corollary 4 in [4] and [1], see also [7] section IV.6). In particular the law of the support

of ISE is the law of
√
2R under N(1)

0 , where we set λA = {x;λ−1x ∈ A}. Therefore, we
deduce that in dimension one, the support of the ISE is an interval, say [L′, R′]. And we

deduce that (L′, R′) is distributed as (
√
2L,

√
2R) under N(1)

0 .
From [5], it is well known that the function Nx[R 6⊂ [a, b]] is the maximal non-negative

solution of u′′ = 4u2 in (a, b). But,as we said, we need the law of R under N(1)
x . Therefore,

we need the joint law of R and σ. We shall compute Nx[1−1R⊂[a,b] e
−λσ] using Brownian

snake techniques (see the key lemma 6 and its consequences lemmas 7 and 8). From
this, thanks to scaling properties mentioned above, we will deduce a (kind of) Laplace

transform for N(1)
x [1− 1R⊂[a,b]] (see lemma 8).

We prove in section 4 the following result: for λ > 0, b > 0,

∫ ∞

0

dr

r3/2
e−λr N(1)

0 [R > br−1/4] =
6
√
π
√
λ

[sinh((2λ)1/4b)]2
,

which determines the law of R. We also compute

N(1)
0 [R] = 3

21/4 Γ(5/4)√
π

and N(1)
0 [R2] = 3

√

π

2
.

In section 5, lemma 8, we compute for λ > 0, b > 0, c > 0,
∫ ∞

0

dr

r3/2
e−λr N(1)

0

[

1− 1{R≤br−1/4, |L|≤cr−1/4}

]

,

and

N(1)
0 [min(R, |L|)2] = 3

√
2π[1− α2

0/8],

N(1)
0 [R |L|] = −3

√

π

2
+

3
√
2π

4

∫ ∞

1

dt√
t3 − 1

∫ ∞

1

(u+ 1) du√
u3 − 1(u+

√
u2 + u+ 1)

.
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3. Exit measure of the Brownian snake

We refer to [6] for general definition and properties of the exit measure of Brownian

snake. Let −∞ ≤ a < x < b ≤ +∞, and consider X (a,b) the exit measure of the Brownian
snake of (a, b) under Nx. We recall that X(a,b) is a random measure on {a, b}, defined by
: for any nonnegative measurable function ϕ defined on R,

∫

ϕ(x) X(a,b)(dx) =

∫ σ

0
ϕ(Ŵs)dL

(a,b)
s .

The continuous additive functional of the Brownian snake L
(a,b)
s is defined Nx-a.e. for all

s ≥ 0 by

L(a,b)
s = lim

ε↓0
1

ε

∫ s

0
ds′ 1{τ(Ws′ )<ζs′<τ(Ws′ )+ε},

where τ(w) = inf{t ∈ [0, ζw], w(t) 6∈ (a, b)} is the first exit time of (a, b) for the path

w ∈ W. We use the convention inf ∅ = +∞. Intuitively, L
(a,b)
s increases when the path

Ws dies as it reaches for the first time the boundary of (a, b). It is well known that in
dimension 1, Nx-a.e.,

{R ⊂ [a, b]} = {X(a,b) = 0}.
Recall also that the support of X (a,b) is a random subset of {a, b} ∩ R. We set Y (a,b) =
∫

X(a,b)(dy) for the total mass of X(a,b).
We define the function defined for µ > 0, λ ≥ 0, a < x < b: by

vµ,λ,a,b(x) = Nx

[

1− e−µY (a,b)−λσ
]

.

The next lemma is proved in section 6 using the link between Brownian snake and
non-linear PDE.

Lemma 6. The function vµ,λ,a,b solves

(4)
1

2
v′′ = 2v2 − λ in (a, b).

Furthermore if a > −∞ (resp. b < ∞), then we have the boundary condition v(a) =

µ+
√

λ/2 (resp. v(b) = µ+
√

λ/2).

As an application of this lemma, we have the following result.

Lemma 7. We define for b > 0 and λ ≥ 0,

wλ(b) = N0

[

1− 1{R≤b} e
−λσ
]

.

We have for b > 0, λ > 0,

wλ(b) =

√

λ

2

[

3 coth(21/4bλ1/4)2 − 2
]

.

Proof. Since Nx-a.e., for x < b,

{R ≤ b} = {R ⊂ (−∞, b]} = {X(−∞,b) = 0} = {Y (−∞,b) = 0},
we have

wλ(b) = lim
µ→∞

N0

[

1− e−µY (−∞,b)−λσ
]

= lim
µ→∞

vµ,λ,−∞,b(0).

By translation and symmetry, it is clear that vµ,λ,−∞,b(0) = vµ,λ,0,∞(b). As wλ(b) is the
increasing limit of vµ,λ,0,∞(b) as µ→∞, and since the set of nonnegative solutions of (4)
is closed under pointwise convergence (see proposition 9 (iii) in section V.3 of [7], stated
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for λ = 0, which can be extended to the case λ > 0), we deduce that wλ also solves (4)
with (a, b) = (0,+∞). Notice that

wλ(0) = lim
µ→∞

vµ,λ,0,∞(0) = lim
µ→∞

µ+
√

λ/2 = +∞

and that, since R is a compact set N0-a.e.,

wλ(+∞) = N0

[

1− e−λσ
]

=
√

λ/2.

Therefore wλ is solution of














1

2
w′′ = 2w2 − λ in (0,+∞),

w(0) = +∞,

w(+∞) =
√

λ/2.

This ordinary differential equation has a unique nonnegative solution, which is given by

wλ(b) =

√

λ

2

[

3 coth(21/4bλ1/4)2 − 2
]

.

¤

4. Proof of proposition 1 and corollary 2

Proof of proposition 1. By scaling, we get that the law of R under N(r)
0 is the law of Rr1/4

under N(1)
0 . We deduce from (3) and the above scaling property, that

wλ(b) = N0

[

1− 1{R≤b} e
−λσ
]

=

∫ ∞

0

dr

2
√
2πr3/2

N(r)
0

[

1− 1{R≤b} e
−λσ
]

=

∫ ∞

0

dr

2
√
2πr3/2

N(1)
0

[

1− 1{R≤br−1/4} e
−λr
]

=

∫ ∞

0

dr

2
√
2πr3/2

(1− e−λr) +

∫ ∞

0

dr

2
√
2πr3/2

e−λr
[

1− N(1)
0 [R ≤ br−1/4]

]

=
√

λ/2 +

∫ ∞

0

dr

2
√
2πr3/2

e−λr N(1)
0 [R > br−1/4].

Eventually we define Hλ(b) for λ > 0, b > 0 by

Hλ(b) =

∫ ∞

0

dr

r3/2
e−λr N(1)

0 [R > br−1/4],

and we get

(5) Hλ(b) =
6
√
π
√
λ

[sinh((2λ)1/4b)]2
.

Since R′ is distributed as
√
2R, this proves proposition 1. ¤

Proof of corollary 2. By monotone convergence, letting λ decrease to 0, we get :

(6) H0(b) =

∫ ∞

0

dr

r3/2
N(1)

0 [R > br−1/4] =
3
√
2π

b2
.
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Set u = r−1/4 and b = 1, to get

4

∫ ∞

0
uN(1)

0 [R > u] du = 3
√
2π,

which implies

N(1)
0 [R2] = 3

√

π

2
.

Since R′ is distributed as
√
2R, we get the second equality of corollary 2.

We recall the following development near 0:

1

sinh(x)2
=

1

x2
(1− x2

3
+O(x4)).

Hence the function
1

x2
− 1

sinh(x)2
is integrable over R+. The function H0(b) − Hλ(b) is

positive and integrable on R+. Setting x = (2λ)1/4b, we get

∫ ∞

0
[H0(b)−Hλ(b)] db = 3

√
2π lim

ε→0

∫ ∞

ε

[

1

b2
−

√
2λ

sinh((2λ)1/4b)2

]

db

= 3
√
2π(2λ)1/4 lim

ε→0

∫ ∞

ε

[

1

x2
− 1

sinh(x)2

]

dx

= 3
√
2π(2λ)1/4 lim

ε→0

1

ε
+1− cosh(ε)

sinh(ε)

= 3
√
2π(2λ)1/4.

On the other hand, by Fubini, we have
∫ ∞

0
[H0(b)−Hλ(b)] db =

∫ ∞

0
db

∫ ∞

0

dr

r3/2
(1− e−λr)N(1)

0 [R > br−1/4]

=

∫ ∞

0

dr

r3/2
(1− e−λr)r1/4

∫ ∞

0
N(1)

0 [R > v] dv

= λ1/4

∫ ∞

0

dr

r5/4
(1− e−r)N(1)

0 [R]

= λ1/44 Γ(3/4) N(1)
0 [R].

We deduce that

N(1)
0 [R] =

3
√
2π 21/4

4 Γ(3/4)
.

Since

Γ(1/4)Γ(3/4) =

∫ ∞

0

t−3/4 dt

1 + t
= 4

∫ ∞

0

dv

1 + v4
= π

√
2,

we have
1

4 Γ(3/4)
=

Γ(1/4)

4π
√
2

=
Γ(5/4)

π
√
2

. And we get

N(1)
0 [R] = 3

21/4 Γ(5/4)√
π

.

Since R′ is distributed as
√
2R, we get the first equality of corollary 2. ¤
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5. Proof of proposition 4 and corollary 5

We define for −∞ < a < 0 < b < +∞ and λ ≥ 0,

w̃λ(a, b) = N0

[

1− 1{R≤b,L≥a} e
−λσ
]

.

Since Nx-a.e., for a < x < b, {R ≤ b, L ≥ a} = {X (a,b) = 0} = {Y (a,b) = 0}, we have with
the notations of section 3,

w̃λ(a, b) = lim
µ→∞

N0

[

1− e−µY (a,b)−λσ
]

= lim
µ→∞

vµ,λ,a,b(0).

Notice from lemma 6, that by symmetry, v′µ,λ,a,b((a + b)/2) = 0. By translation and

symmetry, it is clear that vµ,λ,a,b(0) = vµ,λ,0,b+|a|(min(|a|, b)). We set wλ,r(x) as the
increasing limit of vµ,λ,0,2r(x) for x ∈ (0, 2r) as µ ↑ ∞. Therefore, we have

w̃λ(a, b) = wλ,r0(min(|a|, b)), where we set r0 =
|a|+b

2
.

As the set of nonnegative solutions of (4) is closed under pointwise convergence, we deduce
from lemma 6 that wλ,r also solves (4) with (a, b) = (0, 2r). We have the boundary
condition

wλ,r(0) = lim
µ→∞

vµ,λ,0,2r(0) = lim
µ→∞

µ+
√

λ/2 = +∞.

By symmetry, we deduce that w′λ,r(r) = 0. The ordinary differential equation

(7)















1

2
w′′ = 2w2 − λ in (0, r],

w(0) = +∞,

w′(r) = 0.

has a unique nonnegative solution. However, we don’t have an explicit formula for wλ,r.
Arguing as in the proof of proposition 1, we get with c = −a > 0,

w̃λ(a, b) = N0

[

1− 1{R≤b,|L|≤c} e
−λσ
]

=

∫ ∞

0

dr

2
√
2πr3/2

N(1)
0

[

1− 1{R≤br−1/4,|L|≤cr−1/4} e
−λr
]

=
√

λ/2 +

∫ ∞

0

dr

2
√
2πr3/2

e−λr N(1)
0

[

1− 1{R≤br−1/4,|L|≤cr−1/4}

]

.

We set for b > 0, c > 0,

(8) Iλ(c, b) =

∫ ∞

0

dr

r3/2
e−λr N(1)

0

[

1− 1{R≤br−1/4, |L|≤cr−1/4}

]

.

That is

Iλ(c, b) = 2
√
2π[w̃λ(−c, b)−

√

λ/2] = 2
√
2π[wλ,r0(min(c, b))−

√

λ/2],

where r0 = (c+ b)/2. We have proved the following lemma, and thus proposition 4 (with
the notation uλ,r(x) = wλ,r/

√
2(x/

√
2)).

Lemma 8. Let λ > 0, b > 0, c > 0. We have
∫ ∞

0

dr

r3/2
e−λr N(1)

0

[

1− 1{R≤br−1/4, |L|≤cr−1/4}

]

= 2
√
2π[wλ,(c+b)/2(min(c, b))−

√

λ/2],

where wλ,r is the only non-negative solution of (7).
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Notice that Iλ(c, b) = Iλ(b, c), Hλ(b) = limc→+∞ Iλ(c, b) and that Iλ(c, b) ≥ Hλ(b).
Using that

1− 1{R≤br−1/4, |L|≤cr−1/4} = 1{R>br−1/4} + 1{|L|>cr−1/4} − 1{R>br−1/4, |L|>cr−1/4}

and that R and |L| have the same distribution under N(1)
0 , we deduce

(9) Jλ(c, b) =

∫ ∞

0

dr

r3/2
e−λr N(1)

0

[

1{R>br−1/4, |L|>cr−1/4}

]

= Hλ(b) +Hλ(c)− Iλ(c, b).

Proof of the second equality of corollary 5. In particular, taking c = b and letting λ de-
creases to 0 in (9), we get

(10) J0(b, b) =

∫ ∞

0

dr

r3/2
N(1)

0

[

1{min(R,|L|)≥br−1/4}

]

= 2H0(b)− I0(b, b).

Notice I0(b, b) = 2
√
2π w0,r0(r0), with r0 = (c+ b)/2 = b. Let us compute w0,r(r). We set

θ = w0,r(r).

Solving the differential equation (7) for w0,r, we get for all t ∈ (0, r),

∫ ∞

w0,r(t)

√

3

8

du√
u3 − θ3

= t,

that is

(11)

√

3

8

∫ ∞

w0,r(t)/θ

du√
u3 − 1

=
√
θ t.

For t = r, we get
√

3

8

∫ ∞

1

du√
u3 − 1

=
√
θ r.

We define

α0 =

∫ ∞

1

du√
u3 − 1

.

We get that

(12) w0,r(r) = θ =
3

8

(α0

r

)2
,

and so I0(b, b) = 3
√
2π α2

0/4b
2. We then deduce from (6) and (10), that

J0(b, b) =
1

b2

[

6
√
2π − 3

4

√
2π α2

0

]

.

If we set u = r−1/4 and b = 1, we get from (10)

4

∫ ∞

0
du uN(1)

0

[

1{min(R,|L|)≥u}
]

= 6
√
2π − 3

4

√
2π α2

0.

Therefore, we have

N(1)
0 [min(R, |L|)2] = 3

√
2π[1− α2

0/8].

This prove the second equality of corollary 5. ¤
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Proof of the first equality of corollary 5. We look for a transformation of Jλ which will give
the expectation of R |L|. Notice first that for λ > 0, Jλ is differentiable in the variable λ
and that

−∂λJλ =

∫ ∞

0

dr

r3/2
r e−λr N(1)

0

[

1{R>br−1/4, |L|>cr−1/4}

]

≥ 0.

By Fubini, we have

−
∫

(0,∞)2
∂λJλ(c, b) dc db =

∫ ∞

0

dr

r1/2
e−λr

∫

(0,∞)2
dc db N(1)

0

[

1{R>br−1/4, |L|>cr−1/4}

]

=

∫ ∞

0

dr

r1/2
e−λr√r N(1)

0 [R |L|]

=
1

λ
N(1)

0 [R |L|].

Our next task is to compute ∂λJλ(c, b). From (8), we deduce the following scaling
property: for ρ > 0,

Iλ(c, b) =
1

ρ2
Iλρ4(c/ρ, b/ρ).

Taking ρ = λ−1/4, we get

Iλ(c, b) =
√
λI1(cλ

1/4, bλ1/4).

Of course, we have a similar scaling property for H. Differentiating with respect to λ, we
get

∂λIλ(c, b) = ∂λ
√
λI1(cλ

1/4, bλ1/4)

=
1

2
√
λ
I1(cλ

1/4, bλ1/4) +
c

4λ1/4
∂cI1(cλ

1/4, bλ1/4) +
b

4λ1/4
∂bI1(cλ

1/4, bλ1/4)

=
1

λ

[

1

2
Iλ(c, b) +

1

4
(c∂cIλ(c, b) + b∂bIλ(c, b))

]

.

A similar computation yields

∂λHλ(b) =
1

λ

[

1

2
Hλ(b) +

1

4
b∂bHλ(b)

]

.

Therefore, we have

− λ∂λJλ(c, b)

=
1

4
[2Iλ(c, b)− 2Hλ(c)− 2Hλ(b) + c∂cIλ(c, b) + b∂bIλ(c, b)− c∂cHλ(c)− b∂bHλ(b)].

Now we will study the limit of Cε,A =
∫

[ε,A]2 dcdb (−λ∂λJλ(c, b)) as A → ∞ and ε → 0,

since

(13) lim
ε→0,A→∞

Cε,A = N(1)
0 [R |L|].
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An integration by parts gives 4Cε,A = K1 +K2 +K3 +K4, where

K1 = −2(A− ε)AHλ(A),

K2 = 2A

∫ A

ε
Iλ(A, b) db− 2A

∫ A

ε
Hλ(t) dt,

K3 = 2(A− ε)εHλ(ε)− 2

∫ A

ε
εIλ(ε, b) db,

K4 = 2ε

∫ A

ε
Hλ(t) dt.

Study of K1. We have

|K1| ≤ 2A2Hλ(A) = 6
√
2π

(

(2λ)1/4A

sinh((2λ)1/4A)

)2

.

In particular, we have

(14) lim
ε→0,A→∞

K1 = 0.

Study of K2. Since Iλ(A, b) ≥ Hλ(b), and since Jλ(A, b) = Hλ(A) + Hλ(b) − Iλ(A, b) is
nonnegative, we deduce that

0 ≤ Iλ(A, b)−Hλ(b) ≤ Hλ(A).

This implies

0 ≤ K2 = 2A

∫ A

ε
[Iλ(A, b)−Hλ(b)] db ≤ 2A

∫ A

ε
Hλ(A) db ≤ 2A2Hλ(A).

From the study of K1, we deduce that

(15) lim
ε→0,A→∞

K2 = 0.

Study of K3. Set εt = b and use the scaling property of I and H (with ρ = ε) to get

−K3 = 2ε

∫ A

ε
[Iλ(ε, b)−Hλ(ε)] db

= 2ε2

∫ A/ε

1
[Iλ(ε, εt)−Hλ(ε)] dt

= 2

∫ A/ε

1
[Iε4λ(1, t)−Hε4λ(1)] dt

= 2

∫ A/ε

1
dt

∫ ∞

0

dr

r3/2
e−ε4λr N(1)

0

[

1{R>tr−1/4, |L|≤r−1/4}

]

,

where we used the definition of I and H for the last equality. By monotone convergence,
we get that −K3 increases, as ε ↓ 0 and A ↑ ∞ to −K̃3, where

−K̃3 = 2

∫ ∞

1
dt

∫ ∞

0

dr

r3/2
N(1)

0

[

1{R>tr−1/4, |L|≤r−1/4}

]

= 2

∫ ∞

1
[I0(1, t)−H0(1)] dt.
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Since I0(1, t) ≥ H0(1) and J0(1, t) = H0(1) + H0(t) − I0(1, t) is nonnegative, we deduce
that

0 ≤ I0(1, t)−H0(1) ≤ H0(t) =
3
√
2π

t2
.

Hence, we get that K̃3 is finite. Let us now compute the value of K̃3. We have for t ≥ 1,
I0(1, t) = 2

√
2π w0,r0(1), with r0 = (1 + t)/2. We set for t ≥ 1,

(16) G(t) =

∫ ∞

t

du√
u3 − 1

.

In particular, we have α0 = G(1). From (11) and (12), we get that G

(

8r2
0

3α2
0

w0,r0(1)

)

=

α0

r0
. We deduce that for t ≥ 1,

I0(1, t) = 2
√
2π

3

8

(

α0

r0

)2

G−1

(

α0

r0

)

= 2
√
2π

3

8

(

2α0

1 + t

)2

G−1

(

2α0

1 + t

)

.

Thus, we get with v = 2α0/(1 + t),

−K̃3 = 2

∫ ∞

1
dt

[

2
√
2π

3

8

(

2α0

1 + t

)2

G−1

(

2α0

1 + t

)

− 3
√
2π

]

= 3
√
2π α0

∫ α0

0

[

G−1(v)− 4v−2
]

dv.

From (16), it is easy to check that G(x) =
2√
x
+O(x−7/2) as x→∞, which implies that

(17) G−1(v) =
4

v2
+O(v4), as v → 0.

This development implies that, with u = G−1(v),

−K̃3 = lim
ε→0

3
√
2π α0

∫ α0

ε
G−1(v) dv − 12

√
2π α0

ε
+ 12

√
2π

= lim
ε→0

3
√
2π α0

∫ G−1(ε)

1

u du√
u3 − 1

− 12
√
2π α0

ε
+ 12

√
2π

= 12
√
2π + lim

ε→0
3
√
2π α0

∫ 4/ε2

1

u du√
u3 − 1

− 12
√
2π α0

ε

= 12
√
2π + 3

√
2π α0 lim

ε→0

∫ 4/ε2

1

[

u√
u3 − 1

− 1√
u− 1

]

du

= 12
√
2π − 3

√
2π α0

∫ ∞

1

(u+ 1) du√
u3 − 1(u+

√
u2 + u+ 1)

.

Therefore, we deduce that

(18) lim
ε→0,A→∞

K3 = −12
√
2π + 3

√
2π

∫ ∞

1

dt√
t3 − 1

∫ ∞

1

(u+ 1) du√
u3 − 1(u+

√
u2 + u+ 1)

.
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Study of K4. We have for A ≥ 1,

K4 = 2ε

∫ A

ε
Hλ(t) dt = 2ε

∫ A

ε

6
√
πλ

sinh((2λ)1/4t)2
dt

= 2ε

[

−6
√
πλ

(2λ)1/4
coth((2λ)1/4t)

]A

ε

= 6
√
2π +O(ε).

Thus we have

(19) lim
ε→0,A→∞

K4 = 6
√
2π.

Conclusion. Eventually, we deduce from (13), (14), (15), (18) and (19), that

N(1)
0 [R |L|] = 1

4

[

−6
√
2π + 3

√
2π

∫ ∞

1

dt√
t3 − 1

∫ ∞

1

(u+ 1) du√
u3 − 1(u+

√
u2 + u+ 1)

]

.

¤

6. Proof of lemma 6

We introduce the special Markov property for X (a,b) and we refer to [6] for the complete
theory. We set

ηs = inf{t;
∫ t

0
du 1{ζu≤τ(Wu)} > s},

where τ(w) = inf{t ∈ [0, ζw], w(t) 6∈ (a, b)} is the first exit time of (a, b) for the path
w ∈ W. We define the continuous process W ′

s by W ′
s = Wηs . By definition, the σ-field

E(a,b) is generated by W ′ = (W ′
s, s ≥ 0) and all the Nx-negligible sets.

From proposition 2.3 in [6], we get that X (a,b) is E(a,b)-measurable. Notice that Nx-a.e.,
{s ≥ 0; ζs = τ(Ws)} is of Lebesgue measure zero and

∫ σ

0
1{τ(Ws)=∞} ds =

∫ σ

0
1{τ(Ws)≥ζs} ds =

∫ ∞

0
1{W ′

s 6=x} ds.

In particular the integral
∫ σ
0 1{τ(Ws)=∞} ds is E (a,b)-measurable.

The random open set {s ∈ (0, σ); τ(Ws) < ζs} is a countable union of open sets, say
⋃

i∈I(ai, bi). Since the set {s ∈ (0, σ); τ(Ws) = ζs} is of Lebesgue measure zero Nx-a.e.,
we get that Nx-a.e.,

∫ σ

0
1{τ(Ws)<∞} ds =

∫ σ

0
1{τ(Ws)<ζs} ds =

∑

i∈I
(bi − ai).

In particular, we deduce from the special Markov property, theorem 2.4 in [6], that

Nx

[

e−λ
∫ σ
0 1{τ(Ws)<∞} ds |E(a,b)

]

= Nx

[

e−λ
∑

i∈I(bi−ai) |E(a,b)
]

= e−
∫

X(a,b)(dx) Nx[1−e−λσ ] .

From (2) we get that

Nx

[

e−λ
∫ σ
0 1{τ(Ws)<∞} ds |E(a,b)

]

= e−
√

λ/2 Y (a,b)
,
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where Y (a,b) =
∫

X(a,b)(dx). This implies that for a < x < b, and λ ≥ 0, µ > 0,

vµ,λ,a,b(x) = Nx

[

1− e−µY (a,b)−λσ
]

= Nx

[

1− e−µY (a,b)−λ
∫ σ
0 1{τ(Ws)=∞} ds−λ

∫ σ
0 1{τ(Ws)<∞} ds

]

= Nx

[

1− e−µY (a,b)−λ
∫ σ
0 1{τ(Ws)=∞} ds Nx

[

e−λ
∫ σ
0 1{τ(Ws)<∞} ds |E(a,b)

]]

= Nx

[

1− e−(µ+
√

λ/2)Y (a,b)−λ
∫ σ
0 1{τ(Ws)=∞} ds

]

.

We then consider the continuous additive functional of the Brownian snake,

dLs = (µ+
√

λ/2) dL(a,b)
s + λ1{τ(Ws)=∞} ds.

Of course, we have

vµ,λ,a,b(x) = Nx

[

1− e−Lσ
]

= Nx

[
∫ σ

0
dLs e−

∫ σ
s dLu

]

.

Now we replace exp(−
∫ σ
s dLu) by its predictable projection with respect to the filtration

of the Brownian snake. Let E∗w be the law of the Brownian snake started at the path
(w, ζw), and whose lifetime is distributed according to a linear Brownian motion started
at point ζw and stopped as it reaches 0. The predictable projection of exp (−

∫ σ
s dLu) is

given by E∗Ws
[e−Lσ ]. From proposition 2.1 in [6], we get that

E∗w[e−Lσ ] = e−2
∫ ζw
0 dt Nw(t)[1−e−Lσ ] .

Therefore, we get that

vµ,λ,a,b(x) = Nx

[
∫ σ

0
dLs e−2

∫ ζs
0 vµ,λ,a,b(Ws(t)) dt

]

= (µ+
√

λ/2)Nx

[
∫ σ

0
dL(a,b)

s e−2
∫ ζs
0 vµ,λ,a,b(Ws(t)) dt

]

+ λNx

[
∫ σ

0
1{τ(Ws)=∞}ds e−2

∫ ζs
0 vµ,λ,a,b(Ws(t)) dt

]

.

Let us recall the first moment formula for the Brownian snake: for F a nonnegative
measurable function defined on W, we have

Nx

[
∫ σ

0
F (Ws, ζs)ds

]

=

∫ ∞

0
dr Ex[F ((Bt, t ∈ [0, r]), r)],

and

Nx

[
∫ σ

0
F (Ws, ζs)dL

(a,b)
s

]

= Ex[F ((Bt, t ∈ [0, τ ]), τ)],

where B is under Ex a linear Brownian motion started at point x and τ = inf{t ≥ 0;Bt 6∈
(a, b)}.

In particular this implies that vµ,λ,a,b is a nonnegative solution of

v(x) = (µ+
√

λ/2)Ex

[

e−2
∫ τ
0 v(Bt)dt

]

+ λEx

[
∫ τ

0
dr e−2

∫ r
0 v(Bt)dt

]

.

From standard arguments on Brownian motion, we deduce lemma 6.
Acknowledgment. I thank P. Chassaing for telling me about [2] and asking me about the
law of (R′, L′).
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