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1 Introduction and results

The subject of this paper is the so-called frog model with death, which can be described as
follows. Initially there is a random number of particles at each site of a graph G. A site of G is
singled out and called its root. All particles are sleeping at time zero, except for those that might
be placed at the root, which are active. At each instant of time, each active particle may die with
probability (1 − p). Once an active particle survives, it jumps on one of its nearest neighbors,
chosen with uniform probability, performing a discrete time simple random walk (SRW) on G.
Up to the time it dies, it activates all sleeping particles it hits along its way. From the moment
they are activated on, every such particle starts to walk, performing exactly the same dynamics,
independent of everything else.

This model with p = 1 (i.e., no death) is a discrete-time version of the model for information
spreading proposed by R. Durrett (1996, private communication), who also suggested the term
“frog model”. The first published result on this model is due to Telcs, Wormald [10], where it
was referred to as the “egg model”. They proved that, starting from the one-particle-per-site
initial configuration, almost surely the origin will be visited infinitely often. Popov [8] proved
that the same is true in dimension d ≥ 3 for the initial configuration constructed as follows:
A sleeping particle (or “egg”) is added into each x 6= 0 with probability α/‖x‖2, where α is a
large positive constant. In Alves et al. [1] for the frog model with no death it was proved that,
starting from the one-particle-per-site initial configuration, the set of the original positions of
all active particles, rescaled by the elapsed time, converges to a nonempty compact convex set.
In Alves et al. [2] a similar result was obtained for the case of random initial configuration.

The authors have learned about this version (i.e., with death) of the frog model from I. Ben-
jamini. The goal of the present work is to study the asymptotic dynamics of this particle system
model, with regard to the parameter p, the graph where the random walks take place and the
initial distribution of particles.

Let us define the model in a formal way. We denote by G = (V, E) an infinite connected non-
oriented graph of locally bounded degree. Here V := V(G) is the set of vertices (sites) of G, and
E := E(G) is the set of edges of G. Sites are said to be neighbors if they belong to a common
edge. The degree of a site x is the number of edges which have x as an endpoint. A graph
is locally bounded if all its sites have finite degree. Besides, a graph has bounded degree if its
maximum degree is finite. The distance dist(x, y) between sites x and y is the minimal amount
of edges that one must pass in order to go from x to y. Fix a site 0 ∈ V and call it the root of
G. With the usual abuse of notation, by Zd we mean the graph with the vertex set Zd and edge
set {〈(x(1); . . . ;x(d)), (y(1); . . . ; y(d))〉 : |x(1) − y(1)| + · · · + |x(1) − y(d)| = 1}. Also, Td, d ≥ 3,
denotes the degree d homogeneous tree.

Let η be a random variable taking values in N = {0, 1, 2, . . . } such that P[η ≥ 1] > 0, and
define γj = P[η = j]. Let {η(x);x ∈ V}, {(Sx

n(i))n∈N ; i ∈ {1, 2, 3, . . . }, x ∈ V} and {(Ξx
p(i)); i ∈

{1, 2, 3, . . . }, x ∈ V} be independent sets of i.i.d. random variables defined as follows. For each
x ∈ V, η(x) has the same law as η, and gives the initial number of particles at site x. If η(x) ≥ 1,
then for each 0 < i ≤ η(x), (Sx

n(i))n∈N is a discrete time SRW on G starting from x (it describes
the trajectory of i-th particle from x), and Ξx

p(i), which stands for the lifetime of i-th particle
from x, is a random variable whose law is given by P[Ξx

p(i) = k] = (1 − p)pk−1, k = 1, 2, . . .,
where p ∈ [0, 1] is a fixed parameter. Thus, the i-th particle at site x follows the SRW (Sx

n(i))n∈N

2



and dies (disappears) Ξx
p(i) units of time after being activated. For x 6= y let

t(x, y) = min
1≤i≤η(x)

min{n < Ξx
p(i) : Sx

n(i) = y}

(clearly, t(x, y) = ∞ with positive probability). The moment when all the particles in x are
awakened is defined as

T (x) = inf{t(x0, x1) + · · · + t(xm−1, xm)},
where the infimum is over all finite sequences 0 = x0, x1, . . . , xm−1, xm = x. Clearly, T (x) = ∞
means that the site x is never visited by active particles.

It is important to note that at the moment the particle disappears, it is not able to activate
other particles (as first we decide whether the particle survives, and only after that the particle
that survived is allowed to jump). Notice that there is no interaction between active particles,
which means that each active particle moves independently of everything else. We denote by
FM(G, p, η) the frog model on the graph G with survival parameter p and initial configuration
ruled by η.

Let us consider the following definition.

Definition 1.1. A particular realization of the frog model survives if for every instant of time
there is at least one active particle. Otherwise, we say that it dies out.

Now we observe that P[FM(G, p, η) survives] is nondecreasing in p and define

pc(G, η) := inf{p : P[FM(G, p, η) survives] > 0}.
As usual, we say that FM(G, p, η) exhibits phase transition if

0 < pc(G, η) < 1.

Now we present two lower bounds on pc(G, η) which can be obtained by a direct comparison with
a Galton-Watson branching process. The next proposition shows that, provided that Eη < ∞,
for small enough p (depending on η) the frog model dies out almost surely on any graph.

Proposition 1.1. If Eη < ∞, then for arbitrary graph G it holds that pc(G, η) ≥ (Eη + 1)−1.

Proof. The set of active particles in the frog model is dominated by the population of the fol-
lowing Galton-Watson branching process. Each individual has a number of offspring distributed
as (η + 1)ξ, where the random variable ξ is independent of η, and P[ξ = 1] = p = 1 − P[ξ = 0].
Therefore, since the mean number of offspring by individual is (1 + Eη)p, the result follows by
comparison with the Galton-Watson branching process. �

Next, again by comparison with Galton-Watson branching process, we give another lower bound
to pc(G, η). This bound is better than the one presented in Proposition 1.1 for bounded degree
graphs.

Proposition 1.2. Suppose that G is a graph of maximum degree k, and Eη < ∞. Then

pc(G, η) ≥ k

1 + (k − 1)(Eη + 1)
.
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Proof. Consider a Galton-Watson branching process where particles produce no offspring with
probability 1 − p, one offspring with probability p/k and the random number η + 1 of offspring
with probability p(k − 1)/k. Observing that every site with at least one active particle at time
n > 0, has at least one neighbor site whose original particle(s) has been activated prior to time
n, one gets that the frog model is dominated by the Galton-Watson process just defined. An
elementary calculation shows that if p < k(1 + (k − 1)(Eη + 1))−1, the mean offspring in the
Galton-Watson process defined above is less than one, therefore it dies out almost surely. So,
the same happens to the frog model. �

Before going further, let us underline that in fact we are dealing with percolation. Indeed, let

Ri
x = {Sx

n(i) : 0 ≤ n < Ξx
p(i)} ⊂ G

be the “virtual” set of sites visited by the i-th particle placed originally at x. The set Ri
x

becomes “real” in the case when x is actually visited (and thus all the sleeping particles from
there are activated). We define the (virtual) range of site x by

Rx :=




η(x)⋃
i=1

Ri
x, if η(x) > 0,

{x}, if η(x) = 0.

Notice that the frog model survives if and only if there exists an infinite sequence of distinct
sites 0 = x0, x1, x2, . . . such that, for all j,

xj+1 ∈ Rxj . (1.1)

The last observation shows that the extinction of the frog model is equivalent to the finiteness
of the cluster of 0 in the following oriented percolation model: from each site x the oriented
edges are drawn to all the sites of the set Rx. This approach is the key for the proof of most of
the results of this paper.

Next we state the main results of this paper. The proofs are given in Section 2.

1.1 Extinction and survival of the process

We begin by showing that, under mild conditions on the initial number of particles, the process
dies out a.s. (i.e., there is no percolation) in Z for every p < 1. From now on, a ∨ b stands for
max{a, b}.
Theorem 1.1. If E log(η ∨ 1) < ∞, then pc(Z, η) = 1.

Next, we find sufficient conditions to guarantee that the process becomes extinct for p small
enough in Zd, d ≥ 2, and in Td, d ≥ 3.

Theorem 1.2. Suppose that there exists δ > 0 such that Eηδ < ∞. Then pc(Td, η) > 0, i.e.,
the process on Td dies out a.s. for p > 0 small enough.

Theorem 1.3. Suppose that E(log(η ∨ 1))d < ∞. Then pc(Zd, η) > 0.
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Now, let us state the results related to the survival of the process. First, we show that for
nontrivial η the frog model survives on Z

d, d ≥ 2, and on Td, when the parameter p is close
enough to 1.

Theorem 1.4. If P[η ≥ 1] > 0, then pc(Zd, η) < 1 for all d ≥ 2.

Theorem 1.5. If P[η ≥ 1] > 0, then pc(Td, η) < 1 for all d ≥ 3.

Now we state the counterpart of Theorem 1.2. Note that Theorems 1.2 and 1.6 give the complete
classification in η of the frog model on Td from the point of view of positivity of pc(Td, η).

Theorem 1.6. If Eηδ = ∞ for every δ > 0, then pc(Td, η) = 0.

Besides, we are able to show that, for every fixed d, if η has a sufficiently heavy tail, then
FM(Zd, p, η) survives with positive probability for all values of p ∈ (0, 1) (which would be the
counterpart of Theorem 1.3). However, we do not state this result now, as in Section 1.3 we will
give a stronger result (cf. Theorem 1.12).

1.2 Asymptotics for pc

The following two theorems give asymptotic values for critical parameters (compare with Propo-
sitions 1.1 and 1.2) for the case of Zd and regular trees.

Theorem 1.7. We have, for the case Eη < ∞,

lim
d→∞

pc(Td, η) =
1

1 + Eη
.

Theorem 1.8. We have, for the case Eη < ∞,

lim
d→∞

pc(Zd, η) =
1

1 + Eη
.

Remark. Observe that by truncating η and using a simple coupling argument one gets that if
Eη = ∞, then

lim
d→∞

pc(Td, η) = lim
d→∞

pc(Zd, η) = 0.

Note that Theorems 1.7 and 1.8 suggest that there is some monotonicity of the critical probability
in dimension. Then, a natural question to ask is the following: Is it true that pc(Zd, η) ≥
pc(Zd+1, η) for all d (and can one substitute “≥” by “>”)? In fact, there is a more general
question: if G1 ⊂ G2, is it true that pc(G1, η) ≥ pc(G2, η)? The last question has a trivial
negative answer if we construct G2 from G1 by adding loops; if loops are not allowed, then this
question is open. Note that for percolation that inequality is trivial; even the strict inequality
can be proved in a rather general situation, cf. Menshikov [7].

5



1.3 Other types of phase transition and generalizations

There are other types of phase transitions for this model which may be of interest. For example,
let p be such that pc(G, 1) < p < 1 and ηq be a 0-1 random variable with P[ηq = 1] = 1−P[ηq =
0] = q. Then, the following result holds:

Proposition 1.3. There is a phase transition in q, i.e., FM(G, p, ηq) dies out when q is small
and survives when q is large.

Proof. First, note that FM(G, p, ηq) is dominated by the following Galton-Watson branching
process: An individual has 0 offspring with probability 1−p, 1 offspring with probability p(1−q),
and 2 offspring with probability pq. The mean offspring of this branching process is p(1 + q), so
FM(G, p, ηq) dies out if q < −1 + 1/p.

Let us prove that FM(G, p, ηq) survives when p > pc(G, 1) and q is close enough to 1. Indeed,
this model dominates a model described in the following way: The process starts from the one-
particle-per-site initial configuration, and on each step active particles decide twice whether to
disappear, the first time with probability 1− q, and the second time with probability 1− p. The
latter model is in fact FM(G, pq, 1), so the model FM(G, p, ηq) survives if q > pc(G, 1)/p. �

One may also be interested in the study of other types of critical behaviour with respect to the
parameter p. Consider the following

Definition 1.2. The model FM(G, p, η) is called recurrent if

P[0 is hit infinitely often in FM(G, p, η)] > 0.

Otherwise, the model is called transient.

Note that, even in the case when a single SRW on G is transient, it is still reasonable to expect
that the frog model with p = 1 is recurrent. For example, for the model FM(Zd, 1, 1) the
recurrence was established in [10]. However, establishing the recurrence property for that model
is nontrivial; it is still unclear to us whether FM(Td, 1, 1) is recurrent. Now, denote

pu(G, η) = inf{p : P[0 is hit infinitely often in FM(G, p, η)] > 0}
(here, by definition, inf ∅ = 1); clearly, pu(G, η) ≥ pc(G, η) for every G and η. Now, we are
interested in studying the existence of phase transition with respect to pu.

First, we discuss some situations when the model is transient for every p, except possibly the
case p = 1.

Theorem 1.9. Suppose that Eηε < ∞ for every 0 < ε < 1. Then pu(Td, η) = 1.

Theorem 1.10. Suppose that E[log(η ∨ 1)]d < ∞. Then pu(Zd, η) = 1.

The next two theorems give sufficient conditions to have pu < 1 on trees and on Zd.

Theorem 1.11. Suppose that there exists β < log(d−1)
2 log d such that

P[η ≥ n] ≥ 1
nβ

(1.2)

for all n large enough. Then pu(Td, η) < 1.
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Theorem 1.12. Suppose that there exist β < d such that

P[η ≥ n] ≥ 1
(log n)β

(1.3)

for all n large enough. Then pu(Zd, η) = 0.

Remark. It is possible to see that, if P[η ≥ n] ≥ (log n)−β for some β < 1 and all n large enough,
then FM(G, p, η) is recurrent on any infinite connected graph G of bounded degree. Indeed, for
arbitrary graph G of bounded degree we do the following: First, fix a subgraph G1 of G, which is
isomorphic to Z+. If k0 is the maximal degree of G, it is easy to see that FM(G, p, η) dominates
FM(G1, p/k0, η) (if a particle wants to leave G1, we just erase this particle). Then, we just apply
Theorem 1.12 for the case of G = Z (from the proof of Theorem 1.12 one gets that the argument
for the case of Z also works for Z+).

Theorems 1.11 and 1.12 give sufficient conditions on the tail of the distribution of η for the
process to be recurrent when p < 1. On the other hand, Theorems 1.9 and 1.10 show that for
the one-particle-per-site initial configuration the process is not recurrent even if the parame-
ter p < 1 is very close to 1. The model with one-particle-per-site initial configuration being the
most natural example one has to hand, a natural question is raised: What can be done (i.e., how
can one modify the model) to make the model recurrent without augmenting the initial config-
uration? Notice that, by definition, in our model the lifetime of active particles is geometrically
distributed. In order to find answers to that question, we are going to change this and study
the situation when the lifetime has another distribution, possibly more heavy-tailed one.

Let Ξ be a nonnegative integer-valued random variable. From this moment on we study the frog
model on G with one-particle-per-site initial configuration, and the lifetimes of particles after
activation are i.i.d. random variables (Ξx, x ∈ G) having the same law as Ξ. This model will be
called FM(G,Ξ).

Theorem 1.13. Suppose that one of the following alternatives holds:

• G = Z and E
√

Ξ < ∞,

• G = Z
2 and E Ξ

log(Ξ∨2) < ∞,

• G = Td or Zd, d ≥ 3 and EΞ < ∞.

Then FM(G,Ξ) is transient.

Theorem 1.14. For each dimension d there exists βd > 0 such that if for all n large enough
one of the following alternatives holds

• d = 1 and P[Ξ ≥ n2] ≥ β1n
−1 log log n,

• d = 2 and P[Ξ ≥ n2] ≥ β2n
−2(log n)2,

• d ≥ 3 and P[Ξ ≥ n2] ≥ βdn
−2 log n,

then FM(Zd,Ξ) is recurrent.
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In fact, results of Popov [8] suggest that the following is true: For d ≥ 3 there exist α̃0(d), α̃1(d)
such that if P[Ξ ≥ n2] ≤ α̃0(d)n−2 for all n large enough, then FM(Zd,Ξ) is transient, and
if P[Ξ ≥ n2] ≥ α̃1(d)n−2 for all n large enough, then FM(Zd,Ξ) is recurrent. The heuristic
explanation for this is as follows. The particle originally in x has a good chance (i.e., comparable
with ‖x‖2−d

2 , where ‖·‖2 is the Euclidean norm) of ever getting to the origin only if it lives at least
of order ‖x‖2

2 units of time (cf. Lemma 2.4 below), so one may expect that FM(Zd,Ξ) behaves
roughly as the frog model with infinite lifetime of the particles and the initial configuration
of sleeping particles constructed as follows: we add a sleeping particle into x with probability
h(x) := P[Ξ ≥ n2], and add nothing with probability 1−h(x). For the case when h(x) ' α/‖x‖2

2

the latter model was studied in [8] and it was proved that it is recurrent when α is large and
transient when α is small (note that the transience also can be proved by dominating the frog
model by a branching random walk, cf. e.g. den Hollander et al. [3]). However, turning this
heuristics into a rigorous proof is presently beyond our reach.

2 Proofs

2.1 Preliminaries

Here we state a few basic facts which will be necessary later in the Sections 2.2, 2.3, and 2.4.

For 0 ≤ p ≤ 1 and integer numbers k, i ≥ 1 denote Φ(i, k, p) = 1 − (1 − pk)i and k̂(i, p) =
blog i/ log(1/p)c, where bxc stands for the largest integer which is less than or equal to x. The
following fact can be easily obtained by using elementary calculus and is stated without proof.

Lemma 2.1. There exist constants β̂1, β̂2, β̂3 such that for all i, p

β̂1 ≤ Φ(i, k, p) ≤ 1

for k ≤ k̂(i, p) and
β̂2p

k−k̂(i,p) ≤ Φ(i, k, p) ≤ β̂3p
k−k̂(i,p)−1

for k ≥ k̂(i, p) + 1.

In the sequel we will make use of the following large deviation result:

Lemma 2.2 (Shiryaev [9], p. 68.). Let {Xi, i ≥ 1} be i.i.d. random variables with P[Xi =
1] = p and P[Xi = 0] = 1 − p. Then for all 0 < p < a < 1 and for all N ≥ 1 we have

P
[ 1
N

N∑
i=1

Xi ≥ a
]
≤ exp{−NH(a, p)}, (2.1)

where
H(a, p) = a log

a

p
+ (1 − a) log

1 − a

1 − p
> 0.

If 0 < a < p < 1, then (2.1) holds with P[N−1
∑N

i=1 Xi ≤ a] in the left-hand side.
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In order to prove Theorems 1.4 and 1.8 we need some auxiliary fact about projections of perco-
lation models. Let Hd := {Hd

x : x ∈ Z
d} be a collection of random sets such that x ∈ Hd

x and the
sets Hd

x −x, x ∈ Z
d, are i.i.d. By using the sets of Hd, define an oriented percolation process on

Z
d analogously to what was done for the frog model (compare with (1.1)): If there is an infinite

sequence of distinct sites, 0 = x0, x1, x2, . . . , such that xj+1 ∈ Hd
xj

for all j = 0, 1, 2, . . . , we say
that the cluster of the origin is infinite or, equivalently, that Hd survives.

Let Λ := {x ∈ Z
d : x(k) = 0 for k ≥ 3} ⊂ Z

d be a copy of Z2 immersed into Zd and P : Zd → Λ
be the projection on the first two coordinates. Let H2 := {H2

x : x ∈ Λ} be a collection of
random sets such that x ∈ H2

x and the sets H2
x − x, x ∈ Λ, are i.i.d. Analogously, one defines

the percolation of the collection H2.

Lemma 2.3. Suppose that there is a coupling of Hd
0 and H2

0 such that

P(Hd
0) ⊃ H2

0, (2.2)

i.e., the projection of Hd
0 dominates H2

0. Then

P[Hd survives] ≥ P[H2 survives].

Proof. The proof of this fact is standard and can be done by carefully growing the cluster in Λ
step by step, and comparing it with the corresponding process in Zd. See e.g. Menshikov [6] for
details. �

Let q̂(n, x) be the probability that a SRW (starting from the origin) hits x until the moment n.
The following fact about hitting probabilities of SRW is proved in [1], Theorem 2.2 (except for
the case d = 1).

Lemma 2.4. • If d = 1, x 6= 0 and n ≥ ‖x‖2
2, then there exists a number w1 > 0 such that

q̂(n, x) ≥ w1. (2.3)

• If d = 2, x 6= 0 and n ≥ ‖x‖2
2, then there exists a number w2 > 0 such that

q̂(n, x) ≥ w2

log ‖x‖2
. (2.4)

• Suppose that d ≥ 3, x 6= 0 and n ≥ ‖x‖2
2. Then there exists a collection of positive numbers

wd > 0, d ≥ 3, such that
q̂(n, x) ≥ wd

‖x‖d−2
2

. (2.5)

Proof. To keep the paper self-contained, we give the proof of this fact. Let p̂n(x) be the
probability that the SRW is in x at time n, and τx be the moment of the first hitting of x. Also,
denote by Gn(x) =

∑n
k=0 p̂k(x) the mean number of visits to x until the moment n (Gn(x) is

usually called Green’s function).
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Suppose without loss of generality that ‖x‖2
2 ≤ n < ‖x‖2

2 + 1. Observe that

Gn(x) =
n∑

j=0

p̂j(x) =
n∑

j=0

j∑
k=0

p̂k(0)P[τx = j − k]

=
n∑

k=0

p̂k(0)q̂(n − k, x) ≤ q̂(n, x)Gn(0).

So

q̂(n, x) ≥ Gn(x)
Gn(0)

≥




∑n
j=bn/2c p̂j(x)∑n

j=0 p̂j(0)
, d = 1, 2,

(G∞(0))−1
∑n

j=bn/2c p̂j(x), d ≥ 3.

Using Theorem 1.2.1 of [5], after some elementary computations we finish the proof. �

2.2 Extinction and survival

Proof of Theorem 1.1. Notice that, for any graph G and all x 6= y ∈ G, the following inequality
holds:

P[y ∈ R1
x] ≤ pdist(x,y). (2.6)

Clearly, for a fixed y ∈ Z, we have

P[y /∈ Rx for all x 6= y] =
∏

x:x 6=y

(1 − P[y ∈ Rx]),

and so the left-hand side of the above display is positive if and only if
∑

x:x 6=y P[y ∈ Rx] < ∞.
Now, by using (2.6) and Lemma 2.1, for some C1, C2 > 0 (depending only on p) one gets∑

x:x 6=y

P[y ∈ Rx] = 2
∑
x≥1

P[0 ∈ Rx]

≤ 2
∞∑

k=1

∞∑
i=1

γiΦ(i, k, p)

= 2
∞∑
i=1

γi

( ∑
k≤k̂(i,p)

Φ(i, k, p) +
∑

k≥k̂(i,p)+1

Φ(i, k, p)
)

≤ 2
∞∑
i=1

γi(C1 log i + C2) < ∞.

Thus, P[y /∈ Rx for all x 6= y] > 0, so, by the ergodic theorem there is an infinite sequence of
sites · · · < y−1 < y0 < y1 < · · · such that for all i, yi /∈ Rx for all x 6= yi. Therefore, for almost
every realization there is an infinite number of blocks of sites without “communication” with its
exterior, which prevents the active particles to spread out. The result follows. �

Proof of Theorems 1.2 and 1.3. For G = Z
d or Td denote sk(G) = |{y ∈ G : dist(x, y) = k}|

(note that the right-hand side does not depend on the choice of the site x). Using (2.6) and
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Lemma 2.1, one gets that for some positive constants C1, C2, C3, C4

E|Rx \ {x}| =
∑

y:y 6=x

P[y ∈ Rx]

=
∑

y:y 6=x

∞∑
i=1

γiP[y ∈ Rx | η(x) = i]

≤
∞∑
i=1

γi

∞∑
k=1

sk(G)Φ(i, k, p)

≤
∞∑
i=1

γi

( k̂(i,p)∑
k=1

sk(G) +
∞∑

k=1

β̂3sk(G)pk−1
)

≤




C1

∞∑
i=1

γii
log(d−1)
log(1/p) + C2, G = Td,

C3

∞∑
i=1

γi

( log i

log(1/p)

)d
+ C4, G = Z

d,

which is finite for all p < 1 in the case G = Z
d and for p small enough in the case of G = Td. Now,

as for some p0 > 0 (which may depend on the graph G) the convergence is uniform in [0, p0],
there exists small enough p (which depends on G) such that E|Rx \ {x}| < 1 for FM(G, p, η), so
one gets the proof by means of domination by a subcritical branching process. �

In order to prove Theorems 1.4 and 1.5 it is enough to show that, for p large enough, the frog
model survives with positive probability in Z

d, d ≥ 2, and in Td, d ≥ 3. Let us define the
modified initial configuration η′ by

η′(x) = 1{η(x)≥1}.

Since FM(G, p, η) dominates FM(G, p, η′), without loss of generality we prove Theorems 1.4
and 1.5 assuming that the initial configuration is given by {η′(x) : x ∈ G}.
Proof of Theorem 1.4. We start by considering the two dimensional frog model FM(Z2, p, η)
which is equivalent to FM(Λ, p, η), since Λ is a copy of Z2 (recall the notation Λ from Section 2.1,
it was introduced just before Lemma 2.3). It is a well-known fact that the two-dimensional
SRW (no death) is recurrent. Then, given N ∈ N and assuming η′(0) = 1, for sufficiently
large p = p(N), the probability that the first active particle hits all the sites in the square
[−2N, 2N ]2 ∩Z2 before dying can be made arbitrarily large. Besides, the probability that there
is a site x ∈ [0, N)2 ∩ Z2 such that η′(x) = 1, also can be made arbitrarily large by means of
increasing N .

Let us define now a two-dimensional percolation process in the following way. Divide Z2 into
disjoint squares of side N , i.e., write

Z
2 =

⋃
(r;k)∈Z2

Q(r, k),

11



where Q(r, k) = (rN ; kN) + [0, N)2 ∩ Z2. Declare Q(r, k) open if the following happens (and
closed otherwise) ⋃

x∈Q(r,k)

({η′(x) = 1} ∩ {R1
x ⊇ ([−2N, 2N ]2 + x) ∩ Z2}) 6= ∅.

Observe that the events {Q(r, k) is open}, (r, k) ∈ Z
2, are independent. Notice that the frog

model dominates this percolation process in the sense that if there is percolation then the frog
model survives. It is not difficult to see that by suitably choosing N and p it is possible to make
P[Q(r, k) is open] arbitrarily close to 1, so the percolation process can be made supercritical,
and thus the result follows for Z2.

Now, by using Lemma 2.3, we give the proof for dimensions d ≥ 3. Let {Ry(p, d) : y ∈ Z
d} be

the collection of the ranges for the d dimensional frog model. For the moment we write Ry(p, d)
instead of Ry to keep track of the dimension and the survival parameter. Analogously, let
{Ry(p, 2) : y ∈ Λ} be the collection of the ranges for the two dimensional frog model immersed
in Z

d. Notice that P(Rx(p, d)) ⊂ Λ is distributed as RP(x)(p′, 2) for p′ = 2p/(d(1 − p) + 2p),
where, as before, P : Zd → Λ is the projection on the first two coordinates. Since the fact
p′ < 1 implies that p < 1, and, as we just have proven, pc(Z2, η) < 1 when Eη < ∞, by using
Lemma 2.3 we finish the proof of Theorem 1.4. �

Proof of Theorem 1.5. As in the previous theorem, we work with η′ instead of η. In order
to prove the result, we need some additional notation. Notice that for every a ∈ Td there is
a unique path connecting a to 0; we write a ≥ b if b belongs to that path. For a 6= 0 denote
T

+
d (a) = {b ∈ Td : b ≥ a}. Fix an arbitrary site a0 adjacent to the root and let T+

d = Td \T+
d (a0).

For any A ⊂ Td let us define the external boundary ∂e(A) in the following way:

∂e(A) = A \ {a ∈ A : there exists b ∈ A such that b > a}.
A useful fact is that if A,B are finite and A ⊂ B, then |∂e(A)| ≤ |∂e(B)|. Now, denote by Wt

the set of sites visited until time t by a SRW (no death) in Td starting from 0. Note that

• as SRW on tree is transient, one gets that with positive probability Wt ⊂ T
+
d for all t;

• |∂e(Wt)| is a nondecreasing sequence, and, moreover, it is not difficult to show that
|∂e(Wt)| → ∞ a.s. as t → ∞.

The above facts show that for p large enough

E|∂e(R0) ∩ T+
d | >

1
P[η′ > 0]

. (2.7)

Now, all the initially sleeping particles in ∂e(R0) ∩ T+
d are viewed as the offspring of the first

particle. By using (2.7) together with the fact that for all x, y ∈ ∂e(R0) such that x 6= y, we
have T+

d (x) ∩ T+
d (y) = ∅, one gets that the frog model dominates a Galton-Watson branching

process with mean offspring greater than 1, thus concluding the proof of Theorem 1.5. �

Proof of Theorem 1.6. First, note the following fact: For any graph G with maximal degree d,
it is true that

P[y ∈ R1
x] ≥

(p

d

)dist(x,y)
. (2.8)
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Keeping the notation T
+
d (x) from the proof of Theorem 1.5, denote

Lk(x) = {y ∈ T
+
d (x) : dist(x, y) = k}.

Using (2.8) and Lemma 2.1, we have

E|Rx ∩ Lk̂(i,p/d)(x)| ≥
∞∑
i=1

γi(d − 1)k̂(i,p/d)Φ(i, k̂(i, p/d), p/d)

≥ β̂1

∞∑
i=1

γii
log(d−1)
log(d/p) = ∞,

so, by dominating a supercritical branching process by the frog model, one concludes the proof.
�

2.3 Asymptotics for the critical parameter

Proof of Theorem 1.7. By Proposition 1.1, pc(Td, η) ≥ (1 + Eη)−1. So, it is enough to show
that, fixing p > (1 + Eη)−1, the model FM(Td, p, η) survives for d large enough.

Let us define

η(s) =

{
η, if η ≤ s,

0, if η > s.
(2.9)

By the monotone convergence theorem it follows that Eη(s) → Eη as s → ∞, so, if p >

(1 + Eη)−1, then it is possible to choose s large enough so that p > (1 + Eη(s))
−1

. Fixed s and
p, notice that FM(Td, p, η) dominates FM(Td, p, η(s)) in the sense that if the latter survives with
positive probability, the same happens to the former. Therefore, it is enough to show that if
p > (1 + Eη(s))

−1
, then FM(Td, p, η(s)) survives for d sufficiently large.

Let ξn be the set of active particles of FM(Td, p, η(s)), which are at level n (i.e., at distance n
from the root) at time n. Next we prove that there exists a discrete time supercritical branching
process, which is dominated by ξn. We do this by constructing an auxiliary process ξ̃n ⊂ ξn.
First of all, initially the particle(s) in 0 belong(s) to ξ̃0. In general, the process ξ̃n is constructed
by the following rules. If at time n− 1 the set of particles ξ̃n−1, which lives on the level n− 1, is
constructed, then at time n the set of particles ξ̃n (which all are at level n) is constructed in the
following way. Introduce some ordering of the particles of ξ̃n−1, they will be allowed to jump
according to that order. Now, if the current particle survives, then

• if the particle jumps to some site of level n and does not encounter any particles that
already belong to ξ̃n there, then this particle as well as all the particles possibly activated
by it enter to ξ̃n;

• otherwise it is deleted.

The particles of ξ̃n+1 activated by some particle from ξ̃n are considered as the offspring of that
particle; note that, due to the asynchronous construction of the process ξ̃n, each particle has
exactly one ancestor. Note also that the process ξ̃n was constructed in such a way that each site
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can be occupied by at most s + 1 particles from ξ̃n. So, it follows that process ξ̃n dominates a
Galton-Watson process with mean offspring being greater than or equal to

d − 1 − s

d
(Eη(s) + 1)p

(the “worst case” for a particle from ξ̃n is when it shares its site with another s particles from ξ̃n,
and all those particles have already jumped to the different sites of level n+1). Therefore, since
p > (Eη(s) + 1)−1, choosing d sufficiently large, one guarantees the survival of the process ξ̃n.
This concludes the proof of Theorem 1.7. �

Theorem 1.8 is a consequence of the following lemma.

Lemma 2.5. Denote
K := {x ∈ Z

d : max
1≤i≤d

|x(i)| ≤ 1},

and consider FM(Zd, p, η), where p > (1 + Eη)−1, restricted on K (this means that if a particle
attempts to jump outside K, then it disappears). There are constants d0, a > 0 and µ > 1 such
that if d ≥ d0, then with probability greater than a, at time

√
d there are more than µ

√
d active

particles in K.

Proof. First observe that it is enough to prove the lemma for FM(Zd, p, η(s)) with η(s) defined
by (2.9), where s is such that p > (1 + Eη(s))

−1
. Let us consider the sets

Sk :=
{

x ∈ K :
d∑

i=1

|x(i)| = k
}
,

k = 0, . . . , d and define ξk as the set of active particles which are in Sk at instant k. Similarly
to the proof of Theorem 1.7, the idea is to show that up to time

√
d the process ξk dominates a

supercritical branching process to be defined later.

Let x ∈ Sk and y ∈ Sk+1 be such that ‖x − y‖ = 1, where ‖x‖ =
∑d

i=1 |x(i)|. Notice that if site
x contains an active particle at instant k, then this particle can jump into y at the next instant
of time. Keeping this in mind we define for x ∈ Sk

Ex :=
{

z ∈ Sk :
d∑

i=1

1{|x(i)−z(i)|6=0} = 2 and ‖x − z‖ = 2
}

called the set of the “enemies” of x. Observe that for x ∈ Sk and z ∈ Ex there exists y ∈ Sk+1

such that ‖x− y‖ = ‖z− y‖ = 1 which in words means that if sites x and z have active particles
at instant k, then these particles can jump into the same site next step. Moreover, for fixed x
and z, the site y is the only one in Sk+1 with this property and there are exactly k + 1 sites in
Sk whose particles might jump into y in one step. Notice also that |Ex| = 2k(d − k).

Let
Dx := {y ∈ Sk+1 : ‖x − y‖ = 1}

be the set of “descendants” of x ∈ Sk. It is a fact that |Dx| = 2(d − k). Finally, we define for
y ∈ Sk+1

Ay := {x ∈ Sk : ‖x − y‖ = 1},
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called the set of “ancestors” of y, observing that for x ∈ Sk

Ex =
⋃

y∈Dx

(Ay \ {x}) is a disjoint union, (2.10)

and |Ay| = k + 1 for all y ∈ Sk+1.

Note that a single site x ∈ Sk can contain various particles from ξk. Now (as in the proof of
Theorem 1.7) we define a process ξ̃k ⊂ ξk in the following way. First, initially the particle(s) in
0 belong(s) to ξ̃0. If at time k the set of particles ξ̃k (which live in Sk) was constructed, then
at time k + 1 the set of particles ξ̃k+1 (which live in Sk+1) is constructed in the following way.
Introduce some ordering of the particles of ξ̃k, they will be allowed to jump according to that
order. Now, if the current particle survives, then

• if the particle jumps to some site of Sk+1 and does not encounter any particles that already
belong to ξ̃k+1 there, then this particle as well as all the particles possibly activated by it
enter to ξ̃k+1;

• otherwise it is deleted.

For x ∈ Sk define X (x) to be the number of particles from ξ̃k in the site x. Note that, by
construction, 0 ≤ X (x) ≤ s + 1 for all x and k. For x ∈ Sk and y ∈ Dx we denote by (x → y)
the event { X (x) ≥ 1 and at least one particle

from ξ̃k jumps from x to y at time k + 1

}
,

and let ζk
xy be the indicator function of the event

{there is z ∈ Ex such that (z → y)}.

Picking k ≤ √
d, it is true that

P[ζk
xy = 1] ≤ P∗[ζk

xy = 1] ≤ C1k

d
≤ C1(

√
d)−1

for some positive constant C1 = C1(s), where

P∗[ · ] = P[ · | X (z) = s + 1 for all z ∈ Ex].

So, given an arbitrary σ > 0, it is possible to choose d so large that P∗[ζk
xy = 1] < σ for k ≤ √

d.
With this choice for d, if ζk

x is the indicator function of the event{
|Dx ∩ {y ∈ Sk+1 : there exists z ∈ Sk \ {x} such that (z → y)}| > 2σd

}
,

then it follows that
P[ζk

x = 1] = P
[ ∑

y∈Dx

ζk
xy > 2σd

]
.
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Notice that by (2.10) the random variables {ζk
xy : y ∈ Dx} are independent with respect to P∗.

Therefore, by Lemma 2.2, we get for k ≤ √
d

P[ζk
x = 1] ≤ P∗

[ ∑
y∈Dx

ζk
xy > 2σd

]

= P∗
[∑

y∈Dx
ζk
xy

2(d − k)
>

2dσ

2(d − k)

]

≤ P∗
[∑

y∈Dx
ζk
xy

2(d − k)
> σ

]
≤ exp{−2C2(d − k)}
≤ exp{−C3d}, (2.11)

with some positive constants C2, C3, which depend only on σ. Let us define the following event

B :=

√
d⋃

k=1

⋃
x∈Sk

{ζk
x = 1}.

Since η(s) ≤ s we have that |ξ̃k| ≤ (s + 1)k+1. Therefore, from (2.11) it follows that

P[B] ≤
√

d × (s + 1)
√

d+1 exp{−C3d},
and, as a consequence, P[B] can be made arbitrarily small for fixed σ and d large enough.

Suppose that the event Bc happens. In this case, since each site can be occupied by at most s+1
particles from ξ̃k, for each x ∈ Sk there are at least 2(d−√

d)− 2σd− s available sites (i.e., sites
which do not yet contain any particle from ξ̃k+1) in Sk+1 into which a particle from ξ̃k placed at
site x could jump. So, it follows that up to time

√
d, the process ξ̃k dominates a Galton-Watson

branching process with mean offspring being greater than or equal to

(2(d −√
d) − 2σd − s)(Eη(s) + 1)p

2d
. (2.12)

Pick σ small enough and d large enough to make (2.12) greater than 1. The lemma follows since
with positive probability a supercritical branching process grows exponentially in time. �

Proof of Theorem 1.8. Let us first introduce some notation. Remember that

Λ := {x ∈ Z
d : x(i) = 0 for i ≥ 3}.

is a copy of Z2 immersed in Zd. For M ∈ N denote by

ΛM = {x ∈ Λ : max(|x(1)|, |x(2)|) ≤ M} ⊂ Λ

the square centered at the origin and with sides of size 2M , parallel to the coordinate axes. For
x ∈ ΛM let

`x = {y ∈ Z
d : y(1) = x(1), y(2) = x(2)} ⊂ Z

d

be the line orthogonal to Λ containing the site x ∈ ΛM . By Lemma 2.5, for d ≥ d0, at instant√
d there are more than µ

√
d active particles, where µ > 1, in K = {x ∈ Z

d : max1≤i≤d |x(i)| ≤ 1}
with probability larger than a > 0 for the process restricted on K.
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Fixed M ∈ N, y ∈ K and x ∈ ΛM , after at most 2M + 2 steps an active particle starting from
y hits `x with probability at least (p/2d)2M+2. So, for each fixed site x of ΛM , the probability
that at least one of those µ

√
d particles enters `x after at most 2M + 2 steps is greater than

1 −
(
1 −

( p

2d

)2M+2)µ
√

d

.

Consequently, defining

a′ := P[`x is hit by some particle starting from K,

for all x ∈ ΛM | more than µ
√

d particles start from K]

one gets that, for fixed M ,

a′ ≥ 1 − (2M + 1)2
(
1 −

( p

2d

)2M+2)µ
√

d

and so a′ can be made arbitrarily close to 1 by choosing d large enough. So we see that with
probability at least aa′P[η ≥ 1] the projection of the trajectories of particles from K will fill up
the square ΛM (and, by choosing d large enough, M can be made as large as we want).

Note that we can repeat the above construction for all sites x ∈ 3Λ, and note also that if
x, y ∈ 3Λ, x 6= y, then those constructions starting from x and y are independent (since (K +
x) ∩ (K + y) = ∅). Consider now the following percolation model: For x ∈ 3Λ, all the sites of
the square ΛM + x are selected with probability aa′P[η ≥ 1]. Then, as in Theorem 1.4, one
can prove that for M large enough this model percolates. Using Lemma 2.3, we obtain that the
original frog model survives with positive probability, thus concluding the proof of Theorem 1.8.
�

2.4 Recurrence and transience

Proof of Theorems 1.9, 1.10, and 1.13. The idea of the proof of all the theorems about transience
in this section is the following: all the particles are made active initially; clearly, if in such model
with probability 1 the origin is hit only a finite number of times, then a coupling argument shows
that the original frog model is transient.

To prove Theorem 1.9, we need an upper bound for P[y ∈ R1
x] which is better than (2.6). Note

that on Td, the probability that a SRW (no death) starting from x will eventually hit y, is
exactly (d − 1)− dist(x,y). This shows that, on Td,

P[y ∈ R1
x] ≤

∞∑
i=dist(x,y)

pi(1 − p)
1

(d − 1)dist(x,y)
=

( p

d − 1

)dist(x,y)
. (2.13)

Now, using (2.13) and Lemma 2.1, one gets that for some C > 0

∑
x 6=0

P[0 ∈ Rx] =
∞∑
i=1

γi

∞∑
k=1

d(d − 1)k−1Φ(i, k, p/(d − 1))

≤ C

∞∑
i=1

γii
log(d−1)

log((d−1)/p) < ∞
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for every p < 1, so from Borel-Cantelli one gets that almost surely only a finite number of
particles will ever enter 0, thus proving Theorem 1.9.

As for Theorem 1.10, we have, recalling the proof of Theorem 1.3, that when E(log(η∨1))d < ∞,∑
x 6=0

P[0 ∈ Rx] =
∑
x 6=0

P[x ∈ R0] = E|R0 \ {0}| < ∞,

and Theorem 1.10 follows from Borel-Cantelli as well.

Let us turn to the proof of Theorem 1.13. Denote by rk(G) the expected size of the range of the
SRW on G until the moment k. We have∑

x 6=0

P[0 ∈ Rx] =
∑
x 6=0

P[x ∈ R0]

= E|R0|

=
∞∑

k=1

P[Ξ = k]rk(G),

and using the fact that

rk(G) '




√
k, G = Z,
k

log k
, G = Z

2,

k, G = Z
d or Td, d ≥ 3

(see e.g. Hughes [4], p. 333, 338), one gets the result. �

Proof of Theorems 1.11, 1.12, and 1.14. In this section, theorems concerning the recurrence
also are proved using a common approach. This approach can be roughly described as follows.
We think of G as a disjoint union of sets Jk, k = 1, 2, . . ., of increasing sizes, such that with large
probability (increasing with k), the set Jk contains a lot of particles in the initial configuration.
Besides, given that Jk contains many particles, also with large probability (increasing with k as
well), the virtual paths of those particles will cover the whole set Jk+1 together with the origin,
thus activating all particles placed originally in Jk+1. With a particular choice of that sequence
of sets, the intersection of the events mentioned above occurs with strictly positive probability,
which implies, consequently, that the process is recurrent (as in this case for each k there is a
particle from Jk which visits the origin, and so the total number of particles visiting the origin
is infinite).

First, we give the proof of Theorem 1.11. Fix a number α > 1 in such a way that log(d−1)
2 log(αd) > β,

and fix the survival parameter p in such a way that 1/α < p < 1. Denote Jd
n = {y ∈ Td :

dist(0, y) = n}, and define the events

Ad
n = {there exists x ∈ Jd

n such that η(x) ≥ (αd)2n},
Bd

n =
{

(Jd
n ∪ {0}) ⊂

⋃
y∈Jd

n−1

Ry

}
. (2.14)
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As |Jd
n| > (d − 1)n and d−1

(αd)2β > 1, we get that

P[Ad
n] ≥ 1 − (1 − P[η ≥ (αd)2n])(d−1)n

≥ 1 −
(
1 − 1

(αd)2βn

)(d−1)n

≥ 1 − C1 exp
(
−

( d − 1
(αd)2β

)n)
(2.15)

for some C1 > 0. Now, using the fact that

max
x∈Jd

n,

y∈Jd
n+1∪{0}

dist(x, y) = 2n + 1

together with (2.8), one gets (note that |Jd
n+1 ∪ {0}| ≤ dn+1 for all n)

P[Bd
n+1 | Ad

n, Bd
n] ≥ 1 − |Jd

n+1 ∪ {0}|
(
1 −

(p

d

)2n+1)(αd)2n

≥ 1 − C2d
n+1 exp(−(αp)n)

for some C2 > 0. The fact that αp > 1 together with (2.15) imply that with strictly positive
probability there exists a random number n0 such that the events Bd

n, n ≥ n0, occur. Clearly,
in this case 0 is hit infinitely often and so the process is recurrent.

Now, we start proving Theorem 1.12. Fix arbitrary 0 < p ≤ 1 and choose α > 1 in such a way
that d − αβ > 0. Let Jd

n = {x ∈ Z
d : 2n−1 < dist(0, x) ≤ 2n}. Define the events Bd

n by means
of (2.14) and

Ad
n = {there exists x ∈ Jd

n such that η(x) ≥ exp(2αn)}.
As |Jd

n| ≥ C12dn for some C1 > 0 and all n, we have

P[Ad
n] ≥ 1 − (1 − P[η ≥ exp(2αn)])C12dn

≥ 1 −
(
1 − 1

2αβn

)C12dn

≥ 1 − C2 exp(−(C12d−αβ)n). (2.16)

It is a fact that in this case
max
x∈Jd

n,

y∈Jd
n+1∪{0}

dist(x, y) ≤ 2n+2,

and that |Jd
n+1 ∪ {0}| ≤ C32d(n+1), so using (2.8) we get, keeping in mind that α > 1,

P[Bd
n+1 | Ad

n, Bd
n] ≥ 1 − |Jd

n+1 ∪ {0}|
(
1 −

( p

2d

)2n+2)exp(2αn)

≥ 1 − C42d(n+1) exp
(
− exp

(
2αn − 2n+2 log

2d
p

))
. (2.17)

As before, (2.16)–(2.17) imply that with positive probability infinite number of events Bd
n occur,

so the process is recurrent.
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Let us turn to the proof Theorem 1.14. The sets Jd
n are now defined by Jd

n = {x ∈ Z
d : 2n−1 <

‖x‖2 ≤ 2n}, and the sequence of events Bd
n is still defined by (2.14). Recall that Ξx is the

lifetime of the particle originating from x. Now, the site x ∈ Jd
n is called good, if Ξx ≥ 22(n+2)

(intuitively, the site x ∈ Jd
n is good if the corresponding particle lives long enough to be able to

get to any fixed site of Jd
n+1 ∪ {0}). Define the events

Ad
n = {the number of good sites in Jd

n ≥ ϕn,d|Jd
n|},

where

ϕn,d =




β12−(n+3) log log 2n+2, d = 1,

β22−(2n+5)(log 2n+2)2, d = 2,

βd2−(2n+5) log 2n+2, d ≥ 3 .

As, by the hypothesis, P[x is good] ≥ 2ϕn,d for every x ∈ Jd
n, by Lemma 2.2 we get (observe

that |Jd
n| ' 2dn)

P[Ad
n] ≥




1 − n−C1β1, d = 1,

1 − exp(−C2β2n
2), d = 2,

1 − exp(−C3βdn2d(n−2)), d ≥ 3,

so
∑∞

n=1(1−P[Ad
n]) < ∞ for arbitrary βd, d ≥ 2, and for β1 > 1/C1, d = 1. Using the inequality

max
x∈Jd

n,
y∈Jd

n+1∪{0}

‖x − y‖2 ≤ 2n+2

together with Lemma 2.4, one gets

P[Bd
n+1 | Ad

n, Bd
n] ≥




1 − 3(1 − w1)ϕn,1|J1
n|, d = 1,

1 − |J2
n+1 ∪ {0}|

(
1 − w2

log 2n+2

)ϕn,2|J2
n|

, d = 2,

1 − |Jd
n+1 ∪ {0}|

(
1 − wd

2(d−2)(n+2)

)ϕn,d|Jd
n|

, d ≥ 3

(the factor |Jd
n+1 ∪ {0}| was substituted by 3 in dimension 1, because in this case, to guarantee

that all the sites of the set J1
n+1 ∪ {0} are hit, it is sufficient to visit the sites 0 and ±2n+1).

Then, elementary computations show that

P[Bd
n+1 | Ad

n, Bd
n] ≥




1 − 3n−C4β1, d = 1,

1 − C52−(C6w2β2−2)n, d = 2,

1 − C72−(C8wdβd−d)n, d ≥ 3.

By choosing β1 > max{1/C1, 1/C4}, β2 > 2/C6w2, βd > d/C8wd, d ≥ 3, once again one gets that
with positive probability infinite number of events Bd

n occur, and so the frog model is recurrent.
�
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