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1 Introduction and the main results

We study particle systems which are known to converge to an equilibrium. We are interested
in the fluctuation behavior of the equilibrium. In [Zäh01] we studied the invariant measures of
the voter model by means of a rescaling limit. We showed that centered sums over a ball with
radius r renormalized by r−(d+2)/2 are Gaussian in the limit. To this end we partitioned the
equilibrium of the voter model where the values of different partition elements are independent.
This in turn allows to apply the central limit theorem. We raised the reader’s hopes that the
techniques used for the voter model can be refined in order to study limiting states of critical
branching evolutions in randomly fluctuating media.

In the present paper we investigate the large-space scale structure of non-degenerated equilibria
of the critical branching random walk which is an interacting particle systems with the additional
structure that a historical process can be defined. This allows a similar family decomposition
as in the voter model with the difference that we now deal with unbounded states. We obtain
space and space-time renormalization results.

Holley and Stroock established a renormalization result for the branching Brownian motion.
The speed up time by α2 and rescale space by α−1. Then the corresponding process converges
to an Ornstein-Uhlenbeck process as α→ ∞.

Dawson, Gorostiza and Wakolbinger studied branching systems by rescaling from a different
point of view, [DGW01]. They establish results on occupation time fluctuations.

The critical branching random walk (BRW) on Z
d is a particle system whose evolution entails

migration and branching:

• During its lifetime each particle moves independently of each other according to a random
walk with transition kernel a satisfying a(x, y) = a(0, y − x).

• Each particle has an exponential lifetime with mean 1
V .

• At the end of its life each particle gives rise to k children with probability pk, where the
mean number of offspring is 1.

• All above random mechanisms are independent.

V is called the branching rate and a the migration kernel. We assume critical binary branching,
i.e. p0 = p2 = 1

2 .

Such a process has for a transient symmetrized kernel a non-degenerated equilibrium state. We
consider large block averages of the configuration and their fluctuations. Our goal is to find the
right rescaling to obtain a non-degenerated limit under a renormalization scheme.

If all particles in a ball with radius r were independent one would have to choose the classical
rescaling one over the root of the volume of the ball. But the particles are not independent.
From corresponding results on super Brownian motion ([DP91]) one is led to conjecture that
there are rd−2 families each with size of order r2. So we have to choose the following rescaling
term for the spatial block sum

1

r2
√
rd−2

= r−
d+2
2 . (1.1)
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Over a time span r2 most descendents will not leave the ball with radius r. For a space-time
block sum with spatial extension r and extension r2 this yields the rescaling

1

r2r2
√
rd−2

= r−
d+6
2 . (1.2)

These are in fact the normings that lead to non-degenerated limits.

1.1 Formal construction of the process

We introduce the following notations. Let (E,B(E)) be a locally compact Polish space equipped
with the Borel σ-algebra.

• By Cb(E) and Cc(E) we denote the space of continuous real-valued functions on E that are
bounded respectively have compact support. Furthermore let C+(E) = {f ∈ C(E) : f ≥
0}.

• Let M(E) denote the class of all locally finite (or Radon) measures on B(E). A measure
on B(E) is called locally finite, if it takes finite values on compact sets. On M(E) we
use the o vague topology defined by µn → µ iff 〈µn, f〉 → 〈µ, f〉 for all f ∈ Cc(E), where
〈µ, f〉 =

∫
fdµ for f : E → R measurable and µ-integrable. This way M(E) is a Polish

space. Let Mf (E) = {µ ∈ M(E) : µ(E) <∞}.
• By P(M(E)) we denote the space of probability measures on M(E), which is also a

Polish space equipped with the weak topology induced by the mappings Λ → 〈Λ, F 〉 with
F ∈ Cb(M(E)).

• Let N (E) denote the class of all integer-valued measures of M(E). Furthermore define
Nf (E) = {µ ∈ N (E) : µ(E) <∞}.

Now we construct the BRW. With each particle alive at time t we can associate a unit mass
at its position. That means we consider the BRW as a measure-valued process on Z

d. The
BRW started with a single initial particle in x ∈ Z

d will be denoted by (ξx
t )t≥0. Its state space

is Nf (Zd). If the BRW starts with finitely many particles, i.e. in µ =
∑n

k=1 δxk
one obtains

ξµ
t as the independent superposition of BRWs {ξxk

t : k = 1, . . . , n}. The state space is again
Nf (Zd). The independent superposition works also for infinite initial configurations. In fact
some restriction on the state space has to be made in order to guarantee that the system does
not explode.

More precisely, fix a strictly positive function γ on Zd with
∑

x∈Zd γ(x) <∞ such that for some
constant M > 0, ∑

y∈Zd

a(x, y)γ(y) ≤Mγ(x). (1.3)

A simple way of obtaining such a γ is to let

γ(x) =
∞∑

n=0

M−n
∑
y∈Zd

a(n)(x, y)β(y), (1.4)
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where M > 1, β is strictly positive and bounded with
∑

x∈Zd β(x) <∞ and a(n) are the n-step
transition probabilities corresponding to a.

Now let the state space of the BRW be the Liggett-Spitzer space

X = {µ ∈ N (Zd) :
∑
x∈Zd

γ(x)µ(x) <∞}. (1.5)

It is called Liggett-Spitzer space since it was introduced by Liggett and Spitzer in [LS81]. The
formal construction of the BRW (ξt)t≥0 can be found in [Gre91] Section 1. Indeed it turns out
that for µ ∈ X, ξµ

t ∈ X a.s. for all t > 0 and hence X can be chosen as a state space of the BRW
(ξt)t≥0.

Note that any probability measure Λ ∈ P(N (Zd)) with supx∈Zd

∫
µ(x)Λ(dµ) <∞ is concentrated

on X, so that those Λ which are translation invariant and have finite intensity (i.e.
∫
µ(0)Λ(dµ) <

∞) have their support in X (for all choices of γ). A probability measure Λ on M(Zd) is called
translation invariant if

∫
F (µ)Λ(dµ) =

∫
F (τxµ)Λ(dµ) for all x ∈ Z

d and all measurable and
Λ-integrable F : M(Zd) → R, where τxµ = µ({y ∈ Z

d : y + x ∈ · }).
For Λ ∈ P(X) we write LΛ[ξt] and EΛ[ξt] for the law and the expectation of ξt given that
L[ξ0] = Λ. For Λ = δµ with µ ∈ X we also write Lµ[ξt] and Eµ[ξt].

1.2 Basic ergodic theory

Concerning the longtime behavior of the BRW we summarize some known facts. First of all a
BRW generated by a finite initial configuration eventually dies out. This is due to the criticality
of the branching mechanism. Now the question arises what happens in the situation of an
admissible initial measure with infinitely many particles. It turns out that there is a dichotomy
depending on whether the symmetrized migration is recurrent or transient. The symmetrized
kernel â is defined as

â(x, y) =
a(x, y) + a(y, x)

2
. (1.6)

A recurrent symmetrized particle migration goes along with local extinction while a transient
symmetrized migration allows the construction of a non-trivial equilibrium.

To state this result we need the following concept. The probability measure Λ ∈ P(M(Zd)) has
an asymptotic density % : M(Zd) → [0,∞] if

µ((−n, n)d ∩ Zd)
|(−n, n)d ∩Zd| −→

n→∞
%(µ), Λ-a.s. (1.7)

Let Λ ∈ P(M(Zd)) be translation invariant. By Birkhoff’s Ergodic Theorem one knows that Λ
has an asymptotic density. If in addition

∫
µ(0)Λ(dµ) <∞, then by Birkhoff’s Ergodic Theorem

the limit of (1.7) is still valid in L1
Λ.

Now we are ready to state the following fact:

Basic Ergodic Theorem The longtime behavior of the critical branching random walk depends
on whether the symmetrized random walk kernel â is recurrent or transient.
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(a) Assume that â is recurrent. If the BRW starts with distribution Λ ∈ P(N (Zd)) with
supx∈Zd

∫
µ(x)Λ(dµ) <∞, then

LΛ[ξt] =⇒
t→∞

δ0, (1.8)

where 0 denotes the zero measure.

(b) Assume that â is transient. Then for each ϑ ≥ 0 there exists exactly one extremal invari-
ant probability measure Λϑ ∈ P(N (Zd)) with

∫
µ(0)Λϑ(dµ) = ϑ. This Λϑ is translation

invariant. Moreover if Λ ∈ P(N (Zd)) is translation invariant with % <∞ Λ-a.s., where %
is the asymptotic density of Λ, which exists by Birkhoff’s Ergodic Theorem, then

LΛ[ξt] =⇒
t→∞

∫
Λ%(µ)Λ(dµ). (1.9)

Especially if Λ is translation invariant with constant asymptotic density ϑ ∈ [0,∞) (which
is equivalent to ergodicity of Λ), then

LΛ[ξt] =⇒
t→∞

Λϑ. 3 (1.10)

In [Gre91] we find the above result for translation invariant, ergodic initial distributions with
finite intensity.

The result in the recurrent case can be extended to the result given here by the comparison
argument given in [CG90] in the proof of (5.1).

In the transient case if
∫
µ(0)Λ(dµ) <∞ we can use the ergodic decomposition of Λ, which says

that Λ can be represented as a mixture of translation invariant, ergodic probability measures,
namely Λ =

∫
Λµ Λ(dµ), where Λµ is translation invariant and ergodic. Moreover Λµ has

intensity ρ(µ) for Λ-a.e. µ. By the definition of the BRW we know that the BRW (ξΛt )t≥0 with
initial distribution Λ can be represented as ξΛt =

∫
ξ
Λµ

t Λ(dµ). The assertion follows immediately.
The result for translation invariant Λ with

∫
µ(0)Λ(dµ) < ∞ can be extended to the result for

translation invariant Λ with a.s. finite asymptotic density by a truncation argument.

1.3 Results: The rescaled fields

We are interested in the large scale properties of the process and hence we are going to study
the regime of transient symmetrized migration by means of renormalization of the random field
under the equilibrium distribution. Renormalization means forming sums over space and space-
time blocks and rescaling their size such that a non-trivial behavior arises.

We begin by introducing some key quantities. Let at be the transition probabilities of a contin-
uous time random walk, which jumps after exponential waiting times according to a, i.e.

at(x, y) =
∞∑

n=0

e−t t
n

n!
a(n)(x, y), (1.11)

where a(n) denotes the n-step transition probability of the kernel a. The continuous time tran-
sition probabilities ât can be defined analogously.
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We will need the Green’s function G of the kernel a and the Green’s function Ĝ of the sym-
metrized kernel â:

G(x) =
∫ ∞

0
at(0, x) dt (1.12)

Ĝ(x) =
∫ ∞

0
ât(0, x) dt. (1.13)

Let d ≥ 3 and Z(a) = (Z(a)
1 , . . . , Z

(a)
d ) denote a random variable with distribution a(0, ·). We

assume:

The group G generated by {x : a(0, x) > 0} is d-dimensional. (1.14)

Z(a) has finite second moments; E[Z(a)
l Z

(a)
k ] = σl,k; l, k = 1, . . . , d. (1.15)

Since d ≥ 3 the first assumption ensures transience of â. Let Q = (σl,k)dl,k=1 denote the matrix
of the second moments of a. Let Q̄(x) denote the following quadratic form

Q̄(x) = xtrQ−1x, x ∈ R
d . (1.16)

(The bar above Q indicates that the quadratic form is defined in terms of Q−1.)

Let ξ be a random variable with the extremal equilibrium law Λϑ given in the Basic Ergodic
Theorem (b). For a test function ϕ ∈ S(Rd) (Schwartz space of smooth rapidly decreasing
functions) we define

Fϑ(ϕ) =
∑
x∈Zd

(ξ(x) − Eξ(x))ϕ(x) =
∑
x∈Zd

(ξ(x) − ϑ)ϕ(x). (1.17)

That means Fϑ is a generalized random field, cf. [Dob79] and [GV64]. This random field will be
renormalized now. Let

Fϑ,r(ϕ) = Fϑ(ϕr), (1.18)

with
ϕr(x) = h(r)ϕ

(x
r

)
, (1.19)

where we have to choose the function h(r) depending on the Green’s function of the underlying
random walk and decreasing much faster than the classical rescaling

1√
|{x ∈ Zd : |x| ≤ r}| = O(r−d/2). (1.20)

Now we formulate the first main result.

Theorem 1 (Space renormalization in equilibrium) Assume the critical binary branching
random walk with translation invariant kernel a on Z

d with d ≥ 3. Then under the assumptions
(1.14), (1.15) and for d > 3 under the additional assumption

for d = 4 : n2P[|Z(a)| ≥ n] = o

(
1

log n

)
(1.21)

for d ≥ 5 : finite moments of order d− 1 (1.22)
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and with the choice
h(r) = r−

d+2
2 (1.23)

we obtain
Fϑ,r

d−→
r→∞

√
CϑΨ, (1.24)

where Ψ is the Gaussian self-similar generalized random field with covariance functional

E[Ψ(ϕ)Ψ(ψ)] = L(ϕ,ψ) =
∫
Rd

∫
Rd

ϕ(x)ψ(y)
Q̄(y − x)(d−2)/2

dx dy, (1.25)

where Q̄(x) is defined in (1.16). The constant Cϑ has the form

Cϑ = ϑ
V

4|Q| 12π d
2

Γ
(
d− 2

2

)
, (1.26)

where Γ denotes the Gamma function. 3

The distribution of a generalized random field is a probability measure on the σ-algebra of
Borel subsets (with respect to the weak topology) of the dual space S ′(Rd ) of S(Rd), cf. [GV64]
Chapter III. Since S(Rd) is a normed space, the dual S ′(Rd) is a Banach space. The convergence
in (1.24) is weak convergence of probability measures on S ′(Rd ).

The Gaussian self-similar generalized random field Ψ with covariance functional L is defined by
its characteristic functional

E[eiΨ(ϕ)] = e−
1
2
L(ϕ,ϕ). (1.27)

Obviously the limit in (1.24) has to be self-similar of order (d − 2)/2. A generalized random
field F is called self-similar of order κ if

F (ϕ) = F (rκr−dϕ
( ·
r

)
). (1.28)

Remark 1.1 The properties (1.21) and (1.22) are not only required for technical reasons. If
these assumptions are not fulfilled then the Green’s function of the underlying random walk has
another asymptotics and hence we have to choose a different scaling function.

Since ξ is infinitely divisible, it is easy to see that the constant Cϑ has to have the form ϑC,
where C is a constant, which does not depend on ϑ.

Next we consider the space-time picture in the equilibrium using again renormalization. Let
(ξ(∞)

t )t≥0 be the BRW with initial distribution Λϑ. Particularly (ξ(∞)
t )t≥0 is stationary. For a

test function ϕ̃ ∈ S(Rd × [0,∞)) we define

F̃ϑ(ϕ̃) =
∫ ∞

0
ds
∑
x∈Zd

(ξ(∞)
s (x) − ϑ)ϕ̃(x, s). (1.29)

The space-time renormalized field is

F̃ϑ,r(ϕ̃) =
∫ ∞

0
ds
∑
x∈Zd

(ξ(∞)
s (x) − ϑ)ϕ̃r(x, s), (1.30)
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with

ϕ̃r(x, t) = h̃(r)ϕ̃
(
x

r
,
t

r2

)
, (1.31)

where h̃ will be specified explicitly later on.

We rescale the space coordinate by r and the time coordinate by r2 in order to get the complete
space-time view of the family structure. The reason for this is that a surviving family deriving
from one ancestor has at time t a spatial extension of order t1/2.

We have to assume mean 0 of a, since otherwise the families would move at speed t and hence
are shifted out of the ball with radius

√
t by time t.

We prove the following space-time renormalization result.

Theorem 2 (Space-time renormalization in equilibrium) Assume the critical binary
branching random walk with translation invariant mean zero kernel a on Z

d with d ≥ 3. Then
under the assumptions of Theorem 1 and with the choice

h̃(r) = r−
d+6
2 (1.32)

we obtain
F̃ϑ,r

d−→
r→∞

√
C̃ϑΨ̃, (1.33)

where Ψ̃ is the Gaussian generalized random field with covariance functional

L̃(ϕ̃, ψ̃) =
∫
Rd

dy

∫
Rd

dz

∫ ∞

0
ds

∫ ∞

0
dt ϕ̃(y, s)ψ̃(z, t)K(s, t; y, z), (1.34)

with
K(s, t; y, z) =

∫ ∞

|t−s|
du bu(y, z), (1.35)

where bu is given by

bu(y, z) =
1

(2πu)
d
2 |Q| 12

exp
(
−Q̄(z − y)

2u

)
, (1.36)

with Q̄( · ) defined in (1.16). The constant C̃ϑ has the form

C̃ϑ =
1
2
V ϑ. 3 (1.37)

The main idea to prove the results is to decompose the equilibrium configuration in independent
family clusters. For this purpose we use the historical process, a concept which allows to develop
a framework which could be the basis for some future work, namely we would like to establish
analogous results in case of state dependent branching systems or catalytic branching systems.
The infinite divisibility in the present case provides explicit formulas for some basic objects in
the family decomposition. In fact we could use here just these explicit formulas shortening the
proof but losing insight.
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2 Historical process

The goal of this section is to introduce the historical process associated with the particle system
(ξt)t≥0 which records the past of all particles alive at time t. Moreover we prove some properties
of the historical process. If we observe the particle system (i.e. the process (ξt)t≥0 with values in
X) at a certain time t we can not say anything about the relationship between the particles. We
lost all information about the genealogy of the system. We have to enrich the state space such
that the state at time t provides information about the trajectories followed by the particles and
its ancestors. The state space of the BRW is X. The state space of the historical process will
be a subset of the space of integer-valued measures on the space of cdlg paths on Z

d.

In our construction we mimic the construction of the historical process for superprocesses in
[DP91]. Also Le Gall ([LG89],[LG91]) and Dynkin ([Dyn91]) independently introduced the
historical process in the context of superprocesses.

We want to give an intuitive idea of the historical process. Think of the branching random walk
as being constructed as a functional of a system where individual particles can be distinguished.
With some notational effort such a system can be easily constructed due to the independence
between different individuals.

Let N(t) be the number of particles alive at time t and let y(k) be the position of the k-th
particle alive at time t (k = 1, . . . , N(t)). Then the BRW has the form ξt =

∑N(t)
k=1 δy(k) . That

means each particle is associated with mass 1 at its position. In the historical process we want
to preserve information about the trajectories of those particles still alive at time t and lines of
descent but not their individuality. Then it is obviously appropriate to consider the empirical
measure, i.e. to assign mass 1 to the trajectories of the particles alive at time t. To get a time
independent state space of paths continue the path till time ∞ as a constant. The historical
process is then the measure-valued process given by

∑N(t)
k=1 δỹ(k)(·∧t), where ỹ(k)( ·∧t) is shorthand

for the stopped trajectory (ỹ(k)(s ∧ t))s≥0 that had been followed by the k-th particle alive at
time t.

We are interested in the equilibrium of the BRW. In order to describe the historical process of
the equilibrium process it is useful to view the process with time parameter set (−∞,∞), to
start the process at time −s and to observe the process at time 0. Then let s → ∞ to obtain
the equilibrium historical process. This object will be proved to exist indeed and it will be
characterized analytically.

First of all we recall some basic tools and notions before we focus on the historical process in the
second part. The main result is Theorem 3, where the equilibrium historical process is described
via its Laplace functional and its canonical measure. These ingredients we introduce next.

2.1 Laplace functional, canonical measure and Palm distribution

We consider the Laplace functional of the BRW, which can be used to characterize the law of
the BRW completely. This idea is useful on the level of the historical process later on.

Let f : Zd → [0,∞) be bounded and let µ ∈ X. The Laplace functional of the BRW with initial
configuration µ has the form

Eµ[e−〈ξt,f〉] = exp
(〈
µ, log(1 − v(t, 1 − e−f ; · ))

〉)
, (2.1)
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where v(t, f ; · ) is the unique non-negative solution of the following equation

∂

∂t
v(t, f ;x) = Ωv(t, f ; · )(x) − V

2
v(t, f ;x)2, v(0, f ;x) = f(x), (2.2)

where Ω is the infinitesimal generator of (at), i.e.

Ωf(x) =
∑
y∈Zd

[a(x, y) − δ(x, y)]f(y). (2.3)

This can be seen by the following argument. Since all random mechanism are independent, the
configuration at time t is the independent superposition of BRWs each with a single ancestor.
That means

Eµ[e−〈ξt,f〉] = exp
(
〈µ, log Eδ·[e−〈ξt,f〉]〉

)
. (2.4)

Hence it suffices to investigate the Laplace functional of a BRW with a single ancestor. A
renewal argument shows that h(t, x) := Eδx [e−〈ξt,f〉] satisfies the integral equation

h(t, x) = e−V tat(e−f )(x) +
V

2

∫ t

0
e−V (t−s)at−s(1 + h2(s, · ))(x) ds. (2.5)

Therefore h satisfies the equation

∂h

∂t
= Ωh+

V

2
(1 − h)2, h(0, x) = e−f(x). (2.6)

Hence 1 − h(t, x) = v(t, 1 − e−f ;x).

Equation (2.2) is equivalent to

v(t, f ;x) = (atf)(x) − V

2

∫ t

0
at−s

(
v(s, f ; · )2) (x) ds. (2.7)

Let H(ϑ) denote the distribution of the Poisson point process with intensity measure ϑλ, where
ϑ > 0 is a parameter and λ denotes the counting measure on Z

d. Note that the Poisson point
process is translation invariant with finite intensity, hence the initial state lies a.s. in X. If there
is no other specification then (ξt)t≥0 denotes the BRW started in the Poisson point process with
intensity measure ϑλ. One can easily check that the Laplace functional of the BRW ξt started
with distribution H(ϑ) has the form

EH(ϑ)[e−〈ξt,f〉] = exp
(
−〈ϑλ, v(t, 1 − e−f ; · )〉

)
. (2.8)

Now we come to the canonical measure of the BRW. Since the BRW starts in the Poisson point
process, which is infinitely divisible, the law L[ξt] is also infinitely divisible and hence it has a
canonical measure denoted with Qt. More formally, there exists a σ-finite measure Qt on N (Zd)
such that

EH(ϑ)
[
e−〈ξt,f〉

]
= exp

(
−
∫
N (Zd)

(1 − e−〈µ,f〉)Qt(dµ)

)
. (2.9)
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Furthermore we need the concept of Palm distributions. Let R ∈ M(M(Zd)) with locally finite
intensity I, i.e.

I(x) =
∫
M(Zd)

µ(x)R(dµ) <∞ for all x ∈ Z
d. (2.10)

The family {(R)x, x ∈ Z
d} is called Palm distribution associated with R if

∑
x∈Zd

∫
M(Zd)

f(x)g(µ)(R)x(dµ)I(x) =
∫
M(Zd)

〈µ, f〉g(µ)R(dµ), (2.11)

for all f : Zd → [0,∞), g : M(Zd) → [0,∞) measurable.

Note that for every x ∈ Z
d with I(x) > 0 the Palm distribution (R)x arises through a reweighting

of the form of a local size biasing

(R)x(M) =
∫
µ({x})1IM (µ)R(dµ)

I(x)
, M ⊂ M(Zd). (2.12)

The Palm distribution of the canonical measure is called canonical Palm distribution.

The canonical Palm distribution of ξt has a nice representation as a genealogical tree, see
[GRW90]. We need some ingredients.

Let (X̄x
t )t≥0 be a continuous time random walk with transition kernel ā(y, z) = a(z, y) starting

at x at time 0. Furthermore let {(ξs,y
t )t≥0; s ≥ 0, y ∈ Z

d} be a collection of independent BRWs
with transition kernel a starting with one particle at y at time 0. Define

ζt,x =
∫ t

0
ξs,X̄x

s
s ν(ds), (2.13)

where ν is the law of the Poisson point process on R
+ with intensity V w.r.t. the Lebesgue

measure. In [GW91] Theorem 2.3 we find the following result for the branching Brownian
motion. The proof can be easily adapted to our case.

Proposition 2.1 The canonical Palm distribution of ξt corresponding to the point x is given
by:

(Qt)x = L[ζt,x + δx]. 3 (2.14)

In other words, ζt,x may be thought of as the population of an individual δx’s (”ego’s”) relatives.
The point x is the starting point of the ancestral line X̄x. At the random branching times in
the support of ν an individual is born, whose offspring at time t are relatives of ”ego”.

2.2 Construction of the historical process

Now we come to the formal construction of the historical process. We introduce the following
notations. Let (E,B(E)) be a locally compact Polish space equipped with the Borel σ-algebra.

• Let D((−∞,∞), E) = {ỹ : (−∞,∞) → E; cdlg} denote the space of right-continuous E-
valued paths on (−∞,∞) with left limits equipped with the Skorohod topology. Sometimes
we write D(E) instead of D((−∞,∞), E). We denote yt := ỹ(t) for ỹ ∈ D(E).
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• Let D([s,∞), E) = {ỹ : [s,∞) → E; cdlg}. We identify D([s,∞), E) with a subset of
D((−∞,∞), E) by setting yu = ys, ∀u < s.

• For ỹ = (ys)s∈R ∈ D(E) we denote by ỹt := (ys∧t)s∈R the path stopped at time t. Let
Dt(E) = {ỹ ∈ D(E) : ỹ = ỹt} be the set of all paths stopped at time t.

• Let Mt(D(E)) = {µ̃ ∈ M(D(E)) : µ̃(Dt(E)c) = 0} denote the class of all measures on
D(E) supported by Dt(E) and N t(D(E)) is defined analogously.

• For ỹ, w̃ ∈ D(E) and s ∈ R we define (ỹ/s/w̃) ∈ D(E) in the following way

(ỹ/s/w̃)t =
{
yt, t < s
wt, t ≥ s

. (2.15)

• Let πt, π̄t denote the projection maps

πt : D(E) −→ E; ỹ 7→ yt

π̄t : M(D(E)) −→ M(E); µ̃ 7→ µ̃(π−1
t ( ·)). (2.16)

• Let D(I) be the σ-algebra generated by {πt; t ∈ I} and let
bD(I) = {f̃ : D(E) → R; f̃ bounded and D(I)-measurable}.

Notice that the -̃notation is used for objects connected with the path space. In Section 1.3 we
used this notation in a similar way. The ˜ always indicates a space-time point of view. The
concrete meaning is always clear from the context.

The historical process will be constructed by giving a unique characterization of its Laplace
functional. In order to give the historical version of (2.2) we have to replace (at) by the transition
semigroup of the law of the random walk path process. We introduce this object next.

Let Π̃t
s,x denote the law of the path of the basic random walk moving according to kernel a

started at time s at x and stopped at time t > s.

The path process X̃ associated with the random walk is a time inhomogeneous Markov process
with state space D(Zd) and time inhomogeneous semigroup ãs,t acting on Cb(D(Zd)), which is
defined by

(ãs,tf̃)(ỹ) =
∫

Dt([s,∞),Zd)
f̃(ỹ/s/z̃)Π̃t

s,ys
(dz̃), ỹ ∈ D(Zd). (2.17)

Let X̃ be the set of integer-valued measures on the path space such that the time 0 projection
gives an element in X (the state space of the BRW), i.e.

X̃ = {µ̃ ∈ N (D(Zd)) : π̄0µ̃ ∈ X}. (2.18)

The subspace of X̃ consisting of measures carried by the set of paths stopped at time t is denoted
by X̃t.

Now we can define the historical process as follows:
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Definition 2.2 The historical process (ξ̃t)t∈R is a X̃-valued Markov process with ξ̃t ∈ X̃t. The
law of ξ̃t starting at time s in µ̃ ∈ X̃s is given in terms of its Laplace functional

Es,µ̃[e−〈ξ̃t,f̃〉] = exp
(〈
µ̃, log

(
1 − ṽ(s, t, 1 − e−f̃ ; · )

)〉)
, f̃ ∈ C+

b (D(Zd)), (2.19)

where ṽ(s, t, f̃ ; · ) is the unique non-negative solution of

ṽ(s, t, f̃ ; ỹ) = (ãs,tf̃)(ỹ) − V

2

∫ t

s
ãs,u

(
ṽ(u, t, f̃ ; · )2

)
(ỹ) du. (2.20)

Note that the historical process started at time s in ỹ ∈ Ds(Zd) puts mass only on paths z̃ with
z̃s = ỹ.

By the Basic Ergodic Theorem (1.10) we have weak convergence of the BRW to the unique
invariant measure. Now we want to interpret the equilibrium measure as the configuration we
observe at time 0 if we start the process at −∞, furthermore we want to lift this idea to the
level of the historical process.

We will see that there exists a limiting law for the historical process by letting s → −∞ for
suitable initial laws. We want to specify these initial laws. (The following steps are taken from
[DG96] Section A.1.c.)

A system of independent random walks on Zd has a unique extremal equilibrium with intensity
ϑλ (namely a Poisson system) and hence a unique entrance law. That means there exists a
unique collection of locally finite measures {λ̃s,ϑ}s∈R on D(Zd) such that:

λ̃s,ϑ is concentrated on Ds(Zd). (2.21)

For A ⊂ Z
d: λ̃s,ϑ({ỹ : ys ∈ A}) = ϑλ(A). (2.22)

For t > s and B ∈ D([s,∞)):

λ̃t,ϑ(B) = ϑ
∑
x∈Zd

Π̃t
s,x(B).

(2.23)

Note that λ̃s,ϑ ∈ X̃.

Since we want to construct a decomposition of the configuration into independent families, we
need the concept of clan measures. We call a measure µ̃ ∈ X̃ a clan measure if there exists a
ỹ ∈ D(Zd) such that

µ̃(Cl(ỹ)c) = 0, (2.24)

where
Cl(ỹ) = {z̃;∃ s : z̃s = ỹs}. (2.25)

The set of clan measures in X̃t is denoted by X̃cl,t.

We consider the historical process (ξ̃t)t≥s started as the Poisson point process with intensity
measure λ̃s,ϑ at time s. We write Ls,ϑ[ξ̃t] for its law. The corresponding Laplace functional has
the form

Es,ϑ[e−〈ξ̃t,f̃〉] = exp
(
−
〈
λ̃s,ϑ, ṽ(s, t, 1 − e−f̃ ; · )

〉)
, f̃ ∈ C+

b (D(Zd)). (2.26)
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It is infinitely divisible and it has therefore the canonical representation

Es,ϑ[e−〈ξ̃t,f̃〉] = exp
(
−
∫

(1 − e−〈µ̃,f̃〉)Q̃s
t (dµ̃)

)
, f̃ ∈ C+

b (D(Zd)), (2.27)

where Q̃s
t is the canonical measure. We state the following result, which gives us a nice repre-

sentation of the canonical Palm distribution.

Proposition 2.3 Let Q̃s
t denote the canonical measure of ξ̃t started as the Poisson point process

with intensity measure λ̃s,ϑ at time s. Then the canonical Palm distribution at ỹ ∈ Dt(Zd) has
the following representation:

(Q̃s
t )ỹ = L[ζ̃s,t,ỹ + δỹ] (2.28)

with

ζ̃s,t,ỹ =
∫ t

s
ξ̃u,ỹu

t ν(du), (2.29)

where ν is a random Poisson point measure on R with intensity V w.r.t. to the Lebesgue measure
and {(ξ̃u,z̃

t )t≥u;u ∈ R, z̃ ∈ Du(Zd)} are independent historical processes started at time u in δz̃.
3

Now we are prepared to state the following result:

Theorem 3 For d ≥ 3:

(i) The law Ls,ϑ[ξ̃t] converges weakly in P(X̃t) as s→ −∞ to the law of an infinitely divisible
random measure ξ̃−∞

t with intensity

E[〈ξ̃−∞
t , f̃〉] = 〈λ̃t,ϑ, f̃〉, f̃ ∈ C+(D(Zd)) ∩ bD([u,∞)), u ∈ (−∞,∞) (2.30)

and Laplace functional

E[e−〈ξ̃−∞
t ,f̃〉] = e−ṽt(f̃), f̃ ∈ C+(D(Zd)) ∩ bD([u,∞)), u ∈ (−∞,∞), (2.31)

where
ṽt(f̃) = lim

s→−∞

〈
λ̃s,ϑ, ṽ(s, t, 1 − e−f̃ ; · )

〉
. (2.32)

(ii) L[π̄tξ̃
−∞
t ] = Λϑ, where Λϑ defined in (1.10).

(iii) The canonical measure Q̃−∞
t of ξ̃−∞

t and the canonical Palm distribution are supported by
the set of clan measures, that means

Q̃−∞
t

(
(X̃cl,t)c

)
= 0 (2.33)

and for λ̃t,ϑ-a.e. ỹ

(Q̃−∞
t )ỹ

(
(X̃cl,t)c

)
= 0. 3 (2.34)

The proofs are deferred to Section 5.
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2.3 Family decomposition

Once we have a historical process we can define a corresponding family decomposition of ξ̃−∞.
A particle alive at time s (which corresponds to δỹ for some ỹ ∈ Ds(Zd)) and a particle alive at
time t (which corresponds to δz̃ for some z̃ ∈ Dt(Zd)) belong to the same family if z̃ ∈ Cl(ỹ).
To identify the law of one family directly is difficult. However in the present situation we have
with the infinite divisibility of ξ̃−∞

t a powerful tool at hand.

We are interested in two special cases, namely the distribution of the members of one family
that are alive at time t and the law of the weighted occupation time of one family.

For the first case note that ξ̃−∞
t is infinitely divisible. It is well-known from the theory of infinite

divisibility that the canonical measure is the intensity measure for typical elements which the
population consists of. Theorem 3 (iii) tells us that the clan measures are typical elements.

To be more precise let Υ̃t be a Poisson point process with intensity measure Q̃−∞
t . That means

Υ̃t is a random measure on N (D(Zd)). Since Q̃−∞
t is the canonical measure of ξ̃−∞

t we get

ξ̃−∞
t

d=
∫
µ̃Υ̃t(dµ̃). (2.35)

Note that the r.h.s. is a countable sum of clan measures.

We define one special numbering of the clans, but any other numbering would do as well. Let
Z

d = {x1, x2, . . . }. Now the historical process induces the following family decomposition, where
the families whose members are at time 0 at xk, are labelled by k and a further randomly chosen
index n. Define the following decomposition of M(D(Zd)) for {x1, x2, . . . } given above

M̃1 := {µ̃ ∈ M(D(Zd)) : π̄0µ̃(x1) > 0}
M̃2 := {µ̃ ∈ M(D(Zd)) : π̄0µ̃(x2) > 0, π̄0µ̃(x1) = 0}

...
M̃k := {µ̃ ∈ M(D(Zd)) : π̄0µ̃(xk) > 0,∀ l < k : π̄0µ̃(xl) = 0}

... (2.36)

Let {ξ̃k,l
t ; l ∈ N} be independent point processes on D(Zd) each with distribution

P̃t,k =
Q̃−∞

t (M̃k ∩ · )
Q̃−∞

t (M̃k)
. (2.37)

Note that Q̃−∞
t (M̃k) < ∞. Furthermore let Nt,k be Poisson distributed with mean θt,k :=

Q̃−∞
t (M̃k) independent of ξ̃k,l

t . Then we obtain

Corollary 2.4 The historical equilibrium process can be decomposed as

ξ̃−∞
t

d=
∞∑

k=1

Nt,k∑
l=1

ξ̃k,l
t . (2.38)
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Proof This can be easily seen by the following short calculation. Since ξ̃k,l
t are independent

and Nt,k is Poisson distributed with mean θt,k = Q̃−∞
t (M̃k) we get

E


exp

(
− 〈

∞∑
k=1

Nt,k∑
l=1

ξ̃k,l
t , f̃〉

) =
∞∏

k=1

e−θt,k

∞∑
n=0

θn
t,k

n!

(
E
[
exp(−〈ξ̃k,1

t , f̃〉)
])n

=
∞∏

k=1

exp
(
−θt,k

∫
(1 − e−〈µ̃,f̃〉)P̃t,k(dµ̃)

)
. (2.39)

By the definition of P̃t,k we obtain

E


exp

(
− 〈

∞∑
k=1

Nt,k∑
l=1

ξ̃k,l
t , f̃〉

) = exp
(
−
∫

(1 − e−〈µ̃,f̃〉)Q̃−∞
t (dµ̃)

)
, (2.40)

which in turn leads to (2.38), since Q̃−∞
t is the canonical measure of ξ̃−∞

t . 2

As mentioned above the second point we are interested in is the law of the weighted occupation
time of one family. Let g ∈ C+

c (R). Recall that (ξ(∞)
t ) is the stationary BRW (cf. Section

1.3). The weighted occupation time
∫∞
0 ds g(s)ξ(∞)

s is infinitely divisible, thus we can proceed
as above. Let Q(∞)

(g) be the canonical measure of
∫∞
0 ds g(s)ξ(∞)

s , i.e.,

E
[
exp

(
−
〈∫ ∞

0
ds g(s)ξ(∞)

s , f
〉)]

= exp

(
−
∫

M(Zd)
(1 − e−〈µ,f〉)Q(∞)

(g) (dµ)

)
. (2.41)

We group all families in the following way. The first group contains all families whose members
occupy x1. In the second group we collect all families occupying x2 and not occupying x1, and
so on.

Let Mk := {π̄0µ̃; µ̃ ∈ M̃k}. We identify the law of one family in the k-th group with Pg,k.

Pg,k =
Q(∞)

(g) (Mk ∩ ·)
Q(∞)

(g) (Mk)
. (2.42)

Now we label the families in each group. Let {ξg;k,l; k, l ∈ N} be a system of independent random
variables, where each ξg;k,l has law Pg,k. Furthermore let Ng,k be Poisson distributed with mean
θg,k := Q(∞)

(g) (Mk) independent of {ξg;k,l}.

Corollary 2.5 The equilibrium occupation process can be decomposed as

∫ ∞

0
ds g(s)ξ(∞)

s
d=

∞∑
k=1

Ng,k∑
l=1

ξg;k,l. 3 (2.43)

The proof is similar to the proof of Corollary 2.4.
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3 Proof of the spatial renormalization result

We have to show
E[eiFϑ,r(ϕ)] −→

r→∞
e−

1
2
CϑL(ϕ,ϕ), ∀ϕ ∈ S(Rd), (3.1)

which is equivalent to

L[Fϑ,r(ϕ)] =⇒
r→∞

N (0, CϑL(ϕ,ϕ)), ∀ϕ ∈ S(Rd ). (3.2)

The proof of (3.2) is based on the historical process associated with the infinitely old equilibrium
distribution and on the characterization of the equilibrium Λϑ as the limit of L[ξt] as t→ ∞.

First of all we prove (3.2) for a non-negative smooth test function with compact support, i.e.
ϕ ∈ C∞,+

c (Rd ). That means there exists a constant c > 0 such that supp(ϕ) ⊂ B(c), where B(c)
is the ball with radius c in R

d .

The proof is split in four parts. In the first part we investigate the first and the second moments
of the renormalized field. The second part contains the basic idea that is to avoid the analysis
of all moments by giving a decomposition in independent components and checking a form of
the Lyapunov condition in the Central Limit Theorem. This works for the following reason.
The historical process of the branching random walk allows a cluster decomposition of the
equilibrium state. We can view it as an infinitely old system and decompose the configuration
into independent clusters of individuals belonging to the same family. The size of the clusters
we can control via the third absolute moment.

In part 1 we calculate the first and the second moment of the renormalized field Fϑ,r. The family
decomposition is given in part 2. In part 3 we check the Lyapunov condition of the following
CLT. The proofs of the lemmas we defer to part 4.

Central Limit Theorem Let {Y (r)
k,l ; k, l ∈ N} be independent real-valued random variables with

{Y (r)
k,l ; l ∈ N} i.i.d. for each r. Let {N (r)

k ; k ∈ N} be independent random variables, where N (r)
k

is Poisson distributed with mean θ
(r)
k , which is uniformly bounded in r and k. Assume that

{Y (r)
k,l ; k, l ∈ N} and {N (r)

k ; k ∈ N} are independent. If

lim
r→∞E

[ ∞∑
k=1

(N
(r)
k∑

l=1

Y
(r)
k,l − E

[N
(r)
k∑

l=1

Y
(r)
k,l

])]2

= σ2 (3.3)

and

lim
r→∞E

[ ∞∑
k=1

N
(r)
k∑

l=1

|Y (r)
k,l |3

]
= 0, (3.4)

then

L
[ ∞∑

k=1

N
(r)
k∑

l=1

Y
(r)
k,l − E

[ ∞∑
k=1

N
(r)
k∑

l=1

Y
(r)
k,l

]]
=⇒
r→∞

N (0, σ2). 3 (3.5)
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Proof Note that {Z(r)
k ; k ∈ N} defined by

Z
(r)
k =

N
(r)
k∑

l=1

Y
(r)
k,l − E

[N
(r)
k∑

l=1

Y
(r)
k,l

]
(3.6)

fits in the setting of the usual Central Limit Theorem, since E[Z(r)
k ] = 0 and

∞∑
k=1

E[Z(r)
k ]2 −→

r→∞
σ2. (3.7)

That the Lyapunov condition is fulfilled for the third moment can be seen by the following
observation

∞∑
k=1

E|Z(r)
k |3 ≤ O(1)

∞∑
k=1

E
[N

(r)
k∑

l=1

|Y (r)
k,l |
]3
. (3.8)

Since N (r)
k Poisson distributed with mean θ

(r)
k and {Y (r)

k,l ; l ∈ N} i.i.d., we obtain

E
[N

(r)
k∑

l=1

|Y (r)
k,l |
]3

= (θ(r)
k )3

(
E|Y (r)

k,1 |
)3

+ 3(θ(r)
k )2 E|Y (r)

k,1 |E|Y (r)
k,1 |2 + θ

(r)
k E|Y (r)

k,1 |3. (3.9)

The parameters θ(r)
k are uniformly bounded, hence

∞∑
k=1

E|Z(r)
k |3 ≤ O(1)

∞∑
k=1

θ
(r)
k E|Y (r)

k,1 |3 = O(1)E
[ ∞∑

k=1

N
(r)
k∑

l=1

|Y (r)
k,l |3

]
−→
r→∞

0. (3.10)

Thus the Lyapunov condition is fulfilled. 2

Part 1 (First and second moment of the renormalized field) The first step is to verify that
the first and second moments show the needed limiting behavior, which can later be strengthen
to give the full Central Limit Theorem.

By Definition (1.18):
E[Fϑ,r(ϕ)] = 0. (3.11)

In part 4 we prove the following lemma.

Lemma 3.1 (Variance Estimate) Under the assumptions (1.14), (1.15), (1.21) and (1.22)

Var[Fϑ,r(ϕ)] = E [Fϑ,r(ϕ)]2 −→
r→∞

CϑL(ϕ,ϕ) (3.12)

for all ϕ ∈ C∞,+
c (Rd ). 3
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Part 2 (Family decomposition) In Section 2.3 we established the family decomposition of
the historical equilibrium process, which we can use to get the family decomposition of ξ, since
by Theorem 3 (ii)

ξ
d= π̄0ξ̃

−∞
0 . (3.13)

By (2.38) we obtain

ξ
d=

∞∑
k=1

N0,k∑
l=1

ξk,l, (3.14)

where ξk,l = π̄0ξ̃
k,l
0 . Applying (3.14) to the renormalized field Fϑ,r leads to

Fϑ,r(ϕ) d=
∞∑

k=1


N0,k∑

l=1

〈
ξk,l, ϕr

〉
− E

[N0,k∑
l=1

〈
ξk,l, ϕr

〉 ] , (3.15)

which is a sum of independent random variables. We are done if that sum fulfills the assumptions
of the CLT.

Recall that N0,k is Poisson distributed with mean θ0,k = Q̃−∞
0 (M̃k). Hence θ0,k ≤ ϑ, thus the

parameters θ0,k are uniformly bounded.

The convergence of the second moment is given by Lemma 3.1. It remains to check the condition
on the third moment.

Part 3 (Lyapunov condition) Recall that the support of ϕ is contained in B(c), where B(c)
is the ball with radius c in R

d . Let B(c) be the ball with radius c in Z
d. The two symbols are

quite similar, anyway it will be always clear from the context. We observe

E
[ ∞∑

k=1

N0,k∑
l=1

|〈ξk,l, ϕr〉|3
]
≤ h(r)3‖ϕ‖3

∞E
[ ∞∑

k=1

N0,k∑
l=1

〈ξk,l, 1IB(cr)〉3
]
. (3.16)

The sum on the r.h.s. of (3.16) in turn can be written as follows

E
[ ∞∑

k=1

N0,k∑
l=1

〈ξk,l, 1IB(cr)〉3
]

=
∞∑

k=1

θ0,k

∫
〈µ̃, 1IB(cr) ◦ π0〉3P̃0,k(dµ̃), (3.17)

where (recall (2.37))

P̃0,k =
Q̃−∞

0 (M̃k ∩ · )
Q̃−∞

0 (M̃k)
, θ0,k = Q̃−∞

0 (M̃k). (3.18)

This yields

E
[ ∞∑

k=1

N0,k∑
l=1

〈ξk,l, 1IB(cr)〉3
]

=
∫
〈µ̃, 1IB(cr) ◦ π0〉3Q̃−∞

0 (dµ̃) (3.19)

and by the definition of the Palm distribution

E
[ ∞∑

k=1

N0,k∑
l=1

〈ξk,l, 1IB(cr)〉3
]

=
∫ ∫

1IB(cr)(π0(ỹ))〈µ̃, 1IB(cr) ◦ π0〉2(Q̃−∞
0 )ỹ(dµ̃)λ̃0,ϑ(dỹ). (3.20)
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Proposition 2.3 provides∫ ∫
1IB(cr)(π0(ỹ))〈µ̃, 1IB(cr) ◦ π0〉2(Q̃−t

0 )ỹ(dµ̃)λ̃0,ϑ(dỹ)

=
∫

1IB(cr)(π0(ỹ))E
[
〈ζ̃−t,0,ỹ + δỹ, 1IB(cr) ◦ π0〉2

]
λ̃0,ϑ(dỹ), (3.21)

where ζ̃−t,0,ỹ is defined in (2.29). In part 4 we prove the following lemma

Lemma 3.2 For ζ̃−t,0,ỹ defined in (2.29)

sup
t≥0

∫
1IB(r)(π0(ỹ))E

[
〈ζ̃−t,0,ỹ, 1IB(r) ◦ π0〉2

]
λ̃0,ϑ(dỹ) = O(rd+4). 3 (3.22)

On the r.h.s. of (3.21) we can write (with f̃ = 1IB(cr) ◦ π0)

E
[
〈ζ̃−t,0,ỹ + δỹ, f̃〉2

]
= E

[
〈ζ̃−t,0,ỹ, f̃〉2

]
+ 2f̃(ỹ)E

[
〈ζ̃−t,0,ỹ, f̃〉

]
+ f̃(ỹ)2. (3.23)

Since the order of the second and the third term is dominated by that of the first one we end
up with ∫ ∫

1IB(cr)(π0(ỹ))〈µ̃, 1IB(cr) ◦ π0〉2(Q̃−∞
0 )ỹ(dµ̃)λ̃0,ϑ(dỹ) = O(rd+4). (3.24)

Equations (3.16), (3.20) and (3.24) yield

E
[ ∞∑

k=1

N0,k∑
l=1

∣∣∣〈ξk,l, ϕr〉
∣∣∣3 ] = O(r−

3
2
(d+2)rd+4) = O(r−

d−2
2 ) −→

r→∞
0. (3.25)

To sum up it can be said that (3.15) gives a representation of Fϑ,r(ϕ) as a sum of independent
random variables which fulfills the CLT. So far we only considered non-negative test functions
with compact support. In part 4 we prove the following lemma, which ensures the result for test
functions of the Schwartz space.

Lemma 3.3 (for general test functions) If

L[Fϑ,r(ϕ)] =⇒
r→∞

N (0, CϑL(ϕ,ϕ)) (3.26)

is valid for all ϕ ∈ C∞,+
c (Rd ), then the statement is true for all ϕ ∈ S(Rd). 3

This completes the proof of Theorem 1. 2

Part 4 (Proofs of the lemmas) We prove the lemmas used in part 1 and 3. First of all we
remark that for all k ∈ N,

sup
t≥0

EH(ϑ)[ξt(0)k] <∞. (3.27)

This well-known fact can be seen by the following argument. Since EH(ϑ)[ξt(0)k] can be written
as a sum of terms of the form∑

x1∈Zd

Eδx1 [〈ξt, f〉k1 ] · · ·
∑

xm∈Zd

Eδxm [〈ξt, f〉km ], (3.28)

20



where k1 + . . . km = k, we can follow (3.27) from Lemma B.1 in the appendix by an induction.

Property (3.27) provides uniform integrability and thus ensures convergence of moments.

Proof of Lemma 3.1 By (1.10) and (3.27):

E[Fϑ,r(ϕ)]2 = lim
t→∞EH(ϑ)

[〈ξt − ϑλ,ϕr〉2
]
. (3.29)

By (B.6) in the appendix we have

EH(ϑ)[〈ξt, ϕr〉] = ϑ〈λ,ϕr〉 (3.30)

and (B.7) gives us

EH(ϑ)[〈ξt, ϕr〉2] = ϑ2〈λ,ϕr〉2 + ϑ〈λ,ϕ2
r〉 + V ϑ

∑
x,y∈Zd

ϕr(x)ϕr(y)
∫ t

0
ds â2s(x, y). (3.31)

This results in
E[Fϑ,r(ϕ)]2 = ϑ〈λ,ϕ2

r〉 +
V ϑ

2

∑
x,y∈Zd

ϕr(x)ϕr(y)Ĝ(y − x), (3.32)

where Ĝ is defined in (1.13).

Concerning the first term on the r.h.s. of (3.32) we observe that

ϑ〈λ,ϕ2
r〉 = ϑr−(d+2)

∑
x∈B(cr)

ϕ
(x
r

)2
= O(r−2), (3.33)

since supp(ϕ) ⊂ B(c).

We consider the second term on the r.h.s. of (3.32). In the appendix in Lemma C.1 we establish
the following asymptotics

Ĝ(x) ∼
{
C · Q̄(x)−

d−2
2 as |x| → ∞; if x ∈ G,
0 if x ∈ Z

d\G, (3.34)

with

C =
|Zd/G|Γ ( d−2

2

)
2πd/2|Q|1/2

, (3.35)

where G is defined in (1.14).

Fix ε > 0. In order to employ the asymptotics of Ĝ(y − x) for |y − x| large in the term∑
x,y ϕr(x)ϕr(y)Ĝ(y− x) we split the sum into two parts depending on whether |y− x| < M or

|y − x| ≥M . Here M = M(ε) is a constant that depends only on ε and will be chosen below in
(3.38).

To show that the sum over |y − x| < M is negligible the crude estimate Ĝ(y − x) ≤ Ĝ(0) is
sufficient to get (recall supp(ϕ) ⊂ B(c))

|
∑

|y−x|<M

Ĝ(y − x) r−(d+2) ϕ
(x
r

)
ϕ
(y
r

)
| ≤ r−2(2M)d(2c)d‖ϕ‖2

∞Ĝ(0). (3.36)
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It remains to investigate the sum over |y − x| ≥ M . For (y − x) /∈ G we have Ĝ(y − x) = 0.
Hence we get∑

|y−x|≥M

Ĝ(y − x) r−(d+2) ϕ
(x
r

)
ϕ
(y
r

)
=

∑
y−x∈G;

|y−x|≥M

Ĝ(y − x) r−(d+2) ϕ
(x
r

)
ϕ
(y
r

)
. (3.37)

Let ε̃ := ε|Zd/G|/(C L(ϕ,ϕ)), where C is given in (3.38). From (3.34) we obtain for (y − x) ∈
G; |y − x| > M(ε),∣∣∣∣∣ Ĝ(y − x)

C
Q̄(y−x)(d−2)/2

− 1

∣∣∣∣∣ < ε̃, where C =
|Zd/G|

2π
d
2 |Q| 12

Γ
(
d− 2

2

)
. (3.38)

We replace Ĝ by the above expression plus an error term, that means∑
y−x∈G;

|y−x|≥M

Ĝ(y − x) r−(d+2) ϕ
(x
r

)
ϕ
(y
r

)

=
∑

y−x∈G;
|y−x|≥M

(
Ĝ(y − x) − C

Q̄(y − x)(d−2)/2

)
r−(d+2) ϕ

(x
r

)
ϕ
(y
r

)

+
∑

y−x∈G;
|y−x|≥M

(
C

Q̄(y − x)(d−2)/2

)
r−(d+2) ϕ

(x
r

)
ϕ
(y
r

)
. (3.39)

We investigate the two sums on the r.h.s. of (3.39) separately. For the second sum we observe
that

∑
y−x∈G;

|y−x|≥M

C

Q̄(y − x)(d−2)/2
r−(d+2)ϕ

(x
r

)
ϕ
(y
r

)
= C

∑
y−x∈G;

|y−x|≥M

r−2d ϕ
(

x
r

)
ϕ
(y

r

)
Q̄(y

r − x
r )(d−2)/2

−→
r→∞

C

|Zd/G|L(ϕ,ϕ). (3.40)

For the first sum on the r.h.s. of (3.39) we get by (3.38)∣∣∣∣ ∑
y−x∈G;

|y−x|≥M

(
Ĝ(y − x) − C

Q̄(y − x)(d−2)/2

)
r−(d+2) ϕ

(x
r

)
ϕ
(y
r

) ∣∣∣∣
≤ ε̃ C

∑
y−x∈G;

|y−x|≥M

1
Q̄(y − x)(d−2)/2

r−(d+2) ϕ
(x
r

)
ϕ
(y
r

)
. (3.41)

The sum on the r.h.s. of (3.41) converges to L(ϕ,ϕ)/|Zd/G| as r → ∞ (analogously to (3.40)).
For the given ε we chose ε̃ in an appropriate way such that

limsup
r→∞

∣∣∣∣ ∑
y−x∈G;

|y−x|≥M

(
Ĝ(y − x) − C

Q̄(y − x)(d−2)/2

)
r−(d+2) ϕ

(x
r

)
ϕ
(y
r

) ∣∣∣∣ ≤ ε. (3.42)
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Combining (3.40) and (3.42) we obtain

∑
x,y∈Zd

ϕr(x)ϕr(y)Ĝ(y − x) −→
r→∞

C

|Zd/G|L(ϕ,ϕ). (3.43)

By (3.32), (3.33) and (3.43) we get

E[Fϑ,r(ϕ)]2 −→
r→∞

V ϑ

4π
d
2 |Q| 12

Γ
(
d− 2

2

)
L(ϕ,ϕ). (3.44)

This completes the proof. 2

Proof of Lemma 3.2 Recall the definition of ζ̃−t,T,ỹ from (2.29)

ζ̃−t,T,ỹ =
∫ T

−t
ξ̃s,ỹs

T ν(ds), (3.45)

where ν is a random Poisson point measure on R with intensity V w.r.t to the Lebesgue measure.
We proceed in five steps.

Step 0 Clearly we shall need a moment formula. First focus on general moments and condition
on the number of Poisson points in the interval (−t, T ]

E[〈ζ̃−t,T,ỹ, f̃〉n] =
∞∑

m=0

e−V (T+t) (V (T + t))m

m!
E
[
〈ζ̃−t,T,ỹ, f̃〉n|ν(−t, T ] = m

]

=
∞∑

m=0

e−V (T+t) (V (T + t))m

m!

∫
(−t,T ]m

ds1 · · · dsm

(T + t)m
E

[
〈

m∑
k=1

ξ̃sk,ỹsk

T , f̃〉n
]
, (3.46)

since the Poisson points conditioned on their number in (−t, T ] are uniformly distributed on
(−t, T ]. In particular we obtain the following useful representation of the second moment∫

λ̃T,ϑ(dỹ)f̃(ỹ)E[〈ζ̃−t,T,ỹ, f̃〉2]

=
∫
λ̃T,ϑ(dỹ)f̃(ỹ)

∞∑
m=0

e−V (T+t)V
m

m!

∫
(−t,T ]m

ds1 · · · dsm

×
(∑

k

E[〈ξ̃sk,ỹsk

T , f̃〉2] +
∑
k 6=l

E[〈ξ̃sk,ỹsk

T , f̃〉]E[〈ξ̃sl,ỹ
sl

T , f̃〉]
)
, (3.47)

which can be simplified to∫
λ̃T,ϑ(dỹ)f̃(ỹ)E[〈ζ̃−t,T,ỹ, f̃〉2]

= V

∫
λ̃T,ϑ(dỹ)f̃(ỹ)

∫ T

−t
dsE[〈ξ̃s,ỹs

T , f̃〉2]

+ V 2

∫
λ̃T,ϑ(dỹ)f̃(ỹ)

∫ T

−t
ds

∫ T

−t
duE[〈ξ̃s,ỹs

T , f̃〉]E[〈ξ̃u,ỹu

T , f̃〉]. (3.48)
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We are interested in the case T = 0 and in the special test function f̃ = 1IB(r) ◦ π0. We can
exploit L[π̄0(ξ̃

s,ỹs

0 )] = Lδys [ξ−s] to write∫
λ̃0,ϑ(dỹ)1IB(r)(π0(ỹ))E[〈ζ̃−t,0,ỹ, 1IB(r) ◦ π0〉2] = I1(r) + I2(r), (3.49)

where

I1(r) := V

∫
λ̃0,ϑ(dỹ)1IB(r)(y0)

∫ 0

−t
dsEδys [〈ξ−s, 1IB(r)〉2] (3.50)

and

I2(r) := V 2

∫
λ̃0,ϑ(dỹ)1IB(r)(y0)

∫ 0

−t
ds

∫ 0

−t
duEδys [〈ξ−s, 1IB(r)〉]Eδyu [〈ξ̃−u, 1IB(r)〉]. (3.51)

Use (2.23) to get

I1(r) = V ϑ
∑
x∈Zd

∑
i∈B(r)

∫ t

0
ds as(x, i)Eδx [〈ξs, 1IB(r)〉2]. (3.52)

In I2(r) we can exploit the symmetry in s and u and then we can again apply (2.23) to get

I2(r) = 2V 2ϑ
∑

x,y∈Zd

∑
i∈B(r)

∫ t

0
ds

∫ t

s
du au−s(y, x)as(x, i)Eδx [〈ξs, 1IB(r)〉]Eδy [〈ξu, 1IB(r)〉]. (3.53)

Now the problem is reduced to estimate (3.52) and (3.53). We proceed in three steps. Namely
we consider the terms I1(r) and I2(r) separately in steps 2 and 3 below after preparing basic
estimates in step 1.

Step 1 First of all we want to establish the basic estimates we will use repeatedly.

Estimate 1 ∑
i∈B(r)

Ĝ(i) = O(r2) (3.54)

Estimate 2 for sums in (v, h, ρ)

∑
v∈Zd

∑
h∈B(r)

∫ t

τ
dρ aρ−τ (v, z)aρ(v, h) ≤ O(r2), (3.55)

uniformly in z, t and τ .

In the remaining part of step 1 we prove these estimates

Proof of estimate 1 We decompose

∑
i∈B(r)

Ĝ(i) =
∞∑

k=0

∑
i∈B(r,k)

Ĝ(i), (3.56)

where
B(r, k) := {x ∈ Z

d :
r

2k+1
≤ |x| < r

2k
}. (3.57)
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By Lemma C.1 we find a constant C ′ > 0 such that for all x ∈ Z
d

Ĝ(x) ≤ C ′

(|x| + 1)d−2
. (3.58)

Thus we can estimate

∑
i∈B(r)

Ĝ(i) ≤
∞∑

k=0

C ′

( r
2k+1 + 1)d−2

( r
2k

)d
≤ O(r2). (3.59)

This completes the proof of (3.54).

Proof of estimate 2 By Lemma C.1 we find a constant C > 0 such that for all y ∈ Z
d

Ĝ(y) ≤ C

(|y| + 1)d−2
. (3.60)

We decompose aρ(v, h) to get

∑
v∈Zd

∑
h∈B(r)

∫ t

τ
dρ aρ−τ (v, z)aρ(v, h)

=
∑

v,v′∈Zd

∑
h∈B(r)

∫ t

τ
dρ aρ−τ (v, z)aρ−τ (v, v′)aτ (v′, h)

=
∑

v′∈Zd

∑
h∈B(r)

aτ (v′, h)
∫ t

τ
dρ â2(ρ−τ)(z, v

′), (3.61)

where we performed the sum over v in the latter equality. Estimating the integral over ρ by the
corresponding Green’s function leads to

∑
v∈Zd

∑
h∈B(r)

∫ t

τ
dρ aρ−τ (v, z)aρ(v, h) ≤

∑
v′∈Zd

∑
h∈B(r)

aτ (v′, h)Ĝ(v′ − z). (3.62)

We want to distinguish between the cases “large” distance between v′ and z and “small” distance
between v′ and z. In the first case we want to exploit that the Green’s function is small enough.
On the other hand there are not too many pairs (v′, z) fulfilling the second condition. Denote
for z ∈ Z

d:
Bz(r) = {y ∈ Z

d : |z − y| < r}. (3.63)

We split the sum over v′ as follows∑
v′∈Zd

∑
h∈B(r)

aτ (v′, h)Ĝ(v′ − z)

=
∑

v′ /∈Bz(r)

∑
h∈B(r)

aτ (v′, h)Ĝ(v′ − z) +
∑

v′∈Bz(r)

∑
h∈B(r)

aτ (v′, h)Ĝ(v′ − z)

= O(r−(d−2))
∑

v′ /∈Bz(r)

∑
h∈B(r)

aτ (v′, h) +
∑

v′∈B(r)

Ĝ(v′)
∑

h∈B(r)

aτ (v′ + z, h), (3.64)
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where we used that Ĝ(v′ − z) = O(r−(d−2)) for |v′ − z| > r by (3.60). In the first term on the
r.h.s. of (3.64) we estimate the sum over v′ by 1. In the second term we do the same for the
sum over h, hence∑

v′∈Zd

∑
h∈B(r)

aτ (v′, h)Ĝ(v′ − z) ≤ O(r2) +
∑

v′∈B(r)

Ĝ(v′) ≤ O(r2). (3.65)

Combining (3.62) and (3.65) we obtain (3.55).

Step 2 Now we are in the position to establish the order of the term I1(r) given in (3.52). In
the appendix we find formula (B.3) for the second moment of the BRW.

I1(r) = V ϑ
∑
x∈Zd

∑
i∈B(r)

∫ t

0
ds as(x, i)

[
(as1IB(r))(x) + V

∫ s

0
du as−u

(
(au1IB(r))

2
)
(x)

]

= I1,1(r) + I1,2(r), (3.66)

where

I1,1(r) := V ϑ
∑
x∈Zd

∑
i,j∈B(r)

∫ t

0
ds as(x, i)as(x, j) (3.67)

and

I1,2(r) := V 2ϑ
∑

x,y∈Zd

∑
i,j,g∈B(r)

∫ t

0
ds as(x, i)

∫ s

0
du as−u(x, y)au(y, j)au(y, g). (3.68)

In case of I1,1(r) we perform the sum over x and then we estimate the integral over s by the
corresponding Green’s function to get by (3.54)

I1,1(r) ≤ O(1)
∑

i,j∈B(r)

Ĝ(j − i) = O(rd+2). (3.69)

In case of I1,2(r) we change the order of integration, such that

I1,2(r) = V 2ϑ
∑

x,y∈Zd

∑
i,j,g∈B(r)

∫ t

0
du au(y, j)au(y, g)

∫ t

u
ds as(x, i)as−u(x, y). (3.70)

Now we use the basic estimate given in (3.55) for the sums in (x, i, s), hence

I1,2(r) ≤ O(r2)
∑
y∈Zd

∑
j,g∈B(r)

∫ t

0
du au(y, j)au(y, g) = O(r2)I1,1(r) = O(rd+4). (3.71)

To sum up it can be said that I1(r) = O(rd+4).

Step 3 Now we investigate I2(r) given in (3.53). We apply the moment formula given in (B.2)
to get

I2(r) = 2V 2ϑ
∑

x,y∈Zd

∑
i,j,g∈B(r)

∫ t

0
ds

∫ t

s
du au−s(y, x)as(x, i)as(x, j)au(y, g). (3.72)
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We apply the basic estimate in (3.55) for the sums in (y, g, u), which leads to

I2(r) ≤ O(r2)
∑
x∈Zd

∑
i,j∈B(r)

∫ t

0
ds as(x, i)as(x, j) = O(r2)I1,1(r) = O(rd+4). (3.73)

We end up with I2(r) = O(rd+4). This completes the proof. 2

Proof of Lemma 3.3 At first we extend the result to smooth functions which are not necessarily
non-negative, then in a second step we drop the bounded support property and consider ϕ ∈
S(Rd ).

Let ϕ ∈ C∞
c (Rd). Note that the family decomposition in (3.14) does not depend on the test

function, thus we get (3.15) also for ϕ ∈ C∞
c (Rd). The same goes for the Lyapunov condition,

since (3.16) is still valid. It remains to study the first and the second moment of the rescaled
field. The first moment is obviously zero. For calculating the variance we decompose ϕ in its
positive part and its negative part, i.e. ϕ = ϕ+ − ϕ− with ϕ+, ϕ− ∈ C∞,+

c (Rd). We get

E [Fϑ,r(ϕ)]2 = E
[
Fϑ,r(ϕ+ − ϕ−)

]2
= 2E

[
Fϑ,r(ϕ+)

]2 + 2E
[
Fϑ,r(ϕ−)

]2 − E
[
Fϑ,r(ϕ+ + ϕ−)

]2
. (3.74)

For each term we can apply Lemma 3.1, which leads to

E [Fϑ,r(ϕ)]2 −→
r→∞

2CϑL(ϕ+, ϕ+) + 2CϑL(ϕ−, ϕ−) − CϑL(ϕ+ + ϕ−, ϕ+ + ϕ−). (3.75)

By the bilinearity of L we obtain the desired result.

Now let ϕ ∈ S(Rd). For ε > 0 there exists a function ϕε ∈ C∞
c (Rd) such that

L(|ϕ− ϕε|, |ϕ − ϕε|) < ε. (3.76)

Recall from (3.32)

E[Fϑ,r(ϕ)]2 = ϑ〈λ,ϕ2
r〉 +

V ϑ

2

∑
x,y∈Zd

ϕr(x)ϕr(y)Ĝ(y − x). (3.77)

By Lemma C.1 we find a constant C > 0 such that

Ĝ(y − x) ≤ C · (Q̄(y − x)
)− d−2

2 (3.78)

for all x, y ∈ Z
d. Now we can proceed as in (3.40) and estimate

lim sup
r→∞

E[Fϑ,r(ϕ)]2 ≤ lim sup
r→∞


r−2〈ϑλ,ϕ2〉 +

∑
x,y∈Zd

Ĝ(y − x)|ϕr(x)||ϕr(y)|



≤ C lim sup
r→∞

∑
x,y∈Zd

r−2d
(
Q
(x
r
− y

r

))− d−2
2 |ϕ

(x
r

)
||ϕ
(y
r

)
|

≤ C ′L(|ϕ|, |ϕ|), (3.79)
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where C ′ > 0 is a constant independent of ϕ. Applying this estimate to ϕ− ϕε we obtain

lim sup
r→∞

E[Fϑ,r(ϕ) − Fϑ,r(ϕε)]2 = lim sup
r→∞

E[Fϑ,r(ϕ− ϕε)]2

≤ C ′ L(|ϕ− ϕε|, |ϕ− ϕε|) ≤ C ′ ε. (3.80)

From this and the assumption of this lemma that

L[Fϑ,r(ϕε)] =⇒
r→∞

N (0, CϑL(ϕε, ϕε)), (3.81)

we can conclude
L[Fϑ,r(ϕ)] =⇒

r→∞
N (0, CϑL(ϕ,ϕ)). (3.82)

This completes the proof. 2

4 Proof of the space-time-renormalization result

The proof is organized as the proof of Theorem 1 in Section 3. First of all we consider ϕ̃(x, t) =
ϕ(x)g(t), where ϕ and g are smooth non-negative functions with compact support, i.e. ϕ ∈
C∞,+

c (Rd) and g ∈ C∞,+
c ([0,∞)). That means there exist constants γ and c such that supp(g) ⊂

[0, γ] and supp(ϕ) ⊂ B(c), where B(c) is the ball with radius c in R
d .

Part 1 (Moments of the rescaled field) The first step is to verify that the first and the
second moments show the needed limiting behavior, which can be strengthened to give the full
Central Limit Theorem.

By Definition (1.30):
E[F̃ϑ,r(ϕ̃)] = 0. (4.1)

In part 4 we will prove the following lemma.

Lemma 4.1 (Variance Convergence) Under the assumptions (1.14), (1.15), (1.21) and
(1.22)

Var[F̃ϑ,r(ϕ̃)] = E
[
F̃ϑ,r(ϕ̃)

]2 −→
r→∞

C̃ϑL̃(ϕ̃, ϕ̃) (4.2)

for ϕ̃ ∈ C+
c (Rd × [0,∞)). 3

Part 2 (Family decomposition) In Section 2.3 we established the family decomposition of
the weighted occupation time, which we can use to get a decomposition of F̃ϑ,r(ϕ̃) for ϕ̃(x, t) =
ϕ(x)g(t). Note that

F̃ϑ,r(ϕ̃) =
〈∫ ∞

0
ds gr(s)(ξ(∞)

s − Eξ(∞)
s ), ϕr

〉
, (4.3)

where gr(s) = r−2g(s/r2) and ϕr(x) = h(r)ϕ(x/r) with h(r) = r−(d+2)/2. By (2.43) we obtain

∫ ∞

0
ds gr(s)ξ(∞)

s
d=

∞∑
k=1

Ngr,k∑
l=1

ξgr;k,l. (4.4)
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This leads to

F̃ϑ,r(ϕ̃) d=
∞∑

k=1


Ngr,k∑

l=1

〈ξgr ;k,l, ϕr〉 − E
[Ngr,k∑

l=1

〈ξgr ;k,l, ϕr〉
] , (4.5)

which is a sum of independent random variables. We are done if that sum fulfills the assumptions
of the CLT.

Recall that Ngr,k is Poisson distributed with mean θgr,k = Q(∞)
(gr)(Mk). Hence

θgr,k ≤ r−2

∫ t(r)

0
ds g

( s
r2

)
E[ξ(∞)

s (xk)], (4.6)

where t(r) := γr2. This yields θgr,k ≤ γϑ‖g‖∞, thus the parameters θgr,k are uniformly bounded.

The convergence of the second moment is given by Lemma 4.1. It remains to check the condition
on the third moment.

Part 3 (Lyapunov) We observe (recall supp(ϕ) ⊂ B(c))

E
[ ∞∑

k=1

Ngr,k∑
l=1

|〈ξgr ;k,l, ϕr〉|3
]
≤ h(r)3‖ϕ‖3

∞E
[ ∞∑

k=1

Ngr,k∑
l=1

〈ξgr;k,l, 1IB(cr)〉3
]
. (4.7)

The sum on the r.h.s. of (4.7) in turn can be written as follows

E
[ ∞∑

k=1

Ngr,k∑
l=1

〈ξgr;k,l, 1IB(cr)〉3
]

=
∞∑

k=1

θgr,k

∫
〈µ, 1IB(cr)〉3Pgr ,k(dµ), (4.8)

where

Pgr,k =
Q(∞)

gr (Mk ∩ · )
Q(∞)

gr (Mk)
, θgr,k = Q(∞)

gr
(Mk). (4.9)

This yields

E
[ ∞∑

k=1

Ngr,k∑
l=1

〈ξgr ;k,l, 1IB(cr)〉3
]

=
∫

〈µ, 1IB(cr)〉3Q(∞)
gr

(dµ). (4.10)

Note that Q(∞)
gr is the canonical measure of

∫ t(r)
0 ds gr(s)ξ

(∞)
s , where t(r) = γr2, since supp(g) ⊂

[0, γ]. By (3.27) we know∫
〈µ, 1IB(cr)〉3Q(∞)

gr
(dµ) = lim

T→∞

∫
〈µ, 1IB(cr)〉3Qgr ;T,t(r)(dµ), (4.11)

where Qgr;T,t(r) is the canonical measure of
∫ T+t(r)
T ds gr(s − T )ξs, where (ξs)s≥0 is the BRW

started as the Poisson point process with intensity ϑ. That means

EH(ϑ)
[
e−〈∫ T+t(r)

T ds gr(s−T )ξs,f〉
]

= exp

(
−
∫
N (Zd)

(1 − e−〈µ,f〉)Qgr;T,t(r)(dµ)

)
. (4.12)

In part 4 we prove the following lemma.
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Lemma 4.2 Let Qgr;T,t(r) be the canonical measure of
∫ T+t(r)
T ds gr(s − T )ξs, where

g ∈ C∞,+
c ([0,∞)) and gr(s) = r−2g(s/r2). Then∫

〈µ, 1IB(r)〉3Qgr;T,t(r)(dµ) = O(rd+4) (4.13)

uniformly in T . 3

Combining (4.7), (4.10), (4.11) and (4.13) yields

E
[ ∞∑

k=1

Ngr,k∑
l=1

〈ξgr ;k,l, ϕr〉3
]

= O(r−
d−2
2 ) −→

r→∞
0. (4.14)

To sum up it can be said that (4.5) gives a representation of F̃ϑ,r(ϕ̃) as a sum of independent
random variables, which fulfills the assumptions of the CLT. As stated above in part 1 the
variance of the limit field has the form

C̃θL̃(ϕ̃, ϕ̃). (4.15)

So far we only considered test functions of the form ϕ̃(x, s) = ϕ(x)g(s) with ϕ ∈ C∞,+
c (Rd ) and

g ∈ C∞,+
c ([0,∞)). In part 4 we prove the following lemma, which ensures the result for test

functions of the Schwartz space.

Lemma 4.3 (for general test functions) If

L[F̃ϑ,r(ϕ̃)] =⇒
r→∞

N (0, CϑL̃(ϕ̃, ϕ̃)) (4.16)

is valid for ϕ̃(x, s) = ϕ(x)g(s) with ϕ ∈ C∞,+
c (Rd) and g ∈ C∞,+

c ([0,∞)), then the statement is
true for ϕ̃ ∈ S(Rd × [0,∞)). 3

This completes the proof of Theorem 2. 2

Part 4 (Proofs of the lemmas)

Proof of Lemma 4.1 Let supp(ϕ̃) ⊂ B(c) × [0, γ], hence supp(ϕ̃r) ⊂ B(cr) × [0, t(r)] with
t(r) = γr2. Thus we can write

E
[
F̃ϑ,r(ϕ̃)

]2
= EΛϑ

[∫ t(r)

0
ds 〈ξs, ϕ̃r( · , s)〉

]2

− ϑ2

[∫ t(r)

0
ds 〈λ, ϕ̃r( · , s)〉

]2

. (4.17)

Hence by the moment formulas (B.37) and (B.38) of the appendix

E
[
F̃ϑ,r(ϕ̃)

]2
= I1(r) + I2(r), (4.18)

where

I1(r) := 2ϑ
∑
x∈Zd

∫ t(r)

0
ds ϕ̃r(x, s)

∫ t(r)

s
du (au−sϕ̃r( · , u))(x) (4.19)
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and

I2(r) := V ϑ
∑
x∈Zd

∫ t(r)

0
ds

(∫ t(r)

s
du (au−sϕ̃r( · , u))(x)

)2

+ V ϑ
∑
x∈Zd

∫ ∞

0
ds

(∫ t(r)

0
du (au+sϕ̃r( · , u))(x)

)2

. (4.20)

We consider I1(r)

I1(r) = 2ϑ
∑

x,y∈B(cr)

∫ t(r)

0
ds ϕ̃r(x, s)

∫ t(r)

s
du au−s(x, y)ϕ̃r(y, u). (4.21)

First of all we estimate ϕ̃r by its supremum and then we estimate the sum over y by 1 to get

|I1(r)| ≤ 2ϑ‖ϕ̃‖2
∞h̃(r)

2t(r)2|B(cr)| ≤ O(r−(d+6)r4rd) = O(r−2) −→
r→∞

0. (4.22)

The term I2(r) can be rewritten as

I2(r) = V ϑ
∑

x,y,z∈Zd

∫ t(r)

0
ds

∫ t(r)

s
du

∫ t(r)

s
dρ au−s(x, y)aρ−s(x, z)ϕ̃r(y, u)ϕ̃r(z, ρ)

+ V ϑ
∑

x,y,z∈Zd

∫ ∞

0
ds

∫ t(r)

0
du

∫ t(r)

0
dρ au+s(x, y)aρ+s(x, z)ϕ̃r(y, u)ϕ̃r(z, ρ).

(4.23)

We change the order of integration to get

I2(r) = V ϑ
∑

x,y,z∈Zd

∫ t(r)

0
du

∫ t(r)

0
dρ ϕ̃r(y, u)ϕ̃r(z, ρ)

∫ u∧ρ

0
ds au−s(x, y)aρ−s(x, z)

+ V ϑ
∑

x,y,z∈Zd

∫ t(r)

0
du

∫ t(r)

0
dρ ϕ̃r(y, u)ϕ̃r(z, ρ)

∫ ∞

0
ds au+s(x, y)aρ+s(x, z).

(4.24)

Now we substitute s := u+ ρ− 2s respectively s := u+ ρ+ 2s. We end up with

I2(r) =
1
2
V ϑ

∑
x,y,z∈Zd

∫ t(r)

0
du ϕ̃r(y, u)

∫ t(r)

0
dρ ϕ̃r(z, ρ)

∫ ∞

|u−ρ|
ds au−ρ+s

2
(x, y)a ρ−u+s

2
(x, z). (4.25)

Let ε > 0. We will show at the very end (see (4.46) and the sequel) that there exists a constant
C > 0 such that∑

x∈Zd

∑
y∈B(cr)

∫ u

0
dρ as+u−ρ(x, y)as(x, z) ≤ Cr2, ∀ z ∈ Z

d;u, s ∈ [0,∞). (4.26)
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We continue the analysis of I2(r). Let

ε′ =
2ε

V ϑ‖ϕ̃‖2∞Cγ(2c)d
. (4.27)

We decompose I2(r) depending on whether s ≤ |u− ρ| + ε′r2 or s > |u− ρ| + ε′r2

I2(r) = I2,1(r) + I2,2(r), (4.28)

where

I2,1(r) :=
1
2
V ϑ

∑
x,y,z∈Zd

∫ t(r)

0
du ϕ̃r(y, u)

∫ t(r)

0
dρ ϕ̃r(z, ρ)

×
∫ |u−ρ|+ε′r2

|u−ρ|
ds au−ρ+s

2
(x, y)a ρ−u+s

2
(x, z) (4.29)

and

I2,2(r) :=
1
2
V ϑ

∑
x,y,z∈Zd

∫ t(r)

0
du ϕ̃r(y, u)

∫ t(r)

0
dρ ϕ̃r(z, ρ)

×
∫ ∞

|u−ρ|+ε′r2

ds au−ρ+s
2

(x, y)a ρ−u+s
2

(x, z). (4.30)

Consider first I2,1(r). By symmetry in u and ρ it suffices to consider

I ′2,1(r) :=
1
2
V ϑ

∑
x,y,z∈Zd

∫ t(r)

0
du ϕ̃r(y, u)

∫ u

0
dρ ϕ̃r(z, ρ)

×
∫ |u−ρ|+ε′r2

|u−ρ|
ds au−ρ+s

2
(x, y)a ρ−u+s

2
(x, z), (4.31)

since the remaining term (involving
∫ t(r)
u dρ . . . ) can be treated in the same way. Recall that

supp(ϕ̃) ⊂ B(c) × [0, γ]. In I ′2,1(r) we estimate ϕ̃r by its supremum. We substitute s :=
(s− u+ ρ)/2, afterwards we change the order of integration, hence

I ′2,1(r) ≤ V ϑr−(d+6)‖ϕ̃‖2
∞
∑
x∈Zd

∑
y,z∈B(cr)

∫ t(r)

0
du

∫ ε′r2/2

0
ds

∫ u

0
dρ as+u−ρ(x, y)as(x, z). (4.32)

Now we apply (4.26) to get (using |B(cr)| ≤ (2cr)d)

I ′2,1(r) ≤
1
2
V ϑ‖ϕ̃‖2

∞Cγ(2c)
dε′ = ε. (4.33)

Return to (4.28). We have to treat now I2,2(r). We need the local CLT given in Proposition
D.2 of the appendix, which says

at(0, x) − bt(0, x) = t−
d
2E(t, x), (4.34)
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where E(t, x) → 0 as t→ ∞ uniformly in x and

bt(0, x) =
1

(2πt)d/2|Q|1/2
e−

Q̄(x)
2t . (4.35)

We use the decomposition given in (4.34) for I2,2(r), hence

I2,2(r) = I2,2,1(r) + I2,2,2(r) + I2,2,3(r), (4.36)

where

I2,2,1(r) :=
1
2
V ϑ

∑
x,y,z∈Zd

∫ t(r)

0
du ϕ̃r(y, u)

∫ t(r)

0
dρ ϕ̃r(z, ρ)

×
∫ ∞

|u−ρ|+ε′r2

ds bu−ρ+s
2

(x, y)b ρ−u+s
2

(x, z) (4.37)

and

I2,2,2(r) :=
1
2
V ϑ

∑
x,y,z∈Zd

∫ t(r)

0
du ϕ̃r(y, u)

∫ t(r)

0
dρ ϕ̃r(z, ρ)

×
∫ ∞

|u−ρ|+ε′r2

ds bu−ρ+s
2

(x, y)
(
ρ− u+ s

2

)− d
2

E

(
ρ− u+ s

2
, z − x

)
(4.38)

and

I2,2,3(r) :=
1
2
V ϑ

∑
x,y,z∈Zd

∫ t(r)

0
du ϕ̃r(y, u)

∫ t(r)

0
dρ ϕ̃r(z, ρ)

×
∫ ∞

|u−ρ|+ε′r2

ds

(
u− ρ+ s

2

)− d
2

E

(
u− ρ+ s

2
, y − x

)
a ρ−u+s

2
(x, z). (4.39)

In I2,2,1(r) we perform the sum over x and then we substitute u := u/r2, ρ := ρ/r2 and then
s := s/r2, hence

I2,2,1(r) =
1
2
V ϑ

∑
y,z∈Zd

r−2d

∫ γ

0
du ϕ̃

(y
r
, u
)∫ γ

0
dρ ϕ̃

(z
r
, ρ
)

×
∫ ∞

|u−ρ|+ε′
ds

1
(2πs)d/2|Q|1/2

exp
(
− 1

2s
Q̄
(z
r
− y

r

))

−→
r→∞

1
2
V ϑ

∫
Rd

dy

∫
Rd

dz

∫ γ

0
du

∫ γ

0
dρ ϕ̃(y, u)ϕ̃(z, ρ)

∫ ∞

|u−ρ|+ε′
ds bs(y, z).

(4.40)

Return to (4.36) and consider I2,2,2(r). Let

ε′′ =
d− 2

2V ϑ‖ϕ̃‖2∞(2c)2dγ2

(
ε′

2

) d−2
2

ε. (4.41)
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There exists a t0 such that |E(t, x)| ≤ ε′′ for all t ≥ t0 and for all x. Choose r0 =
√

2t0/ε′. In
I2,2,2(r) (with r > r0) we can estimate |E(ρ−u+s

2 , z−x)| < ε′′. Then we perform the sum over x.
Furthermore we estimate ϕ̃r by its supremum. Afterwards we substitute u := u/r2, ρ := ρ/r2

and then s := s/r2, hence

|I2,2,2(r)| ≤ 1
2
V ϑε′′‖ϕ̃‖2

∞
∑

y,z∈B(cr)

r−2d

∫ γ

0
du

∫ γ

0
dρ

∫ ∞

|u−ρ|+ε′
ds

(
ρ− u+ s

2

)−d/2

. (4.42)

Since∫ ∞

|u−ρ|+ε′
ds

(
ρ− u+ s

2

)− d
2

=
4

d− 2

(
ρ− u+ |u− ρ| + ε′

2

)− d−2
2

≤ 4
d− 2

(
ε′

2

)− d−2
2

(4.43)

we obtain

|I2,2,2(r)| ≤ 2V ϑ‖ϕ̃‖2∞(2c)2dγ2

d− 2

(
ε′

2

)− d−2
2

ε′′ = ε. (4.44)

The term I2,2,3(r) can be treated in exactly the same way as I2,2,2(r).

Now let ε→ 0. Note that then also ε′ → 0. By (4.33), (4.40) and (4.44) we obtain

I2(r) −→
r→∞

1
2
V ϑ

∫
Rd

dy

∫
Rd

dz

∫ γ

0
du

∫ γ

0
dρ ϕ̃ (y, u) ϕ̃ (z, ρ)

∫ ∞

|u−ρ|
ds bs(y, z). (4.45)

Combining this with (4.22) completes the proof of (4.2).

It remains to show (4.26). First of all we estimate the integral over ρ by the corresponding
Green’s function to get

∑
x∈Zd

∑
y∈B(cr)

∫ u

0
dρ as+u−ρ(x, y)as(x, z) ≤

∑
x∈Zd

∑
y∈B(cr)

G(y − x)as(x, z). (4.46)

In the next proof (4.59) we will show the following basic estimate∑
x∈Zd

∑
i∈B(r)

G(i− x)f(x) ≤ O(r2)
∑
x∈Zd

f(x). (4.47)

Using this we get
∑
x∈Zd

∑
y∈B(cr)

∫ u

0
dρ as+u−ρ(x, y)as(x, z) ≤ O(r2)

∑
x∈Zd

as(x, z) = O(r2). (4.48)

We proved (4.26), which completes the proof of the variance convergence statement of Lemma
4.1. 2

Proof of Lemma 4.2 We proceed in four steps.

Step 0 The third moment can be written in terms of the Laplace functional as∫
〈µ, f〉3Qgr;T,t(r)(dµ) =

∂3

∂α3

∫
(1 − e−〈µ,αf〉)Qgr;T,t(r)(dµ)

∣∣∣∣
α=0

. (4.49)
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By Lemma A.2 one can easily check that the Laplace functional of the weighted occupation time
of the BRW ξ started at time u with distribution H(ϑ) has the form

Eu,H(ϑ)[e−〈∫ T+t(r)
T ds gr(s−T )ξs,f〉] = exp (−〈ϑλ, 1 − h(u, T, t(r), ϕ̃; · )〉) , (4.50)

where h is given in (A.8) and ϕ̃(x, s) = f(x)gr(s− T ).

By (4.12) and (4.50) we get∫
〈µ, f〉3Qgr;T,t(r)(dµ) = 〈ϑλ,− ∂3

∂α3
h(0, T, t(r), αϕ̃; · )

∣∣∣
α=0

〉. (4.51)

Using (A.9) we obtain

− ∂3

∂α3
h(0, T, t(r), αϕ̃;x)

∣∣∣
α=0

= aT

(
− ∂3

∂α3
h(T, T, t(r), αϕ̃; · )

∣∣∣
α=0

)
(x)

+ 3V
∫ T

0
ds as

(
− ∂

∂α
h(s, T, t(r), αϕ̃; · )

∣∣∣
α=0

∂2

∂α2
h(s, T, t(r), αϕ̃; · )

∣∣∣
α=0

)
(x). (4.52)

The Laplace functional expands to the k-th moment as follows

(−1)k
∂k

∂αk
h(s, T, t(r), αϕ̃;x)

∣∣∣
α=0

= Es,δx


(∫ T+t(r)

T
du 〈ξu, gr(u− T )f〉

)k

 . (4.53)

We are interested in the special test function f = 1IB(r). Furthermore we estimate g by its
supremum. Hence by (4.51)∫

〈µ, 1IB(r)〉3Qgr;T,t(r)(dµ) ≤ r−6‖g‖3
∞(I1(r) + I2(r)), (4.54)

where

I1(r) := ϑ
∑
x∈Zd

Eδx

[∫ t(r)

0
ds 〈ξs, 1IB(r)〉

]3

(4.55)

and

I2(r) := 3V ϑ
∑
x∈Zd

∫ T

0
dsEδx

[∫ T+t(r)−s

T−s
du 〈ξu, 1IB(r)〉

]
Eδx

[∫ T+t(r)−s

T−s
du 〈ξu, 1IB(r)〉

]2

. (4.56)

Step 1 First of all we want to establish the basic estimates we will use repeatedly.

Estimate 1 ∑
i∈B(r)

Ĝ(i) = O(r2) (4.57)
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Estimate 2 for sums in (v, h, s)

∑
v∈Zd

∑
h∈B(r)

∫ t

0
ds au+s(v, h)aρ+s(v, z) ≤ O(r2), (4.58)

uniformly in z, t, u and ρ.

Estimate 3 for sums in (x, i)∑
x∈Zd

∑
i∈B(r)

G(i− x)f(x) ≤ O(r2)
∑
x∈Zd

f(x), (4.59)

where f is a function, which will be specified in the particular situation.

In the remaining part of step 1 we prove these estimates. The first estimate was established in
Section 3, recall (3.54). The proof of the second estimate works the same as the proof of (3.55).

It remains to prove estimate 3. By Lemma C.1 we find a constant C > 0 such that for all y ∈ Z
d,

G(y) ≤ C

(|y| + 1)d−2
, (4.60)

since we assumed mean zero of a.

We decompose∑
x∈Zd

∑
i∈B(r)

G(i− x)f(x) =
∑

x/∈B(2r)

∑
i∈B(r)

G(i − x)f(x) +
∑

x∈B(2r)

∑
i∈B(r)

G(i− x)f(x). (4.61)

For the first term on the r.h.s. of (4.61) we can exploit that |i− x| ≥ r, hence by (4.60)∑
x/∈B(2r)

∑
i∈B(r)

G(i− x)f(x) ≤ O(r2)
∑

x/∈B(2r)

f(x). (4.62)

The second term on the r.h.s. of (4.61) we estimate as follows∑
x∈B(2r)

∑
i∈B(r)

G(i− x)f(x) ≤
∑

x∈B(2r)

∑
j∈B(3r)

G(j)f(x) ≤ O(r2)
∑

x∈B(2r)

f(x) (4.63)

by the analogue of (4.57) for G. This completes the proof of (4.59).

Step 2 By (B.12)
I1(r) = I1,1(r) + I1,2(r) + I1,3(r) + I1,4(r), (4.64)

where

I1,1(r) := 3V 2ϑ
∑
x∈Zd

∫ t(r)

0
ds

∫ t(r)

s
du (au−s1IB(r))(x)

×
∫ t(r)

s
dρ aρ−s


(∫ t(r)

ρ
dτ (aτ−ρ1IB(r))

)2

 (x) (4.65)
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and

I1,2(r) := 6V ϑ
∑
x∈Zd

∫ t(r)

0
ds

∫ t(r)

s
du (au−s1IB(r))(x)

×
∫ t(r)

s
dρ aρ−s

(
1IB(r)

∫ t(r)

ρ
dτ (aτ−ρ1IB(r))

)
(x) (4.66)

and

I1,3(r) := 3V ϑ
∑

i∈B(r)

∫ t(r)

0
ds

∫ t(r)

s
dρ aρ−s


(∫ t(r)

ρ
dτ (aτ−ρ1IB(r))

)2

 (i) (4.67)

and

I1,4(r) := 6ϑ
∑

i∈B(r)

∫ t(r)

0
ds

∫ t(r)

s
dρ aρ−s

(
1IB(r)

∫ t(r)

ρ
dτ (aτ−ρ1IB(r))

)
(i). (4.68)

We treat the four terms separately. The term I1,1(r) can be written as

I1,1(r) = 3V 2ϑ
∑

x,y∈Zd

∑
i,j,g∈B(r)

∫ t(r)

0
ds

∫ t(r)

s
du

∫ t(r)

s
dρ

∫ t(r)

ρ
dτ

∫ t(r)

ρ
dπ

× au−s(x, i)aρ−s(x, y)aτ−ρ(y, j)aπ−ρ(y, g). (4.69)

We estimate the integral over u by the corresponding Green’s function in order to apply the
basic estimate given in (4.59) for the sums in (x, i) to get

I1,1(r) ≤ O(r2)
∑

x,y∈Zd

∑
j,g∈B(r)

∫ t(r)

0
ds

∫ t(r)

s
dρ

∫ t(r)

ρ
dτ

∫ t(r)

ρ
dπ

× aρ−s(x, y)aτ−ρ(y, j)aπ−ρ(y, g). (4.70)

Now we perform the sum over x and we estimate the integral over π by the corresponding
Green’s function. Afterwards we use again (4.59) but now for the sums in (y, g), hence

I1,1(r) ≤ O(r4)
∑
y∈Zd

∑
j∈B(r)

∫ t(r)

0
ds

∫ t(r)

s
dρ

∫ t(r)

ρ
dτ aτ−ρ(y, j). (4.71)

Finally we perform the sum over y. We end up with

I1,1(r) ≤ O(r4)t(r)3|B(r)| ≤ O(rd+10). (4.72)

Now we consider I1,2(r).

I1,2(r) = 6V ϑ
∑
x∈Zd

∑
i,j,g∈B(r)

∫ t(r)

0
ds

∫ t(r)

s
du

∫ t(r)

s
dρ

∫ t(r)

ρ
dτ

× au−s(x, i)aρ−s(x, j)aτ−ρ(j, g). (4.73)
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We estimate the integral over u by the corresponding Green’s function, then we are in the
position to apply (4.59) for the sums in (x, i). Afterwards we perform the sum over x and we
estimate the integral over τ by the Green’s function, hence

I1,2(r) ≤ O(r2)t(r)2
∑

j,g∈B(r)

G(g − j) ≤ O(rd+8) (4.74)

by (4.57).

The term I1,3(r) we write as follows

I1,3(r) = 3V ϑ
∑
x∈Zd

∑
i,j,g∈B(r)

∫ t(r)

0
ds

∫ t(r)

s
dρ

∫ t(r)

ρ
dτ

∫ t(r)

ρ
dπ

× aρ−s(i, x)aτ−ρ(x, j)aπ−ρ(x, g). (4.75)

After estimating the integral over π by the Green’s function we can apply the basic estimate
given in (4.59) for the sums in (x, g), thus

I1,3(r) ≤ O(r2)
∑
x∈Zd

∑
i,j∈B(r)

∫ t(r)

0
ds

∫ t(r)

s
dρ

∫ t(r)

ρ
dτ aρ−s(i, x)aτ−ρ(x, j). (4.76)

Estimating the integral over τ by the Green’s function and applying (4.59) for the sums in (x, j)
yield

I1,3(r) ≤ O(r4)
∑
x∈Zd

∑
i∈B(r)

∫ t(r)

0
ds

∫ t(r)

s
dρ aρ−s(i, x). (4.77)

We perform the sum over x, hence

I1,3(r) ≤ O(r4)t(r)2|B(r)| ≤ O(rd+8). (4.78)

Finally I1,4(r) can be written as

I1,4(r) = 6ϑ
∑

i,j,g∈B(r)

∫ t(r)

0
ds

∫ t(r)

s
dρ

∫ t(r)

ρ
dτ aρ−s(i, j)aτ−ρ(j, g). (4.79)

We estimate the integrals over τ and over ρ by the corresponding Green’s functions, hence

I1,4(r) ≤ O(1)t(r)
∑

i,j,g∈B(r)

G(j − i)G(g − j) ≤ O(rd+6) (4.80)

by (4.57).

Combining (4.72), (4.74), (4.78) and (4.80) leads to

I1(r) ≤ O(rd+10). (4.81)

That means we proved the right order of I1(r).
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Step 3 Return to (4.54). We consider the term I2(r) given in (4.56). By (B.25)

Eδx

[∫ T+t(r)−s

T−s
du 〈ξu, 1IB(r)〉

]
=
∫ T+t(r)−s

T−s
du (au1IB(r))(x) (4.82)

and by (B.26)

Eδx

[∫ T+t(r)−s

T−s
du 〈ξu, 1IB(r)〉

]2

= V

∫ T−s

0
dρ aρ


(∫ T+t(r)−s

T−s
dτ (aτ−ρ1IB(r))

)2

 (x)

+ V

∫ T+t(r)−s

T−s
dρ aρ



(∫ T+t(r)−s

ρ
dτ (aτ−ρ1IB(r))

)2

 (x)

+ 2
∫ T+t(r)−s

T−s
dρ aρ

(
1IB(r)

∫ T+t(r)−s

ρ
dτ (aτ−ρ1IB(r))

)
(x). (4.83)

Substituting these two equations into (4.56) we get

I2(r) = I2,1(r) + I2,2(r) + I2,3(r), (4.84)

where

I2,1(r) := 3V 2ϑ
∑
x∈Zd

∫ T

0
ds

∫ T+t(r)−s

T−s
du (au1IB(r))(x)

×
∫ T−s

0
dρ aρ


(∫ T+t(r)−s

T−s
dτ (aτ−ρ1IB(r))

)2

 (x) (4.85)

and

I2,2(r) := 3V 2ϑ
∑
x∈Zd

∫ T

0
ds

∫ T+t(r)−s

T−s
du (au1IB(r))(x)

×
∫ T+t(r)−s

T−s
dρ aρ


(∫ T+t(r)−s

ρ
dτ (aτ−ρ1IB(r))

)2

 (x) (4.86)

and

I2,3(r) := 6V ϑ
∑
x∈Zd

∫ T

0
ds

∫ T+t(r)−s

T−s
du (au1IB(r))(x)

×
∫ T+t(r)−s

T−s
dρ aρ

(
1IB(r)

∫ T+t(r)−s

ρ
dτ (aτ−ρ1IB(r))

)
(x). (4.87)
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We treat the three terms separately. The term I2,1(r) can be written as

I2,1(r) = 3V 2ϑ
∑

x,y∈Zd

∑
i,j,g∈B(r)

∫ T

0
ds

∫ T+t(r)−s

T−s
du

∫ T−s

0
dρ

×
∫ T+t(r)−s

T−s
dτ

∫ T+t(r)−s

T−s
dπ au(x, i)aρ(x, y)aτ−ρ(y, j)aπ−ρ(y, g). (4.88)

We first substitute s := T − s, then u := u− s, ρ := s− ρ, τ := τ − s and π := π − s to get

I2,1(r) = 3V 2ϑ
∑

x,y∈Zd

∑
i,j,g∈B(r)

∫ T

0
ds

∫ t(r)

0
du

∫ s

0
dρ

∫ t(r)

0
dτ

∫ t(r)

0
dπ

× au+s(x, i)as−ρ(x, y)aτ+ρ(y, j)aπ+ρ(y, g). (4.89)

We exchange the integrals over s and over ρ in order to apply the basic estimate given in (4.58)
for the sums in (x, i, s). Hence

I2,1(r) ≤ O(r2)
∑
y∈Zd

∑
j,g∈B(r)

∫ T

0
dρ

∫ t(r)

0
du

∫ t(r)

0
dτ

∫ t(r)

0
dπ aτ+ρ(y, j)aπ+ρ(y, g). (4.90)

Now we use the basic estimate given in (4.58) for the sums in (y, g, ρ). We end up with

I2,1(r) ≤ O(r4)t(r)3|B(r)| ≤ O(rd+10). (4.91)

Return to (4.84). In I2,2(r) we substitute s := T − s, then u := u − s and ρ := ρ− s and then
τ := τ − s and π := π − s. Afterwards we apply the basic estimate given in (4.58) for the sums
in (x, i, s), thus

I2,2(r) ≤ O(r2)
∑
y∈Zd

∑
j,g∈B(r)

∫ t(r)

0
du

∫ t(r)

0
dρ

∫ t(r)

ρ
dτ

∫ t(r)

ρ
dπ aτ−ρ(y, j)aπ−ρ(y, g). (4.92)

We estimate the integral over π by the corresponding Green’s function in order to apply (4.59)
for the sums in (y, g), hence

I2,2(r) ≤ O(r4)
∑
y∈Zd

∑
j∈B(r)

∫ t(r)

0
du

∫ t(r)

0
dρ

∫ t(r)

ρ
dτ aτ−ρ(y, j). (4.93)

Now we perform the sum over y. We end up with

I2,2(r) ≤ O(r4)t(r)3|B(r)| ≤ O(rd+10). (4.94)

The term I2,3(r) can be written as

I2,3(r) = 6V ϑ
∑
x∈Zd

∑
i,j,g∈B(r)

∫ T

0
ds

∫ T+t(r)−s

T−s
du

∫ T+t(r)−s

T−s
dρ

∫ T+t(r)−s

ρ
dτ

×au(x, i)aρ(x, j)aτ−ρ(j, g). (4.95)
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We substitute s := T − s, then u := u− s and ρ := ρ− s and then τ := τ − s to get

I2,3(r) = 6V ϑ
∑
x∈Zd

∑
i,j,g∈B(r)

∫ T

0
ds

∫ t(r)

0
du

∫ t(r)

0
dρ

∫ t(r)

ρ
dτ

× au+s(x, i)aρ+s(x, j)aτ−ρ(j, g). (4.96)

We apply (4.58) for the sums in (x, i, s), afterwards we can estimate the integral over τ by the
corresponding Green’s function, thus

I2,3(r) ≤ O(r2)t(r)2
∑

j,g∈B(r)

G(g − j) ≤ O(rd+8) (4.97)

by (4.57).

Combining (4.91), (4.94) and (4.97) gives us

I2(r) ≤ O(rd+10). (4.98)

By (4.54), (4.81) and (4.98) we get∫
〈µ, 1IB(r)〉3Qgr;T,t(r)(dµ) = O(rd+4). (4.99)

This completes the proof. 2

Proof of Lemma 4.3 We get the result by first extending the result to sums of φ · g in two
steps and then by approximation of general functions by sums of product type functions.

At first we prove the result for test functions of the form ϕ̃(x, s) =
∑m

n=1 ϕn(x)gn(s) with
ϕn ∈ C∞,+

c (Rd ) and gn ∈ C∞,+
c ([0,∞)). By (4.2) we get

Var[F̃ϑ,r(ϕ̃)] −→
r→∞

C̃ϑL̃(ϕ̃, ϕ̃). (4.100)

It remains to establish the decomposition in a sum of independent random variables and to
check the Lyapunov condition. As in (4.4) we obtain (with gn;r(s) = r−2gn(s/r2))

∫ ∞

0
ds gn;r(s)ξ(∞)

s
d=

∞∑
k=1

Ngn;r,k∑
l=1

ξgn;r;k,l, (4.101)

where {Ngn;r ,k; k ∈ Z}, {ξgn;r ;k,l : k, l ∈ Z} are independent. Recalling the construction of the
family decomposition in Section 2.3 we see that one can choose these random variables to be
independent for different k if n varies. Hence (with ϕn;r(x) = h(r)ϕn(x/r))

F̃ϑ,r(ϕ̃) d=
∞∑

k=1


 m∑

n=1

Ngn;r,k∑
l=1

〈ξgn;r;k,l, ϕn;r〉 − E
[ m∑

n=1

Ngn;r,k∑
l=1

〈ξgn;r ;k,l, ϕn;r〉
] , (4.102)
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which is a sum of independent random variables. The Lyapunov condition is fulfilled, since we
can estimate

∞∑
k=1

E




 m∑

n=1

Ngn;r,k∑
l=1

〈ξgn;r;k,l, ϕn;r〉



3

 ≤ 23m

m∑
n=1

∞∑
k=1

E




Ngn;r,k∑

l=1

〈ξgn;r ;k,l, ϕn;r〉



3

 . (4.103)

Now we can argue as in the proof of the CLT in Section 3 and we can apply (4.14) separately
for n = 1, . . . ,m.

Now let ϕ̃(x, s) =
∑m

n=1 αnϕn(x)gn(s) with ϕn ∈ C∞,+
c (Rd ) and gn ∈ C∞,+

c ([0,∞)) and αn ∈
{−1, 1}. That means we can decompose ϕ̃ = ϕ̃+ − ϕ̃−, where ϕ̃+ and ϕ̃− are both of the
above type. The decomposition (4.102) is still valid with the additional term αn. The Lyapunov
condition is fulfilled. As in (3.74) we obtain the desired variance formula.

Now let ϕ̃ ∈ S(Rd×[0,∞)). For ε > 0 there exists ϕ̃ε =
∑m

n=1 αnϕn(x)gn(s) with ϕn ∈ C∞,+
c (Rd)

and gn ∈ C∞,+
c ([0,∞)) and αn ∈ {−1, 1} (which all depend on ε) such that

L̃(|ϕ̃− ϕ̃ε|, |ϕ̃ − ϕ̃ε|) < ε. (4.104)

As in the proof of Lemma 3.3 we can conclude

L[F̃ϑ,r(ϕ̃)] =⇒
r→∞

N (0, C̃ϑL̃(ϕ̃, ϕ̃)). (4.105)

This completes the proof. 2

We finished the proofs of the lemmas used in part 2 and part 3.

5 Proof of the results on the historical process

In this section we prove Proposition 2.3 on the representation of the canonical Palm distribution
of the historical process and we prove Theorem 3 on the properties of the equilibrium historical
process.

Proof of Proposition 2.3 We proceed as in the proof of [GW91] Theorem 2.3.

Let f̃ , g̃ ∈ C+(D(Zd)) ∩ bD([s0,∞)) for some s0 > −∞. We have to show that∫
Dt(Zd)

g̃(ỹ)E
[
exp

(
−〈ζ̃s,t,ỹ + δỹ, f̃〉

)]
λ̃t,ϑ(dỹ) =

∫
M(Dt(Zd))

〈µ̃, g̃〉e−〈µ̃,f̃〉Q̃s
t (dµ̃). (5.1)

Using (2.26) and (2.27) we can write the term on the r.h.s. of (5.1) as∫
〈µ̃, g̃〉e−〈µ̃,f̃〉Q̃s

t (dµ̃) =
∫

∂

∂α
ṽ(s, t, 1 − e−(f̃+αg̃); ỹ)

∣∣∣∣
α=0

λ̃s,ϑ(dỹ). (5.2)

Abbreviate
w̃(s, t, f̃ , g̃; ỹ) :=

∂

∂α
ṽ(s, t, 1 − e−(f̃+αg̃); ỹ)

∣∣∣
α=0

. (5.3)
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From (2.20) we get

w̃(s, t, f̃ , g̃; ỹ) = ãs,t(g̃e−f̃ )(ỹ) − V

∫ t

s
ãs,u

(
ṽ(u, t, 1 − e−f̃ ; · )w̃(u, t, f̃ , g̃; · )

)
(ỹ) du. (5.4)

Applying the Feynman-Kac formula to the corresponding equation for ∂w̃/∂s gives

w̃(s, t, f̃ , g̃; ỹ) = Es,ỹ

[
exp

(
−V

∫ t

s
ṽ(u, t, 1 − e−f̃ ; X̃u) du

)
g̃(X̃t)e−f̃(X̃t)

]
. (5.5)

Now substituting (5.5) into (5.2) yields∫
〈µ̃, g̃〉e−〈µ̃,f̃〉Q̃s

t (dµ̃) =
∑
x∈Zd

∫
{ỹ:ys=x}

λ̃s,ϑ(dỹ)
∫

Πt
s,x(dz̃) g̃(ỹ/s/z̃)e

−f̃(ỹ/s/z̃)

× exp
(
−V

∫ t

s
ṽ(u, t, 1 − e−f̃ ; (ỹ/s/z̃)u) du

)
. (5.6)

Since f̃ , g̃ ∈ bD([s0,∞)), we can apply (2.23) to get∫
〈µ̃, g̃〉e−〈µ̃,f̃〉Q̃s

t(dµ̃) =
∫
g̃(ỹ)e−f̃(ỹ) exp

(
−V

∫ t

s
ṽ(u, t, 1 − e−f̃ ; ỹu) du

)
λ̃t,ϑ(dỹ). (5.7)

Comparing (5.7) and (5.1) we see that it suffices to show

E
[
exp

(
−〈ζ̃s,t,ỹ, f̃〉

)]
= exp

(
−V

∫ t

s
ṽ(u, t, 1 − e−f̃ ; ỹu) du

)
. (5.8)

In order to do so we observe that

E
[
exp

(
−〈ζ̃s,t,ỹ, f̃〉

)]
= E

[
exp

(
−
∫ t

s
〈ξ̃u,ỹu

t , f̃〉ν(du)
)]

=
∞∑

m=0

e−V (t−s) (V (t− s))m

m!

∫
[s,t]m

du1 . . . dum

(t− s)m
E

[
exp

(
−

m∑
k=1

〈ξ̃uk,ỹuk

t , f̃〉
)]

=
∞∑

m=0

e−V (t−s)V
m

m!

(∫ t

s
duEu,δỹu

[
exp

(
−〈ξ̃t, f̃〉

)])m

=
∞∑

m=0

e−V (t−s)V
m

m!

(∫ t

s
(1 − ṽ(u, t, 1 − e−f̃ ; ỹu)) du

)m

= exp
(
−V

∫ t

s
ṽ(u, t, 1 − e−f̃ ; ỹu) du

)
. (5.9)

That means we proved (5.8). This completes the proof of (5.1). 2

Proof of Theorem 3 The proof is very similar to the proof of [DP91] Theorem 6.3.

(i) Let f̃ ∈ C+(D(Zd)) ∩ bD([s0,∞)) for some s0 > −∞ and s < s0. Using (2.19) one can see

Es,ỹ[〈ξ̃t, f̃〉] =
∂

∂α
ṽ(s, t, αf̃ ; ỹ)

∣∣∣
α=0

(5.10)
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and by (2.20)
Es,ỹ[〈ξ̃t, f̃〉] = (ãs,tf̃)(ỹ). (5.11)

By independence we get
Es,ϑ[〈ξ̃t, f̃〉] = 〈λ̃s,ϑ, ãs,tf̃〉. (5.12)

Since f̃ depends only on components t ≥ s0 the special structure of the initial distribution λ̃s,ϑ

leads to
〈λ̃s,ϑ, ãs,tf̃〉 = 〈λ̃s0,ϑ, ãs0,tf̃〉 <∞ ∀s < s0. (5.13)

Since the term on the r.h.s. of (5.13) does not depend on s we get tightness of the family
{Ls,ϑ[〈ξ̃t, f̃〉], s < s0}.
Furthermore the Laplace functional Es,ϑ[e−〈ξ̃t,f̃〉] is decreasing in s. This is justified by the
following observation. By (2.26)

∂

∂s
Es,ϑ[e−〈ξ̃t,f̃〉] = − exp

(
−〈λ̃s,ϑ, ṽ(s, t, 1 − e−f̃ ; · )〉

) ∂

∂s
〈λ̃s,ϑ, ṽ(s, t, 1 − e−f̃ ; · )〉. (5.14)

By (2.20)

〈λ̃s,ϑ, ṽ(s, t, 1 − e−f̃ ; · )〉 = 〈λ̃s,ϑ, ãs,t(1 − e−f̃ )〉 − V

2

∫ t

s
〈λ̃s,ϑ, ãs,u(ṽ(u, t, 1 − e−f̃ ; · )2)〉. (5.15)

Since f̃ depends only on components t ≥ s0 and since the solution of (2.20) is unique, the
functions ṽ(u, t, 1 − e−f̃ ; ỹ) do not depend on ys with s < s0. As in (5.13) we get

〈λ̃s,ϑ, ãs,t(1 − e−f̃ )〉 = 〈λ̃s0,ϑ, ãs0,t(1 − e−f̃ )〉 ∀s < s0 (5.16)

and

〈λ̃s,ϑ, ãs,u(ṽ(u, t, 1 − e−f̃ ; · )2)〉 =

{
〈λ̃u,ϑ, ṽ(u, t, 1 − e−f̃ ; · )2〉; u < s0

〈λ̃s0,ϑ, ãs0,u(ṽ(u, t, 1 − e−f̃ ; · )2)〉 u ≥ s0
. (5.17)

We end up with

∂

∂s
〈λ̃s,ϑ, ṽ(s, t, 1 − e−f̃ ; · )〉 =

V

2
〈λ̃s,ϑ, ṽ(s, t, 1 − e−f̃ ; · )2〉, (5.18)

thus the term on the r.h.s. of (5.14) is non-positive, which in turn yields that the Laplace func-
tional is decreasing in s, i.e., it increases as s ↓ −∞. Hence the Laplace functional Es,ϑ[e−〈ξ̃t,f̃〉]
converges as s→ −∞. By tightness we get

Ls,ϑ[ξ̃t] =⇒
s→−∞

L[ξ̃−∞
t ], (5.19)

where ξ̃−∞
t is infinitely divisible.

It remains to show persistence, i.e.,

E[〈ξ̃−∞
t , f̃〉] = 〈λ̃t,ϑ, f̃〉. (5.20)
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We have to show uniform integrability, which can be written by the definition of the Palm
distribution as

lim
K→∞

sup
s≤t

∫
λ̃t,ϑ(dỹ)

∫
(Q̃s

t)ỹ(dµ̃)f̃(ỹ)1I{〈µ̃,f̃〉>K}(µ̃) = 0. (5.21)

To do so we observe the following. Let K > ‖f̃‖∞. By (2.28)∫
λ̃t,ϑ(dỹ)

∫
(Q̃s

t)ỹ(dµ̃)f̃(ỹ)1I{〈µ̃,f̃〉>K}(µ̃) =
∫
λ̃t,ϑ(dỹ)f̃(ỹ)P[〈ζ̃s,t,ỹ + δỹ, f̃〉 > K]. (5.22)

Since 〈ζ̃s,t,ỹ, f̃〉 increases if s ↓ −∞ we get∫
λ̃t,ϑ(dỹ)

∫
(Q̃s

t)ỹ(dµ̃)f̃(ỹ)1I{〈µ̃,f̃〉>K}(µ̃)

≤
∫
λ̃t,ϑ(dỹ)f̃(ỹ)P

[(∫ t

−∞
ν(du)〈ξ̃u,ỹu

t , f̃〉
)
> K − ‖f̃‖∞

]

≤ 1
K − ‖f̃‖∞

∫
λ̃t,ϑ(dỹ)f̃(ỹ)E

[∫ t

−∞
ν(du)〈ξ̃u,ỹu

t , f̃〉
]
. (5.23)

By (5.11) E[〈ξ̃u,ỹu

t , f̃〉] = (ãu,tf̃)(ỹu). Moreover we know that ν is independent of ξu,ỹu

t and has
intensity measure V times Lebesgue measure, hence∫

λ̃t,ϑ(dỹ)f̃(ỹ)E
[∫ t

−∞
ν(du)〈ξ̃u,ỹu

t , f̃〉
]

= V

∫ t

−∞
du

∫
λ̃t,ϑ(dỹ) f̃(ỹ)(ãu,tf̃)(ỹu). (5.24)

Since f̃ ∈ C+
c (D(Zd)) there exists a constant c such that f̃ ≤ ‖f̃‖∞ 1IB(c) ◦ π0. Hence∫

λ̃t,ϑ(dỹ)f̃(ỹ)E
[∫ t

−∞
ν(du)〈ξ̃u,ỹu

t , f̃〉
]

≤ V ‖f̃‖2
∞

∫ t

−∞
du

∫
λ̃t,ϑ(dỹ) 1IB(c)(y0) ãu,t(1IB(c) ◦ π0)(ỹu). (5.25)

By the definition of ãu,t and λ̃t,ϑ we conclude that∫
λ̃t,ϑ(dỹ)f̃(ỹ)E

[∫ t

−∞
ν(du)〈ξ̃u,ỹu

t , f̃〉
]
≤ O(1)

∑
y,z∈B(c)

∫ 0

−∞
du â−2u(y, z). (5.26)

By (5.23) and (5.26) we obtain∫
λ̃t,ϑ(dỹ)

∫
(Q̃s

t )ỹ(dµ̃)f̃(ỹ)1I{〈µ̃,f̃〉>K}(µ̃) ≤ O(1)
K − ‖f̃‖∞

∑
y,z∈B(c)

∫ ∞

0
du âu(y, z). (5.27)

Since â is transient, we get (5.21).

(ii) As in (i) we can prove
LH(ϑ)[ξt] =⇒

t→∞
L[ξ], (5.28)

where ξ is infinitely divisible with intensity

E[〈ξ, f〉] = 〈ϑλ, f〉 (5.29)
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and Laplace functional
E[e−〈ξ,f〉] = e−v(f), (5.30)

where
v(f) = lim

t→∞

〈
ϑλ, v(t, 1 − e−f ; · )

〉
. (5.31)

Setting f̃ = f ◦ πt in (2.31) we see that π̄tξ̃
−∞
t and ξ have the same Laplace functional.

(iii) From (2.28) we obtain the result for the canonical Palm distribution. The desired result for
the canonical measure we conclude as in [DP91]. 2

Appendix

A Laplace functional

Lemma A.1 Let f̃ ∈ C+
b (Zd × [0,∞)) and denote fs(x) := f̃(x, s). The Laplace functional of

the weighted occupation time

h(u, t, f̃ ;x) := Eu,δx

[
exp

(
−
∫ t

u
ds 〈ξs, fs〉

)]
(A.1)

is the solution of the following equation

h(u, t, f̃ ;x) = 1 +
∫ t

u
ds as−u

(
V

2

(
1 − h(s, t, f̃ ; · )

)2 − fsh(s, t, f̃ ; · )
)

(x). (A.2)

Proof By a renewal argument

h(u, t, f̃ ;x) = e−V (t−u)v(u, t, f̃ ;x) +
V

2

∫ t

u
ds e−V (s−u)w(u, s, t, f̃ ;x), (A.3)

with

v(u, t, f̃ ;x) = Eu,x
[
e−
∫ t

u ds fs(Xs)
]

w(u, s, t, f̃ ;x) = Eu,x
[
e−
∫ s

u dρ fρ(Xρ)
(
h(s, t, f̃ ;Xs)2 + 1

) ]
, (A.4)

where (Xs)s≥0 is the continuous time random walk with transition kernel a.
Thus ∂h/∂u can be expressed in terms of the derivatives of v and w. The form of v and w allows
the application of the Feynman-Kac formula to get

∂

∂u
v(u, t, f̃ ;x) = −Ωv(u, t, f̃ ; · )(x) + fu(x)v(u, t, f̃ ;x) (A.5)

and
∂

∂u
w(u, s, t, f̃ ;x) = −Ωw(u, s, t, f̃ ; · )(x) + fu(x)w(u, s, t, f̃ ;x). (A.6)

Thereby we get

∂

∂u
h(u, t, f̃ ;x) = −Ωh(u, t, f̃ ; · )(x) − V

2

(
1 − h(u, t, f̃ ;x)

)2
+ fu(x)h(u, t, f̃ ;x). (A.7)

This completes the proof. 2
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Lemma A.2 Let f̃ ∈ C+
b (Zd × [0,∞)) and denote fs(x) := f̃(x, s). The Laplace functional of

the weighted occupation time from time T till time T + t

h(u, T, t, f̃ ;x) := Eu,δx

[
exp

(
−
∫ T+t

T
ds 〈ξs, fs〉

)]
(A.8)

solves

h(u, T, t, f̃ ;x) = aT−u

(
h(T, T, t, f̃ ; · )

)
(x)

+
V

2

∫ T

u
ds as−u

(
(1 − h(s, T, t, f̃ ; · ))2

)
(x). (A.9)

Proof The proof works analogously to the proof of Lemma A.1 except for the fact that we
manage without the Feynman-Kac formula. By a renewal argument

h(u, T, t, f̃ ;x) = e−V (T+t−u)v(u, T, t, f̃ ;x) +
V

2

∫ T

u
ds e−V (s−u)w(u, s, T, t, f̃ ;x)

+
V

2

∫ T+t

T
ds e−V (s−u)z(u, T, s, t, f̃ ;x), (A.10)

with

v(u, T, t, f̃ ;x) = Eu,x[e−
∫ T+t
T ds fs(Xs)]

w(u, s, T, t, f̃ ;x) = Eu,x
[
h(s, T, t, f̃ ;Xs)2 + 1

]
z(u, T, s, t, f̃ ;x) = Eu,x

[
e−
∫ s
T dρ fρ(Xρ)

(
h(s, s, T + t− s, f̃ ;Xs)2 + 1

)]
. (A.11)

Thus ∂h/∂u can be expressed in terms of the derivatives of v, w and z. Obviously

∂

∂u
v(u, T, t, f̃ ;x) = −Ωv(u, T, t, f̃ ; · )(x) (A.12)

and the same for w and z. We obtain

∂

∂u
h(u, T, t, f̃ ;x) = −Ωh(u, T, t, f̃ ; · )(x) − V

2

(
1 − h(u, T, t, f̃ ;x)

)2
. (A.13)

This leads to the assertion. 2

B Moment calculations

First of all we establish a recursive formula for the moments of the BRW with a single ancestor.

Lemma B.1 Let f : Zd → [0,∞) be bounded. The moments of the BRW with a single initial
particle fulfill the following recursive formula

Eδx [〈ξt, f〉n] = at(fn)(x) +
V

2

n−1∑
k=1

(
n

k

) ∫ t

0
ds at−s

(
Eδ· [〈ξs, f〉k]Eδ· [〈ξs, f〉n−k]

)
(x). (B.1)
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Particularly for the first and the second moment we obtain

Eδx [〈ξt, f〉] = (atf)(x) (B.2)

Eδx [〈ξt, f〉2] = at(f2)(x) + V

∫ t

0
ds at−s

(
(asf)2

)
(x). (B.3)

Proof Let g be in the domain of the generator of the BRW. Then g(ξt) solves the Kolmogorov
backward equation

∂

∂t
Eδx [g(ξt)] = ΩEδ·[g(ξt)](x) + V

(
1
2
E2δx [g(ξt)] +

1
2
E0[g(ξt)] − Eδx [g(ξt)]

)
. (B.4)

In particular by setting g(µ) = 〈µ, f〉n and by using the independence of the particles (B.4)
becomes

∂

∂t
Eδx [〈ξt, f〉n] = ΩEδ· [〈ξt, f〉n](x) +

V

2

n−1∑
k=1

(
n

k

)
Eδx [〈ξt, f〉k]Eδx [〈ξt, f〉n−k]. (B.5)

This leads to assertion (B.1). 2

Now we determine the moments of the BRW started as the Poisson point process.

Proposition B.2 (BRW at time t, Poisson initial distribution) Let f : Zd → [0,∞) be
bounded. The BRW started as the Poisson point process has the first moment

EH(ϑ)[〈ξt, f〉] = ϑ〈λ, f〉 (B.6)

and the second moment

EH(ϑ)[〈ξt, f〉2] = ϑ2〈λ, f〉2 + ϑ〈λ, f2〉 + V ϑ
∑

x,y∈Zd

f(x)f(y)
∫ t

0
ds â2s(x, y). (B.7)

Proof Lemma B.1 provides the first and the second moments of the BRW with a single initial
particle. Since we constructed the BRW with a general initial state as superposition of BRWs
with single ancestors, we obtain for the first moment

EH(ϑ)[〈ξt, f〉] = EH(ϑ)
[
〈
∑
x∈Zd

ξ0(x)∑
k=1

ξx,k
t , f〉

]
=
∑
x∈Zd

∞∑
n=0

e−ϑϑ
n

n!

n∑
k=1

E[〈ξx,k
t , f〉], (B.8)

where {(ξx,k
t )t≥0; k ∈ N} are independent BRWs started with a single initial particle in x. This

leads to
EH(ϑ)[〈ξt, f〉] =

∑
x∈Zd

ϑEδx [〈ξt, f〉]. (B.9)

This completes the proof of (B.6). Assertion (B.7) can be proven analogously. 2

Now we come to the moments of the weighted occupation times.
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Proposition B.3 (Weighted occupation time, single initial particle) Let f̃ ∈ C+
b (Zd ×

[0,∞)) and denote fs(x) := f̃(x, s). The weighted occupation time of the BRW with a single
initial particle has the first moment

Eδx

[∫ t

0
ds 〈ξs, fs〉

]
=
∫ t

0
ds (asfs)(x) (B.10)

and the second moment

Eδx

[∫ t

0
ds 〈ξs, fs〉

]2

=
∫ t

0
ds as

(
V

(∫ t

s
dρ (aρ−sfρ)

)2

+ 2fs

∫ t

s
dρ (aρ−sfρ)

)
(x) (B.11)

and the third moment

Eδx

[∫ t

0
ds 〈ξs, fs〉

]3

= 3V 2

∫ t

0
ds as

(∫ t

s
dρ (aρ−sfρ)

∫ t

s
dτ aτ−s

((∫ t

τ
dπ (aπ−τfπ)

)2
))

(x)

+ 6V
∫ t

0
ds as

(∫ t

s
dρ (aρ−sfρ)

∫ t

s
dτ aτ−s

(
fτ

∫ t

τ
dπ (aπ−τfπ)

))
(x)

+ 3V
∫ t

0
ds as

(
fs

∫ t

s
dτ aτ−s

((∫ t

τ
dπ (aπ−τfπ)

)2
))

(x)

+ 6
∫ t

0
ds as

(
fs

∫ t

s
dτ aτ−s

(
fτ

∫ t

τ
dπ (aπ−τfπ)

))
(x). (B.12)

Proof We consider the first moment. Let

h1(u, t, f̃ ;x) := Eu,δx

[∫ t

u
ds 〈ξs, fs〉

]
, (B.13)

which can be expressed in terms of the Laplace functional

h1(u, t, f̃ ;x) = − ∂

∂α
h(u, t, αf̃ ;x)

∣∣∣
α=0

, (B.14)

where h is given in (A.1). We know from Lemma A.1 that h(u, t, f̃ ;x) solves

h(u, t, f̃ ;x) = 1 +
∫ t

u
ds as−u

(
V

2

(
1 − h(s, t, f̃ ; · )

)2 − fsh(s, t, f̃ ; · )
)

(x). (B.15)

Substituting equation (B.15) into (B.14) leads to

h1(u, t, f̃ ;x) =
∫ t

u
ds (as−ufs)(x). (B.16)

Now we turn our attention to the second moment. Let

h2(u, t, f̃ ;x) := Eu,δx

[∫ t

u
ds 〈ξs, fs〉

]2

, (B.17)
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which is in terms of the Laplace functional

h2(u, t, f̃ ;x) =
∂2

∂α2
h(u, t, αf̃ ;x)

∣∣∣
α=0

. (B.18)

Hence by (B.15) again

h2(u, t, f̃ ;x) =
∫ t

u
ds as−u

(
V h1(s, t, f̃ ; · )2 + 2fsh1(s, t, f̃ ; · )

)
(x). (B.19)

Applying (B.16) we get

h2(u, t, f̃ ;x) =
∫ t

u
ds as−u

(
V

(∫ t

s
dρ (aρ−sfρ)

)2

+ 2fs

∫ t

s
dρ (aρ−sfρ)

)
(x). (B.20)

Now we come to the third moment. Let

h3(u, t, f̃ ;x) := Eu,δx

[∫ t

u
ds 〈ξs, fs〉

]3

, (B.21)

which is in terms of the Laplace functional

h3(u, t, f̃ ;x) = − ∂3

∂α3
h(u, t, αf̃ ;x)

∣∣∣
α=0

. (B.22)

Hence by (B.15) again

h3(u, t, f̃ ;x) =
∫ t

u
ds as−u

(
3V h1(s, t, f̃ ; · )h2(s, t, f̃ ; · ) + 3fsh2(s, t, f̃ ; · )

)
(x). (B.23)

Applying (B.16) and (B.20) we get

h3(u, t, f̃ ;x)

= 3V 2

∫ t

u
ds as−u

(∫ t

s
dρ (aρ−sfρ)

∫ t

s
dτ aτ−s

((∫ t

τ
dπ (aπ−τfπ)

)2
))

(x)

+ 6V
∫ t

u
ds as−u

(∫ t

s
dρ (aρ−sfρ)

∫ t

s
dτ aτ−s

(
fτ

∫ t

τ
dπ (aπ−τfπ)

))
(x)

+ 3V
∫ t

u
ds as−u

(
fs

∫ t

s
dτ aτ−s

((∫ t

τ
dπ (aπ−τfπ)

)2
))

(x)

+ 6
∫ t

u
ds as−u

(
fs

∫ t

s
dτ aτ−s

(
fτ

∫ t

τ
dπ (aπ−τfπ)

))
(x). (B.24)

This completes the proof. 2

Proposition B.4 (Late weighted occupation time, single initial particle) Let f̃ ∈
C+

b (Zd × [0,∞)) and denote fs(x) := f̃(x, s). The first moment of the weighted occupation
time from time T till time T + t of the BRW with a single initial particle is

Eδx

[∫ T+t

T
ds 〈ξs, fs〉

]
=
∫ T+t

T
ds (asfs)(x). (B.25)
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The second moment is

Eδx

[∫ T+t

T
ds 〈ξs, fs〉

]2

= V

∫ T

0
ds as

((∫ T+t

T
dρ (aρ−sfρ)

)2
)

(x)

+
∫ T+t

T
ds as

(
V

(∫ T+t

s
dρ (aρ−sfρ)

)2

+ 2fs

∫ T+t

s
dρ (aρ−sfρ)

)
(x). (B.26)

Proof The proof works analogously as the proof of Proposition B.3 except for using Lemma
A.2 instead of Lemma A.1. We conclude that the first moment

h1(u, T, t, f̃ ;x) := Eu,δx

[∫ T+t

T
ds 〈ξs, fs〉

]
(B.27)

solves
h1(u, T, t, f̃ ;x) = aT−u

(
h1(T, T, t, f̃ ; · )

)
(x), (B.28)

which in turn means by (B.16)

h1(u, T, t, f̃ ;x) =
∫ T+t

T
ds (as−ufs)(x). (B.29)

For the second moment we get that

h2(u, T, t, f̃ ;x) := Eu,δx

[∫ T+t

T
ds 〈ξs, fs〉

]2

(B.30)

solves

h2(u, T, t, f̃ ;x) = aT−u

(
h2(T, T, t, f̃ ; · )

)
(x) + V

∫ T

u
ds as−u

(
h1(s, T, t, f̃ ; · )2

)
(x). (B.31)

By (B.20) and (B.29) we end up with assertion (B.26). This completes the proof. 2

Proposition B.5 (Late weighted occupation time, Poisson initial distribution) Let
f̃ ∈ C+

b (Zd× [0,∞)) and denote fs(x) := f̃(x, s). The weighted occupation time from time T till
time T + t of the BRW started as the Poisson point process has the first moment

EH(ϑ)

[∫ T+t

T
ds 〈ξs, fs〉

]
= ϑ

∫ T+t

T
ds 〈λ, fs〉 (B.32)

and the second moment

EH(ϑ)

[∫ T+t

T
ds 〈ξs, fs〉

]2

= ϑ2

(∫ T+t

T
ds 〈λ, fs〉

)2

+ 2ϑ
∑
x∈Zd

∫ T+t

T
ds fs(x)

∫ T+t

s
dρ (aρ−sfρ)(x)

+V ϑ
∑
x∈Zd

∫ T

0
ds

(∫ T+t

T
dρ (aρ−sfρ)(x)

)2

+V ϑ
∑
x∈Zd

∫ T+t

T
ds

(∫ T+t

s
dρ (aρ−sfρ)(x)

)2

. (B.33)
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Proof In order to apply the moment formulas of the BRW with a single initial particle we
decompose

ξs =
∑
x∈Zd

ξ0(x)∑
k=1

ξx,k
s , (B.34)

where {(ξx,k
s )s≥0; k ∈ N} are independent BRWs started with a single initial particle in x. For

the first moment we obtain

EH(ϑ)

[∫ T+t

T
ds 〈ξs, fs〉

]
= ϑ

∑
x∈Zd

Eδx

[∫ T+t

T
ds 〈ξs, fs〉

]
. (B.35)

Using (B.25) leads to assertion (B.32). For the second moment we obtain

EH(ϑ)

[∫ T+t

T
ds 〈ξs, fs〉

]2

= ϑ2


∑

x∈Zd

Eδx

[∫ T+t

T
ds 〈ξs, fs〉

]
2

+ ϑ
∑
x∈Zd

Eδx

[∫ T+t

T
ds 〈ξs, fs〉

]2

. (B.36)

Using (B.25) and (B.26) leads to assertion (B.33), thus we are done. 2

Proposition B.6 (Equilibrium weighted occupation time) Let f̃ ∈ C+
b (Zd × [0,∞)) and

denote fs(x) := f̃(x, s). The first moment of the weighted occupation time in equilibrium is

EΛϑ

[∫ t

0
ds 〈ξs, fs〉

]
= ϑ

∫ t

0
ds 〈λ, fs〉. (B.37)

The second moment has the form

EΛϑ

[∫ t

0
ds 〈ξs, fs〉

]2

= ϑ2

(∫ t

0
ds 〈λ, fs〉

)2

+ 2ϑ
∑
x∈Zd

∫ t

0
ds fs(x)

∫ t

s
dρ (aρ−sfρ)(x)

+ V ϑ
∑
x∈Zd

∫ ∞

0
ds

(∫ t

0
dρ (as+ρfρ)(x)

)2

+ V ϑ
∑
x∈Zd

∫ t

0
ds

(∫ t

s
dρ (aρ−sfρ)(x)

)2

. (B.38)

Proof Recall the Basic Ergodic Theorem of Section 1.2. By (1.10) and (3.27)

EΛϑ

[∫ t

0
ds 〈ξs, fs〉

]
= lim

T→∞
EH(ϑ)

[∫ T+t

T
ds 〈ξs, fs−T 〉

]
(B.39)

and

EΛϑ

[∫ t

0
ds 〈ξs, fs〉

]2

= lim
T→∞

EH(ϑ)

[∫ T+t

T
ds 〈ξs, fs−T 〉

]2

. (B.40)

Now we apply (B.32) respectively (B.33). This leads to assertions (B.37) and (B.38). 2
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C The asymptotic behavior of the Green’s function on Z
d

Lemma C.1 Assume Ĝ defined by (1.13). Then

Ĝ(x) ∼
{
C · Q̄(x)−

d−2
2 as |x| → ∞; x ∈ G,
0 if x ∈ Z

d\G, (C.1)

where

C =
|Zd/G|Γ(d−2

2 )
2πd/2|Q|1/2

, (C.2)

where Q̄ is given by (1.16).

Proof The little calculation

Ĝ(x) =
∫ ∞

0
âs(0, x) ds =

∫ ∞

0

∞∑
n=0

e−s s
n

n!
â(n)(0, x) ds =

∞∑
n=0

â(n)(0, x) = Ĝ(dis)(x) (C.3)

shows that the Green’s function of the continuous time kernel is equal to the discrete time one.
The kernel â is symmetric and therefore mean zero. Furthermore we observe that Q given in
(1.15) is the covariance matrix of â.

Hence we need the asymptotics of the discrete time Green’s function Ĝ(dis). In [Zäh01] Corollary
2 we find

Ĝ(x) ∼
{
C · Q̄(x)−

d−2
2 as |x| → ∞; x ∈ G,
0 if x ∈ Z

d\G, (C.4)

where

C =
|Zd/G|Γ(d−2

2 )
2πd/2|Q|1/2

. (C.5)

This completes the proof. 2

D Local Central Limit Theorems

Proposition D.1 (Continuous time version of 7.P9 of [Spi64]) For a strongly aperiodic
random walk (ξt)t≥0 with kernel a started in the origin, which has mean 0 and a finite second
moment,

(2πt)d/2P[ξt = x] −→
t→∞

|Q|−1/2, ∀x ∈ Z
d, (D.1)

where |Q| is the determinant of the covariance matrix Q of a.

Proof The following proof is the adaption of the proof of Theorem 7.P9 of [Spi64] to the
continuous time random walk. By the definition of a continuous time random walk we know

P[ξt = x] = P[Sτ(t) = x], (D.2)
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where τ(t) is a Poisson random variable with mean t and Sn = X1 + · · ·+Xn with {Xk; k ∈ N}
i.i.d. with distribution a.

Let ϕ denote the characteristic function of X1. Obviously∑
y∈Zd

P[Sτ(t) = y]eiz·y = e−tetϕ(z). (D.3)

Multiplying e−iz·x and integrating over T = {z ∈ R
d : |zk| ≤ π, k = 1, . . . , d} on both sides leads

to
(2πt)d/2P[ξt = x] = (2π)−d/2td/2

∫
T

e−tetϕ(z)e−ix·zdz, (D.4)

and after substituting z :=
√
tz

(2πt)d/2P[ξt = x] = (2π)−d/2

∫
√

tT
e−tetϕ(z/

√
t)e−ix·z/

√
tdz. (D.5)

We decompose the term on the r.h.s. of the latter equation in a principle term plus error terms
as follows

(2πt)d/2P[ξt = x] = (2π)−d/2

∫
Rd

e−
1
2
ztrQze−ix·z/

√
tdz

+ I1(t, c1) − I2(t, c1) + I3(t, c1, c2) + Ir(t, c2), (D.6)

with

I1(t, c1) := (2π)−d/2

∫
z;|z|≤c1

[
e−tetϕ(z/

√
t) − e−

1
2
ztrQz

]
e−ix·z/

√
tdz

I2(t, c1) := (2π)−d/2

∫
z;|z|>c1

e−
1
2
ztrQze−ix·z/

√
tdz

I3(t, c1, c2) := (2π)−d/2

∫
z;c1<|z|≤c2

√
t
e−tetϕ(z/

√
t)e−ix·z/

√
tdz

I4(t, c2) := (2π)−d/2

∫
z∈√tT;|z|>c2

√
t
e−tetϕ(z/

√
t)e−ix·z/

√
tdz, (D.7)

with c2 small enough such that if |z| ≤ c2
√
t then z ∈ √

tT. First of all we show that the
principle term converges as required, namely by the majorized convergence

I0(t) := (2π)−d/2

∫
Rd

e−
1
2
ztrQze−ix·z/

√
tdz −→

t→∞
(2π)−d/2

∫
Rd

e−
1
2
ztrQzdz (D.8)

and the term on the r.h.s. in turn is just |Q|1/2 by the following argument. Since Q is symmetric
there exists an orthogonal matrix S such that

StrQS =




α1 0
. . .

0 αd


 , (D.9)
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where α1, . . . , αk > 0 are the eigenvalues of Q. We substitute z := Strz to get

(2π)−d/2

∫
Rd

e−
1
2
ztrQzdz = (2π)−d/2

∫
Rd

e−
1
2

∑d
k=1 αkz2

kdz = (2π)−d/2
d∏

k=1

√
2π√
αk

= |Q|−1/2. (D.10)

This completes the proof of I0(t) −→
t→∞

|Q|−1/2. We are done if we show that all error terms
converge to zero.

First of all we mention that
lim
z→0

1 − ϕ(z)
ztrQz

=
1
2
. (D.11)

This is proven in [Spi64] 7.P7.

Using (D.11) we get

e−tetϕ(z/
√

t) = exp
(
− 1 − ϕ(z/

√
t)

(z/
√
t)trQ(z/

√
t)
ztrQz

)
−→
t→∞

e−
1
2
ztrQz. (D.12)

By majorized convergence we obtain I1(t, c1) −→
t→∞

0 for fixed c1.

The term I2 can be estimated by

|I2(t, c1)| ≤ (2π)−d/2

∫
z;|z|>c1

e−
1
2
ztrQzdz. (D.13)

For I3 we get an analogous estimate if we use (D.11) and (D.12) to show that for c2 small enough

e−tetϕ(z/
√

t) ≤ e−
1
4
ztrQz, ∀z, |z| ≤ c2

√
t. (D.14)

This justifies

|I3(t, c1, c2)| ≤ (2π)−d/2

∫
z;|z|>c1

e−
1
4
ztrQzdz. (D.15)

Due to (D.13) and (D.15) I2 and I3 can be made arbitrarily small by choosing c2 small enough
and c1 large enough.

By [Spi64] 7.P8 |ϕ(z)| = 1 iff each coordinate of z is a multiple of 2π. That means there exists
a constant δ = δ(c2) such that

|ϕ(z)| < 1 − δ, ∀z ∈ T, |z| > c2. (D.16)

We get
e−tetϕ(z) ≤ e−δt −→

t→∞
0. (D.17)

We conclude I4(t, c2) −→
t→∞

0. This completes the proof. 2

Proposition D.2 For a strongly aperiodic random walk (ξt) with kernel a started in the origin,
which has mean 0 and has finite second moments,

lim
t→∞

[
(2πt)d/2P[ξt = x] − |Q|− 1

2 e−
1
2t

xtrQ−1x
]

= 0 (D.18)

uniformly in x ∈ Z
d.
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Proof Analogous to the proof of Proposition D.1 we adapt the proof of the remark of [Spi64],
which is to be found right after Theorem 7.P9.

As in (D.5) we write

(2πt)d/2P[ξt = x] = (2π)−d/2

∫
√

tT
e−tetϕ(z/

√
t)e−ix·z/

√
tdz (D.19)

and as in (D.6) we decompose the term on the r.h.s. of the latter equation in a principle term
plus error terms as follows

(2πt)d/2P[ξt = x] = (2π)−d/2

∫
Rd

e−
1
2
ztrQze−ix·z/

√
tdz

+ I1(t, c1) + I2(t, c1) + I3(t, c1, c2) + Ir(t, c2). (D.20)

We are done if we show

(2π)−d/2

∫
Rd

e−
1
2
ztrQze−ix·z/

√
tdz = |Q|− 1

2 e−
1
2t

xtrQ−1x, (D.21)

since the estimates of the error terms are uniformly in x.

We substitute z := Strz, where S is given by (D.9) to get

(2π)−d/2

∫
Rd

e−
1
2
ztrQze−ix·z/

√
tdz = (2π)−d/2

∫
Rd

e−
1
2

∑d
k=1 αkz2

ke−i(Strx)·z/
√

tdz

= (2π)−d/2
d∏

k=1

∫
R

e−
1
2
αkz2

ke−i(Strx)kzk/
√

tdzk. (D.22)

We observe∫
R

e−cx2−ibxdx = e−b2/(4c)

∫
R

e−c(x+ib/(2c))2dx = e−b2/(4c)

∫
R+ib/(2c)

e−cz2
dz

= e−b2/(4c)

∫
R

e−cz2
dz = e−b2/(4c)

√
π/c. (D.23)

We apply (D.23) to (D.22), hence

(2π)−d/2

∫
Rd

e−
1
2
ztrQze−ix·z/

√
tdz = (2π)−d/2

d∏
k=1

exp
(
−(Strx)2k

2αkt

)√
2π
αk

= exp

(
−

d∑
k=1

(Strx)2k
2αkt

)
d∏

k=1

α
−1/2
k

= |Q|− 1
2 e−

1
2t

xtrQ−1x. (D.24)

This completes the proof. 2
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