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1 Introduction:

A phylogenetic tree with l leaves is a rooted binary tree with l labeled leaves. For
example, when l = 3, there are three such distinct trees:
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Figure 1: Different trees on 3 leaves

Set n = ` − 1. Schröder (1870) showed there are (2n)!/2nn! phylogenetic trees.

A perfect matching on 2n points is a partition of 1, 2, . . . , 2n into n two-element subsets.
It is well known that there are (2n)!/2nn! distinct perfect matchings. When n = 2, the
three perfect matchings are

{1, 2}{3, 4}; {1, 3}{2, 4}; {1, 4}{2, 3}
Diaconis & Holmes (1998) give an explicit bijection, explained below, between these two
sets.

In this paper, we analyze a natural random walk on Mn, the set of perfect matchings on
2n points, along with the isomorphic walk on trees. For matchings, a step in the walk
is obtained by picking two matched pairs at random, a random entry of each pair, and
transposing these entries. Thus, switching 2 and 3 moves {1, 2} {3, 4} to {1, 3} {2, 4}.
For general n ≥ 2 and x, y ∈ Mn define

(1) K(x, y) =

{ 1
n(n−1)

if x and y differ by a transposition;

0 otherwise.

When n = 2, the transition matrix K is

{1, 2}{3, 4} {1, 3}{2, 4} {1, 4}{2, 3}
{1, 2}{3, 4} 0 1

2
1
2{1, 3}{2, 4} 1

2
0 1

2{1, 4}{2, 3} 1
2

1
2

0

The Markov chain (1) has the uniform distribution π(x) = 2nn!/(2n)! as unique stationary
distribution. Our main result determines sharp rates of convergence to stationarity.

Theorem 1 For the Markov chain K(x, y) of (1) on Mn the space of perfect matchings
on 2n points, for any starting state x, if m = 1

2
n(log n + c), with c > 0, then

(2) ||Km
x − π|| ≤ ae−c
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In (2) Km
x (y) = Km(x, y) =

∑
z Km−1(x, z)K(z, y) and a is a universal constant. The

result is sharp; if m = 1
2
n(log n − c) for c positive, there is x∗ and positive ε = ε(c) such

that

(3) ||Km
x∗ − π|| ≥ ε, for all n.

In (2) and (3) the norm is the total variation distance

(4) ||Km
x − π|| =

1

2

∑
y

|Km(x, y) − π(y)| = max
A

|Km
x (A) − π(A)|.

Section 2 contains background on the analytic theory of Markov chains and needed tools
from representation theory. Theorem 1 is proved in Section 3 by bounding the total
variation norm by the L2 norm. This is expressed exactly in terms of symmetric group
characters. Then standard calculus estimates finish the job. To conclude this introduc-
tion, we discuss background on phylogenetic trees, random matchings, diffusion problems,
zonal polynomials, and the Metropolis algorithm. Each gives a different interpretation of
Theorem 1.

1.1 Phylogenetic Trees

Leaf-labeled trees are a mainstay of modern genomics, depicting family trees or parental
relations for l populations, species or genes. An overview, history and statistical develop-
ments is in Holmes (1999). See Page & Holmes (2000) for a good book-length treatment
of trees and Aldous (1996, 2001) for a probabilistic view. Monte Carlo Markov chains
for computing with trees and a variety of scenarios for natural probability distributions
on trees lean on random walks such as (1) on the space of all trees. Aldous (2000)
and Schweinsberg (2001) study a different walk for which they have given coupling and
eigenvalue bounds quite different from (1).

In hope of duplicating the achievements of comparison theory in the analysis of random
walk on groups (Diaconis & Saloff-Coste (1993a), Diaconis & Saloff-Coste (1993b), Aldous
& Fill (2002)) we searched for a Markov chain on trees which permits a complete analysis.
The present matching chain, carried over to trees, offers a candidate which we hope will
prove useful.

We briefly describe the correspondence between matchings and trees. Begin with a tree
with ` labeled leaves. Label the internal vertices sequentially with `+1, `+2, . . . , 2(`−1)
choosing at each stage the ancestor which has both children labeled and who has the
descendant lowest possible available label (youngest child). Thus the tree

3
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When all nodes are labeled, create a matching on 2n = 2(` − 1) vertices by grouping
siblings. In the example above, this yields

{3, 4}{2, 5}{1, 6}.
To go backward, given a perfect matching of 2n points, note that at least one matched
pair has both entries from {1, 2, 3 . . . , n+1}. All such labels are leaves; if there are several
leaf-labeled pairs, choose the pair with the smallest label. Give the next available label
(n + 2 = ` + 1) to their parent node. There are then a new set of available labeled pairs.
Choose again the pair with the smallest label to take the next available label for its parent,
and so on.

For example, {3, 4}{2, 5}{1, 6} has 2n = 6 and {3, 4} has both entries from
{1, 2, 3, 4}. The parent of these is labeled 5 and thus matched with 2 and then

the parent of {2, 5} is matched with 1, yielding
b
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Under this correspondence, the Markov chain (1)
on matchings leads to a Markov chain on trees.
For example, if the first few steps of the walk on
matchings are

{1, 2}{3, 4}{5, 6} −→ {1, 5}{3, 4}{2, 6} −→ {1, 4}{3, 5}{2, 6} −→ {4, 6}{3, 5}{1, 2},
the associated walk on trees is
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Theorem 1 holds as stated for trees: after 1
2
n(log n + c) steps this walk is close to the

uniform distribution.

1.2 Random Matchings

Let G be a graph with vertex set V and edge set E. A perfect matching is a set of
disjoint edges containing all vertices. Matchings have evolved as an important tool in
graph algorithms. See Lovasz & Plummer (1985) or (Pulleyblank, 1995, chapter 4).

The nearest neighbor process of Theorem 1.1 is a procedure for generating a random
matching. A similar procedure can be run on more general graphs. Such procedures
form the basis of an interesting new stochastic algorithm for approximating the number of
perfect matchings in the graph. This last is a #−P complete problem and these stochastic
algorithms offer the only currently feasible approach. Following work by Jerrum & Sinclair
(1989), Jerrum et al. (2000) showed that the analogous random walk on bipartite graphs
is rapidly mixing. The actual bound they found, while polynomial in n (number of
vertices), is probably far from the truth. Theorem 1 gives the only example where the
sharp bounds are known. We note further that our analysis determines all the eigenvalues
of the matching graph.

1.3 A Diffusion Problem

The original motivation for considering random matchings came from its association with
the Bernoulli–Laplace diffusion model. There, one considers two urns, the left containing
n red balls, the right containing n black balls. At each time, a ball is chosen at random
in each urn and the two balls are switched. Diaconis & Shahshahani (1987) show that it
takes 1

4
log n + cn switches to mix up the urns. An analysis for three urns is developed in

Scarabotti (1997).

It is natural to consider problems with more urns. The present paper can be considered as
involving n urns, each containing 2 balls. As explained below, the approach we use here
works for any number of urns, provided all contain the same number of balls. However
with three urns with a different number of balls in each, the problem is open.

1.4 Zonal Polynomials

Our original proof of Theorem 1 used the machinery of Gelfand pairs and the correspon-
dence between the zonal spherical functions associated to the space of matchings with the
zonal polynomial of Alan James. The symmetric group S2n acts transitively on matchings
by permuting coordinates. The subgroup fixing the matching {1, 2}{3, 4} . . .{2n− 1, 2n}
is isomorphic to Bn, the group of symmetries of an n-dimensional cube (|Bn| = 2nn!). The
permutation representation of S2n is multiplicity free and the eigenvalues of the random
walk are the values of the spherical functions of the representation (Diaconis (1988)).
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Using a form of the Schur-Weyl duality, these spherical functions may be identified with
the coefficients of zonal polynomials expanded in the power sum symmetric functions.

The random walk led to new formulae for zonal polynomials and substantial new mathe-
matics in joint work with Eric Lander. This has been brilliantly exposited by (Macdonald,
1995, Chapter 7). We recently realized that all of this machinery could be avoided. The
simple proof which follows leans on early work (Diaconis & Shahshahani, 1981). It only
needs basic representation theoretic tools. The new approach can be used backward to
give different proofs of spherical function formulae. Using an extension of the random
transposition results due to Roussel (2000) leads to new formulae for spherical functions
and zonal polynomials.

1.5 A Metropolis walk on partitions; coagulation and fragmen-

tation

Let Pn be the partitions of n, e.g. P3 = {3; 2, 1; 1, 1, 1}. Partitions are written as λ ` n
with λ = (λ1, λ2, . . . , λr), λ1 ≥ λ2 ≥ · · · ≥ λr > 0, or as 1a12a2 . . . nan , if λ has ai parts
labeled i, with

∑
iai = n. The length is `(λ) = r =

∑
ai. If z(λ) =

∏r
i=1 iaiai!, then

{1/z(λ)}λ`n defines a probability distribution on Pn. To see this, recall that the partitions
index the conjugacy classes of the representation of the symmetric group Sn, and the size
of the conjugacy class corresponding to λ is n!/z(λ). Since the conjugacy classes partition
Sn,

∑
λ

n!
z(λ)

= n!.

Repeated random transpositions induce a random walk on Sn with a uniform stationary
distribution. If the walk is lumped to conjugacy classes, we get a Markov chain on
partitions with 1

z(λ)
as its stationary distribution. When n = 3, the stationary distribution

and transition matrix are:

(
1

6
,
1

2
,
1

3
),

13 2, 1 3
13 0 1 0
2, 1 1

3
0 2

3

3 0 1 0

This walk on partitions is a special case of a large class of models studied by chemists and
physicists as a process of coagulation and fragmentation. See the reviews by Aldous (1999,
1998), Durrett et al. (1999) or Mayer-Wolfe et al. (2001). It does not seem to have been
noticed that the eigenvalues of this walk were given in Diaconis & Shahshahani (1981) as
the number in (13) below and the eigenvectors are the characters of the symmetric group.
We will call this walk on partitions the conjugacy walk.

The walk (1) on matchings also induces a walk on partitions Pn. To see this, let the
identity matching be {1, 2}{3, 4} . . .{2n − 1, 2n}. Given two matchings x, y ∈ Mn, form
a graph on 2n points, with blue edges for the matched pairs in x and red edges for the
matched pairs in y. This graph decomposes into disjoint cycles, each of even length with

6



alternating red/blue edges. These cycle lengths divided by 2 form a partition of n, which
we call the distance between x and y. See Macdonald (1995) for more details.

Start the random walk of (1) at the identity matching, and report only the distance from
the identity at each step. Thus when n = 3, a sample walk of matchings and partitions is

Mn Pn

{1, 2}{3, 4}{5, 6} 13

{1, 3}{2, 4}{5, 6} 1, 2
{1, 5}{2, 4}{3, 6} 3
{1, 4}{2, 5}{3, 6} 3
{1, 6}{2, 5}{3, 4} 1, 2

...
...

This distance walk on partitions has stationary distribution

(5) π(λ) =
c−1

2`(λ)z(λ)
, with c =

(
2n
n

)
22n

To see this, note that the distance of a matching is in one-to-one correspondence with the
double coset in Bn\Sn/Bn. The double coset containing x of distance λ has size 2`(λ)z(λ)
by Macdonald (1995) . The stationary distribution is the special case of Ewens’ sampling
formula (with θ = 1

2
) used in population genetics (see Ewens (1972)). When n = 3 the

distance walk has stationary distribution and transition matrix:

(
1

15
,
2

5
,

8

15
)


 0 1 0

1
6

1
6

2
3

0 1
2

1
2




We find the following relation between the conjugacy chain and the distance chain curious:
if the conjugacy chain is changed to have stationary distribution π(λ) by the Metropolis
algorithm (Hammersley & Handscomb, 1964), the resulting metropolized chain is the
distance chain. To explain, let the conjugacy chain have transition matrix P (λ, µ). The
Metropolis procedure constructs an auxiliary matrix

(6) A(λ, µ) =
π(µ)P (µ, λ)

π(λ)P (λ, µ)

Then, define the Metropolis chain by

(7) M(λ, µ) =




P (λ, µ) if A(λ, µ) ≥ 1, λ 6= µ
P (λ, µ)A(λ, µ) if A(λ, µ) < 1, λ 6= µ
P (λ, λ) +

∑
µ:A(λ,µ)<1 P (λ, µ)(1 − A(λ, µ)) if λ = µ

Our observation is that for all n, M is the distance chain. For example, when n = 3 the
matrix A(λ, µ) is

(8)

13 2, 1 3
13 0 2 0
2, 1 1

2
0 2

3 0 1
2

0

7



and using the recipe (7) with (6) yields (8). This is closely related to other examples.
Diaconis & Ram (2000) and Diaconis & Hanlon (1992) show how the Metropolis algorithm
sometimes results in group theoretically natural deformations. We thus can see the present
paper as giving a sharp analysis of an instance of the Metropolis algorithm.

2 Background and Needed Tools

In broad outline, the proof of Theorem 1 is similar to the analysis of random transpositions
in S2n. The expository account presented in Diaconis (1988) develops needed background
from first principles and certainly provides sufficient background. Splendid treatments of
the more recent developments in Markov chain theory appear in Aldous & Fill (2002) and
Saloff-Coste (1997).

2.1 Markov Chain Background

Let X be a finite set and K be a matrix indexed by X ×X . Throughout, π is a stationary
distribution for which K is ergodic and reversible: π(x)K(x, y) = π(y)K(y, x). Because
of reversibility, K has an orthonormal basis of eigenvectors fi(x) with

Kfi(x) =
∑

K(x, y)fi(y) = βifi(x).

Here βi is the associated eigenvalue and both fi and βi are real. Arguing as in Diaconis
& Saloff-Coste (1993a) we may express the chi-square distance as

(9) ||Km
x − π||22 =

∑
y

|Km(x, y) − π(y)|2
π(y)

=

∗∑
i

f 2
i (x)β2m

i ,

where the second sum is over all i with βi 6= 1.
If a finite group G acts transitively on X and preserves K then the distance (9) does not
depend on the initial state x. Multiply both sides of (9) by π(x) and sum over x. The
orthogonality of fi yields

(10) ‖Km
x − π‖2

2 =

∗∑
i

β2m
i .

For theorem 1, X is the space of matchings, K is defined by (1.1) and π is uniform. The
chain is symmetric and so, reversible. The group G is S2n, the symmetric group on 2n
letters. Here σ in S2n acts on matchings coordinate wise:

σ((i1, i2), (i3, i4), . . . , (i2n−1, i2n)) = (σ(i1), σ(i2)), . . . , (σ(i2n−1), σ(i2n)).

This is a transitive action so (10) is in force.

8



Using the Cauchy-Schwartz inequality shows that the chi-square distance is an upper
bound for the total variation norm of (4)

(11) ||Km
x − π||2 = (

1

2

∑
|Km(x, y) − π(y)|)2 ≤ 1

4

∑
y

|Km(x, y) − π(y)|2
π(y)

The bounds (10), (11) and an explicit determination of the eigenvalues constitute the
backbone of the proof.

2.2 Group Theory Background

For background in representation theory, we recommend Serre (1977) or Diaconis (1988).
For characters of the symmetric group see Sagan (2001) or (Macdonald, 1995, Chapter
1).

As explained above, S2n acts transitively on the space of matchings, giving a permutation
representation of S2n on L(Mn) = {f : Mn −→ R}. Matchings may be thought of as
a product of n disjoint transpositions and so as fixed-point free idempotent mappings of
{1, 2, . . . , 2n} to itself, or as the elements of the conjugacy class of S2n with all cycles of
length two. The conjugacy action of the group is just as defined in Section 2.1. If Bn is
the subgroup of S2n fixing the matching (1, 2)(3, 4) . . . (2n− 1, 2n), then Bn is isomorphic
to the hyperoctahedral group of order 2nn!. Matchings may be identified with elements
of the quotient S2n/Bn.

The irreducible representations of S2n are indexed by partitions µ of 2n. They will be
denoted Sµ in what follows. A crucial fact is that the decomposition of L(Mn) is known:

Theorem 2 Let Mn = S2n/Bn. Let L(Mn) be all real functions on Mn, considered as
a representation of S2n. Then

L(Mn) =
⊕

λ`n
S2λ,

where the direct sum is over all partitions λ of n, 2λ = (2λ1, 2λ2, . . . , 2λk) and S2λ is the
associated irreducible representation of the symmetric group S2n.

This result was used extensively by James (1982, 1968) who credits it to Littlewood or
Thrall. A proof appears in (James & Kerber, 1981, page 224), see also Saxl (1981) or
Inglis et al. (1990).

The final step of preparation relates the matching chain K of (1.1) to the random trans-
position chain on all of S2n. Consider the formal sum of all transpositions in S2n weighted
by 1

(2n
n )

:

T =
1(
2n
n

) ∑
1≤i<j≤2n

(i, j).

This operates on L(Mn) by left multiplication. Let Tn be the matrix of this as a linear
map on L(Mn) with the space having basis the delta functions of the matchings.

9



Proposition 1 The transition matrix K of (1.1) and Tn satisfy

K =
2n − 1

2n − 2

(
Tn − 1

2n − 1
I

)
.

Proof This is best seen combinatorially. Operating by Tn corresponds to picking a
random pair of indices 1 ≤ i < j ≤ 2n and transposing to get a new matching. This
fixes a matching if i and j are matched to each other. The chance of this is easily seen
to be 1

2n−1
. Deleting these diagonal elements from Tn and re-normalizing gives the result.�

Corollary 1 The transition matrix K of (1.1) has an eigenvalue βλ for each partition
λ = (λ1, λ2, . . . , λk) of n, given by

βλ =
1

n(n − 1)

k∑
j=1

λ2
j − jλj.

The multiplicity of βλ is determined by µ = 2λ :

(12) mult(λ) =
(2n)!∏

(i,j)∈µ h(i, j)
,

with the product being over the cells of the shape µ, and h(i, j) hook length µi+µ′
j−i−j+1

, where µ′ is the transposed diagram.

Example Suppose n = 3, so |Mn| = 15. The three partitions 3, 21, 13 give
β3 = 1, β21 = +1

6
, β13 = −1

2
with multiplicities 1, 9, 5.

Proof of Corollary 2.1 If ρµ denotes the irreducible matrix representation of S2n cor-
responding to µ, the Fourier transform of the element T is

T̂ (µ) =
1(
2n
n

) ∑
1≤i<j<2n

ρµ(i, j).

Using Schur’s lemma, this matrix is a constant times the identity:

T̂ (µ) = c(µ)I.

Taking the trace of both sides shows c(µ) = χµ(1, 2)/χµ(id) with χµ the character for this
representation. This character ratio was determined by Froebenius. See Ingram (1950)
for a modern treatment. This gives

(13)
χµ(1, 2)

χµ(id)
=

1

2n(2n − 1)

∑
j

µ2
j − (2j − 1)µj

10



For the present application µ = 2λ. Since T̂ (µ) is diagonal, the multiplicity of this
eigenvalue is the dimension of ρµ, namely χµ(id). This multiplicity is given by the hook
length formula (12) (see Sagan (2001)).
Finally, using Proposition 2.1 and simple algebra completes the proof. �

Remark Corollary 1 determines the eigenvalues of the matching graph. This has ver-
tices Mn and an edge from x to y if they differ by a single switch. There has been a
healthy development on the combinatorial side, determining the eigenvalues for a variety
of matching ‘complexes’; see Wachs (2001) for a survey of closely related results.

3 Proof of Theorem

We begin by giving a direct proof of the lower bound (3). The lower bound is proved by
finding a set A ⊂ Mn and x∗ ∈ Mn such that π(A) is large and Km

x∗(A) is small. From
(4), ||Km

x − π|| ≥ |Km
x (A) − π(A)|. To produce A, define a function T on matchings by

T (x) = |i, 1 ≤ i ≤ n, {(2i − 1, 2i) ∈ x}|.

Thus T (x) =
∑n

i=1 Ti(x) with

Ti(x) =

{
1 if (2i − 1, 2i) are matched in x
0 otherwise

Under the uniform distribution Eu(Ti) = 1
2n−1

and Eu(T ) = n
2n−1

∼ 1
2

this T is the analog
of the number of fixed points of a permutation. Arguing as in Barbour et al. (1992)
a straight-forward use of Stein’s method shows that for n large, T has an approximate
Poisson (1

2
) distribution. We choose A = {x : T (x) = 0}, whence π(A) ∼ e−

1
2 .

To bound Km
x∗(A) where x∗ = (1, 2)(3, 4) · · · (2n − 1, 2n), we show that there is a good

chance that there is some pair (2i − 1, 2i) which has not been hit in the first m steps.
Toward this end, let (I1, J1), · · · (Im, Jm) be the transpositions chosen in the first m steps
of the walk. For 1 ≤ i ≤ n let

Yi =

{
1 if (2i − 1, 2i) ∈ ⋃m

k=1{(Ik, Jk)}
0 otherwise

Thus

E(Yi) =

((
2n−2

2

)
(
2n
2

)
)m

=

(
(1 − 1

n
)(1 − 2

2n − 1
)

)m

∼
(

1 − 2

n

)m

,

so the random variable Y =
∑n

i=1 Yi has mean nE(Yi) ∼ n
(
1 − 2

n

)m
. By the Coupon-

collectors problem, if m = n
2
(log n + c) with c fixed in R, Y has an approximate

Poisson(e−c) distribution. Again, this can be quantified using Stein’s method as in Bar-
bour et al. (1992). Of course if Y ≥ 1 the Markov chain started at x∗ certainly has

11



T (x) 6= 0. Thus Km
x∗(Ac) ≥ P{Y ≥ 1} = 1 − e−e−c

+ o(1), so Km
x∗(A) ≤ e−e−c

+ o(1).
Combining bounds, for m = 1

2
n(log n + c), with c < 0,

||Km
x∗ − π|| ≥ |π(A) − Km

x∗(A)|| = e
1
2 − e−e−c

+ o(1)

Remark A slight refinement of this argument shows that ||Km
x∗ − π|| −→ 1 if

m = 1
2
n(log n − cn) with cn tending slowly to infinity. This completes the proof for the

lower bound. �

To prove the upper bound, we use Corollary (1), the bound (11) and equality (10) to see
that it suffices to bound

(14)
∑

λ`n,λ6=n

mult(λ)β2m
λ .

For this, we use the following bounds on mult(λ) and βλ:

(15)
∑
λ`n

mult(λ) =
(2n)!

2nn!
∼

√
2(

2

e
n)n.

(16)
∑

λ`n,λ1=n−j

mult(λ) ≤
(

2n

2j

)
(2j)!

2jj!
≤ 2jn2j

j!

(17) |βλ| ≤
{

1 − j(2n−j)
n2 if λ1 ≥ n

2
1+o(1)

2
if λ1 ≤ n

2

The bound (15) follows from the decomposition of Theorem 2 and Stirling’s formula. For
(16), we bound the number of standard tableaux Q of shape 2λ with λ1 = n− j by noting
that there are at most

(
2n
2j

)
ways of picking the elements not in the first row and at most

(2j)!
2jj!

ways of arranging these in a standard tableau of shape (2λ2, 2λ3, . . .) and then there

is at most one way to fill in the first row with the remaining elements (c.f. 15). The final
inequality in (16) is elementary. The inequalities in (17) are a direct consequence of the
monotonicity results of (Diaconis & Shahshahani (1987)):

(18) |βλ| ≤
{

βλ1,n−λ1 if λ1 ≥ n
2

βn
2
, n
2

if λ1 ≤ n
2

together with a direct computation of the right-hand side of the formula in Corollary (1).
Completion of the proof of Theorem 1
The sum in (14) is bounded in three zones:

12



Zone I λ1 ≤ n
2
,

Zone II n
2

< λ1 ≤ θn,
Zone III θn < λ1 ≤ n − 1,

with θ = 1√
e
.

Begin with Zone I, bound

|βλ|2m ≤ (
1 + o(1)

2
)2m

using (17). Then (15) gives the sum over Zone I bounded above by

(19)
√

2(
1

2
)2m(

2

e
n)n =

√
2 exp{−2(log 2)m + n log(

2

e
n)}

For n ≥ 10, the term in the exponent is bounded above by

−2c − .2n(log n + O(1)).

It follows that the sum over Zone I is bounded above by

Ae−2c, for universal A, for n ≥ 10.

Consider Zone II, n
2

< λ1 ≤ 1√
e
n. From (16) and (17), for any λ in this Zone with

θ̄ = 1 − 1√
e

|βλ| ≤ 1 − θ̄n(2n − θ̄n)

n2
= 1 − θ̄(2 − θ̄) =

1

e
.

Using this and (15), the sum over Zone II is bounded above by

√
2(

2

e
)n(

1

e
)2m =

√
2(

2

e

1

ec
)n ≤ Ae−2c for n ≥ 2.

Finally, consider Zone III, n√
e

< λ1 ≤ n − 1. Writing j = n − λ1, 1 ≤ j ≤ n, using

1 − x ≤ e−x with (16-17), the sum to be bounded is thus:

∑
1≤j≤θ̄n

2jn2j

j!
e−j 2n−j

n
(log n+c).

Next

j(log n + c)
(2n − j)

n
≥ 2(log n + c) + (2(j − 1) − j2

n
)(log n + c)

From this, the general term in the sum over Zone III is bounded above by:

n2e−2(log n+c)2jn2(j−1)−(2(j−1)− j2

n
) = e−2c 2

jn
j2

n

j!
.

We show that the sum

(20)
∑

1≤j≤θ̄n

2jn
j2

n

j!

13



is uniformly bounded, which will complete the proof. Call the general term tj . For
2 ≤ j ≤ n

2
, the ratios

tj+1

tj
=

2

j + 1
n

2j+1
n .

are decreasing for 2 ≤ j < k and increasing for j > k, with k = n
2 log n

− 1. We show that

t3/t2 and tθ̄n+1/tθ̄n are smaller than a constant q < 1. Then

t2 + · · · + tθ̄n ≤ t2 + tk
1 − q

.

Since t2, tk (and t1) are all uniformly bounded, this will suffice. First, t3/t2 = 2/3n
5
n < 1,

for n ≥ 17. Next,
tθ̄n+1

tθ̄n

=
2

θ̄n + 1
e

(2θ̄n+1))
n

log n =
2n2θ̄

θ̄n + 1
e

log n
n

Since θ̄ = 1 − 1√
e

.
= .3935 < .4, this term tends to 0 and is smaller than 1 for n large

enough. Finally routine use of Stirling’s formula shows ti is uniformly bounded. Thus the
sum over Zone III is bounded above by

Ae−2c

�

Remark: Of course, for moderate n, the bound (14) can be computed numerically.

For n smaller than 106 or so, intermediate bounds (19) and (20) would give explicit,
accurate error bounds. The less explicit form ae−2c is simply easier to look at and think
about.
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Schröder, E. (1870). Veir combinatorische probleme. Zeit. für. Math. Phys. 15, 361–376.

Schweinsberg, J. (2001). An O(n2) bound for the relaxation time of a Markov chain on
cladograms. Technical Report 572, Dept Statistics, UC Berkeley.

Serre, J.-P. (1977). Linear representations of finite groups. Springer-Verlag, New York. Trans-
lated from the second French edition by Leonard L. Scott, Graduate Texts in Mathematics,
Vol. 42.

Wachs, M. (2001). Topology of matching, homology of matching, combinatorial Laplacian of
the matching complex. URL http://www.math.miami.edu/~wachs.

17


