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1 Introduction

Sobolev spaces Hγ
p are very convenient to study parabolic equations in all of Rd :

∂u

∂t
= aijDiDju+ biDiu+ cu+ f, (1.1)

where summation over the repeated indices is assumed from 1 to d. Roughly speaking,
if the initial condition is in H

γ+1−2/p
p and the right hand side is in Hγ−1

p , p ≥ 2, then
u ∈ Hγ+1

p as long as the coefficients are bounded and sufficiently smooth, and the matrix
(aij) is uniformly positive definite. It was shown in [4] that a similar result holds for the
Ito stochastic parabolic equations

du = (aijDiDju+ biDiu+ cu+ f)dt+ (σikDiu+ νku+ gk)dwk (1.2)

as long as the stochastic right hand side gk is in Hγ
p and the matrix (aij − (1/2)σikσjk) is

uniformly positive definite.

The objective of this paper is to show that, if the Sobolev spaces Hγ
p are replaced with

weighted spaces, then an analogous result holds for the Ito stochastic parabolic equations
with quadratic degeneracy of the characteristic form. Let ρ = ρ(x) be a smooth function
so that ρ(x) ∼ dist(x, ∂G) near the boundary. Consider a linear stochastic parabolic
equation

du = (ρ2aijDiDju+ ρbiDiu+ cu+ f)dt+ (ρσikDiu+ νku+ gk)dwk. (1.3)

Equations with operators of the type ρα∆, α > 0, have been studied by many authors
in deterministic setting [9, 13, 14], and operators with quadratic degeneracy of the char-
acteristic form (α = 2) always required separate treatment. Therefore, in the stochastic
setting, it is also natural to consider these operators separately.

To study equation (1.3), the Sobolev spaces Hγ
p are replaced with certain weighted Sobolev

spaces. These weighted space Hγ
p,θ(G) were first introduced in [5] to study stochastic

parabolic equations on the half-line, and further investigated in subsequent papers by
both authors. In the notation Hγ

p,θ(G) of the space, the indices γ, p have the same meaning
as in Hγ

p , and the index θ determines the boundary behavior of the functions from the
space: the larger the value of θ, the faster the functions and their derivatives can blow up
near the boundary of G. The advantage of solving equation (1.3) in the space Hγ

p,θ(G) is
that existence and uniqueness results can be obtained for a wide class of linear and quasi-
linear equations. Unlike many related works in the deterministic setting, these results, for
different values of γ and θ, cover both classical and distribution solutions and, for γ > 0,
go beyond abstract solvability. Indeed, for γ > 0, embedding theorems show that the
solution is a continuous function of x and t and, for sufficiently large p, has almost equal
number of classical and generalized derivatives.

Since the spaces Hγ
p,θ(G) have been used in the analysis of the Dirichlet boundary value

problem for nondegenerate parabolic equations [6, 5, 7], let us recall the main result.
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Consider the Dirichlet problem for equation (1.2) in a sufficiently regular domain. Suppose
that the coefficients are sufficiently smooth, the matrix (aij − (1/2)σikσjk) is uniformly

positive definite inside the domain, and f ∈ Hγ−1
p,θ (G), gk ∈ Hγ

p,θ(G), u|t=0 ∈ H
γ+1−2/p
p,θ (G),

p ≥ 2. Then, for certain values of θ, the solution will be in Hγ+1
p,θ (G). Note that θ of the

solution space is different from the corresponding values for the initial condition and the
right hand side, and if θ is too large or too small, then the corresponding solvability result
does not hold.

The results are quite different, and completely analogous to the whole space, if we con-
sider degenerate parabolic equations. Namely, for equation (1.3), the solution will be in
Hγ+1

p,θ (G) as long as the coefficients are sufficiently smooth, the matrix (aij − (1/2)σikσjk)

is uniformly positive definite inside the domain, and f ∈ Hγ−1
p,θ (G), gk ∈ Hγ

p,θ(G),

u|t=0 ∈ H
γ+1−2/p
p,θ (G), p ≥ 2. Now, the result holds for all real θ, and the function ρ

can be chosen so that no restrictions are necessary about the domain G. The domain can
be bounded or unbounded, without any smoothness of the boundary, and this generality
makes the results new even in deterministic setting.

Recall [10, Chapter 5] that the stochastic characteristic for equation (1.3) is the diffusion
process x = xt defined by

dxt = −ρ(xt)B(t, xt)dt+ ρ(xt)r(t, xt)dW (t) (1.4)

with an appropriate choice of r, B, andW . Assuming that the functions ρ,B, r are globally
Lipschitz continuous and bounded, the unique solvability of (1.4) implies that, if x0 is in
G, then xt will never reach the boundary of G. This is why it is natural to expect that
the solvability results for (1.3) will not involve any conditions about the boundary of G.

The construction and analysis of the spaces Hγ
p,θ(G) for general domains are in [8]. Section

2 presents a summary of results from [8] and the construction of the necessary stochas-
tic parabolic spaces. The main result of the paper, the statement about solvability of a
second-order degenerate semi-linear stochastic parabolic equation, is in Section 3. In Sec-
tion 4, an application is given to the problem of nonlinear filtering of diffusion processes,
when the unobserved process evolves in a bounded region.

In this paper, notation Dm is used for a generic partial derivative of order m with respect
to the spatial variable x = (x1, . . . , xd); Di = ∂/∂xi. Summation over repeated indices is
assumed.

2 Definition of the spaces

Let G ⊂ R
d be a domain (open connected set) with non-empty boundary ∂G. Denote by

ρG(x), x ∈ G, the distance from x to ∂G. For n ∈ Z define the subsets Gn of G by

Gn = {x ∈ G : 2−n−1 < ρG(x) < 2−n+1}. (2.1)
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Let {ζn, n ∈ Z} be a collection of non-negative functions with the following properties:

ζn ∈ C∞
0 (Gn), |Dmζn(x)| ≤ N(m)2mn,

∑
n∈Z

ζn(x) ≥ δ > 0. (2.2)

The function ζn(x) can be constructed by mollifying the characteristic (indicator) function
of Gn. If Gn is an empty set, then the corresponding ζn is identical zero.

Recall [13, Section 2.3.3] that the space Hγ
p is defined for γ ∈ R and p ≥ 1 as the

completion of C∞
0 (Rd) with respect to the norm ‖ · ‖Hγ

p
= ‖Λγ · ‖Lp(Rd), where Λγf =

((1 + |ξ|2)γ/2f̂ )̌ , and ,̂ˇare the Fourier transform and its inverse. Similarly, Hγ
p (l2) is the

set of sequences g = {gk, k ≥ 1} for which

‖g‖Hγ
p (l2) := ‖ ‖Λγg‖l2 ‖Lp(Rd) <∞, (2.3)

where ‖g‖l2 =
(∑

k≥1 |gk|2)1/2
.

Definition 2.1 Let G be a domain in R
d , θ and γ, real numbers, and p ∈ [1,+∞). Take

a collection {ζn, n ∈ Z} as above. Then

Hγ
p,θ(G) :=

{
u ∈ D′(G) : ‖u‖p

Hγ
p,θ(G)

:=
∑
n∈Z

2nθ‖ζ−n(2
n·)u(2n·)‖p

Hγ
p
<∞

}
, (2.4)

where D′(G) is the set of distribution on C∞
0 (G);

Hγ
p,θ(G; l2) :=

{
u ∈ D′(G; l2) : ‖u‖p

Hγ
p,θ(G;l2)

:=
∑
n∈Z

2nθ‖ζ−n(2
n·)u(2n·)‖p

Hγ
p (l2)

<∞
}
.

(2.5)

A detailed analysis of the spaces Hγ
p,θ(G) is given in [8]. In particular, it is shown that

Hγ
p,θ(G) does not depend on the particular choice of the system {ζn} and, for p > 1, is a

reflexive Banach space.

Remark 2.2 If G is a bounded domain, then summation in (2.4) is carried out over
n ≤ n0 for some integer n0 depending on the domain. In particular, if G is bounded, then
Hγ

p,θ2
(G) ⊂ Hγ

p,θ1
(G) for θ1 > θ2.

Definition 2.3 Let ρ = ρ(x), x ∈ R
d , be a function so that

1. ρ(x) = 0, x /∈ G;

2. ρ is infinitely differentiable in G, and |ρm
G (x)Dm+1ρ(x)| ≤ N(m) for all x ∈ G and

for every m = 0, 1, . . ..

3. N1ρG(x) ≤ ρ(x) ≤ N2ρG(x) for some N1, N2 > 0 and all x ∈ G.
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Functions introduced in the above definition do exist; for example,

ρ(x) =
∑
n∈Z

2−nζn(x). (2.6)

The conditions in the above definition imply that ρ is uniformly Lipschitz continuous in
R

d ; in particular, this is true for the function defined by (2.6). On the other hand, if G is
a bounded domain and the boundary ∂G is of class C |γ|+2, γ ∈ R, then, by Lemma 14.16
in [1], it is possible to choose the function ρ so that ρ ∈ C |γ|+2(Rd).

For ν ≥ 0, define the space Aν(G) as follows:

1. if ν = 0, then Aν(G) = L∞(G);

2. if ν = m = 1, 2, . . . , then

Aν(G) = {a : a, ρGDa, . . . , ρ
m−1
G Dm−1a ∈ L∞(G), ρm

GD
m−1a ∈ C0,1(G)}, (2.7)

‖a‖Aν(G) =
m−1∑
k=0

‖ρk
GD

ka‖L∞(G) + ‖ρm
GD

m−1a‖C0,1(G); (2.8)

3. if ν = m+ δ, where m = 0, 1, 2, . . . , δ ∈ (0, 1), then

Aν(G) = {a : a, ρGDa, . . . , ρ
m
GD

ma ∈ L∞(G), ρν
GD

ma ∈ Cδ(G)}, (2.9)

‖a‖Aν(G) =
m∑

k=0

‖ρk
GD

ma‖L∞(G) + ‖ρν
GD

ma‖Cδ(G). (2.10)

Theorem 2.4 1. Assume that γ − d/p = m+ ν for some m = 0, 1, . . . and ν ∈ (0, 1). If
u ∈ Hγ

p,θ(G), then

m∑
k=0

sup
x∈G

|ρk+θ/p(x)Dku(x)| + [ρm+ν+θ/pDmu]Cν(G) ≤ N(d, γ, p, θ)‖u‖Hγ
p,θ(G). (2.11)

Recall that [f ]Cν(G) = supx,y∈G |x− y|−ν|f(x) − f(y)|.
2. Given γ ∈ R define γ′ so that γ′ = 0 for integer γ and γ′ is any number from (0, 1)
as long as |γ| + γ′ is not an integer for non-integer γ. Then, for every u ∈ Hγ

p,θ(G) and

a ∈ A|γ|+γ′
(G),

‖a u‖Hγ
p,θ(G) ≤ N(γ, p, θ, d)‖a‖A|γ|+γ′(G) ‖u‖Hγ

p,θ(G). (2.12)

These and other properties of the spaces Hγ
p,θ(G) and Aγ(G) can be found in [8].

Definition 2.5 Fix (Ω,F , {Ft}, P ), a stochastic basis with F and F0 containing all P -
null subsets of Ω; τ , a stopping time, |(0, τ ]] = {(ω, t) ∈ Ω × R+ : 0 < t ≤ τ(ω)}; P, the
σ-algebra of predictable sets; {wk, k ≥ 1}, independent standard Wiener processes. The
Ito stochastic integral will be used.
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The following Banach spaces were introduced in [4] to study stochastic parabolic equations
on R

d :

1. H γ
p (τ) = Lp( |(0, τ ]];P;Hγ

p ), H
γ
p (τ ; l2) = Lp( |(0, τ ]];P;Hγ

p (l2));

2. Fγ
p (τ) = H

γ−1
p (τ) × H

γ
p (τ ; l2), U

γ
p = Lp(Ω;F0;H

γ+1−2/p
p );

3. Hγ
p(τ): the collection of processes from H

γ+1
p (τ) that can be written, in the sense of

distributions, as

u(t) = u0 +

∫ t

0

f(s)ds+

∫ t

0

gk(s)dwk(s) (2.13)

for some u0 ∈ Uγ
p and (f, g) ∈ Fγ

p (τ);

‖u‖p
Hγ

p(τ)
= ‖D2u‖p

H
γ−1
p (τ)

+ ‖(f, g)‖p
Fγ

p (τ)
+ E‖u0‖p

H
γ+1−2/p
p

. (2.14)

For a positive real number T > 0, a stopping time τ ≤ T , a real number δ ∈ (0, 1], and a
(Banach space) X -valued process u, we will use the following notation:

‖u‖p
Cδ([0,τ ],X)

= sup
0≤t≤T

‖u(t ∧ τ)‖p
X + sup

0≤s<t≤T

‖u(t ∧ τ) − u(s ∧ τ)‖p
X

|t− s|pδ
. (2.15)

It is proved in [4], Theorem 7.2, that if u ∈ Hγ
p(τ), p ≥ 2, and τ ≤ T , then

E sup
0≤t≤T

‖u(t ∧ τ, ·)‖p
Hγ

p
≤ N(d, γ, p, T )‖u‖p

Hγ
p(τ)

, (2.16)

and if in addition 1/p < α < β < 1/2, then

E‖u‖p

Cα−1/p([0,τ ],Hγ+1−2β
p )

≤ N(α, β, d, γ, p, T )‖u‖p
Hγ

p(τ)
. (2.17)

Next, we define the similar spaces on G.

1. H γ
p,θ(τ, G) = Lp( |(0, τ ]];P;Hγ

p,θ(G)), H γ
p,θ (τ, G; l2) = Lp( |(0, τ ]];P;Hγ

p,θ(G; l2));

2. Fγ
p,θ(τ, G) = H

γ−1
p,θ (τ, G) × H

γ
p,θ(τ, G; l2), Uγ

p,θ(G) = Lp(Ω;F0;H
γ+1−2/p
p,θ (G))

3. Hγ
p,θ(τ, G): the collection of processes from H

γ+1
p,θ (τ, G) that can be written, in the

sense of distributions, as

u(t) = u0 +

∫ t

0

f(s)ds+

∫ t

0

gk(s)dwk(s) (2.18)

for some u0 ∈ Uγ
p,θ(G) and (f, g) ∈ Fγ

p,θ(τ, G);

‖u‖p
Hγ

p,θ(τ,G)
= ‖u‖p

H
γ+1
p,θ (τ,G)

+ ‖(f, g)‖p
Fγ

p,θ(τ,G)
+ ‖u0‖p

Uγ
p,θ(G)

. (2.19)
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It follows that
‖u‖p

Hγ
p,θ(τ,G)

=
∑
n∈Z

2nθ‖ζ−n(2n·)u(·, 2n·)‖p
Hγ

p(τ)
(2.20)

with similar representations for Fγ
p,θ(τ, G) and Uγ

p,θ(G). In particular, all these are Banach
spaces, and

E sup
0≤t≤T

‖u(t ∧ τ, ·)‖p
Hγ

p (G)
≤ N(d, γ, p, T )‖u‖p

Hγ
p,θ(τ,G)

, p ≥ 2, τ ≤ T ; (2.21)

E‖u‖p

Cα−1/p([0,τ ],Hγ+1−2β
p,θ (G))

≤ N(α, β, d, γ, p, T )‖u‖p
Hγ

p,θ(τ,G)
, 1/p < α < β < 1/2. (2.22)

3 Main result

Take a function ρ from Definition 2.3 and consider the following equation:

du(t, x) = (ρ2(x)aij(t, x)DiDju(t, x) + f(t, x, u,Du))dt

+ (ρ(x)σik(t, x)Diu(t, x) + gk(t, x, u))dwk(t), 0 < t ≤ T, x ∈ G (3.1)

with initial condition u(0, x) = u0(x). Summation over the repeated indices is assumed,
and the Ito stochastic differential is used.

Assumption 3.1 (Coercivity.) There exist positive numbers κ1 and κ2 so that

κ1|ξ|2 ≤
(
aij − 1

2
σikσjk

)
ξiξj ≤ κ2|ξ|2 (3.2)

for all (ω, t) ∈ |(0, τ ]], x ∈ G, and ξ ∈ R
d .

Assumption 3.2 (Regularity of a and σ.) For all i, j = 1, . . . , d and k ≥ 1, the functions
aij and σik are P ⊗ B(G) measurable,

‖aij(t, ·)‖A|γ−1|+γ′ (G) + ‖σi·(t, ·)‖A|γ|+γ′ (G;l2) ≤ κ2 (3.3)

for all (ω, t) ∈ |(0, τ ]], and, for every ε > 0, there exists δε > 0 so that

|ρG(x)aij(t, x) − ρG(y)aij(t, y)|+ ‖ρG(x)σi·(t, x) − ρG(y)σi·(t, y)‖l2 ≤ ε (3.4)

for all (ω, t) ∈ |(0, τ ]] and x, y ∈ G with |x− y| < δε. See Theorem 2.4(2) for the definition
of γ′.

Assumption 3.3 (Regularity of the free terms.)

(f(·, ·, 0, 0), g(·, ·, 0)) ∈ Fγ
p,θ(τ, G), (3.5)

and for every ε > 0 there exists µε > 0 so that

‖(f(·, ·, u,Du)− f(·, ·, v,Dv), g(·, ·, u)− g(·, ·, v))‖Fγ
p,θ(τ,G)

≤ ε‖u− v‖Hγ
p,θ(τ,G) + µε‖u− v‖

H
γ1
p,θ (τ,G), γ1 < γ + 1, (3.6)

for all u, v ∈ Hγ
p,θ(τ, G).
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Definition 3.1 A process u ∈ Hγ
p,θ(τ, G) is a solution of (3.1) if and only if the equality

u(t, x) = u0(x) +

∫ t

0

(ρ2(x)aij(s, x)DiDju(s, x) + f(s, x, u,Du))ds

+

∫ t

0

(ρ(x)σik(s, x)Diu(s, x) + gk(s, x, u))dwk(s) (3.7)

holds in Hγ
p,θ(τ, G).

Theorem 3.2 If p ≥ 2, τ ≤ T , and u0 ∈ Uγ
p,θ(G), then, under Assumptions 3.1–3.3,

there is a unique solution u of equation (3.1) and

‖u‖p
Hγ

p,θ(τ,G)
≤ N ·

(
‖(f(·, ·, 0, 0)‖p

H
γ−1
p,θ (τ,G)

+ ‖g(·, ·, 0)‖p
H

γ
p,θ (τ,G;l2)

+ E‖u0‖p

H
γ+1−2/p
p,θ (G)

)
(3.8)

with the constant N depending only on γ, κ1, κ2, p, T, θ, and the functions ρ, δε, µε.

Proof. The arguments are very similar to the proof of Theorem 3.2 in [7]. A more
detailed description of the method can be found in [3, Sections 6.4,6.5].

To simplify the presentation, assume that τ = T and introduce the following notations.
Define the operators

Au(t, x) = ρ(x)aij(t, x)DiDju(t, x), Bku(t, x) = ρ(x)σik(t, x)Diu(t, x) (3.9)

and write (|A,B|)u = (f, g, u0) for some (f, g) ∈ Fγ
p,θ(T,G), u0 ∈ Uγ

p,θ(G) if u ∈ Hγ
p,θ(T,G)

and u = u0 +
∫ t

0
(Au+ f)ds+

∫ t

0
(Bku+ gk)dwk(s).

Let {ζn, n ∈ Z} be the collection of functions used in Definition 2.1 and let {ηn, n ∈ Z}
be a collection of functions so that ηn ∈ C∞

0 (Gn), |Dmηn(x)| ≤ N(m)2mn, ηn(x) = 1
on the support of ζn. Using Theorem 5.1 in [4], for (ϕ, ψ) ∈ Fγ

p (T ) and v0 ∈ Uγ
p , define

Sn(ϕ, ψ, v0) ∈ Hγ
p(T ) so that v = Sn(ϕ, ψ, v0) if and only if v ∈ Hγ

p(T ), v|t=0 = v0, and

dv = (η−nρ
2aijDiDjv + 22n(1 − η−n)∆v + ϕ)dt+ (η−nρσ

ikDiv + ψk)dwk(t). (3.10)

Note that

‖v(·, 2n·)‖Hγ
p(T ) ≤ N ·

(
‖(ϕ(·, 2n·), ψ(·, 2n·))‖Fγ

p (T ) + ‖v0(2
n·)‖Uγ

p

)
(3.11)

with N independent of n. Indeed, for a function f = f(x) write fn(x) = f(2nx). Then
vn(t, x) = v(t, 2nx) satisfies

dvn = (22nη−n,nρ
2
na

ij
nDiDjvn + (1 − η−n,n)∆vn + ϕn)dt

+ (2nη−n,nρnσ
ik
n Divn + ψk

n)dwk(t), (3.12)

where η−n,n(x) = η−n(2nx). Since ρ ∼ 2n on the support of η−n, inequality (3.11) follows
from Theorem 5.1 in [4].
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Note also that, for every u ∈ Hγ
p,θ(T,G),

Sn((|A,B|)(ζ−nu)) = ζ−nu. (3.13)

Assume first that f and g depend only on t and x. Also, with no loss of generality, assume
that

∑
n ζ

2
n(x) = 1 for all x ∈ G. If (|A,B|)u = (f, g, u0), then it follows from (3.13) that

u =
∑

n

ζ−nSn(ζ−nf −Anu, ζ−ng −Bnu, ζ−nu0), (3.14)

where Anu = A(uζ−n) − ζ−nAu, Bk
nu = Bk(ζ−nu) − ζ−nBku.

Conversely, for every (f, g) ∈ Fγ
p,θ(T,G) and every u0 ∈ Uγ

p,θ(G), equation (3.14) has
a unique solution u ∈ Hγ

p,θ(T,G) so that u satisfies (3.8) and (3.1) (recall that so far
we assume that f, g do not depend on u). Indeed, by inequalities (3.11) and (2.21),
a sufficiently high power of the operator u 7→ ∑

n ζ−nSn(Anu,Bnu, 0) is a contraction
in Hγ

p,θ(T,G), which implies the existence of a unique solution of (3.14). This solution
satisfies

‖u‖p
Hγ

p,θ(T,G)
≤ N ·

(
‖(f, g)‖p

Fγ
p,θ(T,G)

+ ‖u0‖p
Uγ

p,θ(G)
+

∫ T

0

‖u‖p
Hγ

p,θ(t,G)
dt

)
,

and (3.8) follows by the Gronwall inequality. Since u ∈ Hγ
p,θ(T,G), we have (|A,B|)u =

(f0, g0, u0) for some (f0, g0) ∈ Fγ
p,θ(T,G), and it follows from (3.14) that f̄ = f − f0, ḡ =

g − g0 satisfy
∑

n ζ−nSn(ζ−nf̄ , ζ−nḡ, 0) = 0. Applying the operator (|A,B|) to the last
equality and using (3.13), we conclude that

f̄ =
∑

n

AnSn(ζ−nf̄ , ζ−nḡ, 0), ḡ =
∑

n

BnSn(ζ−nf̄ , ζ−nḡ, 0).

Once again, using inequalities (3.11) and (2.21), we conclude that a sufficiently high power
of the operator

(f, g) 7→
(∑

n

AnSn(ζ−nf, ζ−ng, 0),
∑

n

AnSn(ζ−nf, ζ−ng, 0)

)

is a contraction, which means that (f̄ , ḡ) = (0, 0) and u is a solution of (3.1) with f, g
independent of u.

Now, for every (f, g) ∈ Fγ
p,θ(T,G) and every u0 ∈ Uγ

p,θ(G) we can define u = R(f, g, u0) ∈
Hγ

p,θ(T,G) so that (|A,B|)u = (f, g, u0). This means that every solution of (3.1) with
general (f, g) satisfies u = R(f(u,Du), g(u), u0). To conclude the proof of the theorem,
we note that Assumption 3.3 implies that a sufficiently high power of the operator u 7→
R(f(u,Du), g(u), u0) is a contraction in Hγ

p,θ(T,G). Theorem 3.2 is proved. �

Corollary 3.3 Assume that τ = T , the initial condition u0 is compactly supported in
G and belongs to H

γ+1−2/p
p , and Assumption 3.3 holds for all θ ∈ R. If p > 2 and

γ + 1 − (d+ 2)/p > m for some positive integer m, then the solution u(t, x) of (3.1) has
the following properties:
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1. for almost all ω ∈ Ω, u is a continuous function of (t, x);

2. for almost all ω ∈ Ω and all t ∈ [0, T ], u is m times continuously differentiable in
Ḡ as a function of x;

3. for almost all ω ∈ Ω and all t ∈ [0, T ], u(t, x) and its spatial partial derivatives of
order less than or equal to m vanish on the boundary of G.

Proof. By assumption, u0 ∈ H
2−2/p
p,θ (G) for every θ ∈ R, because compactness of support

of u0 means that the corresponding sum in (2.4) contains finitely many non-zero terms.
Consequently, by Theorem 3.2, u ∈ Hγ

p,θ(G, T ) for all θ ∈ R. It remains to use (2.22) with
β sufficiently close to 1/p, and then apply Theorem 2.4(1). �

Remark 3.4 The linear equation

du(t, x) = (ρ2(x)aij(t, x)DiDju(t, x) + ρ(x)bi(t, x)Diu(t, x) + c(t, x)u(t, x) + f(t, x))dt

+ (ρ(x)σik(t, x)Diu(t, x) + νk(t, x)u(t, x) + gk(t, x))dwk(t) (3.15)

satisfies the hypotheses of the theorem if (f, g) ∈ Fγ
p,θ(τ, G), the functions bi, c, νk are

P ⊗ B(G) measurable, and

‖bi(t, ·)‖Anb(G) + ‖c(t, ·)‖Anc(G) + ‖ν(t, ·)‖Anν (G;l2) ≤ κ2. (3.16)

As for the values of nb, nc, nν , we can always take nb = |γ| + γ′, nν = nc = |γ + 1| + γ′,
but these conditions can be relaxed. For example (cf. [4, Remark 5.6]), if γ ≥ 1, we can
take nb = nc = γ − 1 + γ′, nν = γ + γ′.

4 Application to nonlinear filtering of diffusion pro-

cesses

The classical problem of nonlinear filtering is considered for a pair of diffusion processes
(Xt, Yt) defined in R

d1 by equations

dXt = b(t, Xt, Yt)dt+ r(t, Xt, Yt)dWt

dYt = B(t, Xt, Yt)dt+R(t, Yt)dWt
(4.1)

with some initial conditions X0, Y0. It is assumed that Wt is a d1-dimensional Wiener
process on a complete probability space (Ω,F , P ), Xt is d-dimensional state process,
d1 > d, and Yt is (d1 − d)-dimensional observation process. The coefficients are known
functions of corresponding dimension and are smooth enough for a unique strong solution
to exist. The filtering problem consists in computing the conditional density of Xt given
the observations up to time t. It is known [10, Chapter 6] that under some natural
regularity assumptions, this conditional density satisfies a nonlinear stochastic parabolic
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equation, also know as Kushner’s equation. Alternatively, the density can be computed by
normalizing the solution of the Zakai equation, which is a linear equation. Both analytical
theory and numerical methods for the Kushner and Zakai equations have been studied by
many authors, and these studies made (4.1) the standard model in filtering theory.

Nonetheless, for most applications, (4.1) is only an approximation. There are two main
reasons for that. First, the actual process Xt usually evolves in a bounded region, for
example, because of mechanical restrictions, and therefore equations (4.1) are a suitable
model only when the process Xt is away from the boundary. Second, even if Xt evolves
in the whole space, the corresponding filtering equations, when solved numerically, are
considered in a bounded domain, which effectively restricts the range of Xt. Therefore,
it seems natural to start with a filtering model in which the state process evolves in a
bounded region. The model presented below is just one possible way to address the issue
of replacing the whole of Rd with a bounded domain. The model can be easily analysed
using the theory developed in the previous sections of the paper, but it is certainly not
the most general filtering model in a bounded domain.

Let G be a bounded domain and ρ, a scalar function as in Definition 2.3. Consider the
following modification of the classical filtering model:

dxt = ρ(xt)b(t, xt, yt)dt+ ρ(xt)r(t, xt, yt)dWt

dyt = B(t, xt, yt)dt+R(t, yt)dWt
(4.2)

with some initial conditions x0, y0. Since ρ is Lipschitz continuous in R
n , by uniqueness

of the solution of (4.2), the process xt can never cross the boundary of G. Note that G is
any bounded domain. It is shown below (Lemma 4.1) that, if the domain G is sufficiently
large, x0 ∈ G, and the function ρ is chosen in a special way, then (xt, yt) are close to
(Xt, Yt).

For a matrix M denote by M∗ its transpose. We make the following assumptions. For
the discussion of these assumptions see Section 8 in [4].

Assumption 4.1 The functions b, B, r, R are bounded and Borel measurable in (t, x, y)
and uniformly Lipschitz continuous in (x, y). The function r = r(t, x, y) is continuously
differentiable with respect to x and the derivatives are continuous in y and uniformly
Lipschitz continuous in x.

Assumption 4.2 The matrix RR∗ is invertible and V = (RR∗)−1/2 is a bounded function
of (t, y).

Assumption 4.3 There exists δ > 0 so that, for all (x, y) ∈ R
d × R

d1−d, t > 0, and all
ξ ∈ R

d ,
(r(1 − R∗V 2R)r∗ξ, ξ) ≥ δ|ξ|2. (4.3)

Assumption 4.4 The initial condition (x0, y0) is independent of Wt, the conditional
distribution of x0 given y0 has a density Π0, and Π0 is compactly supported in G.
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Lemma 4.1 Let {GK , K > 0} be a collection of domains with smooth boundaries so
that BK := {x : |x| < K} ⊂ GK and dist(∂GK , BK) > δ for some fixed δ > 0. For
each GK, let ρK be a function as in Definition 2.3 so that ρK(x) = 1, x ∈ BK, and
N1ρGK

(x) ≤ ρK(x) ≤ N2ρGK
(x), x ∈ GK , N1, N2 are independent of K, x. Define the

processes x = xK , y = yK according to (4.2) with ρ = ρK , xK
0 = X0I(X0 ∈ BK), yK

0 = Y0,
and assume that E(|X0|p + |Y0|p) <∞ for some p > 0. Then, as K → ∞, sup0≤t≤T |Xt −
xK

t |+sup0≤t≤T |Yt−yK
t | converges to zero with probability one and in every Lq(Ω), q < p.

Proof. First of all, notice that E sup0≤t≤T (|Xt| + |xK
t | + |Yt| + |yK

t |)p ≤ C with C
independent of K. Indeed, for example,

sup
0≤t≤T

|yK
t | ≤ |Y0| + CT + sup

0≤t≤T
|
∫ t

0

R(s, yK
s )dWs|

and it remains to use Burkholder-Davis-Gundy inequality [2, Theorem IV.4.1].

Define random variable ηK = sup0≤t≤T |Xt − xK
t |+ sup0≤t≤T |Yt − yK

t |. Since ρ(x) = 1 for
|x| ≤ K, equations (4.1) and (4.2) imply

{ω : lim
K→∞

ηK > 0} ⊆
⋂
N≥1

{ω : sup
0≤t≤T

|Xt| > N},

and then, by the Chebuchev inequality,

P (
⋂
N≥1

{ sup
0≤t≤T

|Xt| > N}) = lim
N→∞

P ({ sup
0≤t≤T

|Xt| > N}) ≤ lim
N→∞

E sup0≤t≤T |Xt|p
Np

= 0.

After that, since the family {ηq
K , K > 0} is uniformly integrable for q < p [11, Lemma

II.6.3],
Eηq

K = Eηq
KI( sup

0≤t≤T
|Xt| > K) → 0, K → ∞.

�

Introduce the following notations:

a(t, x) = (1/2)rr∗(t, x, yt) ∈ R
d×d , σ(t, x) = rR∗V (t, x, yt) ∈ R

d×(d1−d),
h(t, x) = V B(t, x, yt) ∈ R

d1−d, ht = h(t, xt),
L[v] = DiDj(ρ

2aijv) −Di(ρb
iv), Λk[v] = hkv −Di(ρσ

ikv).
(4.4)

The filtering problem for (4.2) is to find conditional distribution of xt given the observa-
tions {ys, 0 < s ≤ t}. Since the function ρ is zero outside of G, equations (4.2) can be
considered in the whole Rd . Then, by Theorem 8.1 in [4], the conditional expectation of
f(xt) given {ys, 0 < s ≤ t}, for every bounded measurable function f = f(x), can be
written as

∫
Rd f(x)Π(t, x)dx. By the same theorem, the function Π = Π(t, x) belongs to

H1
p(T ), for very T > 0, and is the solution of a nonlinear equation

dΠ = L[Π]dt+
∑

k≤d1−d

(Λk[Π] − h̄k
t Π)(V kRdWt + (hk

t − h̄k
t )dt) (4.5)
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with initial condition Π0, where V k is the kth row of the matrix V and h̄t =∫
Rd h(t, x)Π(t, x)dx. It is often convenient to consider the un-normalized filtering den-

sity u = u(t, x) given by a linear equation

du = L[u]dt+
∑

k≤d1−d

Λk[u](V kRdWt + hk
t dt) (4.6)

with initial condition u|t=0 = Π0, so that

Π(t, x) =
u(t, x)∫

Rd u(t, x)dx
. (4.7)

Theorem 4.2 Suppose that G is a bounded domain and Assumptions 4.1 –4.4 hold. If
Π0 belongs to Lp(Ω;H

2−2/p
p ), for some p ≥ 2, then both u and Π belong to H1

p,θ(T,G) for
all T > 0 and all θ ∈ R.

Proof. By Assumption 4.4, Π0 ∈ H
2−2/p
p,θ (G) for every θ ∈ R, because compactness of

support of Π0 means that the corresponding sum in (2.4) contains finitely many non-zero
terms. Consequently, Theorem 3.2 and Remark 3.4 imply that u ∈ H1

p,θ(T,G).

To show that Π ∈ H1
p,θ(T,G), we first use Theorem 8.1 in [10], according to which the

solution Π of (4.5), considered in the whole space, belongs to H1
p(T ). Then by Theorems

4.2.2 and 4.3.2 in [12] we find

‖ζ−n(2
n·)Π(·, 2n·)‖p

H1
p(T ) ≤ N‖Π(·, 2n·)‖p

H1
p(T ) ≤ N2β|n|‖Π‖p

H1
p(T ), (4.8)

where β and N are positive and independent of n. Remark 2.2 then implies that Π ∈
H1

p,θ1
(T,G) for sufficiently large θ1. On the other hand, by treating h̄t as a known process

and applying Theorem 3.2 with γ = 1 and θ < θ1, we conclude that (4.5) has a unique
solution belonging to H1

p,θ(T,G). By uniqueness, this solution is Π. �

If the conditions of Theorem 4.2 hold for sufficiently large p, then, by Corollary 3.3,
for all t ∈ [0, T ] and almost all ω ∈ Ω, the conditional density Π(t, x) is continuously
differentiable in Ḡ and both Π(t, x) and its first-order partial derivatives with respect to
x vanish on the boundary of G.
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