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1 Introduction

The problem of proving inequalities in probabilistic models is very common; especially in
statistical mechanics, there are models in which many qualitative properties, such as the
existence of a phase transition, are only shown by using inequalities. In particular, during
the last ten years there was a large effort to prove strict inequalities between critical points
(see [AG91, BGK93]). In these works, inequalities are proved between the critical points
in percolation and in the Ising model and there is an extension to the Potts model and
to many-body interactions in [Gr94].

There are some recent papers that prove this kind of results for disordered systems. These
are models in which the interactions are themselves random variables, so that the Gibbs
measure becomes a function of these random variables. Important results for disordered
models are in [Ca98, Gr99]. In the second work there is a general strategy to study this
kind of problems in a wide context.

In this paper, we will prove a strict inequality between phase transitions in the ferromag-
netic Ising and in the Edwards-Anderson models (see [Is25, EA75]). We have to stress that
it is not rigorously known whether there is a phase transition in the Edwards-Anderson
model at some positive temperature, but in any case our result makes sense. In a future
paper we will also define a frustrated Potts model and a frustrated many-body model for
which it is possible to extended our results for the two-body interactions.

Our results, for the strict inequality between the percolation critical points of the random
cluster models, are related in spirit and partly in methodology to the recent work of
Grimmett [Gr99] (see also [BGK93]) and to work of Campanino [Ca98]. Then we use
a work of Newman [Ne94] (see also [Ne97]) to show, as a consequence of the random
cluster percolation result, a strict inequality for the phase transition of the related Gibbs
measures. The main differences between our work and [Ca98, Gr99] are:

a) we prove a strict inequality for the phase transition, i.e. for uniqueness of the Gibbs
distribution, and not only for symmetry breaking;

b) we show also a strict inequality for the phase transitions of disordered ferromagnetic
Ising models (such a result, but with a different methodology, is also proved by
Gandolfi [Ga98]);

c) our method can be extended to Potts models and to frustrated many-body models;
in a future paper we will provide these extensions (this is not explicit in [Ca98] and
we do not know if it is possible to find a related Gibbs measure for the random
cluster measure in [Ca98] besides the Ising model). Now we will deal only with the
Ising models for the sake of clarity and not to add unnecessary difficulties.

We present here the main result on disordered systems which was suggested as an open
problem by Newman (see C. Newman, Topics in Disordered Systems. Lecture in Math-
ematics, 1997 [Ne97]).
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Theorem 1 Let J be an interaction configuration with |Je| = 1. The Je are i.i.d. random
variables with the probability Q(Je = −1) = p̃ and 0 < p̃ < 1. Then the Gibbs measure
πJβ is unique in a region strictly larger than the uniqueness region of the ferromagnetic
Gibbs measure πF

|J |β Q-a.e.:

βc(J) > βc(|J |) Q− a.e. (1)

We remark that the standard Edwards-Anderson model has p = 1/2, so we obtain that
the region of uniqueness for the E-A model is larger than for the ferromagnetic Ising
model. We will prove this theorem at the end of section 4.

2 General definitions and main results

The Graph. We consider the infinite graph Ed = (Zd, E(Zd)) embedded in Rd; the graph
has an edge for every pair of vertices having Euclidean distance equal to 1. We will often
abbreviate E(Zd) with E. We will use the following definitions: the distance between
two vertices x, y ∈ Zd is d(x, y) = maxi=1,...,d |xi − yi| and the distance between two sets
A, B ⊂ Zd is d(A, B) = minx∈A,y∈B d(x, y). The same definition of distance applies also
to edges thought as a set of two vertices. We say that the vertices i and k belong to an
edge e if e = {i, k}. For a given set of edges F ⊂ E we will call

V (F ) = {x : ∃y ∈ Zd such that {x, y} ∈ F} (2)

the vertex set of F .

Given a set of vertices A ⊂ Zd, we indicate with E(A) the edges which have both vertices
in A and with ∂A the edges which have one vertex in A and one vertex in Ac, where Ac

is the complement of A.

A connected set of vertices is a subset A ⊂ Zd with the property that for all the pairs
of vertices vi, vf ∈ A there exists a finite sequence of vertices v1, v2, . . . vn ∈ A such that
D(vi, v1) = D(vn, vf ) = 1 and D(vk, vk+1) = 1 for all k = 1, . . . , n− 1, where D(, ) is the
Euclidean distance.

Given a finite set of edges γ we say that it is a minimal cut set if there exists a finite
connected set of vertices A such that γ = ∂A; in Ed, given a minimal cut set γ, there is
only one connected set of vertices A verifying the previous condition, so we will call this
finite connected set of vertices A the inner part of γ -writing Int(γ) = A- and Ac the
outer part of γ -writing Out(γ) = Ac.

Blocks and cover of Zd. We need to introduce the following subsets of E(Zd): a block
Bn(v) is a set of edges

Bn(v) = {e ∈ E(Zd) : d(e, v) ≤ n} (3)

with center v ∈ Zd and size n ∈ N . We will call ∂EBn(v), defined as follows

∂EBn(v) = {{i, k} ∈ E(Zd) : {i, k} /∈ Bn(v) and i, k ∈ V (Bn(v))} (4)
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the outer boundary of Bn(v) and

∂IBn(v) = {(i, k) ∈ E(Zd) : d(v, i) + d(v, k) = 2n + 1} (5)

the inner boundary of Bn(v). Notice that ∂EBn(v) ∩ Bn(v) = ∅ and ∂IBn(v) ⊂ Bn(v).

The collection of blocks {Bn(k)}k∈Cn where Cn is the sub-lattice of Zd defined as

Cn = {k = (k1, k2, . . . , kd) ∈ Zd : ki = (2n + 1)hi with hi ∈ Z for i = 1, . . . , d}
is a cover of E(Zd), that is E(Zd) = ∪v∈CnBn(v). Two blocks of size n belonging to the
cover are said to be adjacent if the Euclidean distance between their centers is equal to
2n + 1. It is easy to see that the intersection of adjacent blocks is not empty and is
equal to the intersection of their inner boundaries. We remark also that ∂IBn(v) has the
important property of being a minimal cut set.

v

Edge belonging to the outer boundary

Frustrated plaquette

Edge belonging to the inner boundary

Figure 1: A block Bl(v) with l = 3.

Spin State Space. The spin state space is Ω = {−1, 1}Zd
, a spin configuration is indicated

with σ ∈ Ω and a spin on a vertex i ∈ Zd is indicated with σi ∈ {−1, 1} or with σ(i).
With σA or σ(A) we will indicate the restriction of σ to the vertices A.

The edge state space is HE = {0, 1}E and an edge configuration is indicated with η ∈ HE

with ηe ∈ {0, 1} for e ∈ E; we call an edge e open if ηe = 1 and closed otherwise. We
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will consider, for the spaces Ω and HE, the σ-algebras F and FE generated by all finite
cylinders.

We will also consider a finite set of vertices Λ ⊂ Zd but we will always think of it as
a subset of Zd so that the definition of inner and outer part makes sense; we define
ΩΛ = {−1, 1}Λ and HE,Λ = {0, 1}E(Λ)∪∂Λ (in these cases of finite spaces the σ-algebras
are the space of all subsets of ΩΛ and HE,Λ). We define [στ ]Λ as a spin configuration in
Ω having [στ ]Λ(i) = σ(i) if i ∈ Λ and [στ ]Λ(i) = τ(i) otherwise.

A cluster C is the maximal connected set of vertices having the property that for all the
pairs of vertices vi, vf ∈ C there exists a finite sequence of vertices v1, . . . vn ∈ C such that
D(vi, v1) = D(vn, vf ) = 1 and D(vk, vk+1) = 1 for all k = 1, . . . , n− 1 and all the pairs of
vertices {vi, v1}, {v1, v2}, . . . , {vn, vf} are open edges.

Let Je = J{i,k} ∈ R be the interaction between the spins i and k. For all e ∈ E define
pe = 1 − exp(−β|Je|) where the parameter β ∈ (0,∞) is the inverse temperature. We
denote the configuration of all {Je}e∈E with J .

The potential φ = (φe1, φe2, . . .), where {ei}i is the set of all the edges E(Zd), is a function;
for every edge e we put φe : {−1, 1}×{−1, 1} → {−1, 1} defined as: φe(σ) = Jeσiσk where
e = {i, k} ∈ E.

We say that a potential φ̃ is a gauge transformation of the potential φ if for each vertex i
there exists a 1:1 mapping fi : {−1, 1} → {−1, 1} such that σ̃i = fi(σi) and φ̃(σ̃) = φ(σ)
for all σ ∈ Ω.

Random Cluster Measure or FK-measure. We will follow the exposition in [Ne97]. Let
Λ ⊂ Zd be a finite set of vertices and τ a configuration in Ω. Define the random cluster
model (or the FK-measure) on the finite space HE,Λ with τ boundary conditions as:

µτ
Λ,Jβ(η) =

Iτ
η∼J 2k(η) ∏

b∈E pηe
e (1− pe)

(1−ηe)

Zτ
Λ,Jβ

, ∀η ∈ HE,Λ (6)

where k(η) is the number of clusters which do not have open edges in ∂Λ (the clusters
not touching the boundary), and Zτ

Λ,Jβ is the normalizing factor (or partition function)
and Iτ

η∼J is the indicator function

Iτ
η∼J =

{
1 if ∃ σ :∀e ∈ E(Λ) ∪ ∂Λ φe([στ ]Λ)ηe ≥ 0
0 otherwise

. (7)

We remark that the random cluster measure can depend on the boundary conditions
because the forbidden configurations can change.

We will say that there is a constant boundary condition if τ ≡ i and i = −1, 1. We say
that the system is unfrustrated if for η ≡ 1 (we mean that for each e ∈ E: ηe = 1) we have
Iτ≡1
η∼J = 1. The systems with J ≡ 1 and the systems which are gauge transformations of

those are unfrustrated. A plaquette P l is a square of four edges and it is called frustrated
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if Iτ≡1
η∼J = 0 for all configurations η with η(P l) = 1. In what follows we will show an

application of the FK measure to a family of Ising models.

The Hamiltonian and the Gibbs Measure. We define the Hamiltonian on the finite set of
vertices Λ with boundary condition τ . Let σ, τ ∈ ΩΛ; the Hamiltonian is:

HΛ,J(σ|τ) = − ∑
e∈E(Λ)

φe(σ)− ∑
e∈∂Λ

φe([στ ]Λ). (8)

The related Gibbs measure πτ
Λ,Jβ is

πτ
Λ,Jβ(σ) =

1

Y τ
Λ,Jβ

exp(−βHΛ,J(σ|τ)), (9)

where Y τ
Λ,Jβ is the partition function for this Gibbs measure. If Je > 0 for all e ∈ E we say

that the system is ferromagnetic and we add an index F to the Gibbs measures, writing
πF ; the ferromagnetic FK measures is µF . We will use also the free boundary conditions
for the Gibbs and the FK measures; these measures with free boundary condition are
defined following the same arguments in (6)-(9) just imposing that all the interactions on
edges in ∂Λ are identically equal to zero. In this case we simply do not label the boundary
condition.

From [Ne97] we know that there is a joint measure of the Gibbs measure and of the
FK measure verifying interesting properties (see Proposition 3.3 p. 33 [Ne97]). So we
could obtain a spin configuration σ ∈ ΩΛ with Gibbs distribution π just taking η with
FK distribution µ and coloring the single clusters independently of each other; for each
cluster let us choose a vertex k and with uniform probability a spin value σk ∈ {−1, 1}
and then color the other vertices in the cluster C according to the rule that φe(σ) > 0 for
all e ∈ E(C).

Let us introduce, as in [Ne97], a coupling of µτ
Λ,Jβ and πτ

Λ,Jβ on the finite space HE,Λ×ΩΛ

ντ
Λ,Jβ(η, σ) =

Lτ
η∼Jσ

∏
e∈E pηe

e (1− pe)
(1−ηe)

W τ
Λ,Jβ

(10)

with

Lτ
η∼Jσ =

{
1 if ∀e ∈ E(Λ) ∪ ∂Λ, ∀v ∈ Λc σv = τv ηeφe(σ) ≥ 0
0 otherwise

. (11)

In [Ne97] it is proved that νΛ,Jβ is really a joint measure of µΛ,Jβ and πΛ,Jβ.

Stochastic Order. Let us define a partial order on the configuration space HE,Λ: η1 �∗ η2

if η1,e ≤ η2,e for all e ∈ E(Λ), where Λ can be all Zd.

We will introduce a dynamics on the edge configurations. We denote by HT
E,Λ =

{0, 1}E(Λ)×N the space of the trajectories; the single trajectory is denoted by ηT ∈ HT
E,Λ,

and ηe(t) is the value of the configuration at time t and corresponding to the edge e. We
have an analogous partial order for the trajectories; we write ηT

1 �∗ ηT
2 if for all e ∈ E(Λ)

and for all t ∈ N we have η1,e(t) ≤ η2,e(t).
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An event C ∈ FE(Λ) is increasing - write C ↑ - if η ∈ C and η �∗ η′ imply that η′ ∈ C;
an analogous definition applies to the trajectory space HT

E,Λ.

Associated with the partial order we define the stochastic order between two measures
µ1 and µ2: µ1 � µ2 if for all increasing events A ∈ FE we have µ1(A) ≤ µ2(A); in the
following we will refer to this definition as Definition A.

Let us define the event M ∈ FE × FE as

M = {(η1, η2) ∈ (HE,Λ ×HE,Λ) : η1 �∗ η2} (12)

then by means of Strassen’s theorem (see [St65], [Li85], [Lin92]) we have the stochastic
order µ1 � µ2 if and only if there exists a probability measure (HE,Λ×HE,Λ,FE,Λ×FE,Λ, µ̄)
which has µ1, µ2 as marginals (µ1(·) = µ̄(·, HE,Λ), µ2(·) = µ̄(HE,Λ, ·)) and µ̄(M) = 1. We
call µ̄ the joint representation of the stochastic order µ1 � µ2 or the coupling measure.
We will refer to this equivalent characterization of the stochastic order as Definition B.

Related to the same partial order we have this definition: for transition kernels K and K ′

of two Markov chains in HE,Λ, we say that K is dominated by K ′ if

K(η, ·) � K ′(η′, ·) for all η′, η ∈ HE,Λ such that η �∗ η′ (13)

If (13) is true for K = K ′, we say that K is attractive.

Notice that the stochastic order is a partial order but the relation of domination is not.
We will use both K(η, η′) and Kη,η′ for the kernel.

We quote standard results in coupling theory (see [Lin92]): if µ1 � µ2 and there are two

sequences of kernels {K(i)
1 } and {K(i)

2 } with K
(i)
1 dominated by K

(i)
2 for every i = 1, 2, . . .

we have:

A1) for all n ∈ N, µ1K
(1)
1 . . .K

(n)
1 � µ2K

(1)
2 . . .K

(n)
2 ;

A2) the induced processes µT
1 and µT

2 on the trajectory space HT
E,Λ are stochastically

ordered: µT
1 � µT

2 ;

Using Strassen’s theorem it is easy to see that there exists a joint representation of the
stochastic order µT

1 � µT
2 . We stress that the relations A1) and A2) are also verified using

a single kernel if it is attractive. We will call a Markov chain attractive if its kernel is
attractive.

Given two measures ν1 and ν2 on the dyadic space {0, 1} we will indicate with standard
coupling this joint measure P :

P (1, 1) = inf{ν1(1), ν2(1)}; P (0, 0) = inf{ν1(0), ν2(0)};
P (1, 0) = sup{ν1(1)− ν2(1), 0}; P (0, 1) = sup{ν2(1)− ν1(1), 0}. (14)

In the same way we will use the expression standard coupling also for the coupling of
the trajectories of two Markov chains with only two states. In this case we will think the
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coupling, as usual, to be driven by the extraction of a uniform random variable in [0, 1]
that updates at the same time the coupled Markov chains (see [Li85]). We try to explain
the construction of the coupling; by hypothesis we have two independent Markov chains
{Xn}n∈N and {Yn}n∈N with values in {0, 1} and transition probabilities

P (Xn+1 = 0|Xn) = p1(Xn, 0) and
P (Yn+1 = 0|Yn) = p2(Yn, 0).

Obviously, the transition probability in 1 are also known. We consider i.i.d. r.v.’s {θn}n∈N

uniform in [0, 1] that are also independent of {Xn}n∈N and {Yn}n∈N . We couple the
Markov chains using the variables θn; if θn < p1(Xn, 0) then Xn+1 = 0 otherwise Xn+1 = 1
and also if θn < p2(Yn, 0) then Yn+1 = 0 otherwise Yn+1 = 1.

We quote without a proof some properties of the FK measures (see for more details
[Ne97]). If for each e ∈ E(Λ), p′e = 1− e−β′|J ′

e| ≤ pe = 1− e−β|Je|, then the ferromagnetic
FK measures are stochastically ordered:

µτ≡i,F
Λ,J ′β′ � µτ≡i,F

Λ,Jβ for i = −1, 1. (15)

The same stochastic order relation is true in the case of free boundary conditions:

µF
Λ,J ′β′ � µF

Λ,Jβ. (16)

Moreover a FK measure with the same absolute value of the interactions |J ′
e| = Je for all

e ∈ E and the same β and with any boundary conditions τ ′ verifies the relation:

µτ ′
Λ,J ′β � µτ≡i,F

Λ,Jβ ; (17)

these relations will play an important role in the paper. Also, the ferromagnetic FK
measures with free boundary condition or with τ ≡ i satisfy the FKG inequalities (see
[FKG71, Gr95, Ne97]).

For the ferromagnetic Ising model we recall Proposition 3.8 p. 35 [Ne97] (see also the
original proof [LM72]) that prove the equivalence of the transition phase in the Ising
model with percolation in the related FK model.

Proposition 2.1 For the ferromagnetic Ising model there is a unique infinite Gibbs mea-
sure at inverse temperature β if and only if

E (σx) ≡ lim
Λ→Zd

µτ≡i,F
Λ,Jβ (x←→ Λc) = 0. (18)

We will not prove Proposition 2.1. A proof can be found in [Ne97] pp. 35-37. In any
case we will use some related ideas in the proof of Theorem 3 that is presented in the
appendix.

Ferromagnetic and frustrated measures. Let us define two Gibbs measures and their
related FK measures. We define these measures on a finite set of vertices Λ ⊂ Zd -
finite volume- fixing the configurations J and the boundary conditions τ . We take a
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ferromagnetic and a frustrated system, and we will use the label i = 1, 2 to indicate
respectively the ferromagnetic and the frustrated system. Take J1,e = |J2,e| ∈ [JA, JB] for
all e ∈ E(Λ) ∪ ∂Λ, where 0 < JA ≤ JB <∞. Let J1,e > 0 for all edges e -so that system
1 is ferromagnetic- and J2 is such that in each block Bn(v) ⊂ E(Λ) there is a frustrated
plaquette. We remind that we have covered the edges E(Zd) with blocks of a fixed size n.
We are ready to write the finite volume Gibbs measures πτ≡i

1,Λ,J1β, πτ ′
2,Λ,J2β and the related

FK measures µτ≡i
1,Λ,J1β, µτ ′

2,Λ,J2β. We denote with π1,J1β any infinite volume Gibbs measure
obtained as a weak limit along any subsequence {ΛL}L and any boundary condition τ , i.e.
πτ

1,ΛL,Jβ →L→∞ π1,Jβ; we follow the same notation for the other measures taking a weak
limit of finite volume measures. The above construction for the FK and Gibbs measures
shall be called hypothesis (H1). Sometimes we use the label τ of the boundary condition
also for the infinite volume measure if it is relevant. The critical point is

βc(J) = sup{β > 0 : the Gibbs measure πJβ is unique} (19)

i.e. the weak limit of the measures is independent of the boundary conditions and of the
sequence {ΛL}L; the percolation critical point of the FK measure is

βFK
c (J) = sup{β > 0 : ∃ µJβ and ∃ x ∈ Zd with µJβ(|Cx| =∞) = 0}. (20)

The measure µJβ need not be translation invariant. In any case, using a lemma of [DG99]
it is known that if the probability to percolate is larger than zero at a vertex, then it is
larger than zero for all the vertices if all the interactions are different from zero; so, in
this case, we could indicate only the cluster at the origin in (20).

For ferromagnetic systems, using Proposition 2.1, one has that βFK
c (J) = βc(J) (see

[Ne97]). When the Gibbs measure is not unique one says that there is a phase transition;
for the Ising models one can also define the region of parameter β in which there is broken
symmetry, that is E (σx) > 0 for some boundary conditions. It is known that broken
symmetry implies a phase transition but in general for the Ising models it is not known if
the converse is true; only for ferromagnetic systems, by Proposition 2.1, it is known that
phase transition and broken symmetry are equivalent. For notational convenience we will
write βFK

c (1, |J |), βFK
c (2, J) in place of βFK

c (J1) and βFK
c (J2) if the two systems satisfy

the hypothesis (H1), and analogously for the critical point βc. We have this first strict
inequality for the FK measures (see for the same result with a different proof [Ca98]).

Theorem 2 Let us consider the graph Ed with d ≥ 2, let the FK measures µτ≡i
1,|J |β and

µτ ′
2,Jβ verify the hypothesis (H1), and let [βA, βB] be an interval with 0 < βA < βB < ∞

then there exists α ∈ (0, 1) such that for each β ∈ [βA, βB]

µτ ′
2,Jβ � µτ≡i

1,α|J |β , (21)

and βFK
c (2, J) > βFK

c (1, |J |).
We will give the proof of the stochastic order in Theorem 2 in the next section. It is
known that for d ≥ 2, 0 < βFK

c (J) < ∞, for the ferromagnetic systems with Je > ε > 0
for all the edges (see [Ne97]). So the second part of the Theorem is nontrivial.

9



Now we show that βFK
c (2, J) > βFK

c (1, |J |) is a consequence of (21). By the stochastic
order, formula (21), we have the inequality βFK

c (2, J) > βFK
c (1, |J |) because percolation

is an increasing event and the following relation is obviously true:

αβFK
c (1, |J |) = βFK

c (1, α|J |). (22)

So αβFK
c (1, |J |) = βFK

c (1, α|J |) ≤ βFK(2, J). We know also that βFK(2, J) < ∞, this
follows from a modification of [DG99] in which only FK measures without boundary
conditions are analyzed. The idea is that all the boundary conditions can be thought of
as a particular choice of J interactions and the configuration η on some edges connecting
the vertices of the boundary. So we can do the same kind of proof as with free boundary
conditions [DG99]. We have also Theorem 3, which is similar to Proposition 2.1 in the
results and it is also related to [Ne94] in the idea of the proof and in the kind of the result.

Theorem 3 Let µτ≡i,F
Λ,J1β1

a ferromagnetic FK measure with boundary condition τ ≡ i with
i = −1, 1. If for all vertices x ∈ Zd

lim
Λ→Zd

µτ≡i,F
Λ,J1β1

(x←→Λc) = 0, (23)

and
∀Λ, ∀τ µτ

Λ,Jβ � µτ≡i,F
Λ,J1β1

(24)

then for all finite sets of vertices A ⊂ Zd:

∀τ, τ ′ lim
Λ→Zd

|πτ
Λ,Jβ(σA)− πτ ′

Λ,Jβ(σA)| = 0 (25)

therefore the related infinite volume Gibbs measure πJβ is unique.

We will give the proof of Theorem 3 in the appendix. The next result is an immediate
consequence of Theorem 2 and Theorem 3, but we want to point it out because it is
relevant for Statistical Mechanics (for the non strict inequality see [Ne94])).

Corollary 2.1 Let us consider the graph Ed with d ≥ 2. Let π1,J1β and π2,J2β be two
Gibbs measures satisfying (H1). Then βc(2, J) > βc(1, |J |).

3 Non disordered systems

In the previous section we have defined a ferromagnetic and a frustrated measure on the
space HE,Λ for a particular choice of interactions J = {Je}e∈E. Now we want to construct
non homogeneous Markov chains having the finite volume FK measures µτ ′

2,Λ,Jβ and µτ≡i
1,Λ,Jβ

as stationary measures. The Markov chains that we will construct will be irreducible and
so the stationary measure will be unique. We will study the coupling between these
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Markov chains to deduce stochastic order between their stationary measures. In what
follows Λ will indicate a set of vertices of shape Zd ∩ [−L, L]d for any L > 2.

We consider Markov chains that update the configurations on the edges or on the frus-
trated plaquettes. Before giving the kernels of the Markov chains we will fix the order
in which the configurations are updated. Let’s give a lexicographic order to the blocks
Bn(v) ⊂ E(Λ) that are used to cover E(Zd); we write {B1, B2, . . . , BN}. In every block
Bn we mark a frustrated plaquette that we will call pln. We update the configuration in
the given lexicographic order, and for each block we use this procedure

(a) update the configuration on the edges e ∈ ∂EBn in a lexicographic order;

(b) update the configuration on the edges e ∈ Bn in a lexicographic order;

(c) update the configuration on the marked frustrated plaquette pln;

(d) update the configuration on every plaquette belonging to Bn and then mark it.
The first marked plaquette is pln updated in point (c). Update the edges on the
unmarked plaquettes that are adjacent to any marked plaquette and that are in
the block which we are considering. Let’s update the edges of this plaquette in the
order e1, e2, e3, e1, e2 (see figure 2) leaving unchanged the edges belonging to marked
edges;

(e) update the configuration on the edges e ∈ ∂IBn in this order: e1, e2, e1, where
e1 and e2 are two edges touching the same side of ∂EB and then let update in a
lexicographic order all the other edges touching the same side. Then repeat this
procedure for the four sides of ∂IB (see fig. 2).

(f) update the configuration on the edges e ∈ ∂EBn in a lexicographic order;

(h) let’s take the next block and repeat all the procedure.

Now we will write the kernels of three Markov chains which are P
(1)
Λ,β, P

(2)
Λ,β and P̃Λ,β;

the first and second Markov chains have respectively µτ≡i
1,Λ,|J |β and µτ ′

2,Λ,Jβ as stationary
measures. We will drop the labels Λ and β in the kernels for simplicity.

In general we will indicate with P the Markov kernel that is the result of the composition

PD1PD2 . . . PDn,

where PDi
updates the configuration on the set of edges Di. On each set of edges D -it

will be an edge or a plaquette- we will use as kernel the conditional probability (Gibbs
sampler); for every ηini, ηfin ∈ {0, 1}Λ and every region D ⊂ Λ we use this kernel to
update the configuration:

P
(1)
D (ηini, ηfin) = µτ≡i

1,Λ,|J |β(η(D) = ηfin(D)|ηini(E(Λ) \D)); (26)

11



Figure 2: the coupling described in points (d) and (e) that will be used in Lemma 3.5
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so the kernel (or transition probability) is independent of the initial value on D but it
depends on ηini(E(Λ) \ D); we also point out that ηini(E(Λ) \ D)) = ηfin(E(Λ) \ D)).
Analogously we proceed for the Markov chain P (2) substituting µτ ′

2,Λ,Jβ to the µτ≡i
1,Λ,|J |β in

(26). Finally we define the kernel P̃ that has

P̃pl(ηini, ηfin) =

{
µτ ′

2,Λ,Jβ(η(pl)) = ηfin(pl)|ηini(E(Λ) \ pl)) if η(B \ pl) = 0
µτ≡i

1,Λ,|J |β(η(pl)) = ηfin(pl)|ηini(E(Λ) \ pl)) otherwise
(27)

for the marked frustrated plaquette pl and P̃e = P (1)
e for all the edges that are not in

a marked frustrated plaquette. The technique, that we will explain later, is applicable
also to obtain strict inequality for two ferromagnetic systems (see [BGK93, Gr95, Gr99])
but in that case we do not need to introduce the measure P̃ . For the proofs we could
also choose a continuous time Markov process as in [BGK93] but it seems to us that with
Markov chains there are more explicit bounds for the differences of the percolation critical
points βFK

c (2, J)−βFK
c (1, |J |). Recall also that the measures µ1 and µ2 are reversible with

respect to the defined Markov chains P (1) and P (2), so they are stationary measures for
them. The stationary measure is unique for each chain because the chain is irreducible.

In the next lemma we prove, adding an hypothesis, the Strassen’s theorem in a stronger
form which is useful to prove strict inequalities.

Lemma 3.1 Let µ1 and µ2 be measures on the finite space X = {0, 1}B with |B| < ∞.
The following assertions are equivalent:

(a) There exists ε > 0 such that for each increasing event E ⊂ X with E 6= ∅, X
µ1(E) + ε ≤ µ2(E).

(b) There exists a coupling P12 on the space X ×X with P12(·, X) = µ1(·) e P12(X, ·) =
µ2(·) and P12 is a measure supported on the set M with P12(η1 ≡ 0, η2 ≡ 1) ≥ ε.

Proof. (b)⇒(a) is a consequence of this direct computation; let E be as in the hypothesis
of the theorem

µ1(E) = P12(E, X) = P12(E, E) (28)

≤ P12(η1 ≡ 0, η2 ≡ 1)− ε + P12(E, E) (29)

≤ P12(X, E)− ε = µ2(E)− ε. (30)

the equalities in (28)-(30) and the inequality (29) are true because of the hypothesis, and
the inequality in (30) because

{η1 ≡ 0, η2 ≡ 1} ∩ {E × E} = ∅ and {η1 ≡ 0, η2 ≡ 1} ∪ {E ×E} ⊂ {X ×E}.

(a)⇒(b). There exists P12 which respect the Strassen’s theorem with µ1(E) = P12(E, X)
and P12(X, E) = µ2(E) because µ1 � µ2; so we have only to prove that there is such a

13



coupling measure verifying P12(η1 ≡ 0, η2 ≡ 1) ≥ ε. Let’s define for each event A ∈ X the
function

νε(A) = µ2(A)− εI({η ≡ 1} ⊂ A) + εI({η ≡ 0} ⊂ A) (31)

where I is the indicator function and ε is given by point (a) of the theorem. It is easy to
see that νε is a probability measure coinciding with µ2 on the configurations that are not
constant (η 6≡ 0, 1). Moreover,

νε(η ≡ 1) = µ2(η ≡ 1)− ε ≥ 0 and

νε(η ≡ 0) = µ2(η ≡ 0) + ε.

Then νε is a probability measure and by construction:

µ1 � νε � µ2; (32)

in fact for every increasing event E 6= ∅, X by hypothesis µ1(E) ≤ µ2(E) − ε = νε(E)
whereas for the events ∅, X we have the equality.

We can construct a coupling measure P0 between the measures µ1 and νε, because they
are stochastically ordered. Now we can construct the coupling P12 using this relation:

P12(η1, η2) =


P0(η1, η2) if (η1, η2) 6= (0, 1), (0, 0)
P0(0, 0)− ε if η1 ≡ 0 and η2 ≡ 0
P0(0, 1) + ε if η1 ≡ 0 and η2 ≡ 1

.

P12 is a joint probability measure of µ1 and µ2 verifying all the conditions in point (b);
in fact all the components of P12 under the diagonal are equal to zero, P12(η1, X) =
P0(η1, X) = µ1(η1) and

P12(X, η2) = P0(X, η2) + εI(η2 ≡ 1)− εI(η2 ≡ 0) = µ2(η2).

This ends the proof.

It is known that P (1) is attractive (see [Gr95]), we want now to prove that also P̃ has this
relevant property.

Lemma 3.2 The kernel P̃ is attractive.

Proof. We shall show that for all configurations η � ξ, P̃ (η, ·) � P̃ (ξ, ·). It is enough to
consider only configurations which are different on a single edge e, i.e. ηe = 0 and ξe = 1,
showing on these configurations the monotone property. At time n if an edge e is updated
then P̃ is equal to the ferromagnetic kernel (P̃e = P (1)

e for all the edges e). But P (1)
e is

attractive (see [Gr95, Ne97]) so also P̃e is attractive. If at time n the frustrated plaquette
pli is updated there are two case:
1) η(Bi) 6= 0; again P̃pl is equal to the ferromagnetic kernel, so it is attractive.
2) η(Bi) ≡ 0; if the edge e in which ηe 6= ξe is not in Bi then it does not influence P̃pl

14



because the plaquette is inside a minimal cut set (in two dimensions a dual circuit) γ with
all the edges closed and the kernels P̃ (η, ·) and P̃ (ξ, ·) are equal; this is equivalent to free
boundary conditions on the plaquette. If e ∈ Bi:

µ2(·|η(E \ pl) = 0) � µ1(·|η(E \ pl) = 0) � µ1(·|ξ(E \ pl));

the first stochastic order follows from µF
2 � µF

1 with free boundary condition (16), the

second stochastic order follows from the attractiveness of the ferromagnetic kernel P
(1)
D =

µ1(·|η(E \D)).

Now we can proof the domination between the kernels P (2), P̃ and P (1). In the next
lemma we denote with δη the probability measure supported on the configuration η.

Lemma 3.3 For all the initial conditions η ∈ {0, 1}E(Λ) and for all t ∈ N

δη(P
(2))t � δη(P̃ )t � δη(P

(1))t.

Proof. δη(P
(2))t � δη(P̃ )t. Using the condition A1) we have only to prove the result on

the update of a single set Di. So we should prove that for each Di, η and η′ we have:

P
(2)
Di

(η, ·) � P̃Di
(η′, ·)

with η �∗ η′. If η = η′, we have P
(2)
Di

(η, ·) � P̃Di
(η, ·) as a consequence of the stochastic

order (17); in fact the conditional probabilities are FK measure on the particular set
of edges Di (plaquette or the single edge). The kernel P̃Di

is attractive, so we have
P̃Di

(η, ·) � P̃Di
(η′, ·), which shows the right stochastic order. An analogous argument

works also for the second domination.

We remaind that in the rest of the section the configuration J verifies |Je| ∈ [JA, JB]
where 0 < JA < JB <∞.

Lemma 3.4 For every inverse temperature β ∈ (0,∞) there exists ε1,J(β) > 0 such that
for each frustrated plaquette pl and for each increasing event E ∈ Hpl = {0, 1}pl and
E 6= ∅, Hpl we have:

µτ≡i
1,Λ,|J |β(E|η(B \ pl) ≡ 0) ≥ µτ ′

2,Λ,Jβ(E|η(B \ pl) ≡ 0) + ε1,J(β) (33)

Proof. The conditional probabilities in (33) are independent of the boundary conditions
and the size of the box Λ because the plaquette is isolated being inside a minimal cut
set (in two dimension a dual circuit) γ in which η(γ) = 0. There is only a forbidden
configuration on Hpl, that is the configuration η(pl) ≡ 1. Let’s write µ1 = µτ≡i

1,Λ,|J |β and

µ2 = µτ ′
2,Λ,Jβ. Let µ1(E|η(B\pl) ≡ 0) = A(E)

Z
and being µ1(η(pl) ≡ 0|η(B\pl) ≡ 0) = δ > 0

we have Z > A(E) for all E that respect the hypothesis; in fact {η(pl) = 0} is not in any

increasing event E 6= ∅, Hpl. Then µ2(E|η(B \pl) ≡ 0) = A(E)−ε
Z−ε

and ε =
∏

b∈pl pb > 0 that
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is the weight of the configuration η(pl) ≡ 1 for the measure µ1. Instead, for the probability
measure µ2 the configuration η(pl) ≡ 1 has a null weight because such a configuration is
forbidden. For all E respecting the hypothesis

µ1(E|η(B \ pl) ≡ 0) > µ2(E|η(B \ pl) ≡ 0). (34)

So there exists a constant ε1,J(β) > 0 verifying (33) because the number of events E
verifying the inequality (34) is finite.

In the next lemma η is a configuration with η(pl) = 0 and η′ is a configuration with
η′(pl) = 1. Let’s define

P
(1)
B\pl := P

(1)
e(1)P

(1)
e(2) . . . P

(1)
e(n) (35)

where all the {e(i)}i=1,...,n are different edges inside B \ pl.

Lemma 3.5 For all β ∈ (0,∞) there exists ε2,J(β) > 0 such that for each increasing
event E in HB = {0, 1}B with E 6= ∅, HB and for each pair of configurations η, η′ ∈
{0, 1}Λ\(∂EB∪B) (external to B ∪ ∂EB) with η � η′:

µτ≡i
1,Λ,|J |β(E|η, η(pl) = 0) + ε2,J(β) < µτ≡i

1,Λ,|J |β(E|η′, η′(pl) = 1). (36)

Proof. We will use in the proof a dynamic argument. We will find a lower bound for

µτ≡i
1,Λ,|J |β(E|η′, η′(pl) = 1)− µτ≡i

1,Λ,|J |β(E|η, η(pl) = 0) (37)

using the same kernel P (1)
e to update the configuration for two systems with a different

initial configuration on the plaquette pl and eventually out of the considered block B.
Being P

(1)
B\pl irreducible, aperiodic and with finite number of states we know that, for

every configuration on pl and on Bc, its stationary measure is unique and in the limit
t→ ∞ the measure at time t of the Markov chain converges to this stationary measure.
We use the standard coupling for the kernel P (1)

e ; this kernel is attractive so at every time
t we will have η(t) �∗ η′(t).

There is a positive probability that η′ ≡ 0 on all the edges e ∈ B \ pl and so, using the
coupling, also η ≡ 0 on B \ pl; there is a positive probability that also η = η′ ≡ 1 on the
set ∂EB, in fact all the configurations on a finite set of edges has a positive probability to
be realized (finite energy). We start at such a configuration, i.e. η′(B \pl) = η(B \pl) = 0
and η′(∂EB) = η(∂EB) = 1. Let’s update the configuration on plaquettes having at least
one edge belonging to a plaquette already updated (see point (d) for the description of
the dynamics). If in all the previous steps the updated plaquettes in the two systems
verify η = 0 and η′ = 1, there is a different probability to have ηe = 1 and η′

e = 1 with
e belonging to the plaquette that we are updating (see [BGK93]). This is so because
updating the first two edges there is a positive probability to have η′

e(1) = η′
e(2) = 1 (see

figure 2). So on the third edge, conditioning on the event η′
e(1) = η′

e(2) = 1 and on all the
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updated plaquettes in the block η = 0 and η′ = 1, we obtain that the probability to have
η(e(3)) = 0 and η′(e(3)) = 1 is

pe(3) − pe(3)

pe(3) + 2(1− pe(3))
> 0. (38)

Formula (38) is a consequence of the fact that the vertices in i, k belonging to e(3) are
connected in the configuration η′ independently of η′(e3), whereas they are not in the
configuration η (see [BGK93] and [Gr95] p. 1471).

Now updating the configurations on the edges e(1) and e(2) we will find the same bound
for the probability of the event ηe(1) < η′

e(1).

So we can bound the the probability of the event η(e(i)) < η′
(e(i)) for i = 1, 2, 3 with

pe(1)pe(2)

∏
i=1,2,3

[
pe(i)(1− pe(i))

2− pe(i)

]
. (39)

We can use this procedure for all the plaquettes in B. A slightly different strategy is
needed for the edges in ∂IB that belong to plaquettes that are not inside B. Let’s update
the first edge e(1) ∈ ∂IB. There is a positive probability for the event ηe(1) = 1. Now
for all the successive edges we have the bound (38) for the probability to have ηe = 0
and η′

e = 0 for all e ∈ ∂IB. Now we update the edges in ∂EB and there is a positive
probability to obtain all the possible configurations η(∂EB).

This bound is uniform in the time t so, for the unique stationary measures, we have that
there is a probability larger than zero to have η(B) ≡ 0, η′(B) ≡ 1 and in each case the
configurations are ordered η �∗ η′; in fact for every updated region we can obtain only
ordered configurations (doing a comparison on all the terms), so the coupling has all the
measure supported on the space M . Now using the Lemma 3.1 we have (36). It is clear
that all the bounds are also uniform in Λ and in the configurations η, η′ ∈ {0, 1}Λ\(∂EB∪B)

outside Λ \ (∂EB ∪ B).

Let’s remark that the lower bound (39) does not hold if β = 0 or β = ∞ (means zero
temperature) because the inequality (38) becomes equal to zero (remind that pe = 1 −
e−|Je|β). Also, (36) falls for β = 0,∞, so the condition β ∈ (0,∞) is necessary for Theorem
3.5.

The proof of Theorem 2 will be similar to [BGK93, Gr99]; as a matter of fact we want to
prove the strict inequality using only the attractive Markov chains P̃ and P (1). Now we
are ready to prove the main result of this section.

Proof of Theorem 2. Let’s put back the labels β, J and Λ on the measures µ1 and µ2,
and therefore on the kernels P̃ and P (1). The kernel P

(1)
Λ,Jβ is

P
(1)
Λ,|J |β = P

(1)
pl1,|J |βP

(1)
B1\pl1,|J |β . . . P

(1)
plN ,|J |βP

(1)
BN\plN ,|J |β (40)
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where P
(1)
Bi,|J |β is defined in (35); analogously for P̃Λ,Jβ. Since the Markov chains are

irreducible, aperiodic and with a finite number of states

µ1,Λ,|J |β = lim
k→∞

δη(P
(1)
Λ,|J |β)k; µ2,Λ,Jβ = lim

k→∞
δη(P

(2)
Λ,Jβ)k

µ̃Λ,Jβ = lim
k→∞

δη(P̃Λ,Jβ)k; (41)

for all η and for all the parameters β > 0 and J > 0. It is easy to see that the FK
measures are continuous in the parameters β > 0 and J > 0, in fact pe is continuous in β
and J and there are only sums, products and a division, but with the denominator larger
than zero for all β > 0.

By Lemma 3.4, Lemma 3.5 and Lemma 3.1 for E increasing and different from ∅, HE,B

[δη(P̃pl,JβP̃B\pl,Jβ)k](E) + ε3,J(B)(β) ≤ [δη(P
(1)
pl,|J |βP

(1)
B\pl,|J |β)k](E) (42)

for all n > 0, with ε3,J(B)(β) > 0; ε3,J(B)(β) depends only on β and the interactions on the
block B. As a matter of fact Lemma 3.1 and Lemma 3.4 guarantee that there is a coupling
which gives positive probability to the event that the plaquette has all the edge closed
in the frustrated system and all the edges open in the ferromagnetic system; Lemma 3.5
guarantees the same result for B \ pl. The kernels are continuous being equal to the FK
measure (with some boundary conditions). They are also uniformly continuous on the
compact parameter’s region [βA, βB] × [JA, JB]B. So for all the interactions in [JA, JB]
and for all β ∈ [βA, βB] there exists α ∈ (0, 1) such that

[δη(P̃pl,JβP̃B\pl,Jβ)
k](E) < [δη(P

(1)
pl,α|J |βP

(1)
B\pl,α|J |β)k](E) (43)

Let’s remark that not all the boxes [−L, L]d ∩ Zd can be divided into blocks of fixed size
n, but in any case we can take boxes of different sizes k with n ≤ k ≤ 2n and, using all
these types of blocks, we can cover every box [−L, L]d ∩Zd if L is larger than n. On each
block B, we will find a different value of ε3,J(B)(β), but in any case the different sizes are
a finite number (between n and 2n), so the minimum exists and is larger than zero. We
redefine α := minB α(B).

On each block we can replace the kernel P̃B,Jβ with P
(1)
B,α|J |β getting a domination for

any single change. Therefore the domination remains also replacing P̃B,Jβ with P
(1)
B,|J |β in

all the boxes, since the kernels are all attractive. So, using property A1), we obtain the
stochastic order µ̃Λ,Jβ � µ1,Λ,α|J |β for the stationary measures. We deduce

µτ ′
2,Λ,Jβ1

� µ̃τ≡i
1,Λ,|J |β � µτ≡i

1,Λ,α|J |β (44)

for all boundary conditions τ ′, where the first stochastic order is a consequence of Lemma
3.3. Remember that α in (44) is defined uniformly in Λ, so we can take the weak limit on
every subsequence of boxes Λk, on which the limit exists, to have

µτ ′
2,Jβ1

� µτ≡i
1,α|J |β. (45)
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This ends the proof.

Notice that it is possible to use the stochastic order (45) for every increasing event, not
only for percolation. For the increasing events in the tail σ-algebra one can define a
critical point analogous to (20) and one has a strict inequality in the critical point for the
frustrated and the ferromagnetic measure if the ferromagnetic critical point is different
from zero and infinite. For the Edwards-Anderson model, if one wants only to show a
strict inequality between the regions in which there is broken symmetry, one could use
the result in [Ca98].

4 Strict inequality for disordered systems

In this section we will find a strict inequality in the phase transition for disordered systems.
In all the section we will consider the configuration of the interactions J = {Je}e∈E as
random variables. We will denote with (Θ,A, Q) the abstract probability measure on
which the random variables {Je}e∈E are defined. The random variables {Je}e∈E are i.i.d.
and the support of the distribution is {−J1,−J2, J1, J2} with 0 < J2 < J1 < ∞; let us
define p = 2Q(Je = −J2) = 2Q(Je = J2).

The second claim of Proposition 3.9 in [Ne97] is given for the Ising model but the same
proof works for the frustrated Ising model. So we will write the proposition without proof.

Proposition 4.1 Given the random variable J , the percolation critical points βFK
c (J)

and βFK
c (|J |) are Q-a.e. constant.

The second point of the next Theorem could be obtained using the paper [OPR83] in
which a strict inequality for the magnetization of some ferromagnetic systems is proved.
We need a similar estimate for the FK measure. We will give the proof of the theorem
because it is different from [OPR83] and it is directly applicable to the FK measures that
we will use at the end of this section. We will write J1 for the configuration with all the
interactions equal to J1. Analogously for J2.

Theorem 4 Let J be the absolute value of the random variable defined before, then

βFK
c (J2) > βFK

c (J) > βFK
c (J1) Q− a.e. (46)

and βc(J2) > βc(J) > βc(J1) Q− a.e. (47)

Proof. We will abbreviate the notation writing η\b = η(E\b), J\b = J(E\b) and omitting
the labels β and Λ in the measures. We will prove (46) for the FK measures with free
boundary conditions; then we will finish the proof using the fact that the percolation is
an increasing event, the equality between µF

Jβ and µτ≡i,F
Jβ for almost all the β, and the

fact that µτ≡i,F
Jβ respects the relation (15).
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Let’s define the integrated measure µ of the ferromagnetic measures

µ(η) =
∑
J

Q(J)µJ(η), (48)

where J is the configuration of the interactions and the single values are equal to J1 or
J2. We have omitted the labels β and Λ in the integrated measure. The sum in (48) is
finite because we are considering, as in the previous section, a finite box Λ. We will see
that we only need to prove the stochastic order between the integrated measure µ and the
ferromagnetic measures (see for the same technique [GKN92, DG99]). The conditional
probability measure of µ is

µ(ηe = 1|η\e) =

∑
J\e

pQ(J\e)µJ2,J\e
(ηe = 1, η\e) + (1− p)Q(J\e)µJ1,J\e

(ηe = 1, η\e)∑
J\e

pQ(J\e)µJ2,J\e
(η\e) + (1− p)Q(J\e)µJ1,J\e

(η\e)
, (49)

where J1, J\e means that Je = J1 and on the edges E \ e the interactions are equal to
a fixed J\e. We have written µJ2(ηe = 1|η\e) in place of µJ2,J\e

(ηe = 1|η\e) because this
conditional probability is independent of J\e (see [Ne97]).

µ(ηe = 1|η\e) =

∑
J\e

pQ(J\e)µJ2(ηe = 1|η\e)µJ2,J\e
(η\e) + (1− p)Q(J\e)µJ1(ηe = 1|η\e)µJ1,J\e

(η\e)∑
J\e

pQ(J\e)µJ2,J\e
(η\e) + (1− p)Q(J\e)µJ1,J\e

(η\e)
(50)

So we have a convex linear combination of the probability measures µJ2(ηe = 1|η\e) and
µJ1(ηe = 1|η\e). Let’s define

pa(η\e) =

∑
J\e

pQ(J\e)µJ2,J\e
(η\e)∑

J\e
pQ(J\e)µJ2,J\e

(η\e) + (1− p)Q(J\e)µJ1,J\e
(η\e)

. (51)

Then
µ(ηe = 1|η\e) = pa(η\e)µJ2(ηe = 1|η\e) + (1− pa(η\e))µJ1(ηe = 1|η\e). (52)

We want to show that 0 < pa < 1. We will first prove that pa > 0. Let

F = max
η

µJ1,J\e
(η\e)

µJ2,J\e
(η\e)

. (53)

It is known that ∑N
i=1 αiAi∑N
i=1 αiBi

≤ maxi

{
Ai

Bi

}
with Ai, Bi, αi ≥ 0. (54)

We apply the inequality (54) to (51) to obtain, with some algebraic calculations,

pa(η\e) ≥ 1

1 + 1−p
p

F
. (55)
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Let’s apply (54) to (53) using also the definition of the ferromagnetic FK measure

F ≤ max

{
1,

1 + e−βJ1

1 + e−βJ2

}
Z(J2, J\e)
Z(J1, J\e)

=
Z(J2, J\e)
Z(J1, J\e)

(56)

where the first part in the max function corresponds to a configuration η\e in which the

connection of {x, y} = e is independent of the value of ηe; the number 1+e−βJ1

1+e−βJ2
, instead,

depends on the configurations η\e connecting the vertices x and y -with {x, y} = e- if and
only if ηe = 1. Applying again the inequality (54) we have

Z(J2, J\e)
Z(J1, J\e)

≤ max

{
1,

1 + e−βJ2

1 + e−βJ1

}
=

1 + e−βJ2

1 + e−βJ1
≤ 2 (57)

for all β > 0 and 0 < J2 < J1. Then

pa(η\e) ≥ p

p + 2(1− p)
. (58)

In the same way we can show that 1− pa(η\e) > 0.

As in the last section, we will define two processes P1 and P , where the elements of the
kernels are conditional probabilities. Remember that [η′η]e is the configuration which
coincides with η′ on the edge e and is equal to η on all the other edges. Let’s define

P1,e,J1β(η, [η′η]e) = µJ1β(η′
e|η\e)

for the kernel (transition matrix) that updates the configuration on the edge e; analogously
for the integrated measure

P e,β(η, [η′η]e) = µβ(η′
e|η\e).

If η′ ≡ 1 for each e ∈ E

P1,e,J1β(η, [η′η]e)− P e,β(η, [η′η]e) = (59)

µJ1β(ηe = 1|η\e)− µβ(ηe = 1|η\e) ≥ (60)

inf
η\e

[p(η\e)] inf
η\e

[µJ1β(ηe = 1|η\e)− µJ2β(ηe = 1|η\e)] ≥ (61)

p

p + 2(1− p)
inf
η\e

[
e−βJ2 − e−βJ1,

1− e−βJ1

1 + e−βJ1
− 1− e−βJ2

1 + e−βJ2

]
> 0. (62)

(62) is continuous with respect to the variables β, J1, J2, and uniformly continuous if the
variables are defined in a compact space. So there exists α ∈ (0, 1) such that, changing
µJ1β with µαJ1β in (60), the inequality (62) is verified for all β ∈ [βA, βB] (with 0 < βA <
βB <∞).
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We can choose βA and βB such that βFK
c (J1), β

FK
c (J2) ∈ [βA, βB] with 0 < βA < βB <∞.

In fact βFK
c (J1) and βFK

c (J2) are finite positive numbers. So due to the stochastic order
of the FK measures (15), also all the ferromagnetic measures with Je ∈ [J1, J2] have
βFK

c (J) ∈ [βA, βB]. The Markov chain P1,αJ1β is attractive and dominates P e,β on every
edge because of (59)-(62); here the edges play the role of the blocks in the previous section.
Following the exposition of the previous section, we have that the stationary measures of
the processes P1,αJ1β and P e,β are stochastically ordered and, rewriting the parameters Λ
and β, one has µΛ,β � µΛ,αJ1β ∀β ∈ [βA, βB]. We remark that the inequalities (59)-(62)
are independent of Λ, so we can take the limit of Λ→ Zd preserving the stochastic order
between the measures. So, for all the weak limits of the integrated measure µβ, one has

βFK
c (µ) ≥ βFK

c (αJ1) = βFK
c (J1)/α > βFK

c (J1), (63)

where βFK
c (µ) := sup{β > 0 : µβ({O ↔∞}) = 0}.

We will denote with I the event that there exists an infinite cluster (there is percolation).
We will prove that βFK

c (J) = βFK
c (µ) Q almost everywhere. Since βFK

c (J) is Q-a.e.
constant, by Proposition 4.1, we have

βFK
c (µ) = sup{β > 0 : µβ({O ↔∞}) = 0} = sup

{
β > 0 :

∫
Θ

Q(dθ)µJ(θ)β(I) = 0
}

.

(64)
We can integrate (64) only on the subset of Θ where βFK

c (J(θ)) is a constant, neglecting
a set of measure zero. Then it is easy to see that βFK

c (J) = βFK
c (µ) Q almost everywhere.

So we have proved that βFK
c (J) > βFK

c (J1). Using the fact that for almost every β
the FK measures with free boundary conditions and with τ ≡ i boundary conditions
are equal and that I is an increasing event, we deduce the second inequality in (46)
(see [ACCN88] and also [Gr95]). The other inequality in (46) follows using the same
arguments; the inequalities in (47) are a consequence of the equality between βc and βFK

c

for the ferromagnetic Ising model or using a construction due to Newman presented in
the Appendix.

Notice that for Theorem 4 we do not need the explicit definition of the percolation but only
the fact that it is an increasing event in the tail σ-algebra A∞. So, for other incresing
events in A∞, we could define a critical point and use the same idea to proof a strict
inequality for the critical points of the ferromagnetic and frustrated system.

In the next theorem we denote with πF
Jβ the Gibbs measure of a ferromagnetic Ising model

and with πJβ the Gibbs measure of a frustrated Ising model with equal absolute value of
the interactions J . For the interaction of a ferromagnetic system we define the partial
order J (1) �∗ J (2) if on all the edges J (1)

e ≤ J (2)
e . We consider the i.i.d. random variables

{Je}e∈E on the space {−1, 1} with distribution Q(Je = −1) = p̃ with 0 < p̃ < 1.

Proof of Theorem 1. Let’s consider a specific realization of the random variable J and
the related Gibbs measure πJβ. We will construct a disordered ferromagnetic Ising model
related to this configuration of the interactions J . Let’s cover the graph Ed with blocks
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of a fixed size, we can choose n = 6. In each block there is a positive probability to find
a frustrated plaquette because 0 < Q(Je = −1) < 1. In all the blocks that do not have
frustrated plaquettes we set the interaction equal to the constant 1; on all the remaining
edges we set Je = J2 < 1. We will indicate this configuration with J̃ . If J2 is chosen close
to 1, we know from the previous section that the kernel P̃B,J is dominated by P

(1)
B,J2

and

the kernel P̃B,J1 dominates the kernel P
(2)
B,J . So, replacing on all the blocks the kernel P

(2)
B,J

with P
(1)
B,J≡1 if there aren’t frustrated plaquettes and with P

(1)
B,J≡J2

if there is at least one
frustrated plaquette, we have a kernel that dominates the previous one. We can calculate,
using the reversibility, the stationary measure of this new kernel which turn out to be a
ferromagnetic FK measure. So we find that this last FK measure and the original systems
are stochastically ordered by taking the limit for N → ∞ in A1). Again, the limit exist
and is unique because the Markov chain is irreducible and aperiodic. So we have

µJβ � µF
J̃β

. (65)

We want to compare the ferromagnetic measure µF
Jβ with µF

J̃β
; we know by Theorem 4

that if J̃ are dyadic i.i.d. random variables then we have the strict inequality for the
critical point.

From the construction one can see that on each block, independently from the others,
there is a positive probability to find a frustrated plaquette. Therefore, in the coupling on
each block B there is a positive probability to have Jb = J2 < 1. The considered procedure
to construct the configuration J̃ on the ferromagnetic system induces a measure P1 on
the interactions. It is simple to see that the measure P1 is stochastically ordered with a
dyadic product measure Bp1 (independent on all the edges) where Bp1(Jb = 1) = p1 and
Bp1(Jb = J2) = 1− p1. Obviously the stochastic order is with respect to the partial order
on the configurations of interactions. To have P1 � Bp1 it is enough that

|p1||B| ≥ P
(
{ There is a frustrated plaquette in B \ ∂IB}

)
,

where |B| is the number of edges in a block. So there is a ferromagnetic FK measure,
called µF

(J1,J2)β
, with distribution of the interactions Bp1 satisfying the following stochastic

order
µJβ � µF

J̃β
� µF

(J1,J2)β
. (66)

Using Theorem 4 one obtains that for almost all the realizations of J

βFK
c (J) ≥ βFK

c ((J1, J2)) > βFK
c (J ≡ 1). (67)

Finally from the formula (66) using Theorem 3 one has

βc(J) ≥ βc((J1, J2)) > βc(J ≡ 1). (68)

This ends the proof.

The strategy of the proofs is quite general and can be applied to other models. For
example with this method it is possible to study strict inequalities in the phase transition
of disordered systems having also a random magnetic field (see [BK88] for the definition
of the model).
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A Appendix

We begin with some definitions that will be used in the proof of Theorem 3. Let’s define
the event

F (Λ1) = {η : ∀e ∈ E(Λ1)ηe = 1}; (69)

let’s Λ1 ⊂ Λ2 ⊂ Zd; let define the following event in which we write m.c.s. in place of
minimal cut set

F (Λ1, Λ2) = {η : ∃ γ m.c.s. with Λ1 ⊂ Int(γ) ⊂ Λ2 and η(γ) ≡ 0}. (70)

The event F (Λ1) is an increasing event, while F (Λ1, Λ2) is decreasing. Define the event

Fγ = {η : γ is the most external m.c.s with ηγ = 0 and Λ1 ⊂ Int(γ) ⊂ Λ2}; (71)

it is easy to see that Fγ∩Fγ′ = ∅ for all γ 6= γ′ and F (Λ1, Λ2) = ∪γFγ with Λ1 ⊂ Int(γ) ⊂
Λ2; so we will divide the space HE,Λ with the events Fγ and HE,Λ \F (Λ1, Λ2). It is known
that, in the uniqueness region, as in (18) of Proposition 2.1 for all Λ1 ⊂ Zd

lim
Λ→Zd

µτ≡i,F
Λ,Jβ (F (Λ1, Λ)) = 1. (72)

Using the definition of FK measure with free boundary conditions we have

µτ
Λ,Jβ(ηE(A)|ηγ = 0, ηEst(γ)) = µτ ′

Λ,Jβ(ηE(A)|ηγ = 0, η′
Est(γ)) (73)

ντ
Λ,Jβ(ηE(A), σA|ηγ = 0, ηEst(γ)) = ντ ′

Λ,Jβ(ηE(A), σA|ηγ = 0, η′
Est(γ)) (74)

where γ is a minimal cut set, A ⊂ Int(γ) ⊂ Λ so the conditional FK measure is equal to
the FK measure with free boundary conditions Int(γ)

µInt(γ),Jβ(ηE(A)) = µτ
Λ,Jβ(ηE(A)|ηγ = 0, ηEst(γ)). (75)

In what fallows we will write H in place of HE,Λ.

Proof of Theorem 3. We know, using the stochastic order ∀Λ, ∀τ ′µτ ′
Λ,Jβ � µτ≡i,F

Λ,J1β1
, that

there is a coupling P+,τ ′
Λ verifying Strassen’s theorem. So the measure is supported on

the set M defined in (12). The joint measure P +,τ ′
Λ has the following marginal measures

µτ≡i,F
Λ,J1β1

(·) = P+,τ ′
Λ (·, H) and µτ ′

Λ,Jβ(·) = P+,τ ′
Λ (H, ·).

To prove the uniqueness of the Gibbs measure, it is enough to show that

|πτ
Λ,Jβ(σA)− πτ ′

Λ,Jβ(σA)| (76)

tends to zero in the limit Λ→ Zd for all boundary conditions τ , τ ′ and for all finite sets
of vertices A. Let’s use the joint measure ντ

Λ,Jβ(η, σ) on the space H × ΩΛ (see definition
in (10)), so that (76) is equal to∣∣∣∣∣∑

η

(
ντ

Λ,Jβ(η, σA)− ντ ′
Λ,Jβ(η, σA)

)∣∣∣∣∣ . (77)
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We will write ηE = ηE(Λ1) and η\E = η\E(Λ1); then (77) becomes:

=

∣∣∣∣∣∣
∑

ηE ,η\E

(
ντ

Λ,Jβ(ηE , σA|η\E)ντ
Λ,Jβ(η\E)− ντ ′

Λ,Jβ(ηE , σA|η\E)ντ ′
Λ,Jβ(η\E)

)∣∣∣∣∣∣ (78)

=

∣∣∣∣∣∣
∑

ηE ,η\E

(
ντ

Λ,Jβ(ηE , σA|η\E)µτ
Λ,Jβ(η\E)− ντ ′

Λ,Jβ(ηE , σA|η\E)µτ ′
Λ,Jβ(η\E)

)∣∣∣∣∣∣ (79)

=

∣∣∣∣∣∣
∑

ηE ,η\E ,η′

(
ντ

Λ,Jβ(ηE , σA|η\E)P+,τ
Λ (η′, η\E)− ντ ′

Λ,Jβ(ηE , σA|η\E)P+,τ ′
Λ (η′, η\E)

)∣∣∣∣∣∣ . (80)

Consider a minimal cut set γ having Λ2 ⊃ Int(γ) ⊃ Λ1 ⊃ A; then (80) is less than or
equal to the expression

≤
∣∣∣∣∣∣

∑
ηE ,η\E ,γ

(
ντ

Λ,Jβ(ηE, σA|η\E)P+,τ
Λ (Fγ , η\E)− ντ ′

Λ,Jβ(ηE , σA|η\E)P+,τ ′
Λ (Fγ, η\E)

)∣∣∣∣∣∣
+P+,τ ′

Λ ((H \ F (Λ1, Λ)), H). (81)

Since P+,τ ′
Λ (η′ � η) = 1 if η′

γ = 0, then also ηγ = 0. So we get

≤ |∑ηE ,η\E ,γ ντ
Λ,Jβ(ηE, σA|ηγ = 0, η\E)P+,τ

Λ (Fγ , η\E)−
ντ ′

Λ,Jβ(ηE, σA|ηγ = 0, η\E)P+,τ ′
Λ (Fγ, η\E)|

+P+,τ ′
Λ ((H \ F (Λ1, Λ)), H); (82)

and using (74), the formula (82) is equal to∣∣∣∣∣∣
∑

ηE ,η\E ,γ

[
ντ

Λ,Jβ(ηE , σA|ηγ = 0)
(
P+,τ

Λ (Fγ, η\E)− P+,τ ′
Λ (Fγ, η\E)

)]∣∣∣∣∣∣ + µτ≡i
Λ,J1β1

(H \ F (Λ1, Λ)).

(83)
Performing all the sums on η\E one obtains∑

η\E

P+,τ
Λ (Fγ , η\E) = P+,τ

Λ (Fγ , H) = µτ≡i,F
Λ,J1β1

(Fγ)

and in the same way P+,τ ′
Λ (Fγ , η\E); then the sum is equal to zero and (83) is equal to

µτ≡i,F
Λ,J1β1

(H \ F (Λ1, Λ)).

But for Λ → Zd the expression µτ≡i,F
Λ,J1β1

(H \ F (Λ1, Λ)) goes to zero. Then on all finite
cylinders, Gibbs measures with different boundary conditions are equal; so they are the
same measures. This ends the proof.
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