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1. Introduction

The main goal of this article is to extend results of [4] and [10] to the case of different powers of
summability with respect to time and space variables. We are dealing with the equation

du = (aijuxixj + f) dt + (σikuxi + gk) dwk
t (1.1)

given for t ≥ 0 and x ∈ R
d (in Sec. 2) or x ∈ R

d
+ := {x = (x1, x′) : x1 > 0, x′ ∈ R

d−1} (in
Sec. 3). Here wk

t are independent one-dimensional Wiener processes, i and j run from 1 to d, k
runs through {1, 2, ...} with the summation convention being enforced, and f and gk are some
given functions of (ω, t, x) defined for k ≥ 1. The functions aij and σik are assumed to depend
only on ω and t, and in this sense we consider equations with “constant” coefficients. Without
loss of generality we also assume that aij = aji. Equation (1.1) is assumed to be parabolic in
an appropriate sense.

As in [10], let us mention that such equations with finite number of the processes wk
t appear, for

instance, in nonlinear filtering problem for partially observable diffusions (see [13]). Considering
infinitely many wk

t allows us to treat equations for measure-valued processes, for instance, driven
by space-time white noise (see [4]).

As in [4], [10], and [12] we are dealing with Sobolev space theory of (1.1), so that the derivatives
are understood as generalized functions, “the number” of derivatives can be fractional or negative
and the underlying power of summability in x is p ∈ [2,∞). The reader is referred to [4], [10],
and [12] for motivation of considering such wide range of “derivatives” and p ≥ 2. In contrast
with these articles, here the power of summability in time is allowed to be q ≥ p.

Challengingly enough, our results and methods of proofs in the case q = p and equations in R
d
+

do not allow us to cover the results of [10] which are obtained for wider range of weights. Yet
we still get an additional information on solutions of SPDEs if q > p, which is discussed after
Theorem 1.1 below and in Sec. 3. It is also worth noting that, if there are no stochastic terms in
(1.1), the corresponding Lq(Lp)-theory is developed in [8] for any q, p ∈ (1,∞) and, in the case
of Rd

+ , the range of weights turns out to be just natural, which in terms of certain parameter θ
measuring the weights and introduced later is written as d − 1 < θ < d − 1 + p.

Apart from the sections we have mentioned above, there is also Sec. 5, where we prove our main
results for Rd

+ stated as Theorems 3.1 and 3.2. These proofs are based on some auxiliary facts
collected in Sec. 4 and Sec. 6. The reason for one of them to be deferred until the last section
is that it bears on purely analytic properties of a barrier function.

To give the reader a flavor of our results we state a particular case of Theorem 3.2 along with its
corollary for θ = d, γ = 1, and u0 = 0. At this moment we do not make precise what we mean
by “vanishing for t = 0 and for x1 = 0 in a natural sense” in Theorem 1.1. Actual meaning is
that the solution belongs to a function space to be specified later.
Theorem 1.1. Let q ≥ p ≥ 2, T ∈ (0,∞), wt be a one-dimensional Wiener process on a
probability space (Ω,F , P ) and let g(t, x) = g(ω, t, x) be nonanticipating as a function of (ω, t)
and such that

E

∫ T

0

( ∫
Rd

+

|g(t, x)|p dx
)q/p

dt < ∞.

Then

(i) on Ω × [0, T ] × R̄
d
+ , there is a unique up to a.e. function u satisfying the equation

du = ∆u dt + g dwt in (0, T ) × R
d
+ , (1.2)
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vanishing for t = 0 and for x1 = 0 in a natural sense and such that

E

∫ T

0

( ∫
R

d
+

(|u(t, x)/x1|p + |ux(t, x)|p) dx
)q/p

dt < ∞.

(ii) In addition, if 2/q + d/p < 1, then, for any β ∈ (2/q, 1 − d/p) (6= ∅) and ε := 1 − β − d/p
(> 0), we have

E sup
t≤T,x∈Rd

+

|(x1)−εu(t, x)|q < ∞. (1.3)

Notice that assertion (ii) of Theorem 1.1 immediately follows from (i) and Theorem 4.7 of [7].
In particular, (1.3) holds with any q if p > d and

||g(t, ·)||Lp(Rd
+) (1.4)

is a bounded function of (ω, t). In that case, we basically rediscover one of the statements of
[11] under weaker asumptions. Our improvements are that one need not the boundedness of
(1.4) at the same time obtaining control on ux and on the behavior of u near the boundary
x1 = 0. Also, in contrast with [11], Theorem 3.2 bears on equations with random and time-
dependent coefficients and with infinitely many Wiener processes, the latter allowing one to
treat, for instance, one-dimensional equations driven by space-time white noise.

In conclusion we introduce some notation. We are working on a complete probability space
(Ω,F , P ) with an increasing filtration (Ft, t ≥ 0) of complete σ-fields Ft. The predictable σ-
field generated by (Ft, t ≥ 0) is denoted P. The coefficients a and σ of (1.1) are assumed to
be predictable. We are also given independent one-dimensional Wiener processes wk

t which are
Wiener with respect to (Ft, t ≥ 0).

In the whole article p, q are some numbers satisfying q ≥ p ≥ 2. We are also using the notation
introduced in [7]. In particular, by Mα we denote the operator of multiplying by |x1|α, M = M1.
The function spaces Hγ

p are usual spaces of Bessel potentials on R
d . As in [7], we use the spaces

Hγ
p,θ (the formal definition of which can be seen from (4.2)) and, for any stopping time τ , we

define
H

γ,q
p (τ) = Lq( |(0, τ ]],P,Hγ

p ), H
γ,q
p,θ (τ) = Lq( |(0, τ ]],P,Hγ

p,θ).

Also from [7] we take the spaces Hγ,q
p (τ), Hγ,q

p,θ(τ), and Hγ
p(τ) = Hγ,p

p (τ), Hγ
p,θ(τ) = H

γ,p
p,θ (τ).

Without going into detail, we only mention that γ is the “number of derivatives”, the spaces
with θ are the ones of functions on R

d
+ , θ is responsible for the rate with which “the derivatives”

are allowed to “blow up” near x1 = 0. If γ = 0 we use L and L instead of Hγ and H
γ , so that

Lp,θ = H0
p,θ. It is helpful to remember that Lp,θ = Lp(Rd

+ , (x1)θ−d dx).

The letter τ indicates that we are dealing with functions depending on t (and ω). The spaces
H are just Lp-type spaces with no control on the continuity of functions with respect to t. The
spaces Hγ,q

p (τ) and H
γ,q
p,θ(τ) are Banach spaces of functions having stochastic differential with

respect to t:
du = f dt + gk dwk

t =: D u dt + S
ku dwk

t .

It is important to keep in mind that, if u ∈ Hγ,q
p (τ) (u ∈ H

γ,q
p,θ(τ)), then u ∈ H

γ,q
p (τ), f ∈

H
γ−2,q
p (τ), and the l2-valued function g ∈ H

γ−1,q
p (τ) (respectively, M−1u ∈ H

γ,q
p,θ (τ), Mf ∈

H
γ−2,q
p,θ (τ), and g ∈ H

γ−1,q
p,θ (τ) ).

Finally, the norms in Lp(Rd) and in Lp(Rd
+) are denoted by || · ||p.

The author is sincerely grateful to the referee for useful comments and suggestions.
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2. Main results for SPDEs in R
d

Here we deal with equation (1.1) given for (ω, t, x) ∈ |(0, τ ]] × R
d . We assume that aij , σik are

predictable functions of (ω, t) (independent of x) and, for a constant δ ∈ (0, 1), they satisfy
amn = anm and

δ−1|λ|2 ≥ aijλiλj ≥ δ|λ|2, (1 − δ)aijλiλj ≥ αijλiλj , (2.1)

for all λ ∈ R
d and n,m,ω, t, where

αij = (1/2)σikσjk.

Our main result for Rd is as follows.

Theorem 2.1. Let T ∈ (0,∞), τ ≤ T , γ ∈ R, q ≥ p ≥ 2, f ∈ H
γ,q
p (τ), and g ∈ H

γ+1,q
p (τ).

Then,

(i) in Hγ+2,q
p (τ), equation (1.1) with zero initial condition has a unique solution. For this

solution we have

||uxx||Hγ,q
p (τ) ≤ N(||f ||Hγ,q

p (τ) + ||gx||Hγ,q
p (τ)), (2.2)

where N = N(d, δ, p, q);

(ii) if in addition we are given a function u0 ∈ Lq(Ω,F0,H
γ+2−2/q+ε
p ), where ε > 0, then in

Hγ+2,q
p (τ), equation (1.1) with initial condition u0 has a unique solution. For this solution we

have

||u||q
H

γ+2,q
p (τ)

≤ N(||f ||q
H

γ,q
p (τ)

+ ||g||q
H

γ+1,q
p (τ)

+ E||u0||q
H

γ+2−2/q+ε
p

), (2.3)

where N = N(d, δ, p, q, ε, T ). Moreover if q = p, one can take ε = 0.

We give the proof of this theorem later in this section after we prepare some auxiliary results.

Lemma 2.2. Let p ≥ 2, u ∈ H0
p(τ) be a solution of the equation

du = (aijuxixj + f ij
xixj ) dt + (σikuxi + gik

xi) dwk
t

with zero initial data and with f ij, gi· ∈ Lp(τ). Then

||u||Lp(τ) ≤ N(||f ||Lp(τ) + ||g||Lp(τ)),

where N = N(d, δ, p).

This basic apriori estimate follows from Theorem 5.1 of [4] up to the assertion that N is inde-
pendent of T . The later is obtained in a standard way by using self similarity.

In the next lemma we do the first step to considering the power of summability in t equal to
multiples of p.

Lemma 2.3. Let p ≥ 2, T ∈ (0,∞), τ ≤ T , n ∈ {1, 2, ...}, and, for i = 1, ..., n,

λi ∈ (0,∞), γi ∈ R, u(i) ∈ Hγi+2
p (τ), u(i)(0) = 0.
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Denote Λi = (λi − ∆)γi/2. Then (i)

E

∫ τ

0

n∏
i=1

||Λi∆u(i)(t)||pp dt

≤ N

n∑
i=1

E

∫ τ

0
(||Λif

(i)(t)||pp + ||Λig
(i)
x (t)||pp)

∏
j 6=i

||Λj∆u(j)(t)||pp dt

+ N
∑

1≤i<j≤n

E

∫ τ

0
||Λig

(i)
x (t)||pp||Λjg

(j)
x (t)||pp

∏
k 6=i,j

||Λk∆u(k)(t)||pp dt, (2.4)

where N = N(n, d, p, δ) and

f (i) = D u(i) − arsu
(i)
xrxs , g(i)k = S

ku(i) − σrku
(i)
xr . (2.5)

(ii) Replace ∆u(i) and ||Λig
(i)
x ||p with u(i) and ||Λig

(i)||H1
p
, respectively, everywhere in (2.4).

Then the estimate will be true with N = N(n, d, p, δ, T ).

Proof. (i) By considering Λiu
(i) instead of u(i), we see that without loss of generality we may

assume γi = 0. In this case first let σik = 0 and define v(i) = ∆u(i). Furthermore, for X =
(x1, ..., xn) ∈ R

nd with xi ∈ R
d , define

V (t,X) = v(1)(t, x1) · ... · v(n)(t, xn).

Observe that
dv(i) = (arsv

(i)
xrxs + ∆f (i)) dt + ∆g(i)k dwk

t

and by Itô’s formula

dV (t,X) = (LV (t,X) + F (t,X) + H(t,X)) dt + Gk(t,X) dwk
t ,

where LV = ars(Vxr
1xs

1
+ ... + Vxr

nxs
n
),

F (t,X) = ∆xiF̄
i(t,X), Gk(t,X) = (Ḡk

ir(t,X))xr
i

H(t,X) =
∑

1≤i<j≤n

(H̄ ij
rs(t,X))xr

i xs
j
, F̄ i(t,X) = f (i)(t, xi)

∏
j 6=i

v(j)(t, xj),

Ḡk
ir(t,X) = g

(i)k
xr

i
(t, xi)

∏
j 6=i

v(j)(t, xj),

H̄ ij
rs(t,X) = g

(i)k
xr

i
(t, xi)g

(j)k
xs

j
(t, xj)

∏
m6=i,j

v(m)(t, xm).

Hence by Lemma 2.2

||V ||Lp(τ) ≤ N(
∑

i

||F̄ i||Lp(τ) +
∑
i<j

∑
r,s

||H̄ ij
rs||Lp(τ) +

∑
i,r

||Ḡir||Lp(τ)). (2.6)

Here
||V ||p

Lp(τ) = E

∫ τ

0

∫
Rnd

|v(1)(t, x1) · ... · v(n)(t, xn)|p dx1 · ... · dxndt

= E

∫ τ

0
||v(1)(t, ·)||pp · ... · ||v(n)(t, ·)||pp dt

||Ḡir||pLp(τ) = E

∫ τ

0
||g(i)

xr (t, ·)||pp
∏
j 6=i

||v(j)(t, ·)||pp dt,
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||F̄ i||p
Lp(τ) = E

∫ τ

0
||f (i)(t, ·)||pp

∏
j 6=i

||v(j)(t, ·)||pp dt,

||H̄ ij
rs||pLp(τ) = E

∫ τ

0
hij

rs(t)
∏

m6=i,j

||v(j)(t, ·)||pp dt,

where

hij
rs(t) :=

∫
R2d

( ∑
k

g
(i)k
xr
1

(t, x1)g
(j)k
xs
2

(t, x2)
)p

dx1dx2

≤ ||g(i)
xr (t, ·)||pp||g(j)

xs (t, ·)||pp.
Therefore, (2.6) implies (2.4).

To consider the case of general σik observe that, if u ∈ Hγ+2
p (τ), then ū ∈ Hγ+2

p (τ), where

ū(t, x) = u(t, x − ξt), ξi
t =

∫ t

0
σik(s) dwk

s .

Adding to this that,

S
kū(t, x) = S

ku(t, x − ξt) − σik(t)uxi(t, x − ξt),

D ū(t, x) = D u(t, x − ξt) + αij(t)uxixj (t, x − ξt) − (Sku)xi(t, x − ξt)σik(t)

= D u(t, x − ξt) − αij(t)uxixj(t, x − ξt) − (Skū)xi(t, x − ξt)σik(t)
and using the translation invariance of Lp-norms one easily reduces the general case to the
particular one. This proves assertion (i).

The proof of assertion (ii) follows the same lines and is much simpler. Again we may take γi = 0.
Then in the case σ ≡ 0 it suffices to write down the equation for u(1)(t, x1) · ... · u(n)(t, xn) and
apply Theorem 4.10 (iii) of [4]. In this case we get even stronger estimate with ||g||p instead of
||g||H1

p
. The case of general σ is treated in the same way as above. The lemma is proved.

Remark 2.4. Obviously, in (2.5) one could use a and σ depending on i.

Proof of Theorem 2.1. Bearing in mind that one can apply the operator (1 − ∆)γ/2 to both
parts of (1.1), we see that we only have to consider the case γ = 0. Also notice that in the case
q = p our result is known from [4] and, for q > p, the uniqueness of solutions follows from that
for q = p and thus follows from [4].

To prove the theorem for q > p we first relate (ii) to (i). We know from [14] that, for any ω,
there exists a continuation of u0(ω, x) to a function ū(ω, t, x) defined for t ≥ 0 and x ∈ R

d such
that ū(0, x) = u0 and

||ūt||Lq([0,T ],Lp) + ||ū||Lq([0,T ],Lp) + ||ūx||Lq([0,T ],Lp)

+||ūxx||Lq([0,T ],Lp) ≤ N ||u0||H2−2/q+ε
p

.

In addition the continuation operator is deterministic and linear. Therefore, ū ∈ H2,q
p (T ).

If we change the unknown function u by subtracting off ū, we will come to the situation with
zero initial data. It follows that we only need to prove (i) and (ii) for u0 = 0. Now the only
difference between (i) and (ii) is in the estimates (2.2) and (2.3).

First assume that q = np, where n = 1, 2.... Take f ∈ L
q
p(τ) and g ∈ H

1,q
p (τ). Then, by Hölder’s

inequality, f ∈ Lp(τ) and g ∈ H
1
p(τ). Now remember that, as we know from [4], if f, g ∈ H

m
p (τ),

then equation (1.1) with zero initial condition has a unique solution u ∈ Hm+1
p (τ) and that if m
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is large enough, the norm ||u(t)||H2
p

is a continuous function of t. In that case, for the stopping
times

τr := τ ∧ inf{t : ||u(t)||H2
p
≥ r}, r > 0,

we have u ∈ H2,q
p (τr) and τr = τ if r is large enough depending on ω. By adding to this that

H
m
p (τ) ∩ H

k,q
p (τ) is everywhere dense in H

k,q
p (τ) for any m and k, we easily see that, to prove

both existence and uniqueness in assertions (i) and (ii), it only remains to prove the apriori
estimates (2.2) and (2.3) with γ = 0 and u0 = 0 assuming that the solution u ∈ H2,q

p (τ) exists
already.

By Lemma 2.3 (i) applied to u(i) = u we have

||uxx||np
L

np
p (τ)

≤ N(E
∫ τ

0
(||f(t)||pp + ||gx(t)||pp)||uxx(t)||(n−1)p

p dt

+ NE

∫ τ

0
||gx(t)||2p

p ||uxx(t)||(n−2)p
p dt. (2.7)

Owing to Young’s inequality, for any ε > 0, we have

(||f(t)||pp + ||gx(t)||pp)||uxx(t)||(n−1)p
p

≤ ε||uxx(t)||np
p + N(ε)(||f(t)||np

p + ||gx(t)||np
p ),

||gx(t)||2p
p ||uxx(t)||(n−2)p

p ≤ ε||uxx(t)||np
p + N(ε)||gx(t)||np

p ,

where N(ε) is independent of u, f, g. This and (2.7) yield (2.2) for q = np. In the same way
from Lemma 2.3 (ii) we get an estimate for ||u||

L
np
p (τ) which combined with the above estimate

leads to (2.3).

To treat general q ≥ p, we use the Marcinkiewicz interpolation theorem. Mapping (f, g) → u is
a linear operator, say R acting on Lq( |(0, τ ]],P,H0

p ×H1
p) with values in Lq( |(0, τ ]],P,H2

p ) defined
for q = np. From uniqueness, it follows that R does not depend on n. In addition, R is bounded
for q = np. Let Nq be the norm of R. By the Marcinkiewicz interpolation theorem R is bounded
for any q ≥ p and Nq ≤ N(N1 + Nnp), where n is such that q ≤ np and N = N(q, p, n). This is
equivalent to our assertions. The theorem is proved.
Corollary 2.5. Let T ∈ (0,∞), τ ≤ T , q ≥ p ≥ 2, f = (f1, ..., fd) ∈ L

q
p(τ), and g ∈ L

q
p(τ).

Then, in H1,q
p (τ), the equation

du = (aijuxixj + f i
xi) dt + (σikuxi + gk) dwk

t (2.8)

with zero initial condition has a unique solution. For this solution we have

||ux||Lq
p(τ) ≤ N(||f ||Lq

p(τ) + ||g||Lq
p (τ)), (2.9)

where N = N(d, p, q, δ).

Indeed,
||f i

xi ||H−1,q
p (τ) ≤ N ||f ||Lq

p(τ), ||gx||H−1,q
p (τ) ≤ N ||g||Lq

p(τ).

Therefore, Theorem 2.1 is applicable with γ = −1. By observing that ||ux||p ≤ N(||uxx||−1,p +
||u||p), from (2.2), we find that

||ux||Lq
p(τ) ≤ N(||f ||Lq

p(τ) + ||g||Lq
p(τ) + ||u||Lq

p(τ)). (2.10)
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Next notice that, for any constant c > 0, the function u(c2t, cx) satisfies an equation similar to
(2.8) with cf i(c2t, cx) and cg(c2t, cx) in place of f and g, respectively. For this function (2.10)
with c−2τ in place of τ becomes

||ux||Lq
p(τ) ≤ N(||f ||

L
q
p(τ) + ||g||

L
q
p(τ) + c−1||u||

L
q
p(τ)).

By letting c → ∞, we arrive at (2.9).
Corollary 2.6. Let T ∈ (0,∞), τ ≤ T , q ≥ p ≥ 2, Mf ∈ L

q
p(τ), and g ∈ L

q
p(τ). Assume

that f is an odd function with respect to x1. Then, in H1,q
p (τ), equation (1.1) with zero initial

condition has a unique solution. For this solution we have

||ux||Lq
p(τ) ≤ N(||Mf ||

L
q
p(τ) + ||g||

L
q
p(τ)), (2.11)

where N = N(d, p, q, δ).

To deduce this from Corollary 2.5, it suffices to notice that there exists a function F , which is
even with respect to x1, satisfies Fx1 = f , and (Hardy’s inequality)

||F (t, ·)||p ≤ p||Mf(t, ·)||p.
Corollary 2.6, which hold for any σ, plays an important role in our treatment of SPDEs in R

d
+

in the case σ1k ≡ 0, k = 1, 2, ....

3. SPDEs in R
d
+

In this section we consider equation (1.1) for x ∈ R
d
+ assuming that its coefficients satisfy the

conditions listed in the beginning of Sec. 2. It is well known that (1.1) in R
d
+ is solvable in

Sobolev spaces only if they are provided with weights. Therefore, we use the spaces H γ,q
p,θ (τ) and

H
γ,q
p,θ(τ) introduced in [7] and recalled in Introduction.

Before stating our main results we point out that the conditions (3.1) and (3.2) below play an
important role. Therefore, it is worth noting that, if q = np with n = 1, 2, ..., they become

d − 1 + p > θ ≥ d − 1 + p − 1/n − χ,

(1 − δ)aij(t)λiλj ≥ αij(t)λiλj + α11(t)(λ1)2(q − p)/(p − 1)
respectively. Notice that these conditions are much more restrictive than d− 1 + p > θ > d− 1,
which we have in the deterministic case (see [8]).
Theorem 3.1. Let q ≥ p ≥ 2, ε ∈ (0, 2/q), T ∈ (0,∞), τ ≤ T , γ ∈ R. Let Mf ∈ H

γ−2,q
p,θ (τ),

g ∈ H
γ−1,q
p,θ (τ), M2/q−1−εu0 ∈ Lq(Ω,F0,H

γ−2/q+ε
p,θ ) and one of the following conditions hold

d − 1 + p > θ ≥ d − 1 + p − χ − 1/dq/pe, (3.1)

where χ = χ(d, p, q, δ) > 0 is a (small) constant to be specified in the proof,

or

{
d − 1 + p > θ > d − 2 + p and
(1 − δ)aij(t)λiλj ≥ αij(t)λiλj + α11(t)(λ1)2(dq/pe − 1)p/(p − 1)

(3.2)

for all λ ∈ R
d and t ≥ 0, where dre is the smallest integer ≥ r. Then in H

γ,q
p,θ(τ) there is a

unique solution of equation (1.1) with initial condition u(0) = u0. For this solution, we have

||M−1u||q
H

γ,q
p,θ (τ)

≤ N(||Mf ||q
H

γ−2,q
p,θ (τ)

+ ||g||q
H

γ−1,q
p,θ (τ)

+ E||M2/q−1−εu0||q
H

γ−2/q+ε
p,θ

), (3.3)

where the constant N = N(γ, d, p, q, δ, ε, T ). In addition, if u0 = 0, then estimate (3.3) holds
with N = N(γ, d, p, q, δ) and if q = p, one can take ε = 0 and N = N(γ, d, p, q, δ).
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Theorem 3.2. Let q ≥ p ≥ 2, ε ∈ (0, 2/q), T ∈ (0,∞), τ ≤ T , γ ∈ R,

d − 1 + p > θ ≥ d − χ, σ1k ≡ 0 ∀k,

Mf ∈ H
γ−2,q
p,θ (τ), g ∈ H

γ−1,q
p,θ (τ), M2/q−1−εu0 ∈ Lq(Ω,F0,H

γ−2/q+ε
p,θ ). Then all the assertions of

Theorem 3.1 hold true again.
Remark 3.3. If q = p, (3.1) becomes d − 1 + p > θ ≥ d − 2 + p − χ. We know from [10] that,
if p = q, then the assertions of Theorems 3.1 and 3.2 hold with ε = 0 and N independent of T
under somewhat weaker assumptions on θ:

d − 1 + p
(
1 − 1

p(1 − δ1) + δ1

)
< θ < d − 1 + p, (3.4)

where δ1 is any constant satisfying (1 − δ1)a ≥ α. Also observe that, generally for q ≥ p, the
uniqueness of solutions in Hγ,q

p,θ(τ) follows from that in Hγ
p,θ(τ) = H

γ,p
p,θ (τ) and hence follows from

[10].

The proofs of Theorems 3.1 and 3.2 are given in Sec. 5. In this section we discuss the result of
Theorem 3.1 in the sequence of remark bearing on the following example.
Example 3.4. For d = 1, consider the equation

du = uxx dt + σux dwt (3.5)

with nonrandom initial data u0 ∈ C∞
0 (R+), u0 ≥ 0, u0 6≡ 0. Here σ is a nonnegative number

satisfying σ2 < 2 (in accordance with (2.1)) and wt is a one-dimensional Wiener process.
Remark 3.5. Condition (3.4) and, for q = p, even its slightly stronger version (3.1) look quite
reasonable. To see this in Example 3.4, take m = 1, 2, ..., q = mp, and θ = p − 1/m − χ.
Then condition (3.1) is satisfied and by Theorem 3.1 we get that u ∈ H

γ,mp
p,θ (1) for any γ. By

embedding theorems (see Theorem 3.11 of [7])

E

∫ 1

0
sup
x>0

x−1−mχ|u(t, x)|mp dt < ∞. (3.6)

It turns out that, for any n ∈ {2, 3, ...} and ε > 0, one can find σ2 < 2 such that

lim
x↓0

inf
t∈[1/2,1]

x−1−εEun(t, x) = ∞, (3.7)

so that (3.6) cannot be substantially improved. We will not use this result and only give an
explanation why this happens. We also notice that (3.7) contradicts Theorem 1.1 of [3] (the fact
that there is a gap in the proof of this theorem is noticed in [9]).
By the Itô-Wentzell formula, the function ū(t, x) := u(t, x − σwt) satisfies the deterministic
equation

dū(t, x) = (1 − σ2/2)ūxx(t, x) dt (3.8)
in the random domain t > 0, x > σwt with boundary conditions ū|t=0 = u0, ū(t, σwt) = 0. It
follows that ū ≥ 0, u ≥ 0, and u(t, x) > 0 for t > 0, x > 0.
Next, owing to Itô’s formula, for x = (x1, ..., xn), the function v(t, x) := u(t, x1) · ... · u(t, xn)
satisfies

dv = (∆v + β
∑
i6=j

vxixj) dt + σ(vx1 + ... + vxn) dwt,

where β := σ2/2. By taking expectations, for V = Ev we find
∂V

∂t
= ∆V + β

∑
i6=j

Vxixj =: Ln,βV, x1, ..., xn > 0.

9



Also V = 0 for mini xi = 0, V (0, x) ≥ 0, and V (t, x) > 0 for t, x1, ..., xn > 0.

Now let P be a positive solution of Ln,βP = 0 in

G := {min
i

xi > 0} ∩ {|x| < 1}
with zero boundary condition on mini xi = 0 and some nonzero nonnegative condition on |x| = 1.
It follows from the theory of parabolic equations (see, for instance, Theorem 4.3 of [1]) that, for
t ∈ [1/2, 1] and |x| ≤ 1/2, we have V (t, x) ≥ ηP (x), where the constant η > 0.

To estimate P from below, define κ by formula (6.9) of Sec. 6 and define s0 ∈ (0, 1) and γ > 1
by

s2
0 =

(n − 1)(1 − κ)2

n(1 − κ)2 + 2κ(1 − κ) + κ2
,

γ(γ + n − 2) = n − 1 + (n2 − 1)s0.

Observe that, if σ2 ↑ 2, then β ↑ 1, κ ↑ 1, s0 → 0, and γ → 1. Finally let e := (1, ..., 1)/
√

n,
y = x − κ(x, e)e, s = (y, e)/|y|, f(s) = (s − s0)1+(n−1)s0 , and

P0(x) := |y|γf(s) =: R0(y).

One can check that, in the domain {s > s0}, we have

n − 1
ns2

0

|y|2−γLn,βP0(x) = |y|2−γ∆yR0(y)

= (1 − s2)f ′′(s) − (n − 1)sf ′(s) + γ(γ + n − 2)f(s)

= s0(n − 1)[s2(1 − (n − 1)s2
0) − (1 + (n + 3)s0)s + 1 + ns0 + (n + 1)2s2

0].

If s0 = 0, the expression in the brackets becomes s2−s+1, which is strictly positive. Therefore,
there is a small s̄0 ∈ (0, 1) such that, for any s0 ∈ (0, s̄0), we have Ln,βP0 ≥ 0 for s ∈ (s0, 1]. It
is easy to check that {s0 < s ≤ 1, |x| < 1} ⊂ G. Also P0 = 0 ≤ P for s = s0. Therefore, if we
take P = P0 for |x| = 1, then by the maximum principle P ≥ P0 in {s0 ≤ s ≤ 1, |x| ≤ 1}. In
particular, if s = 1 and t ∈ [1/2, 1] and x ∈ [0, 1/d], then we have

V (t, x, ..., x) ≥ ηP (x, ..., x) = η(1 − s0)1+(n−1)s0xγ(1 − κ)γ . (3.9)

As we have pointed out above, if σ2 is close to 2, then γ < 1 + ε and (3.9) implies (3.7) owing
to Eun(t, x) = V (t, x, ..., x).
Remark 3.6. It turns out that Theorem 3.1 yields better properties of t-traces of u than the
ones following from [10]. For instance, in Example 3.4 let p ≥ 2, n ∈ {1, 2, ...}, q = np, and
θ = p− 1/n − χ. Then condition (3.1) is satisfied and by Theorem 3.1 we get that u ∈ Hγ,np

p,θ (1)
for any γ. By Theorem 4.1 of [7] this implies

E sup
t≤1

( ∫ ∞

0
x1/n−1|u(t, x)|p dx

)n
< ∞

for any p ≥ 2 and n ≥ 1. Observe that the bigger n the better information about the behavior
of u at x = 0 we get.
Remark 3.7. Estimate (3.6) shows that the function u from Example 3.4 vanishes at x = 0 in
certain integral sense with respect to t. An interesting issue is whether u vanishes at x = 0
for all t > 0 at once (a.s.). One of approaches to resolve this issue could be using equation
(3.8). However we do not know how to do this and instead we are again going to use embedding
theorems.
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Let p ≥ 2, n ∈ {1, 2, ...}, q := np and assume

σ2 < 2
p − 1
q − 1

, (3.10)

which holds, for instance, if n = 1. Then condition (3.2) is satisfied and by Theorem 3.1 we get
that u ∈ H

γ,q
p,θ(1) for all γ if θ = p − 1 + ε, where ε is any number in (0, 1). By Theorem 4.1 of

[7] this implies
E sup

t≤1
||Mη−1u(t)||q

Hγ
p,θ

< ∞

if 2/q < η ≤ 1. This and Lemma 2.2 of [7] yield

E sup
t≤T,x>0

(xη−(1−ε)/p|u(t, x)|)q < ∞. (3.11)

One can get more specific results if n0 := 2/σ is an integer ≥ 3, so that σ ≤ 2/3. In that case
(3.10) with n = n0 is satisfied if

p >
2 − σ2

2 − σ2n0
=

2 − σ2

2 − 2σ
=: p0.

Notice that for p sufficiently close to p0 and η to 2/(n0p0)

η − (1 − ε)/p = 2/(n0p0) − 1/p0 + ε1,

where ε1 > 0 is as small as we like. By Hölder’s inequality and (3.11) we get

E sup
t≤T,x>0

(xε1−2ξ0|u(t, x)|)r0 < ∞, (3.12)

where

ξ0 =
1 − σ2

2 − σ2
, r0 =

2 − σ2

σ − σ2
.

It is interesting to compare this result with what can be obtained from Theorem 3.2 of [10],
where q = p. There the restriction on θ and p is (3.4), that is

p ≥ 2, 1 − 2
σ2(p − 1) + 2

< θ/p < 1.

If these inequalities hold, the results of [10] and [7] imply that

E sup
t≤T,x>0

(xη−1+θ/p|u(t, x)|)p < ∞

if 1 ≥ η > 2/p. The freedom of choice of θ and η leads to

E sup
t≤T,x>0

(xε−2ξ|u(t, x)|)p < ∞, (3.13)

where ε is any small strictly positive number and

ξ =
1

σ2(p − 1) + 2
− 1

p
.

We want to have ξ positive and as big as possible. The inequality ξ > 0 is equivalent to
σ2 < (p − 2)/(p − 1), so that we need σ < 1 instead of σ < 2/3 above. It turns out that the
largest value of ξ occurs for p = r0 (which is compatible with σ2 < (p − 2)/(p − 1)). For p = r0

we have ξ = ξ0, so that inequality (3.13) yields (3.12) under less restrictive assumption on σ.
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We want to mention several more features of Example 3.4. The fact that we only allow n to be
an integer makes (3.12) available only if 2/σ is an integer, whereas there is no such restriction
in (3.13). We do not know how to properly interpolate our results between integers. If we knew,
we would probably be able to get (3.12) for any σ < 1 from Lq(Lp)-theory.

By using the results of [10], we have proved above that u vanishes for x = 0 for all t (a.s.) only
if σ2 < 1. We do not know if the same is true for 1 ≤ σ2 < 2. Although Theorem 3.1 is still
available for θ satisfying (3.1), this range of θ does not allow to conclude that u is continuous
up to the boundary for almost all ω.

4. Auxiliary results

To prove Theorems 3.1 and 3.2 we need several auxiliary results, which we prove in this section,
and a barrier function, which is constructed in Sec. 6. First we prove a regularizing property for
solutions of (1.1). Notice that there is no restriction on θ in Lemma 4.1.
Lemma 4.1. Let p ≥ 2, n ∈ {1, 2, ...}, γ ≥ ν, θ ∈ R, u ∈ Hν,np

p,θ (τ), u(0) = 0, and u satisfy (1.1)
in |(0, τ ]] × R

d
+ with Mf ∈ H

γ−2,np
p,θ (τ) and g ∈ H

γ−1,np
p,θ (τ). Then u ∈ Hγ,np

p,θ (τ) and

||M−1u||Hγ,np
p,θ (τ) ≤ N(||Mf ||

H
γ−2,np
p,θ (τ)

+ ||g||
H

γ−1,np
p,θ (τ)

+ ||M−1u||Hν,np
p,θ (τ)), (4.1)

where N = N(γ, d, p, n, δ).

Proof. Clearly (4.1) becomes stronger if ν decreases. Therefore we may assume that ν = γ − k,
where k is an integer, and bearing in mind an obvious induction, we see that, without loss of
generality, we may let ν = γ − 1.

Now notice that, for a function ζ ∈ C∞
0 (R+) and ζ(x) := ζ(x1), we have

||M−1u||np
H

γ,np
p,θ (τ)

= E

∫ τ

0
||M−1u(t)||np

Hγ
p,θ

dt ≤ NE

∫ τ

0
||u(t)||np

Hγ
p,θ−p

dt

= N
∞∑

m1,...,mn=−∞
e(θ−p)m̄E

∫ τ

0

n∏
i=1

||u(t, emi ·)ζ||p
Hγ

p
dt, (4.2)

with m̄ := m1 + ... + mn. Here

||u(t, em ·)ζ||p
Hγ

p
∼ ||∆(u(t, em ·)ζ)||p

Hγ−2
p

= ||(1 − ∆)γ/2−1∆(u(t, em ·)ζ)||pp = em(pγ−d)||(λm − ∆)γ/2−1∆(u(t)ζm)||pp,
where λm = e−2m and ζm(x) = ζ(e−mx). Furthermore,

d(uζm) = (aij(uζm)xixj + f̄m) dt + (σik(uζm)xi + ḡk
m) dwk

t ,

where,
f̄m = fζm − 2a1jζmx1uxj − a11uζmx1x1, ḡk

m = gkζm − σ1kuζmx1 .

Similarly to the above computation

||(λm − ∆)γ/2−1f̄m(t)||pp = e−m(pγ−2p−d)||f̄m(t, em ·)||p
Hγ−2

p
,

||(λm − ∆)γ/2−1ḡmx(t)||pp = e−m(pγ−p−d)||(ḡm(t, em ·))x||p
Hγ−2

p

≤ e−m(pγ−p−d)N ||ḡm(t, em ·)||p
Hγ−1

p
.
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Therefore, by Lemma 2.3, for any m1, ...,mn, we have

E

∫ τ

0

n∏
i=1

||u(t, emi ·)ζ||pγ,p dt ≤ NE

∫ τ

0

( n∑
i=1

emipJi(t) +
∑

1≤i<j≤n

e(mi+mj)pJij(t)
)
dt,

where

Ji(t) := (emip||f̄mi(t, e
mi ·)||p

Hγ−2
p

+ ||ḡmi(t, e
mi ·)||p

Hγ−1
p

)
∏
j 6=i

||u(t, emj ·)ζ||p
Hγ

p
,

Jij(t) := ||ḡmi(t, e
mi ·)||p

Hγ−1
p

||ḡmj (t, e
mj ·)||p

Hγ−1
p

∏
k 6=i,j

||u(t, emk ·)ζ||p
Hγ

p
.

Coming back to (4.2), we conclude

||M−1u||np
H

γ,np
p,θ (τ)

≤ NE

∫ τ

0
(F (t) + G(t))||u(t)||(n−1)p

Hγ
p,θ−p

dt

+NE

∫ τ

0
G2(t)||u(t)||(n−2)p

Hγ
p,θ−p

dt,

where

G(t) :=
∞∑

m=−∞
emθ||ḡm(t, em ·)||p

Hγ−1
p

≤ N

∞∑
m=−∞

emθ||g(t, em ·)ζ||p
Hγ−1

p

+N
∞∑

m=−∞
em(θ−p)||u(t, em ·)ζ ′||p

Hγ−1
p

≤ N(||g(t)||p
Hγ−1

p,θ

+ ||M−1u(t)||p
Hγ−1

p,θ

),

F (t) :=
∞∑

m=−∞
em(θ+p)||f̄m(t, em ·)||p

Hγ−2
p

≤ N

∞∑
m=−∞

em(θ+p)||f(t, em ·)ζ||p
Hγ−2

p

+N

∞∑
m=−∞

emθ||ux(t, em ·)ζ ′||p
Hγ−2

p
+ N

∞∑
m=−∞

em(θ−p)||u(t, em ·)ζ ′′||p
Hγ−2

p

≤ N(||Mf(t)||p
Hγ−2

p,θ

+ ||Mux(t)||p
Hγ−2

p,θ−p

+ ||M−1u(t)||p
Hγ−2

p,θ

)

≤ N(||Mf(t)||p
Hγ−2

p,θ

+ ||u(t)||p
Hγ−1

p,θ−p

)

≤ N(||Mf(t)||p
Hγ−2

p,θ

+ ||M−1u(t)||p
Hγ−1

p,θ

).

As in the end of the proof of Theorem 2.1, this yields

||M−1u||np
H

γ,np
p,θ (τ)

≤ NE

∫ τ

0
(Fn(t) + Gn(t)) dt

≤ N(||Mf ||np

H
γ−2,np
p,θ (τ)

+ ||g||np

H
γ−1,np
p,θ (τ)

+ ||M−1u||np

H
γ−1,np
p,θ (τ)

).

The lemma is proved.

This lemma reduces obtaining a priori estimates of higher order derivatives to estimating any
lower order norm. In the next lemma we show that if we have an estimate of the zeroth order
norm, then we have the solvability in all spaces Hγ,q

p,θ(τ). First we give a definition.
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Definition 4.2. For a function u = u(ω, t, x) we write u ∈ C if

(i) the function u is defined on Ω × [0,∞) × R
d
+ , is predictable as a function of (ω, t), and is of

class C∞
0 (Rd

+) as a function of x with support belonging to the same compact subset of Rd
+ for

all (ω, t) and with the norms ||u(t, ·)||Cn(Rd
+) bounded on Ω × [0,∞) for any n = 1, 2, ...;

(ii) the function u is continuous as a function of t and there exists an integer k < ∞ such that,
on Ω × [0,∞) × R

d
+ ,

u(t, x) =
∫ t

0
f(s, x) ds +

k∑
i=1

∫ t

0
gi(s, x) dwi

s,

where f, g1, ..., gk are certain functions enjoying the properties listed in (i) for u and such that,
for any multi-index α, the function

k∑
i=1

Var[0,∞) Dαgi(·, x) + Var[0,∞) Dαf(·, x) (4.3)

is a bounded function of (ω, x). In that case, as usual, we denote f = D u, g = Su.
Lemma 4.3. Let p ≥ 2, n ∈ {1, 2, ...}, ε ∈ (0, 2/(np)), γ ∈ R, T ∈ (0,∞), τ ≤ T ,

d − 1 + p > θ > d − 1. (4.4)

Define ā11 = a11, āij = aij if i ≥ 2 and j ≥ 2, and āij = 0 in all remaining cases. Assume that
there is a constant N0 such that, for any u ∈ C and λ ∈ [0, 1],

||M−1u||Lnp
p,θ (τ) ≤ N0(||M

(
D u − (λaij + (1 − λ)āij)uxixj

)||
L

np
p,θ (τ)

+ ||Su− λσi ·uxi ||
H

1,np
p,θ (τ)

). (4.5)

Then, whenever Mf ∈ H
γ−2,np
p,θ (τ), g ∈ H

γ−1,np
p,θ (τ), and

M2/(np)−1−εu0 ∈ Lnp(Ω,F0,H
γ−2/(np)+ε
p,θ ),

equation (1.1) with initial condition u(0) = u0 has a unique solution in H
γ,np
p,θ (τ). In addition,

for this solution, estimate (3.3) holds for q = np with N = N(N0, γ, d, p, n, δ, T ), whereas, if
u0 = 0, then N = N(N0, γ, d, p, n, δ).

Proof. As we have already pointed out, uniqueness follows from [10]. While proving the ex-
istence of solutions, we can assume that u0 = 0. Indeed, by Theorem 8.6 of [7], there exists
a continuation operator, that is, for each ω, there exists a function ū ∈ Hγ,np

p,θ (T ) such that
u(0) = u0 and

||M−1ū||np
H

γ,np
p,θ (T )

+ ||Mūt||np

H
γ−2,np
p,θ (T )

≤ N ||M2/(np)−1−εu0||np

H
γ−2/(np)+ε
p,θ

,

where N depends only on d, p, n, ε, γ, θ, and T . If we subtract ū from u, we will reduce the
problem to the one with zero initial condition and f̄ = f + aij ūxixj − ūt and ḡk = gk + σikūxi

in place of f and gk, respectively. In addition (see [5])

||Mūxx(t)||Hγ−2
p,θ

≤ N ||ūx(t)||Hγ−1
p,θ

≤ N ||M−1ū(t)||Hγ
p,θ

with N depending only on d, p, γ, and θ, where condition (4.4) is not used. This implies that
f̄ and ḡ are functions of the same classes as f and g, respectively. Therefore, in the rest of the
proof we assume u0 = 0.
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The above argument is absolutely standard. The rest of the proof of existence on the basis of
the apriori estimate (4.5) and the method of continuity is also standard and we only give the
most important details. By the way, notice that Lemma 4.1 and assumption (4.5) along with
the denseness of C in Hγ,q

p,θ(τ)∩{u(0) = 0} imply that, for q = np and γ ≥ 2, the apriori estimate
(3.3) holds for any u ∈ Hγ,np

p,θ (τ) with u(0) = 0.

Case γ = 2 and a1j ≡ 0 for j ≥ 2 and σik ≡ 0. In that case first we take sufficiently smooth
functions f and g vanishing in a neighborhood of x1 = 0 and for large x1 and continue them for
x1 < 0 as odd functions with respect to x1. Then we get a solution u ∈ H2,np

p (τ) by Theorem 2.1.
Since in a neighborhood of x1 = 0 the function u satisfies a deterministic equation, as in Lemma
4.2 of [9], we get that u ∈ H

2,np
p,θ (τ). Actually, here we only need d + p ≥ θ > d − 1 instead of

(4.4) but estimate (4.5) cannot hold for θ ≥ d− 1 + p anyway. This gives the solvability of (1.1)
for particular f , g. For general f and g we easily get our assertions by using approximations
and the apriori estimate (3.3).

Case γ ≥ 2 and general a and σ. If γ = 2, general a and σ are considered on the basis of the
method of continuity and the apriori estimate (3.3). After that, our theorem in the case γ ≥ 2
follows directly from Lemma 4.1.

Case γ < 2. One can just repeat the proof of Theorem 3.2 of [10]. The lemma is proved.

The following lemma will allow us to assume that α11 is constant. This will be done after
enlarging our initial probability space. Suppose that we are given a complete probability space
(Ω̃, F̃ , P̃ ) and an increasing family of complete σ-algebras (F̃t, t ≥ 0), F̃t ⊂ F̃ . Suppose that
we are also given independent one-dimensional processes w̃k

t which are Wiener with respect to
(F̃t, t ≥ 0). Define

(Ω̄, F̄ , F̄t, P̄ ) = (Ω,F ,Ft, P ) × (Ω̃, F̃ , F̃t, P̃ ),

define P̄ as the predictable σ-algebra relative to (F̄t, t ≥ 0) and introduce the spaces H̄
γ,q
p,θ (τ)

and H̄γ,q
p,θ(τ) on the basis of Ω̄, F̄ , F̄t, P̄ and the Wiener processes wk

t , w̃r
t , k, r = 1, 2, ....

Lemma 4.4. In the above notation, the operator Π : u → Πu with

Πu(ω, t, x) :=
∫

Ω̃
u(ω, ω̃, t, x) P̃ (dω̃)

is a bounded operator with unit norm mapping the spaces H̄ γ,q
p,θ (τ) and H̄γ,q

p,θ(τ) onto H
γ,q
p,θ (τ) and

H
γ,q
p,θ(τ), respectively. In addition, DΠ = ΠD and SΠ = ΠS. Moreover, SkΠ = 0 if k corresponds

to the additional Wiener processes w̃k
t .

Proof. Integration theory shows that Π preserves measurability and integrability properties
involved in the definitions of H γ,q

p,θ (τ) and H
γ,q
p,θ(τ). Also, obviously, H

γ,q
p,θ (τ) and H

γ,q
p,θ(τ) are

subspaces of H̄ γ,q
p,θ (τ) and H̄

γ,q
p,θ(τ), respectively, and ΠH γ,q

p,θ (τ) = H
γ,q
p,θ (τ), ΠHγ,q

p,θ(τ) = H
γ,q
p,θ(τ).

Therefore, mapping Π is onto.

The fact that Π maps H̄
γ,q
p,θ (τ) to H

γ,q
p,θ (τ) with unit norm follows easily from Minkowski’s in-

equality.

Since the set C̄, constructed as C on the basis of Ω̄, F̄ , F̄t, w
k
t , w̃r

t , and P̄ , is everywhere dense in
H̄

γ,q
p,θ(τ) and the operators D and S are bounded, to prove our assertions concerning H̄γ,q

p,θ(τ) it
suffices to concentrate on elements of C̄. For u ∈ C̄, the equalities ΠD u = DΠu and ΠSu = SΠu
follow immediately from Fubini’s theorem in its usual version. Its stochastic version is not needed
since under (4.3) stochastic integrals of Su are rewritten as usual integrals using integration by
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parts. Finally, for each k,∫
Ω̃

( ∫ t

0
g(ω̃, s) dw̃k

s (ω̃)
)
P̃ (dω̃) = Ẽ

∫ t

0
g(s) dw̃k

s = 0,

where Ẽ is the symbol of expectation relative to P̃ , if g is appropriately measurable and
Ẽ

∫ t
0 |g(s)|2 ds < ∞. This easily implies that ΠSku = 0 if the term S

ku dw̃k
t is part of the

stochastic differential of u. The lemma is proved.

The following two lemmas contain the most crucial information needed for proving Theorems
3.1 and 3.2. In the proofs of these lemmas we use the barrier constructed in Sec. 6.
Lemma 4.5. Let p ≥ 2, n ≥ 1 be an integer, and

d − 1 + p > θ ≥ d − 1 + p − 1/n.

Assume that a11 ≡ 1 and α11 is a constant. Then there exists a constant N0 = N0(d, p, n, θ, δ) <
∞ such that (4.5) holds for any u ∈ C, λ ∈ [0, 1], and stopping time τ with L

np
p,θ (τ) in place of

H
1,np
p,θ (τ).

Proof. Notice at once that, if n = 1, the statement of the lemma is known from [10] even for
a wider range of θ (see (3.4)). Therefore, we assume that n ≥ 2. Furthermore, upon taking a
u ∈ C and using standard stopping times one easily reduces the situation of general τ to the one
in which all terms in (4.5) are finite and τ is bounded. Finally obviously, assuming λ = 1 does
not restrict generality.

Denote f = D u − aijuxixj and g = Su− σi ·uxi , so that

u(t, x) =
∫ t

0
(aijuxixj(s, x) + f(s, x)) ds +

∫ t

0
(σikuxi(s, x) + gk(s, x)) dwk

s .

Next, for X = (x1, ..., xn) ∈ (Rd
+)n with xi ∈ R

d
+ , define

U(t,X) = u(t, x1) · ... · u(t, xn).

Observe that by Itô’s formula

dU(t,X) = (LU(t,X) + F (t,X) + H(t,X)) dt + Gk(t,X) dwk
t , (4.6)

where LU = ars(Uxr
1xs

1
+ ... + Uxr

nxs
n
),

F (t,X) =
n∑

i=1

f(t, xi)
∏
j 6=i

u(t, xj) = U(t,X)
n∑

i=1

(u−1f)(t, xi),

Gk =
n∑

i=1

Gk
i , Gk

i (t,X) = σrkUxr
i
(t,X) + U(t,X)(u−1gk)(t, xi),

H = U−1
∑

1≤i<j≤n

Gk
i G

k
j .

Finally, fix a β ∈ [0, 1) which will be specified later, and take the function Φ(x) from Theorem
6.1 corresponding to this β and α = d + p − θ, which is possible since in notation of Theorem
6.1 we have 1 < d + p − θ < ᾱ(n, β). Define Φ(X) = Φ(x1

1, ..., x
1
n), and apply Itô’s formula to

Φ|U |p. Then from (4.6) we find that (a.s.) for all X ∈ (Rd
+)n

Φ(X)|U(τ,X)|p =
∫ τ

0
Φ(X)

[
p|U |p−2U(LU + F + H)(s,X)
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+1
2p(p − 1)|U(s,X)|p−2

∑
k

(Gk(s,X))2
]
ds +

∫ τ

0
pΦ(X)|U |p−2UGk(s,X) dwk

s . (4.7)

Since u ∈ C, we can take the expectations of both parts of this equality, drop the expectation
of the stochastic integral, integrate with respect to X over (Rd

+)n, and use Fubini’s theorem to
integrate first with respect to X. While integrating with respect to X, we integrate by parts
using the fact that Φ depends only on x1

1, ..., x
1
n. First we find that∫

(Rd
+)n

Φ(X)p|U |p−2ULU(s,X) dX = −I(s) − p(p − 1)δijartJrt
ij (s),

where,

I(s) :=
∫

(Rd
+)n

artΦxt
i
(X)(|U(s,X)|p)xr

i
dX,

Jrt
ij (s) :=

∫
(Rd

+)n

Φ(X)|U |p−2Uxt
i
(s,X)Uxr

j
(s,X) dX.

By denoting M the operator of multiplying by x1
1 · ... · x1

n, remembering that a11 = 1, and using
(6.1), we further find

I(s) = −
∫

(Rd
+)n

δijΦx1
i x1

j
(X)|U(s,X)|p dX = βK(s)

+
∫

(Rd
+)n

M θ−d−p|U(s,X)|p dX = βK(s) + ||M−1u(s, ·)||np
Lp,θ

, (4.8)

where
K(s) :=

∑
i6=j

∫
(Rd

+)n

Φx1
i x1

j
(X)|U(s,X)|p dX.

Thus,∫
(Rd

+)n

Φ(X)p|U |p−2ULU(s,X) dX

= −βK(s) − ||M−1u(s, ·)||np
Lp,θ

− p(p − 1)δijartJrt
ij (s). (4.9)

More terms Jrt
ij come from the part in (4.7) containing H and (Gk)2. To estimate these terms

we notice that
|U(s,X)(u−1gk)(s, xi)σrkUxr

j
(s,X)|

≤ |U(s,X)u−1g(s, xi)|(2αrtUxr
j
(s,X)Uxt

j
(s,X))1/2,

so that

|U(s,X)(u−1gk)(s, xi)σrkUxr
j
(s,X)|

≤ εαrtUxr
j
(s,X)Uxt

j
(s,X) + NU2(s,X)

∑
i

|u−1g(s, xi)|2,

where ε > 0 is arbitrary and N = N(ε). This shows

p|U |p−2UH +
1
2
p(p − 1)|U |p−2

∑
k

|Gk|2 = p|U |p−2
( ∑

1≤i<j≤n

Gk
i G

k
j +

1
2
(p − 1)

∑
1≤i,j≤n

Gk
i G

k
j

)

≤ p(p − 1)(1 + ε)|U |p−2δijαrtUxr
i
Uxt

j
+ p2|U |p−2

∑
i6=j

αrtUxr
i
Uxt

j

17



+N |U |p
∑

i

|u−1g(s, xi)|2.

Also notice that due to (6.2), for each i,∫
R

d
+

Φ(X)|U(s,X)|p|u−1g(s, xi)|2 dxi

≤ N

∫
R

d
+

(x1
i )

θ−d|M−1u(s, xi)|p−2|g(s, xi)|2 dxi

∏
j 6=i

(x1
j )

θ−d|(M−1u)(s, xj)|p

≤ N ||M−1u(s, ·)||p−2
Lp,θ

||g(s, ·)||2Lp,θ

∏
j 6=i

(x1
j )

θ−d|(M−1u)(s, xj)|p,

which implies that∫
(Rd

+)n

Φ(X)|U(s,X)|p|u−1g(s, xi)|2 dX

≤ N ||M−1u(s, ·)||np−2
Lp,θ

||g(s, ·)||2Lp,θ

≤ ε||M−1u(s, ·)||np
Lp,θ

+ N ||g(s, ·)||np
Lp,θ

.

Therefore,∫
(Rd

+)n

Φ(X)
[
p|U |p−2UH +

1
2
p(p − 1)|U |p−2

∑
k

|Gk|2(s,X)
]
dX

≤ p(p − 1)(1 + ε)δijαrt(s)Jrt
ij (s) + p2

∑
i6=j

αrt(s)Jrt
ij (s)

+ ε||M−1u(s, ·)||np
Lp,θ

+ N ||g(s, ·)||np
Lp,θ

(4.10)

To estimate the last term in (4.7) containing F , notice that by (6.2), for each i,∫
Rd

+

Φ(X)|U(s,X)|p−1|f(s, xi)
∏
j 6=i

u(s, xj)| dxi

=
∫
Rd

+

Φ(X)|u(s, xi)|p−1|f(s, xi)| dxi

∏
j 6=i

|u(s, xj)|p

≤ NJi(s)
∏
j 6=i

(x1
j )

θ−d|(M−1u)(s, xj)|p,

where
Ji(s) :=

∫
Rd

+

(x1
i )

θ−d|(M−1u)(s, xi)|p−1|(Mf)(s, xi)| dxi,

which by Hölder’s inequality is less than ||M−1u(s, ·)||p−1
Lp,θ

||Mf(s, ·)||Lp,θ
. It follows that∫

(Rd
+)n

Φ(X)|U(s,X)|p−1|f(s, xi)
∏
j 6=i

u(s, xj)| dX

≤ N ||M−1u(s, ·)||(n−1)p+p−1
Lp,θ

||Mf(s, ·)||Lp,θ
,∫

(Rd
+)n

Φ(X)p|U |p−1|F |(s,X) dX ≤ ε||M−1u(s, ·)||np
Lp,θ

+ N ||Mf(s, ·)||np
Lp,θ

.
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Upon combining this estimate with (4.10) and (4.9) and coming back to (4.7) we get

0 ≤ −βE

∫ τ

0
K(s) ds − ||M−1u||np

L
np
p,θ (τ)

− p(p − 1)δijE

∫ τ

0
artJrt

ij (s) ds

+p(p − 1)(1 + ε)δijE

∫ τ

0
αrtJrt

ij (s) ds + p2
∑
i6=j

E

∫ τ

0
αrtJrt

ij (s) ds

+ε||M−1u||np
L

np
p,θ (τ)

+ N ||Mf ||np
L

np
p,θ (τ)

+ N ||g||np
L

np
p,θ (τ)

.

Hence, if ε ≤ 1/2,

1
2
||M−1u||np

L
np
p,θ (τ)

≤ −δijE

∫ τ

0
{p(p − 1)[art − αrt] − εαrt}Jrt

ij (s) ds (4.11)

+N(||Mf ||np
L

np
p,θ (τ)

+ ||g||np
L

np
p,θ (τ)

) + R,

where

R = p2
∑
i6=j

E

∫ τ

0
αrtJrt

ij (s) ds − βE

∫ τ

0
K(s) ds

= p2
∑
i6=j

E

∫ τ

0
αrtJrt

ij (s) ds − βE

∫ τ

0

∑
i6=j

∫
(Rd

+)n

Φx1
i x1

j
(X)|U(s,X)|p dXds.

The matrix p(p − 1)(art − αrt) − ε(αrt) is nonnegative (actually, strictly positive) if ε is small
enough. Therefore by (4.11)

||M−1u||np
L

np
p,θ (τ)

≤ N(||Mf ||np
L

np
p,θ (τ)

+ ||g||np
L

np
p,θ (τ)

) + 2R, (4.12)

Now we specify the choice of β. We take β = α11 and then prove that R = 0. To do this take
i 6= j and integrate by parts using the fact that Φ depends only on x1

1, ..., x
1
n and that

Uxr
i xt

j
= U−1Uxr

i
Uxt

j

if i 6= j. For such i and j, we find

(p − 1)Jrt
ij (s) =

∫
(Rd

+)n

Φ(X)(|U |p−2U)xr
i
Uxt

j
(s,X) dX

= −
∫

(Rd
+)n

Φ(X)|U |p−2UUxr
i xt

j
(s,X) dX

−p−1δr1

∫
(Rd

+)n

Φx1
i
(X)(|U |p)xt

j
(s,X) dX

= −Jrt
ij (s) + p−1δr1δt1

∫
(Rd

+)n

Φx1
i x1

j
(X)|U(s,X)|p dX.

By collecting like terms in the above computations, we obtain

p2Jrt
ij (s) = δr1δt1

∫
(Rd

+)n

Φx1
i x1

j
(X)|U(s,X)|p dX. (4.13)

This and the equality α11 = β imply that R = 0 indeed. Now (4.12) becomes (4.5) and the
lemma is proved.

Next we give a version of Lemma 4.5 for a wider range of θ but with a nontrivial restriction on
α11. In the following lemma we make the second condition in (2.1) stronger.
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Lemma 4.6. Let p ≥ 2, n ≥ 1 be an integer, and

d − 1 + p > θ > d − 2 + p.

Assume that, for any λ ∈ R
d and s ≥ 0,

(1 − δ)art(s)λrλt ≥ αrt(s)λrλt + α11(s)(λ1)2(n − 1)p/(p − 1). (4.14)

Then the assertion of Lemma 4.5 holds true again.

Proof. Standard random time change immediately reduces the situation to the one in which
a11 ≡ 1. Then we take the function Φ(X) from Theorem 6.1 corresponding to α = d + p − θ
and β = 0. After that we repeat the proof of Lemma 4.5 word for word up to formula (4.11).
However, this time generally α11 6= 0 = β and we have to deal with R from (4.11) differently.
Formula (4.13) shows that Jrt

ij (s) = δr1δt1J11
ij (s). By using the fact that, for any λ ∈ R

n ,∑
i6=j

λiλj ≤ (n − 1)
∑

i

λ2
i ,

we get

R = p2
∑
i6=j

E

∫ τ

0
α11J11

ij (s) ds ≤ p2(n − 1)
∑

i

E

∫ τ

0
α11J11

ii (s) ds.

We combine this term with the first term on the right in (4.11) and notice that, due to (4.14),

p(p − 1)[art − αrt]Jrt
ii (s) − p2(n − 1)α11Jrt

ii ≥ εαrtJrt
ii (s)

if ε is small enough. Then we see that (4.11) implies (4.5). The lemma is proved.

5. Proofs of Theorems 3.1 and 3.2

First we show how to take care of χ in Theorems 3.1 and 3.2.
Lemma 5.1. Let p, q ∈ (1,∞), θ0 ∈ R, τ be a stopping time. Assume that there exists a
constant N0 such that, for any u ∈ H2,q

p,θ0
(τ) satisfying u(0) = 0, we have

||M−1u||
H

2,q
p,θ (τ) ≤ N(||M(D u − aijuxixj )||Lq

p,θ (τ) + ||Su− σi ·uxi ||
H

1,q
p,θ (τ)), (5.1)

where θ = θ0 and N = N0. Then there exists χ = χ(d, p, δ, θ0, N0) > 0 such that, for any
θ ∈ (θ0 − χ, θ0 + χ), estimate (5.1) holds with N = N(d, p, δ, θ0)N0 whenever u ∈ H

2,q
p,θ(τ) and

u(0) = 0.

Proof. We use a simple perturbation argument. Remember (see [5]) that

H2
p,θ = {v : v,Mvx,M2vxx ∈ Lp(Rd

+ , (x1)θ−d dx)}.
It follows easily that if |θ − θ0| ≤ 1, then

||v||H2
p,θ

≤ N1(d, p, θ0)||M (θ−θ0)/pv||H2
p,θ0

≤ N2(d, p, θ0)||v||H2
p,θ

.

(Actually, we used this fact from [5] in a more general setting in the proof of Lemma
4.1.) Therefore, u ∈ H

2,q
p,θ(τ) if and only if M (θ−θ0)/pu ∈ H

2,q
p,θ0

(τ) and the norms ||u||
H

2,q
p,θ(τ)

and ||M (θ−θ0)/pu||
H

2,q
p,θ0

(τ) are equivalent. Also obviously DM (θ−θ0 )/pu = M (θ−θ0)/p
D u and

SM (θ−θ0)/pu = M (θ−θ0)/p
Su. Therefore, by denoting N various constants depending only on

d, p, δ, and θ0, from (5.1) with θ = θ0, we get that, for v = M (θ−θ0)/pu,

||M−1u||
H

2,q
p,θ (τ) ≤ N ||M−1v||

H
2,q
p,θ0

(τ)
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≤ NN0(||M(D v − aijvxixj )||Lq
p,θ0

(τ) + ||Sv− σi ·vxi ||
H

1,q
p,θ0

(τ)) =: NN0(I + J).

We denote ε = (θ − θ0)/p and observe that

M(D v − aijvxixj) = M (θ−θ0)/pM(D u − aijuxixj)

−2εM (θ−θ0)/pa1juxj − ε(ε − 1)M (θ−θ0)/pa11M−1u,

which implies

I ≤ N ||M(D u − aijuxixj )||Lq
p,θ (τ) + εN(||ux||Lq

p,θ (τ) + ||M−1u||
L

q
p,θ (τ))

≤ N ||M(D u − aijuxixj )||Lq
p,θ (τ) + εN ||M−1u||

H
2,q
p,θ (τ).

Similarly, J ≤ N ||Su− σi ·uxi ||
H

1,q
p,θ (τ)

+ εN ||M−1u||
H

2,q
p,θ (τ)

, so that

||M−1u||
H

2,q
p,θ (τ) ≤ NN0(||M(D u − aijuxixj)||Lq

p,θ (τ)

+||Su− σi ·uxi ||
H

1,q
p,θ (τ))) + εN1N0||M−1u||

H
2,q
p,θ (τ).

It only remains to choose ε so small that εN1N0 ≤ 1/2. The lemma is proved.
Proof of Theorem 3.1. We start with the case in which condition (3.1) holds and q = np,
where n = 1, 2, .... If n = 1 the assertion of the theorem is known from [10]. For general
n, by Lemma 4.3 we only need to prove (4.5) for u ∈ C and λ ∈ [0, 1]. Next, if (4.5) holds
with θ = d − 1 + p − 1/n, Lemmas 4.3 and 5.1 imply that (4.5) also holds with θ close to
d− 1 + p− 1/n, which takes care of χ. Therefore, we may and will only concentrate on the case
d − 1 + p > θ ≥ d − 1 + p − 1/n. Finally obviously, assuming λ = 1 in (4.5) does not restrict
generality. A random time change shows that we may also assume a11 ≡ 1.
Now take u ∈ C, define f = D u − aijuxixj , gk = S

ku − σikuxk , take a one-dimensional Wiener
process bt independent of {Ft}, and consider the equation

dv = (aijvxixj + f) dt + (σikvxk + gk) dwk
t + βvx1 dbt, (5.2)

with zero initial condition, where β =
√

2(1 − δ − α11). The term α11 corresponding to (5.2) is
α11 + β2/2 = 1 − δ = const. Therefore, by Lemmas 4.5 and 4.3, for any bounded τ , equation
(5.2) with zero initial condition has a unique solution v ∈ H2,np

p,θ (τ) satisfying

||M−1v||Lnp
p,θ (τ) ≤ N0(||Mf ||Lnp

p,θ (τ) + ||g||Lnp
p,θ (τ)). (5.3)

By Lemma 4.4, there is a solution ū ∈ H2,np
p,θ (τ) of the equation

dū = (aij ūxixj + f) dt + (σikūxk + gk) dwk
t

with zero initial data and with ||M−1ū||Lnp
p,θ (τ) ≤ ||M−1v||Lnp

p,θ (τ). By uniqueness, we have ū = u,
which after combining the above estimates leads to (4.5) and finishes the proof of the theorem
in the case q = np under condition (3.1).

If condition (3.2) is satisfied and q = np, the proof goes the same way apart from using Lemma
4.4, which is not needed in this case since Lemma 4.6 provides the necessary apriori estimate
without any additional assumptions on α11.

To consider the case of general q ≥ p, we use the Marcinkiewicz interpolation theorem while
interpolating with respect to q for fixed values of other parameters. Let n = dq/pe, q1 = p, and
q2 = np. Then q1 ≤ q ≤ q2 and one of the conditions (3.1) and (3.2) is satisfied for q1 and q2

in place of q. Therefore, we can apply the result proved for the case q = np and solve (1.1) in
H

γ,qi

p,θ (τ) with zero initial data.
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The mapping (f, g) → u is a linear bounded operator, say R acting on

Lq( |(0, τ ]],P, (M−1Hγ−2
p,θ ) × Hγ−1

p,θ )

with values in Lq( |(0, τ ]],P,MHγ+2
p,θ ) defined for q = q1, q2. Let Nq be the norm of R. By the

Marcinkiewicz interpolation theorem R is bounded for any q ∈ [q1, q2] and Nq ≤ N(Nq1 + Nq2).
Finally, for

(f, g) ∈ Lnp( |(0, τ ]],P, (M−1Hγ−2
p,θ ) × Hγ−1

p,θ ),

the function R(f, g) belongs to Hγ,np
p,θ (τ) ⊂ H

γ,q
p,θ(τ) and solves equation (1.1) with zero initial

condition. The estimate Nq ≤ N(Nq1 +Nq2) and the completeness of Hγ,q
p,θ(τ) implies that R(f, g)

belongs to Hγ,q
p,θ(τ) and solves equation (1.1) with zero initial condition for any

(f, g) ∈ Lq( |(0, τ ]],P, (M−1Hγ−2
p,θ ) × Hγ−1

p,θ ).

This proves the theorem.

Proof of Theorem 3.2. The same argument as in the above proof of Theorem 3.1 shows that
we only need to prove (4.5) for n = 1, 2, ..., u ∈ C, λ = 1, and d − 1 + p > θ ≥ d.

Case a1j ≡ 0 for j ≥ 2. Observe that, for d− 1 + p > θ ≥ d− 1− 1/n + p =: θ̄, the assertions of
the theorem and, in particular, estimate (4.5) follow from Theorem 3.1. To cover θ ∈ [d, θ̄], we
use complex interpolation.

If θ = d, to get (4.5) for u ∈ C, we continue u in an odd way across x1 = 0. Let T be the
operator of odd continuation. Observe that, due to a1j = σ1k = 0 for j ≥ 2 and k ≥ 1, we
have aij(Tu)xixj = Taijuxixj and σik(Tu)xi = Tσikuxi . Also obviously D T = T D and ST = TS.
Therefore, D Tu − aij(Tu)xixj is an odd function with respect to x1 and by Corollary 2.6, for
any q ≥ p, we have that

||M−1u||Lq
p,d(τ) ≤ N(||M(D u − aijuxixj ||Lq

p,d(τ) + ||Su− σi·uxi ||Lq
p,d(τ)).

Of course, we take q = np and then the above estimate becomes (4.5) with θ = d. Now Lemma
4.3 allows us to define an operator

R : (M−1
H
−1,q
p,d (τ)) × L

q
p,d(τ) → H

1,q
p,d(τ)

as the operator solving equation (1.1) with zero initial data in the space H1,q
p,d(τ) for each (f, g) ∈

(M−1
H
−1,q
p,d (τ)) × L

q
p,d(τ). This operator is bounded. In addition, from uniqueness and the

above result for d − 1 + p > θ ≥ θ̄ it follows easily that R is also a bounded operator from
(M−1

H
−1,q
p,θ̄

(τ)) × L
q
p,θ̄

(τ) to H1,q
p,θ̄

(τ).

In particular, for θ = d, θ̄, we have

||M−1R(f, g)||Lq
p,θ (τ) ≤ N(||Mf ||Lq

p,θ (τ) + ||g||Lq
p,θ (τ)), (5.4)

which we choose to rewrite as

||M (z−d)/p−1RM (d−z)/p(f, g)||Lq
p,d(τ) ≤ N(||Mf ||Lq

p,d(τ) + ||g||Lq
p,d(τ)) (5.5)

for z = d, θ̄. Obviously, (5.5) also holds for complex z such that <z = d, θ̄.

Next take some
(f, g) ∈ (M−1

L
q
p,d(τ)) × L

q
p,d(τ)
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vanishing for x1 6∈ (ε, ε−1), where ε is a constant, and for complex z ∈ Γ := {z : d ≤ <z ≤ θ̄}
consider the function

v(z) = M (z−d)/p−1RM (d−z)/p(f, g).

Observe that M (d−z)/p(f, g) = M (d−θ)/p(M (θ−z)/pf,M (θ−z)/pg) with the norm of
(M (θ−z)/pf,M (θ−z)/pg) in (M−1

L
q
p,d(τ)) × L

q
p,d(τ) bounded for z ∈ Γ if θ = d, θ̄. It follows

from (5.5) that the norm
||M (θ−d)/p−1RM (d−z)/p(f, g)||

L
q
p,d(τ)

is bounded for z ∈ Γ if θ = d, θ̄. The estimate |M (z−d)/ph| ≤ |h| + |M (θ̄−d)/ph| for z ∈ Γ
shows that the norm of v(z) in L

q
p,d(τ) is bounded on Γ. A small modification of this argument

taking into account the dominated convergence theorem proves that v(z) is a continuous Lq
p,d(τ)-

valued function on Γ. Finally, by using the fact that, for any α > 0, we have | log x1| ≤
N((x1)α + (x1)−α), one easily proves that the derivative dv(z)/dz exists as an L

q
p,d(τ)-valued

function and v(z) is an analytic L
q
p,d(τ)-valued function in the interior of Γ.

Now by the maximum principle and (5.5), for any θ ∈ [d, θ̄],

||M (θ−d)/p−1RM (d−θ)/p(f, g)||Lq
p,d(τ) = ||v(θ)||Lq

p,d(τ)

≤ sup
z∈∂Γ

||M (z−d)/p−1RM (d−z)/p(f, g)||Lq
p,d(τ)

≤ N(||Mf ||Lq
p,d(τ) + ||g||Lq

p,d(τ)).

The inequality between the extreme terms means that we have (5.4) for any θ ∈ [d, θ̄]. In
particular, (4.5) holds indeed.

General case. Let āij = aij if either i ≥ 2 or j ≥ 2 or else i = j = 1 and let āij = 0 in the
remaining cases. Take u ∈ C and define f = D u − aijuxixj , g = Su− σi ·uxi . By the above case,
there exists ū ∈ H2,q

p,θ(τ) with ū(0) = 0 such that

dū = (āij ūxixj + f) dt + (σikūxi + gk) dwk
t ,

||M−1ū||Lq
p,θ(τ) ≤ ||M−1ū||

H
2,q
p,θ (τ) ≤ N(||Mf ||Lq

p,θ (τ) + ||g||
H

1,q
p,θ (τ)). (5.6)

Furthermore, for ξi
t =

∫ t
0 σik(s) dwk

s and the functions v = u − ū,

v̄(t, x) = v(t, x − ξt), f̄(t, x) = (aij − āij)(t)ūxixj(t, x − ξt),

we have
dv = (aijuxixj − āijūxixj ) dt + σik(uxi − ūxi) dwk

t

= (aijvxixj + (aij − āij)ūxixj ) dt + σikvxi dwk
t ,

dv̄ = ((aij − αij)v̄xixj + f̄) dt.

The latter is a deterministic equation and by Theorem 3.2 of [8] (even for d − 1 + p > θ >
d − 1) we have ||M−1v̄||Lq

p,θ (τ) ≤ N ||Mf̄ ||Lq
p,θ (τ). Now to get (4.5), it only remains to add that

||M−1v||Lq
p,θ (τ) = ||M−1v̄||Lq

p,θ (τ),

||Mf̄ ||
L

q
p,θ (τ) = ||M(aij − āij)(t)ūxixj ||Lq

p,θ (τ) ≤ N ||M−1ū||
H

2,q
p,θ (τ)

and use (5.6) along with ||M−1u||Lq
p,θ (τ) ≤ ||M−1ū||Lq

p,θ (τ) + ||M−1v||Lq
p,θ (τ).

The theorem is proved.
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6. A barrier function

In this section we construct the function which is used in Sec. 4.
Theorem 6.1. Let n be an integer ≥ 1 and β be a number in [0, 1). Then there exists a constant
ᾱ = ᾱ(n, β) > 1 + 1/n if n ≥ 2, ᾱ = 2 if n = 1, and ᾱ(n, 0) = 2, such that for any α ∈ (1, ᾱ)
there exists a nonnegative function Φ(x1, ..., xn) defined on

Q := (R+)n

and possessing the following properties

(i) the function Φ is infinitely differentiable on Q and satisfies the equation

Ln,βΦ := ∆Φ(x) + β
∑
i6=j

Φxixj (x) = − 1
(x1 · ... · xn)α

=: −hn,α(x); (6.1)

(ii) for a constant N , independent of x, and m(x) := mini xi, we have

Φ(x) ≤ Nm2(x)hn,α(x) ; (6.2)

(iii) for any constant c > 0, Φ(cx) = c2−nαΦ(x).
Remark 6.2. Theorem 6.1 allows us to get some nontrivial estimates on solutions of Ln,βu = f .
Indeed, for β ∈ [0, 1), the operator Ln,β is a uniformly elliptic operator with constant coefficients.
In the domain Q with zero boundary condition it has a Green’s function which we denote by
g(x, y). Since Ln,β is formally self adjoint, we have g(x, y) = g(y, x). Introduce an operator
G : f → Gf with

Gf(x) =
∫

Q
g(x, y)f(y) dy.

By the maximum principle, the smallest nonnegative function satisfying (6.1) (if at least one Φ
exists) is

Φ(x) =
∫

Q
g(x, y)hn,α(y) dy. (6.3)

Therefore, under the conditions of Theorem 6.1 we get that Gf(x)

≤ Ghn,α(x) sup
Q

(h−1
n,αf) = Φ(x) sup

Q
(h−1

n,αf), sup
Q

(Φ−1Gf) ≤ sup
Q

(h−1
n,αf).

For the operator T : f → Φ−1G(hn,αf) this means

||Tf ||L∞(Q) ≤ ||f ||L∞(Q). (6.4)

By duality, we have
||hn,αG(Φ−1g)||L1(Q) ≤ ||g||L1(Q),

||(Φhn,α)Φ−1G(hn,αg)||L1(Q) ≤ ||Φhn,αg||L1(Q),

||Tg||L1(Q,Φhn,α dx) ≤ ||g||L1(Q,Φhn,α dx).

Interpolating between the last estimate and (6.4) yields

||Tf ||Lp(Q,Φhn,α dx) ≤ ||f ||Lp(Q,Φhn,α dx) (6.5)

for any p ∈ [1,∞].

Furthermore, by definition, for any u ∈ C∞
0 (Q) and x ∈ Q, we have

u(x) = −
∫

Q
g(x, y)Ln,βu(y) dy = −Φ(x)T (h−1

n,αLn,βu)(x),
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so that (6.5) implies that under the conditions of Theorem 6.1, for any u ∈ C∞
0 (Q),∫

Q
Φ1−phn,α|u|p(y) dy ≤

∫
Q

Φh1−p
n,α |Ln,βu|p(y) dy.

One can simplify the last estimate, if one notices that m2hn,α ≤ NΦ, the proof of which is not
too hard but goes beyond the scope of this article. Then∫

Q
m2−ph2−p

n,α |u/m|p dx ≤ N

∫
Q

m2−ph2−p
n,α |mLn,βu|p dx.

It is also worth noting that, since g ≥ 0, for any u ∈ C∞
0 (Q), we have u ≤ G(Ln,βu(x))− and∫

Q
u(x)hn,α(x) dx ≤ N

∫
Q

m2(x)hn,α(x)(Ln,βu(x))− dx.

To prove the theorem we need the following lemma.
Lemma 6.3. Under the assumptions of Theorem 6.1, let n ≥ 2, Γ be a closed bounded subset
of Q̄, and h be a nonnegative function on Γ. Define

u(x) :=
∫

Γ
g(x, y)h(y) dy

and assume that u is finite on Q \ Γ. Then

(i) the function u is bounded in Q \ G for any open G such that Γ ⊂ G;

(ii) if Γ ⊂ {xn > 2ε}, where the constant ε > 0, then

u(x) ≤ Nm(x) for x ∈ Q ∩ {xn ≤ ε},
where N is independent of x;

(iii) there are numbers γ̄ = γ̄(n, β) > 1, with γ̄(n, 0) = n, and N < ∞ such that, for x ∈
Q ∩ {|x| ≥ N},

u(x) ≤ N |x|1−n−γ̄m(x). (6.6)

Proof. (i) Let B be a large ball centered at origin. The fact that u is bounded near the part
of the boundary of B ∩ (Q \ G) belonging to ∂Q follows from Theorem 4.3 of [1]. Then its
boundedness in B ∩ (Q \ G) follows by Harnack’s inequality and its boundedness in Q \ G is
obtained by the maximum principle.

Assertion (ii) follows from the boundedness of u and the condition u = 0 on {xn < 2ε} ∩ ∂Q
in a standard way on the basis of considering simple barriers. For instance, fix x0 ∈ Q with
x0n ≤ ε and define v(x) := N0[x1 −N0x

2
1 + |Π(x − x0)|2], where N0 is a large constant and Π is

the orthogonal projection operator on {x1 = 0}. Then v satisfies Ln,βv ≤ 0 and v ≥ u on the
boundary of

D := Q ∩ {0 < xn < ε, |Π(x − x0)| < 1, x1 < (2N0)−1}.
By the maximum principle v ≥ u in D̄. In particular, u(x1,Πx0) ≤ N0x1 − N0x

2
1 ≤ N0x1

if 0 < x1 < (2N0)−1. In addition, the restriction 0 < x1 < (2N0)−1 is irrelevant, since u is
bounded, so that u ≤ Nx1 for x1 ≥ (2N0)−1. By taking x1 = x0

1, we get the result.

(iii) First, we deal with the case β = 0. Define w(x) = (x1 · ... · xn)|x|2−3n. It is not hard to
check that Ln,βw = ∆w = 0, so that

Ln,βw ≤ 0 in Q, w ≥ 0 on ∂Q. (6.7)
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From the boundedness of u for |x| large and from the maximum principle, it follows that there
exist constants N,N0 such that

u(x) ≤ Nw(x) ≤ N0|x|2−n−γ̄ (6.8)

if |x| ≥ N0, where γ̄ = n.

Now we want to prove this intermediate estimate in the case of general β. Let

κ = 1 −
(

1 − β

(n − 1)β + 1

)1/2

(6.9)

(0 < κ < 1). Notice that, if a function w(x) satisfies Ln,βw = 0 in a domain of x’s, then
the function v(y) = w(x) with y = x − κ(x, e)e, e := (1, ..., 1)/

√
n satisfies ∆v = 0 in the

corresponding domain of y’s. Furthermore, (y, e) = (1 − κ)(x, e), so that if x1, .., xn > 0, then
(y, e) > 0. In that case also |x| ≤ √

n(x, e), so that

|y|2 = |x|2 − κ(2 − κ)(x, e)2 ≤ (n − κ(2 − κ))(x, e)2

=
n − κ(2 − κ)

(1 − κ)2
(y, e)2 =

n − 1 + (1 − κ)2

(1 − κ)2
(y, e)2,

(y, e)2

|y|2 ≥ (1 − κ)2

n − 1 + (1 − κ)2
=

1
n

1 − β

(n − 2)β + 1
=: t20,

where in the last definition we assume t0 > 0.

Looking for solutions of ∆v ≤ 0 in the form

v(y) =
1

|y|n−2+γ
f(t), t =

(y, e)
|y| , γ > 0

we compute and find

|y|γ+2∆v = (1 − t2)f ′′ − (n − 1)tf ′ + γ(n − 2 + γ)f.

It is not hard to check that for any number ρ ≥ 0 the function g(t) = cos(ρ arccos t) is twice
continuously differentiable on [t0, 1] and satisfies

(1 − t2)g′′ − tg′ + ρ2g = 0.

In addition, tg′(t) ≥ g(t) ≥ 0 on [t0, 1] provided ρ arccos t0 ≤ π/2 and ρ ≥ 1. Indeed, the in-
equality tg′(t) ≥ g(t) is equivalent to the inequality tan φ ≥ ρ−1 tan(φρ−1), where φ = ρ arccos t,
and the latter inequality is true for any φ < π/2 if ρ ≥ 1.

Letting ρ = π/(2 arccos t0), we get that

(1 − t2)g′′ − (n − 1)tg′ + γ(n − 2 + γ)g ≤ [γ(n − 2 + γ) − (n − 2) − ρ2]g = 0

on [t0, 1] provided that γ = γ̄ = γ̄(n, β), where γ̄ is defined as the positive solution of

γ̄(n − 2 + γ̄) =
( π

2 arccos t0

)2 + n − 2. (6.10)

Observe that t0 > 0 and the right-hand side of (6.10) is bigger than n − 1. It follows that
γ̄(n, β) > 1.

Now, for

w(x) = v(y) =
1

|y|n−2+γ̄
cos

( π

2 arccos t0
arccos

(y, e)
|y|

)
,

we easily get (6.7) and (6.8) again.
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This result allows us to get (6.6) by using the same barriers as in the proof of (ii). Indeed,
take N0 from (6.8) and let |x0| ≥ 4N0 and x0

1 = mini x
0
i . Define r = |x0|, x̄0 = x0/r, and

ū(x) = u(rx). Also let Π again be the orthogonal projection operator on {x1 = 0}. Notice that
r ≤ 2|Πx0|, which implies that, if |Πx0 − Πx| ≤ r/4, then |x| ≥ |Πx| ≥ r/4 ≥ N0. It follows
easily that Ln,βū = 0 in

D := {0 < x1 < 2, |Πx − Πx̄0| < 1/4} ∩ Q,

ū is bounded in D̄ by N0r
2−n−γ̄ |x|2−n−γ̄ ≤ Nr2−n−γ̄ and ū vanishes for x1 = 0. As in (ii) we

see that ū(x1,Πx̄0) ≤ Nr2−n−γ̄x1 for 0 < x1 < 2. Upon substituting here x1 = x̄0
1, we get (6.6).

The lemma is proved.

Proof of Theorem 6.1. We are going to use the induction on n fixing β and denoting by Φn(x)
the function we are looking for. If n = 1 and ᾱ = 2, one can take Φ1(x) = (2−α)−1(α−1)−1x2−α.

Upon assuming that n ≥ 2 and that the function Φn−1 exists for n− 1, we construct Φn. Notice
that our assertions just mean that the function Φ defined in (6.3) enjoys all the properties listed
in the theorem. By the way, the fact that for this Φ property (iii) holds follows trivially from
a standard scaling argument showing that g(cx, cy) = c2−ng(x, y) for any c > 0. Also if we
knew that Φ is locally bounded, then (6.1) and the fact that Φ is infinitely differentiable would
follow from standard results from the theory of elliptic equations (with constant coefficients).
Therefore, one only needs to prove assertion (ii).

Take γ̄ = γ̄(n, β) from Lemma 6.3 and define

ᾱ(n, β) = ᾱ(n − 1, β) ∧ (1 + γ̄/n).

Then for α ∈ (1, ᾱ(n, β)) we can use the induction assumption. Also by induction and using
γ̄ > 1 one sees that ᾱ(n, β) > 1 + 1/n for any β ∈ [0, 1), whereas γ̄(n, 0) = n and ᾱ(n, 0) = 2.

Denote
Γ = {x ∈ Q : 2 ≤ max

i
xi ≤ 4n}, Γi = Γ ∩ {xi ≥ 2},

ui(x) =
∫

Γi

g(x, y)hn,α(y) dy, u(x) =
∫

Γ
g(x, y)hn,α(y) dy.

Observe that, for x ∈ Q and x̄ = (x1, ..., xn−1),

Ln,βΦn−1(x̄) =
n∑

i=1

Φn−1,xixi(x̄) + 2β
∑

1≤i<j≤n

Φn−1,xixj (x̄) = −hn−1,α(x̄).

Since hn−1,α(x̄) ≥ hn,α(x)Ixn≥2 and Φn−1 ≥ 0, it easily follows by the maximum principle that

un(x) ≤
∫

Q,yn≥2
g(x, y)hn,α(y) dy ≤ Φn−1(x̄). (6.11)

Here the right-hand side is finite. Therefore, we can apply Lemma 6.3 to un. Similar argument
holds for any uk, so that by Lemma 6.3

uk(x) ≤ N0m(x) if 0 < xk ≤ 1, (6.12)

uk(x) ≤ N0|x|1−n−γ̄m(x) for |x| ≥ N0, (6.13)

where N0 ≥ 1 is a constant.

Our next step is to define

Ψk(x) =
∫ ∞

0
tnα−2uk(tx)

dt

t
,
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and prove that Ψk’s satisfy estimate (6.2). Obviously, for any constant c > 0, we have Ψk(cx) =
c2−nαΨk(x). Therefore we only need to be concerned with |x| = 1 in (6.2).

Observe that

Ψk(x) =
∫ 1

0
+

∫ N0

1
+

∫ ∞

N0

=: Jk1(x) + Jk2(x) + Jk3(x).

If |x| = 1, then max xi ≤ 1, and (6.12) along with nα ≥ 2 imply Jk1(x) ≤ Nm(x). Also for
|x| = 1, owing to (6.13) and α < 1 + γ̄/n,

Jk3(x) ≤ Nm(x)
∫ ∞

N0

tnα−n−γ̄ dt

t
= Nm(x).

Hence, for |x| = 1,

Jk1(x) + Jk3(x) ≤ Nm(x) ≤ N
m2(x)

(x1 · ... · xn)α
,

where the last inequality is due to xi ≤ x2−α
i ≤ x2

i /(x1 · ... · xn)α (remember α > 1).

Finally, we show how to estimate Jk2. It suffices to consider k = n. In the same way as above,
for |x| = 1, xn ≤ 1/N0, and 1 ≤ t ≤ N0, it holds that txn ≤ 1 and we get from (6.12) that

Jn2(x) ≤ Nm(x) ≤ N
m2(x)

(x1 · ... · xn)α
.

On the other hand, if |x| = 1 and xn ≥ 1/N0, by (6.11) and by the induction hypothesis,

Jn2(x) ≤ NΦn−1(x̄) ≤ N
m2(x)

(x1 · ... · xn)α
.

Thus, Ψk’s indeed satisfy estimate (6.2). The same holds for their sum Ψ := Ψ1 + ... + Ψn and
for a smaller function∫ ∞

0
tnα−2u(tx)

dt

t
=

∫ ∞

0
tnα−2

( ∫
Q

g(tx, y)hn,α(y)IΓ(y) dy
) dt

t

=
∫ ∞

0
tn(α−1)

( ∫
Q

g(x, t−1y)hn,α(y)IΓ(y) dy
) dt

t

=
∫ ∞

0
tnα

( ∫
Q

g(x, y)hn,α(ty)IΓ(ty) dy
) dt

t

=
∫

Q
g(x, y)hn,α(y)

( ∫ ∞

0
IΓ(ty)

dt

t

)
dy.

Upon noticing that the last integral with respect to t will become smaller if we replace Γ with
a smaller set Q ∩ {y : 2n < |y| < 3n} and with such a replacement the integral is independent
of y, we conclude that Φ satisfies (6.2). The theorem is proved.
Remark 6.4. If n = 2, we have

ᾱ(2, β) = 1 + γ̄(2, β)/2 = 1 + π/(4 arccos t0),

where t20 = (1−β)/2. It turns out that, for n = 2, the restriction α ∈ (1, ᾱ(2, β)) is sharp as long
as the existence of Φ is concerned. One can prove this by finding g(x, y) explicitly by means of
changing coordinates and using complex variables. It is also worth noting that γ̄(2, β) ↓ 1 and
ᾱ(2, β) ↓ 3/2 as β ↑ 1.

Generally, we have
inf

β∈[0,1)
ᾱ(n, β) = 1 + 1/n ∀n = 2, 3, ... .
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Indeed, if we had ᾱ(n, β) > 1 + (1 + ε)/n for all β ∈ [0, 1) with a constant ε > 0, then Lemma
4.5 and Theorem 3.1 would hold for q = np and d− 1+ p > θ ≥ d− 1+ p− (1+ ε)/n. But then,
estimate (3.6) would hold with n = m and χ = ε/n for the function u from in Example 3.4 and
this is impossible by Remark 3.5.
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