
E l e c t r o n i
c

J
o

u
r n a l

o
f

P
r

o b a b i l i t y

Vol. 4 (1999) Paper no. 8, pages 1–28.

Journal URL
http://www.math.washington.edu/~ejpecp/

Paper URL
http://www.math.washington.edu/~ejpecp/EjpVol4/paper8.abs.html

MODERATE DEVIATIONS FOR STABLE MARKOV CHAINS
AND REGRESSION MODELS

Julien WORMS
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Abstract: We prove moderate deviations principles for

1) unbounded additive functionals of the form Sn =
∑n

j=1 g(X
(p)
j−1), where (Xn)n∈N is a stable

R
d -valued functional autoregressive model of order p with white noise, and g is an R

q -valued
Lipschitz function of order (r, s);

2) the error of the least squares estimator (LSE) of the matrix θ in an R
d -valued regression

model Xn = θtφn−1 + εn, where (εn) is a “generalized Gaussian” noise.

We apply these results to study the error of the LSE for a stable R
d -valued linear autoregressive

model of order p.
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1 Introduction

• This work is composed of two parts. In the first one we obtain Chernov-type upper bounds
and a moderate deviations principle (shortened to MDP) for unbounded continuous additive
functionals of a specific class of Markov chains appearing mostly in statistics, namely for
stable autoregressive models of order p ≥ 1 with white noise (results are introduced and
stated in Section 2, the proofs are performed in Section 4).

Let (Xj)j>−p be such an R
d -valued stable model, and denote by µ the unique invariant

probability measure of the model (Xj−p+1, ...,Xj−1,Xj)j≥0; let g : Rdp → R
q be a continuous

function (with a growth rate related to moments assumptions on the noise), and let

Sn =
n−1∑
j=0

{ g(Xj−p+1, . . . ,Xj−1,Xj) −
∫
g dµ }.

Proposition 1 states the exponential convergence in probability of Sn/n to 0. In Theorem 2
we achieve, for any given speed (an) ↑ ∞ such that an = o(n), a large deviations principle
(LDP) for the sequence ((S[nt]/

√
nan)0≤t≤1)n∈N, in the space of càd-làg functions from [0, 1]

to R
q . In Section 2.1 we give references of works in which such MDP are achieved for a large

class of Markovian models, but always with the assumption that the function g is bounded.

• In the second part of this paper we provide a criteria of obtaining a MDP for the error of
the least squares estimator (LSE) in multidimensional linear regression models (Theorem
3). In particular we deal with stable linear autoregressive models (Theorem 4), with noises
which are not necessarily white but are assumed to be “generalized Gaussian” (white Gaussian
distributed noises and bounded noises satisfy this condition). Moreover (for the autoregressive
case), an exponential rate of convergence in probability of the empirical covariance is obtained.

For such prediction errors, the only LDP the author is aware of concerns stable, unidimen-
sional, linear, and first order autoregressive models with Gaussian white noise: it is ob-
tained in [BerGamRou96], which uses results of [BrySmo93] and [BryDem95]. The proofs
in [BerGamRou96] rely strongly on spectral theoretic arguments, and problems had to be
solved concerning the steep property of the moment generating function of interest. It does
not look very clear whether or not such a LDP can be extended to vector valued models of
order greater than 1, and therefore the moderate deviations results obtained in Section 3 can
be viewed as a reasonable compromise in this framework.

Notations:

∗ In this paper, the letter C denotes a generic positive constant whose exact value is unimpor-
tant. A vector x ∈ R

d will often be assimilated with the column matrix (x1, . . . , xd)t, and
a vector u ∈ R

dp to (ut
1, . . . , u

t
p)t (where each ui is in R

d). If (xn) is a sequence in R
d , and

p ∈ N
∗ , then x(p)

n denotes the element (xt
n, x

t
n−1, . . . , x

t
n−p+1)

t of Rdp .

∗ On a probability space (Ω,A,P) equipped with a filtration F = (Fn), a d-dimensionnal noise
is an adapted sequence (εn) of R

d -valued random vectors such that E [εn| Fn−1] = 0. The
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noise is said to be white when (εn) is an independent identically distributed (i.i.d.) sequence
such that εn is independent of Fn−1. Unlike those in Section 3, noises in Section 2 are always
assumed to be white. Generalized Gaussian noises will be considered and defined in Section
3.

∗ In the sequel, a speed is a sequence v = (vn) ↑ ∞ of positive numbers. If E is a Polish space
provided with its Borel sigma field E , a rate function is a lower semi-continuous function
I : E 7→ [0,∞] with compact level sets {x; I(x) ≤ α} (we note I(Γ) = infx∈Γ I(x), ∀Γ ⊂ E).

A sequence (Zn) of E-valued random variables is said to satisfy a large deviation principle
(shortened as LDP) with speed (vn) and rate I if

lim inf
n→∞

1
vn

log P[Zn ∈ U ] ≥ −I(U) for every open subset U ⊂ E , (1)

lim sup
n→∞

1
vn

log P[Zn ∈ F ] ≤ −I(F ) for every closed subset F ⊂ E . (2)

We say that (Zn) satisfies an upper-LDP if only (2) is satisfied. As we will often deal with
only one speed, n, we set the following notation, which is used in both Sections 2 and 3: for
any sequence (An) ⊂ E ,

P[An]
ld
< 0 means lim sup 1

n log P[An] < 0.

Remark 1: Frequently, assumptions in this paper will be of this form:

lim
1
an

log P [An ] = −∞,

where (vn) and (an) are speeds such that an = o(vn), and (An) is a sequence of events. It may be
worth noting beforehand that such a relation is obviously implied by the following stronger one

lim sup
1
vn

log P [An ] < 0.

2 Statement of the results for stable Markov chains

2.1 Introduction

a) Empirical measures of Markov chains

Before stating our results, let us have a look at previous related works. Let E be some Polish
state space, provided with its Borel sigma field E , and P(E) denote the set of probability measures
on (E, E). Let (Xn) be a time-homogeneous discrete-time Markov chain with state space E and
Fellerian transition kernel π. We say that the chain (Xn) is stable if there exists an unique π-
invariant probability measure µ such that, for any initial distribution and almost every path, the
sequence of the occupation measures

Λn =
1
n

n−1∑
i=0

δXi

converges weakly to µ. When π is strongly Fellerian, this property implies recurrence, but in the
general case it does not imply irreducibility (see [MeyTwe], [Duf], or [Bor91] for details on stability).
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Under various assumptions which almost always include the irreducibility of the chain, LDP
have been proved for the sequence (Λn) (see, among other references, [DonVar75a], [DonVar75b],
[DonVar76], [Aco90], [DinNey95], [Lip96], [Jai90], [BryDem96], [Ell88]), but stability and the Feller
property are sufficient conditions for the sole upper LDP. In this section we are concerned with
large and moderate deviations results for empirical means of the type

Λn(g) =
1
n

n−1∑
i=0

g(Xi)

where g is an R
q -valued function on E. Using the results cited above, one may achieve the LDP

for (Λn(g)) if g is a bounded but not necessarily continuous function; a reference for the case of
continuous and unbounded g is [GulLipLot94]. On the other hand, under various weaker conditions,
CLT of the following form are proved√

n(Λn(g) − µ(g)) −→ N (
0, S2(g)

)
in distribution,

(where S2(g) is some q×q covariance matrix related to g). Given a speed (an) such that an = o(n),
it is natural to associate to this CLT a LDP of speed (an) and rate I(x) = 1

2x
t(S2(g))−1x for the

sequence (
√
n/an(Λn(g) − µ(g))).

In this section we achieve this type of MDP for a class of unbounded continuous functions g
and a particular type of Markov chain, and assumptions of stability of the chain. During the recent
years, several works have been devoted to the study of moderate deviations principles related to
Markovian models, the main references being [Wu95], [Gao96], [Aco97], and [AcoChe98]: a large
class of models is covered by these works, but (with the exception of [Wu95]) the boundedness of
the function g is always assumed. See [Aco97] for a discussion on the various conditions proposed
in these references.

b) Functional autoregressive models and Sanov theorem

In Section 2.2, where our results are stated, we study stable functional autoregressive models
of order p ≥ 1, but in this introductory paragraph, we consider the model of order 1 defined by

Xn+1 = f(Xn) + σ(Xn)εn+1, (3)

with f : Rd → R
d , σ : Rd →]0,+∞[ and the noise (εn) satisfying the following assumptions

(H)




∗ f is continuous,

∗ for some ρ > 0 and every x, we have 1/ρ < σ(x) < ρ,

∗ (εn) is i.i.d. and satisfies for some τ > 0, E [ exp τ‖ε‖ ] <∞,

∗ the noise is independent of the initial state X0;

as well as the property, for some norm |.| on R
d ,

lim sup
|x|→∞

|f(x)|
|x| < α < 1. (4)

The transition π is such that π(x, ·) is the distribution of f(x) + σ(x)ε, and, if ν is the initial
distribution and g : Rd → R is measurable, we will denote by Λn,ν the occupation measure defined
in the previous paragraph, and set Λn,ν(g) =

∫
g dΛn,ν .
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It is known that the stability of this model is achieved under one of the following two commonly
encountered assumptions (see [Duf]):

- case (i) irreducibility of the transition kernel ;
- case (ii) a Lipschitz condition (which implies (4)):

∃ 0 < α < 1 such that |f(x) − f(y)| + E(|ε|)|σ(x) − σ(y)| ≤ α|x− y| (∀x, y ∈ R
d ).

With property (4), the results from [DupEll], chapter 8, p.299, which are very close to those of
Donsker and Varadhan, apply (indeed, the “exponential tightness” Condition 8.2.2 p.280 is satisfied;
cf lemma 1 part 1 in paragraph 4.2.1). The following upper LDP for (Λn,ν) is thus valid.

Theorem 1 (Donsker-Varadhan, Dupuis-Ellis)
In one of the two cases stated above, and with assumptions (H) and (4), the Markov chain defined by
(3) is stable. If µ denotes its unique invariant probability measure, and if we set, for any ξ ∈ P(Rd ),

I(ξ) = inf
{∫

R( q(x, ·) | π(x, ·) ) dξ(x) ; q transition probability kernel s.t. ξq = ξ

}
where R(.|.) denotes the usual relative entropy between two probability measures, then

1. I is a good rate function and I(ξ) = 0 ⇔ ξ = µ.

2. For any family Φ of initial distributions such that supν∈Φ

∫
e|x|dν(x) < ∞, the sequence

(Λn,ν) satisfies an upper-LDP of speed (n) and rate I, uniformly for ν ∈ Φ.

Consequently, for any bounded continuous g : Rd → R
q , we have

lim sup
1
n

log sup
ν∈Φ

P [ ‖Λn,ν(g) − µ(g)‖ > r ] < 0. (5)

2.2 Statement of the results

2.2.1 Convergence with exponential speed

Relation (5) is this “convergence in probability with exponential speed” of Λn,ν(g) to µ(g) we
generalize for some unbounded g and the following functional autoregressive model of order p

Xn+1 = f(X(p)
n ) + σ(X(p)

n )εn+1 (6)

in the following framework: functions f : Rdp → R
d and σ : Rdp →]0,+∞[ satisfy assumption (H)

above, as well as one of the following two conditions, with α1, . . . , αp being ≥ 0 and such that
0 < α1 + . . . + αp < 1:
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Case (i) the noise’s distribution has a strictly positive density w.r.t. the Lebesgue
measure (irreducibility), and f satisfies for some norm |.| on R

d , c ≥ 0, and
any x ∈ R

dp :

|f(x)| ≤ α1|x1|+. . .+αp|xp|+c. (R)

Case (ii) (Lipschitz model ) for some norm |.| on R
d , f and σ satisfy the following

relation for β ≥ 1 and any x, y ∈ R
dp

|f(x)−f(y)|+E(|ε|β )1/β |σ(x)−σ(y)| ≤ α1|x1−y1|+. . .+αp|xp−yp|. (L)

This assumption provides the existence of a norm ‖|.‖| on R
dp such that,

if X(p)x
n denotes the vector X(p)

n for the initial state x, we have for any
x, y ∈ R

dp

E [ ‖|X(p)x
n −X(p)y

n ‖|β ]1/β ≤ cp α
n‖|x− y‖| (7)

where 0 < α < 1 and cp > 0 is a constant. The proof that (L) implies (7)
is given in Section 4.1.

If ν denotes the distribution of X(p)
0 , we will denote by (X(p)

n,ν) the corresponding Markov chain.
Under one of these two sets of conditions, this Markov chain is stable because (R) ensures the a.s.
tightness of (Λn), whereas the uniqueness of limit points is given by the irreductibility of (i) or by
(L) (see e.g. [BenMetPri], [Duf], and [Bor91] for more details): hence Theorem 1 applies to this
model.

With ‖.‖ denoting the Euclidean norm on R
dp and R

q , |.| the norm on R
d for which f satisfies

(R) or (L), and β in (8) matching with β in (L), we achieve the following result (proved in Sections
4.1 and 4.2).

Proposition 1 (“exponential convergence in probability”)
In one of these two frameworks, assume that τ > 0, β > 1, and a family Φ ⊂ P(Rdp) are such that

E

[
exp(τ |ε|β)

]
<∞ and E(Φ) := sup

ν∈Φ

∫
exp(τ‖x‖β) dν(x) <∞. (8)

Let β′ ∈ [1, β[. The following properties hold.

1)

lim sup
R→+∞

lim sup
n→∞

1
n

log sup
ν∈Φ

P


 1
n

n−1∑
j=0

(1 + ‖X(p)
j,ν ‖β′

) I{‖X(p)
j,ν‖β′≥R} > r


 = −∞ (∀r > 0). (9)

2) If g : Rdp → R
q is a continuous function satisfying

lim sup
‖x‖→∞

‖g(x)‖
‖x‖β′ <∞,

then (5) holds, i.e. Λn,ν(g) = 1
n

∑n−1
j=0 g(X

(p)
j,ν ) converges to µ(g) with exponential speed,

uniformly for ν ∈ Φ.
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3) For any speed (an) such that an = o(n),

lim sup
R→+∞

lim sup
n→∞

1
an

log sup
ν∈Φ

P

[
1√
nan

sup
k≤n

‖X(p)
k,ν‖β ≥ R

]
= −∞. (10)

For instance Φ can be taken as a set of deterministic initial states located in a compact subset of
R

dp .

2.2.2 Moderate deviation principle

If (Xn) is a Markov chain with transition π and invariant distribution µ, and g is a µ-integrable
function such that the Poisson equation

g − µ(g) = G− π(G)

admits a solution G, then the sequence

Mn =
n∑

j=1

(G(Xj) − πG(Xj−1)) = Λn(g) − µ(g) +G(X0) −G(Xn)

defines a martingale such that, when G is µ-square-integrable,
1
n
< M >n

n→∞−→ S2(g) =
∫

(GGt − (πG)(πG)t) dµ a.s.

Hence a CLT is at hand, as well as a MDP for (
√
n(Λn(g) − µ(g))) as soon as G is bounded (as in

[Gao96]) and applying Dembo’s result in [Dem96].

Let (Xn) denote the autoregressive model defined in 2.2.1 in the Lipschitz model framework
(ii). We adapt the method outlined above to achieve this MDP, for a function g : Rdp → R

q in the
set Li(r, s) of Lipschitz of order (r, s) functions (with s > 0 and r ≥ 0), i.e. that satisfies (where
‖.‖ denotes at the same time the Euclidean norm on R

dp and on R
q )

‖g(x) − g(y)‖ ≤ C‖x− y‖s(‖x‖r + ‖y‖r + 1).

Indeed, under the “Lipschitz mixing property” (7) and some assumptions (which are largely satisfied
in our framework) on r, s, and the moments of the noise, it is proved in [BenMetPri] (part II, chapter
2) or in [Duf] (chapter 6) that the Poisson equation admits a solution G which is also in Li(r, s).

Let D1(Rq ) denote the set of càd-làg functions from [0, 1] to R
q , provided with the usual Sko-

rohod topology. We achieve the following MDP, which proof relies mainly on Puhalskii’s criterion
developped in [Puh94] and is achieved in Section 4.3 (and 4.1).

Theorem 2 Let (Xn) denote the functional autoregressive model (6) satisfying the Lipschitz con-
dition (L) above and the assumptions of Proposition 1, for some β > 2.
Let g ∈ Li(r, s). If 1 ≤ r + s < β/2, then, for any given speed (an) such that an = o(n), the
sequence (

√
n
an

(Λn(g) − µ(g)))n∈N satisfies in R
q a LDP with speed (an) and rate

I(u) = sup
θ∈Rq

{
< θ, u > −1

2
θtS2(g)θ

}
where S2(g) =

∫
(GGt − (πG)(πG)t) dµ.
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Moreover the sequence of processes ((X̃(n)
t )0≤t≤1)n defined by

X̃
(n)
t :=

1√
nan

[nt]∑
j=1

(g(X(p)
j−1) − µ(g)),

satisfies in D1(Rq ) a LDP with speed (an) and the associated functional rate defined by

J(ψ) =



∫ 1
0 I(

•
ψ (t))dt if ψ(0) = 0 and ψ is absolutely continous,

∞ otherwise.
(11)

Remark 2: If S2(g) is invertible, then I(u) = 1
2u

t(S2(g))−1u; if not, we have

I(u) =




1
2u

tS2(g)−u if u ⊥ Ker(S2(g)),

∞ otherwise,

where S2(g)− is the “generalized inverse” of S2(g).

3 Statement of the results on least squares estimation

3.1 Preliminary definitions

• Generalized Gaussian noise: in this section, MDP are achieved under the assumption
that the noises (εn) handled are generalized Gaussian, dominated by a centered Gaussian
distribution of covariance L, i.e such that there exists a d× d covariance matrix L satisfying,
∀θ ∈ R

d , n ∈ N,
E [ exp < θ, εn > | Fn−1 ] ≤ exp

(
1
2θ

tLθ
)
.

Examples of generalized Gaussian noises are centered bounded noises, and white centered
noises with a Laplace transform φ(θ) finite for every θ ∈ R

d and such that

lim sup
‖θ‖→∞

log φ(θ)/‖θ‖2 <∞.

See [Pet] lemma 2.5. Moreover, to achieve not only the upper MDP but the full MDP, we
will be led to assume that the generalized Gaussian noises satisfy the following property:

Property (PΓ): for some convex functions ψ+ and ψ−, of class C3 in
a neighbourhood of 0 ∈ R

d , we have

log E [ exp < u, εn > | Fn−1 ] ≤ ψ+(u) (12)
log E [ exp < u, εn > | Fn−1 ] ≥ ψ−(u) (13)

with ψ±(0) = 0, ∇ψ±(0) = 0, and D2ψ±(0) = Γ, and Γ being some
symmetric positive definite invertible d× d matrix.

Property (PΓ) implies E [ εnεtn| Fn−1 ] = Γ for every n ≥ 1. Any white noise with a Laplace
transform φ(θ) = E [ exp <θ, εn>] defined in a neighbourhood of 0 satisfies (PΓ) with ψ+ =
ψ− = log φ. Any bounded noise such that E [ εnεtn| Fn−1 ] = Γ also satisfies (PΓ).
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• Algebraic notations (borrowed from [HorJoh])
Let Mδ,d design the space of δ× d matrices. Any θ ∈ Mδ,d can be associated to the following
element of Rδd

vec θ = (θ11, . . . , θδ1, θ12, . . . , θδd)t.

The map vec is one to one from Mδ,d to R
δd , and we denote by mat : Rδd → Mδ,d its inverse.

If C ∈ Mδ,δ and L ∈ Md,d, we define the Kronecker product of C and L as the δd×δd matrix
C ⊗ L such that

(C ⊗ L)d(i−1)+j,d(I−1)+J = CiILjJ (∀1 ≤ i, I ≤ δ, ∀1 ≤ j, J ≤ d)

i.e. ξt.C ⊗ L.ξ =
∑δ

i,I=1

∑d
j,J=1(mat ξ)ij(mat ξ)IJCiILjJ for every ξ ∈ R

δd . If δ = 1 then C

is a real number and C⊗L = CL, and if C and L are invertible then (C⊗L)−1 = C−1⊗L−1.

3.2 MDP for least-squares estimators

3.2.1 General linear regression models

We first deal with the d-dimensional regression model (Xn) defined on the space (Ω,A,P) provided
with a filtration (Fn), by

Xn = θtφn−1 + εn (14)

where θ is the δ× d matrix to be estimated, (φn) is the R
δ -valued sequence of explicative variables,

and (εn) is an R
d -valued noise. We use the natural filtration (Fn) = (σ{φk, εk}k≤n). The error θ̃n

of the least squares estimator θ̂n of θ is

θ̃n = θ̂n − θ = Q−1
n

(
n∑

k=1

φk−1X
t
k

)
− θ = −Q−1

n θ +Q−1
n Mn,

where Cn =
∑n

k=1 φk−1φ
t
k−1, Qn = Cn + Id, and Mn =

∑n
k=1 φk−1ε

t
k. The sequences (Cn) and

(Qn) are both previsible ones. In Theorem 3 below, the results are stated for the vector sequence
(vec θ̃n) in order to avoid any confusion with handling MDPs in spaces such as Mδ,d.

Let (vn) and (an) be speed sequences such that an = o(vn). The assumptions on the noise and
the explicative variables are the following.

(N1) the noise (εn) is generalized Gaussian, dominated by a
Gaussian distribution of invertible covariance L.

(N2) the noise (εn) satisfies property (PΓ) (defined in Section 3.1).
(C1) there exists some invertible C ∈ Mδ,δ such that, for every r > 0,

lim
1
an

log P
[ ∥∥∥∥Cn

vn
− C

∥∥∥∥ > r

]
= −∞.

(C2) (φn) satisfies the exponential Lindeberg condition: ∀r > 0, ∀ρ > 0,

lim
1
an

log P


 1
vn

n∑
j=1

‖φj−1‖2
I{‖φj−1‖>r

√
vn/an} > ρ


 = −∞.

The following theorem relies on a moderate deviations result for regressive sequences such as (Mn)
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above, which proof may be found in [Wor98a] (see also [Wor98b]) and is based on the method of
cumulants developped in [Puh94] by Puhalskii. The proof is performed in Section 5.

Theorem 3 Let θ̃n = θ̂n − θ denote the error of the least squares estimator of θ in the regression
model defined by (14), and (an) be a speed satisfying an = o(vn).

a) Under (N1) and (C1), (
√

vn
an
vec θ̃n)n∈N satisfies in R

δd an upper-LDP of speed (an) and rate

JC,L(ξ) =
1
2
ξtC ⊗ L−1ξ (∀ξ ∈ R

δd ). (15)

b) In addition, if the noise is white with distribution N (0,Γ), or if (N2) and (C2) are also
valid, then (

√
vn
an
vec θ̃n)n∈N satisfies a LDP of speed (an) and rate

JC,Γ(ξ) =
1
2
ξtC ⊗ Γ−1ξ (∀ξ ∈ R

δd). (16)

Corollary 1 The latter theorem applies with vn = n when (φn) is an i.i.d. square-integrable
sequence independent of the noise (εn), with previous assumptions on this noise.

Remark 3: It is straightforward to check that the following “exponential Lyapunov condition”
implies the “exponential Lindeberg condition” (C2):

there exist a β > 2 and a C > 0 such that lim sup 1
vn

log P
[

1
vn

∑n
j=1 ‖φj−1‖β > C

]
< 0.

Both conditions are naturally satisfied if (φj) is a bounded sequence.

3.2.2 Stable linear autoregressive models

Let (Xn) be the stable autoregressive model of order p (AR(p)) and dimension d defined by

Xn = A1Xn−1 +A2Xn−2 + . . .+ApXn−p + εn (I)

with an initial state X(p)
0 = (X0,X−1, . . . ,X−p+1) independent from the noise. By stable model we

mean that all roots of the polynomial z 7→ det(I − A1z − · · ·Apz
p) have their modulus > 1. For

the noise (εn), the assumptions may be of two types, with Γ below designing an invertible d × d
covariance matrix:

Case 1: (εn) is a white generalized Gaussian noise with covariance Γ, and for
some τ > 0,

E

[
exp(τ‖ε‖2)

]
<∞ and E

[
exp(τ‖X(p)

0 ‖2)
]
<∞.

Case 2: (εn) is a generalized Gaussian noise such that E [ εnεtn| Fn−1 ] = Γ (∀n ≥
1)
and for some β > 2, τ > 0, and E > 0,

sup
n

E

[
exp(τ‖εn‖β) | Fn−1

]
≤ E <∞ and E

[
exp(τ‖X(p)

0 ‖β)
]
<∞.

Moreover, we assume that for every r > 0

P

[ ∥∥∥ 1
n

∑n
j=1(εjε

t
j − Γ)

∥∥∥ > r
]

ld
< 0.
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The model (X(p)
n )n∈N is itself a stable AR(1) model

X(p)
n =



A1 A2 · · · Ap−1 Ap

Id 0 · · · 0 0

· · · · · · · · · · · · 0

0 0 · · · Id 0


X

(p)
n−1 +




εn

0
...

0


 = BtX

(p)
n−1 + ηn, (II)

and its “stationary covariance” is C =
∑∞

j=0B
jΓ̄(Bj)t, where Γ̄ =




Γ 0 . . . 0

0 0 . . . 0

. . . . . . . . . . . .

0 0 . . . 0


 .

Theorem 4 1. For every r > 0, we have

P

[ ∥∥∥∥∥ 1
n

n∑
k=1

X
(p)
k (X(p)

k )t − C

∥∥∥∥∥ ≥ r

]
ld
< 0.

Moreover, there exists R > 0 sufficiently large such that

P

[
1
n

n∑
k=1

‖X(p)
k ‖β > R

]
ld
< 0,

and, in case 1, for any r > 0,

lim sup
R→∞

lim sup
n→∞

1
n

log P

[
1
n

n∑
k=1

‖X(p)
k ‖2

I‖X(p)
k ‖>R

> r

]
< 0.

2. We assume that C is invertible (e.g. Ap is invertible). Let θ̃n = θ̂n − θ be the error of the
least squares estimator θ̂n of θ = [A1 A2 · · · Ap]t for the regression model (I)

Xn = [A1 A2 · · · Ap]X
(p)
n−1 + εn. (I)

For any given speed (an) such that an = o(n), the sequence (
√
vn/anvec θ̃n)n∈N satisfies in

R
dp×d an upper LDP with speed (an) and rate (15) (with δ = dp), and it obeys the full LDP

with rate (16) if in addition (εn) satisfies property (PΓ) (which is the case in case 1).

In order to establish Theorem 4, we shall prove the following result (which is a version of part 1 of
Theorem 4 when p = 1).

Proposition 2 Let A be a stable (i.e. of spectral radius < 1) d× d matrix, and (Xn) be the stable
AR(1) model defined by

Xn = AXn−1 + εn.

For the noise (εn) and the initial state X0, we take the assumptions of theorem 4 (case 1 or case
2). Then for every r > 0,

P
[ ∥∥ 1

n

∑n
k=1Xk(Xk)t −C

∥∥ ≥ r
] ld
< 0, (17)
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where C is the stationary covariance of the model, and there exists R > 0 sufficiently large such
that

P

[
1
n

∑n
k=1 ‖Xk‖β > R

] ld
< 0, (18)

and, in case 1, we have for every r > 0

lim supR→∞ lim supn→∞ 1
n log P

[
1
n

∑n
k=1 ‖Xk‖2

I‖Xk‖>R > r
]
< 0. (19)

If we apply this proposition to model (II), we achieve part 1 of Theorem 4, and then part 2 comes
easily by application of theorem 3 to the regression model (Xn) with explicative variables sequence
(X(p)

n ). We prove Proposition 2 ( and therefore Theorem 4) in Section 6.

The most simple framework in which Theorem 4 applies is when (εn) is a generalized Gaussian
white noise with covariance Γ (i.e. case 1). Another simple application is when (εn) is a bounded
martingale increment sequence with conditional covariance Γ.

4 Proof of proposition 1 and theorem 2

4.1 Restriction to the case p = 1

• We want to induce the general case p ≥ 1 from the case p = 1. Let us consider the following
associated autoregressive model (X(p)

n )n∈N of order 1,

X
(p)
n+1 = F (X(p)

n ) + σ(X(p)
n )ζn =




f(X(p)
n )

Xn

...

Xn−p+2


 + σ(X(p)

n )




εn+1

0
...

0


 ,

and construct a norm on R
dp for which F would satisfy the assumptions (either (i) or (ii)).

As in 2.2.1 (L) implies (R) and we only need relation (R) to prove Proposition 1, we will
deal with (R) first. We will then turn to Theorem 2, which applies only if the model is
“Lipschitz-mixing” (that is, in case (ii)), as it needs the existence of a solution (in Li(r, s))
of the Poisson equation associated to g, relying on relation (7).

• If |.| denotes the norm on R
d for which either (R) or (L) is satisfied, we adopt the notations

|x| = (|x1|, . . . , |xp|)t ∈ R
p for x ∈ R

dp , and for v and w vectors of Rp , we set v ≤ w ⇔ ∀i =
1, . . . , p, (w − v)i ≥ 0. We then have

|F (x)| ≤ C.|x| + η where C =




α1 α2 · · · αp−1 αp

1 0 · · · 0 0

0 1
...

...
. . .

...

0 0 · · · 1 0




and η =




c

0
...
...

0



.

As α1 + . . . αp < 1, it is known that C is an irreducible positive matrix to which the Perron
Froebenius theorem applies, i.e. the spectral radius ρ(C) of C is an eigenvalue of C and
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there exists an eigenvector v > 0 associated to λ = ρ(C) < 1. We can assume v1 = 1, and
consequently v = (1, λ−1, . . . , λ−p+1).
Hence, for x ∈ R

dp , if we set ‖|x‖| = supi=1...p λ
i−1|xi|, then |x| ≤ ‖|x‖|v hence C|x| ≤ λ‖|x‖|v

and we get

‖|F (x)‖| ≤ sup
i=1...p

(C.|x|)i
vi

+ c ≤ λ‖|x‖| + c.

As 0 < λ < 1, property (R) is valid for F instead of f . Therefore, for Proposition 1, we can
restrict the proof to the case p = 1.

• Now, we have to prove that (L) implies (7) (and consequently that Theorem 2 is proved for
p ≥ 1 if it is for p = 1). To the notations above, we add the following ones: if z ∈ R

p is ≥ 0 (i.e.
zi ≥ 0, ∀i), we set zβ = (zβ

1 , . . . , z
β
p )t. Hence, as (

∑p
i=1 αizi)β ≤ (

∑p
i=1 α1)β−1(

∑p
i=1 αiz

β
i )

and
∑p

i=1 αi < 1, we have (Cz)β ≤ Czβ for any z ≥ 0 in R
p . Thus, (L) implies

E [ |X(p)x
1 −X

(p)y
1 |β ] ≤ C|x− y|β (∀x, y ∈ R

dp),

and consequently for every n ≥ 1

E [ |X(p)x
n −X(p)y

n |β ] ≤ Cn|x− y|β (∀x, y ∈ R
dp).

For any z ≥ 0 in R
p , we have z ≤ v supi≤p λ

i−1zi, hence Cnz ≤ λn(supi≤p λ
i−1zi)v, and, with

z = |x− y|β and x, y ∈ R
dp ,

sup
i≤p

λi−1(Cn|x− y|β)i ≤ λn sup
i≤p

λi−1(|x− y|β)i ≤ λnλ(p−1)(1−β)‖|x− y‖|β .

Moreover,

E [ ‖|X(p)x
n −X(p)y

n ‖|β ] ≤ p sup
i≤p

(λi−1)βE [ |X(p)x
n −X(p)y

n |βi ] ≤ p sup
i≤p

λi−1(Cn|x− y|β)i,

hence (7) is proved with cp = pλ(p−1)(1−β).

4.2 Proof of proposition 1 (with p = 1)

It is straightforward to see that the results of Proposition 1 extend to q > 1 if they are proved for
q = 1. We will therefore assume that q = 1 in this proof. On the other hand, as we restricted the
proof to the case p = 1, we will use the norm |.| for which (R) or (L) holds as the norm on R

dp = R
d

(instead of the Euclidean norm appearing in each of the relations (8), (9), and (10)).
Finally, to lighten the notations, in this and later proofs, we will often omit the subscript ν in Xn,ν .

4.2.1 Proof of 1)

• First note that (L) implies relation (R) with c = |f(0)|. Hence, in either case, if we set
ηk = c+ |εk|, it comes

|Xn| ≤ αn|X0| +
n∑

k=1

αn−kηk.

13



Applying the Hölder inequality to the measure on {0, . . . , n} giving the weight αn−k to k,
and to the function ψ defined by ψ(0) = |X0| and ψ(k) = ηk, we get (as 0 < α < 1)

|Xn| ≤ (αn|X0|β +
n∑

k=1

αn−kηβ
k )1/β .

(
1 − αn+1

1 − α

)β−1
β

(1 − α)β−1|Xn|β ≤ αn|X0|β +
n∑

k=1

αn−kηβ
k ≤ |X0|β +

1
1 − α

sup
k≤n

ηβ
k . (20)

As for xj > 0,
∑n

k=1

∑k
j=1 α

k−jxj =
∑n

j=1(
∑n−j

i=1 α
i)xj ≤ 1

1−α

∑n
j=1 xj, (20) entails

(1 − α)β
n∑

k=1

|Xk|β ≤ |X0|β +
n∑

k=1

ηβ
k

hence, X0 being independent from (ηn), we have for λ = τ(1 − α)β

sup
ν∈Φ

E [ exp λ
n∑

k=1

|Xk,ν |β ] ≤ sup
ν∈Φ

E [ exp τ |X0,ν |β ].E [ exp τηβ ]n ≤ CenL

where L = log E [ exp τ |ε|β ]. Hence if R > 0

sup
ν∈Φ

P

[
1
n

∑n
k=1|Xk,ν |β ≥ R

]
= sup

ν∈Φ
P

[
expλ

∑n
k=1|Xk,ν|β ≥ expλRn

]
≤ Ce−λRn+nL

thus

lim sup
R→+∞

lim sup
n→∞

1
n

log sup
ν∈Φ

P

[
1
n

n∑
k=1

|Xk,ν |β ≥ R

]
≤ lim

R→+∞
−λR+ L = −∞. (21)

• Let τ ′ > 0. In [DonVar76], [GulLipLot94], and other papers related to Sanov theorem for
Markov chains (see 2.1.1), the following functions are introduced (with π(x, dy) denoting the
transition probability of the Markovian model (Xn), and |.| the norm for which (R) holds)

u(x) = τ ′|x|β, V (x) = u(x) − log
∫
eu(y) π(x, dy).

We state the following lemma, part 2 of which will also prove useful in Section 4.3.2.

Lemma 1 1. For some real positive constants V ∗ and τ ′′ (with 0 < τ ′′ < τ ′)

V (x) ≤ τ ′|x|β and τ ′′|x|β ≤ V (x) + V ∗ (∀x ∈ R
d).

2. We have supν∈Φ supn E [ exp
∑n−1

i=0 V (Xi,ν) ] ≤ E(Φ) := supν∈Φ

∫
eτ |x|β dν(x), and, for

any γ ∈ [1, β[, any speed (vn), and every R ≥ 1, r > 0,

sup
ν∈Φ

P

[
1
vn

n−1∑
i=0

(1 + |Xi,ν |γ) I{|Xi,ν|γ>R} > r

]
≤ E(Φ) exp

(
−rvn

τ ′′

2
R(β−γ)/γ + nV ∗

)
.

(22)

With vn = n and γ = β′, (22) implies (9): that ends the proof of part 1 of Proposition 1.
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• Proof of lemma 1: a) Proof of 1. Jensen’s inequality entails the first assertion. For the second
one, as β ≥ 1 and (a+ b)β ≤ λ1−βaβ + (1 − λ)1−βbβ for any λ ∈]0, 1[ and a, b ∈ R

+ , it comes

V (x) = τ ′|x|β − log E [ exp τ ′|f(x) + σ(x)ε|β ] ≥ τ ′|x|β(1 − λ1−βαβ) − V ∗

with V ∗ = C + log E [ exp τ |ε|β ] > 0 and τ ′ = (1 − λ)β−1ρ−βτ . Therefore, taking λ =(
α+1

2

)β/(β−1) and τ ′′ = τ ′(1 − λ1−βαβ), the second inequality of part 1 comes.
b) Proof of 2. The first assertion is easy to check (by the definition of V ), and, as 1 ≤ γ < β
and R ≥ 1, we have for every x ∈ R

d

(1 + |x|γ)I{|x|γ≥R} ≤ 2|x|β
(
R1/γ

)γ−β ≤ 2
τ ′′

(V (x) + V ∗)R(γ−β)/γ

hence for every r > 0

P

[
1
vn

∑n−1
i=0 (1 + |Xi,ν |γ) I{|Xi,ν|γ>R} > r

]
≤ P

[∑n−1
i=0 V (Xi,ν) > rvn

τ ′′
2 R

(β−γ)/γ − nV ∗
]
.

4.2.2 Proof of 2)

It comes easily from relation (9) and from Sanov-type results such as Theorem 1 (part 3) stated in
the introduction. Indeed, by the assumption on g, there exists some constant A > 0 such that

|g(x)| ≤ A(1 + |x|β′
) (∀x ∈ R

d ).

For every R > 0, we define the following real valued bounded continuous function g(R) on R
d

g(R)(x) =




g(x) if |g(x)| ≤ R,

R if g(x) ≥ R,

−R if g(x) ≤ −R.
We have |(g − g(R))(x)| ≤ |g(x)| I{|g(x)|≥R}

R→∞−→ 0 (∀x). Hence, for any given r > 0, if R > 0 is
taken sufficiently large such that |µ(g − g(R))| < r

3 , we have

P [ |Λn,ν(g) − µ(g)| ≥ r ] ≤ P [ |Λn,ν(g − g(R))| ≥ r
3 ] + P [ |Λn,ν(g(R)) − µ(g(R))| ≥ r

3 ]

≤ P

[
1
n

∑n−1
i=0 (1 + |Xi,ν |β′

)I{|Xi,ν|β′> R
A
−1} >

r
3A

]
+ P [ |Λn,ν(g(R)) − µ(g(R))| ≥ r

3 ]

and thus, by (9) and by (5) applied to g(R), proof of part 2 is completed.

Remark 4: On the basis of the upper LDP stated in Theorem 1 and of relation (9), we could easily
follow the approach of [GulLipLot94] and establish an upper LDP for the sequence (Λn(g)), using
Lemma 2.1.4 of [DeuStr].

4.2.3 Proof of 3)

Let (an) be such that an = o(n). By relation (20) and easy calculations on the initial state, we see
that (10) will result from the following statement, which we prove in this paragraph: if R > 0,

lim sup
1
an

log P

[
1√
nan

sup
k≤n

|ηk| > R

]
≤ −R2

8c2
, (23)

where c2 denotes the variance of the white noise (ηk).
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Let Y (n)
t =

∑[nt]
j=1 ηj. It is known that the sequence

(
1√
nan

(Y (n)
t − ntE(η))

)
satisfies in D1(R) the

LDP of speed (an) and rate function

J(φ) =
∫ 1

0
(
•
φ(t))2/2c2 dt if φ ∈ D1(R) is absolutely continuous and φ(0) = 0,

and J(φ) = ∞ otherwise. Moreover, it is shown in [DesPic79] that

J
({
φ ∈ D1(R); φ(0) = 0 and sup0≤t≤1φ(t) > R

})
= inf

0<t≤1

{
t
(R/t)2

2c2

}
=
R2

2c2
.

Consequently, as
(

1√
nan

(ntE(η) − Y
(n)
t )

)
satisfies the same LDP, we obtain

lim
n→∞

1
an

log P
[

1√
nan

sup
0≤t≤1

|Y (n)
t − ntE(η)| > R

]
= −R2

2c2
.

Hence, (23) comes as we have

sup
k≤n

|ηk| = sup
0≤t≤1

|Y (n)
t − Y

(n)
t− | ≤ 2 sup

0≤t≤1
|Y (n)

t − ntE(η)|.

4.3 Proof of theorem 2 (with p = 1)

4.3.1 Preliminary calculations

• Let g ∈ Li(r, s) with r, s being such that 1 ≤ r+ s < β
2 . Thanks to property (7), there exists

a solution G to the Poisson equation associated to g, with G ∈ Li(r, s) as well. Thus, with
‖.‖ designing the Euclidean norm on R

q , there exist some positive constants A and A′ such
that

‖G(x)‖ ≤ A|x|r+s +A′ (∀x ∈ R
d ).

For every R > 0, we denote by GR the following functional

GR(x) = G(x)I{‖G(x)‖≤R} hence (G−GR)(x) = G(x)I{‖G(x)‖>R}.

• We now prove the following relation: there exists some constant C > 0 such that
1
C ‖π(G−GR)(x)‖ ≤ (1 + |x|r+s) I{|x|r+s>R′} + δR (24)

where δR and R′ = R′(R,G) are real numbers such that


 δR → 0

R′ → +∞
when R→ +∞.

We set γ = r+s and S(R,x) := { ‖G(f(x)+σ(x)ε)‖ > R } (for R > 0 and x ∈ R
d). As γ ≥ 1,

(a + b + c)γ ≤ 3γ−1(aγ + bγ + cγ) (∀a, b, c ∈ R+); hence, for R such that R−A′
(3α)γA > |f(0)|γ , if

we set
R′ = R′(R, γ,G) = R−A′

A3γ (max{a, ρ})−γ ,
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it comes IS(R,x) ≤ I{|x|γ>R′} + I{|ε|γ>R′}. Consequently,

‖π(G −GR)(x)‖ = E

[ ‖G(f(x) + σ(x)ε)‖ IS(R,x)

] ≤ E

[
(A|f(x) + σ(x)ε|γ +A′)IS(R,x)

]
≤ E

[
(A3γ−1(αγ |x|γ + |f(0)|γ + ργ |ε|γ) +A′)IS(R,x)

]
≤ C1(|x|γ + 1) I{|x|γ>R′} + C2(|x|γ + 1)P[|ε|γ > R′] + C3 E

[|ε|γI{|ε|γ>R′}
]

where C1 , C2, C3 are positive constants independent from R and x. As we have

(|x|γ + 1)P [ |ε|γ > R′ ] ≤ (|x|γ + 1)I{|x|γ>R′} + (R′ + 1)E [ exp τ |ε|γ ] exp(−τR′),

the desired result comes with C = max{C1 + C2, C3} and

δR = (R′ + 1)E [ exp τ |ε|γ ] exp(−τc−γ
1 R′) + E

[ |ε|γI{|ε|γ>R′}
] R→+∞−→ 0.

• Associated to (9), relation (24) implies the following property

lim sup
R→+∞

lim sup
n→∞

1
n

log sup
ν∈Φ

P


 1
n

n∑
j=1

‖π(G −GR)(Xj−1,ν)| > r


 = −∞ (∀r > 0), (25)

and the same is obviously true replacing the functional π(G−GR) by (G −GR). Moreover,
as G ∈ Li(r, s), the functions

(G−GR)(G −GR)t, π(G−GR)(G−GR)t, and (π(G−GR))(π(G −GR))t

are all Lipschitz of order (r, 2s+ r): as 2(r+ s) < β, it is therefore easy to check that we also
achieved

lim sup
R→+∞

lim sup
n→∞

1
n

log sup
ν∈Φ

P


 1
n

n∑
j=1

‖π[(G −GR)(G−GR)t](Xj−1,ν)‖ > r


 = −∞ (∀r > 0),

(26)
as well as the corresponding relations with (G−GR)(G−GR)t or (π(G−GR))(π(G−GR))t

instead of π(G−GR)(G−GR)t. All these properties will prove useful in the next paragraph,
and we will refer to all of them simply by “relation (25)” or “lation (26)”ote that these
relations remain true if we remove “lim sup

R→+∞
” and replace R by R(n), where R(n) stands for

any sequence such that R(n) ↑ ∞.

4.3.2 Proof of the MDP

• We set H = π(GGt) − (πG)(πG)t ∈ Li(r, 2s + r) and

Mn =
n∑

j=1

G(Xj) − πG(Xj−1), hence < M >n=
n∑

j=1

H(Xj−1).

As 2(r+s) < β, Proposition 1 part 2 applies to H instead of g: consequently, as µ(H) = S2(g),
we obtain

P

[ ∥∥∥∥< M >n

n
− S2(g)

∥∥∥∥ > r

]
ld
< 0 (∀r > 0),
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and thanks to Lemma 4 from [Dem96], this implies

P

[
sup
t≤1

∥∥∥∥< M >[nt]

n
− tS2(g)

∥∥∥∥ > r

]
ld
< 0 (∀r > 0). (27)

• Let (an) ↑ ∞ be a speed such that an = o(n). We introduce the sequences

N
(n)
k =

k∑
j=1

GR(n)(Xj) − πGR(n)(Xj−1) et P
(n)
k = Mk −N

(n)
k ,

where R(n) =
(

n
an

)δ
and δ ∈]0, 1

2 [ to be specified later on.

In order to achieve the required LDP for the sequence (X̃(n)
• ) introduced in the statement of

the theorem, the first step is to prove the so-called C-exponential contiguity (see [LipPuh] for
details on this subject, or [Puh97]) in D1(Rq ) between the sequences (X̃(n)

• ) and (M[n•]/
√
nan),

and between the latter and (N (n)
[n•]/

√
nan).

• For any r > 0, we have

P

[
supt≤1 | 1√

nan
(
∑[nt]

j=1(g(Xj−1) − µ(g)) −M[nt])‖ > r
]

= P

[
supt≤1 ‖G(X0) −G(X[nt])‖ > r

√
nan

]
≤ P

[
|X0|r+s > r

2A

√
nan − A′

A

]
+ P

[
supk≤n |Xk|r+s > r

2A

√
nan − A′

A

]
≤ E(Φ) exp(−τ( r

2A

√
nan − A′

A )) + P

[
supk≤n |Xk|r+s > r

2A

√
nan − A′

A

]
.

But r + s < β, hence (10) implies that, for every r > 0,

lim supn→∞
1
an

log P
[

1√
nan

supk≤n |ηk|r+s > r
]

= −∞,

and consequently, as
√
n/an

n→∞−→ + ∞, the first C-exponential contiguity is achieved:

lim sup
n→∞

1
an

log P
[

sup
t≤1

∥∥∥ 1√
nan

(∑[nt]
j=1(g(Xj−1) − µ(g)) −M[nt]

)∥∥∥ > r

]
= −∞ (∀r > 0).

(28)

• The second contiguity we have to prove is the following relation: for any r > 0,

lim sup
1
an

log P
[

sup
t≤1

∥∥∥M[nt] −N
(n)
[nt]

∥∥∥ > r
√
nan

]
= −∞. (29)

We have

sup
t≤1

∥∥∥M[nt] −N
(n)
[nt]

∥∥∥ = sup
k≤n

‖P (n)
k ‖ ≤

n∑
j=1

‖(G −GR(n))(Xj)‖ + ‖π(G −GR(n))(Xj−1)‖. (30)

If we apply part 2 of Lemma 1 to vn =
√
nan, γ = r+ s, and R = R(n) = (n/an)δ, we obtain

1
an

log P

[
1√
nan

n−1∑
i=0

(1 + |Xi,ν |r+s) I{|Xi,ν|r+s>R(n)} > r

]
≤ −rτ

′′

2

(
n

an

)δ′

+
n

an
V ∗ +

logE(Φ)
an

(31)
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with δ′ = 1
2 + δ β−(r+s)

r+s ; as r + s < β
2 , we may choose δ such that r+s

2(β−r−s) < δ < 1
2 , hence

δ′ > 1, and thus (29) results from (24), (30), and (31).

• Next we show that (27) extends to the martingale (N (n)). If we set τn = Tr <P (n)>n, as
(<M>k)k and (<P (n)>k)k are both increasing sequences, we have

sup
k≤n

‖ <M>k − <N (n)>k ‖ ≤ τn + 2
√
τn <M>n,

(see [Duf] Proposition 4.2.11). Hence for any r > 0 there exists a r′ > 0 such that

P

[
supt≤1

∥∥∥∥<M>[nt]

n − <N(n)>[nt]

n

∥∥∥∥ > r

]
= P

[
supk≤n

∥∥<M>k − <N (n)>k

∥∥ > nr
]

≤ P

[ ∥∥∥<!M>n

n − S2(g)
∥∥∥ > r′

]
+ P

[
τn
n > r′

]
ld
< 0

as soon as we prove that P [ τn/n > r′ ]
ld
< 0 (∀r′ > 0). This is the case thanks to relation (26)

(with R(n) instead of R), as we have

τn = Tr
[∑n

j=1π[(G −GR(n))(G−GR(n))
t](Xj−1) − (π(G−GR(n))(π(G −GR(n)))

t)(Xj−1)
]
.

From (27) it then comes

P

[
sup
t≤1

∥∥∥∥∥<N
(n)>[nt]

n
− tS2(g)

∥∥∥∥∥ > r

]
ld
< 0 (∀r > 0). (32)

• It finally remains to prove that the processes sequence (N (n)
[n•]/

√
n) satisfies the LDP stated in

the theorem. The proof relies heavily on Puhalskii’s criterion of obtaining a LDP for càd-làg
processes sequences (see [Puh94] Theorem 2.1), as it is the case in [Dem96], where the MDP
for martingales with bounded jumps is proved.

In [Dem96], the functions v(t) = 2
t2

(et − 1− t) and w(t) = v(−t)− 1
2t

2(v(−t))2 are introduced
(and both have 1 as limit in 0): consequently, as for any given θ ∈ R

q the sequence (<
θ,N

(n)
k >

√
an/n)k has jumps bounded by 2‖θ‖R(n)

√
an/n = 2‖θ‖(n/an)δ−1/2, the following

sequences are respectively a supermartingale and a submartingale for every θ ∈ R
q :

(Z(θ,n)
t ) =

(
exp

[
< θ,N

(n)
[nt] >

√
an
n − an

2nθ
t < N (n) >[nt] θ v

(
2‖θ‖(n/an)δ−1/2

)])
,

(Y (θ,n)
t ) =

(
exp

[
< θ,N

(n)
[nt] >

√
an
n − an

2nθ
t < N (n) >[nt] θ w

(
2‖θ‖(n/an)δ−1/2

)])
.

Therefore, as 2‖θ‖(n/an)δ−1/2 n→∞−→ 0, (32) entails (for every r > 0 and θ ∈ R
q )

lim sup 1
an

log P
[

supt≤1

∣∣∣∣ θt<N(n)>[nt]θ

2n v(2‖θ‖(n/an)δ−1/2) − t
2θ

tS2(g)θ
∣∣∣∣ > r

]
= −∞,

lim sup 1
an

log P
[

supt≤1

∣∣∣∣ θt<N(n)>[nt]θ

2n w(2‖θ‖(n/an)δ−1/2) − t
2θ

tS2(g)θ
∣∣∣∣ > r

]
= −∞.

From Puhalskii’s criterion we induce for (N (n)
[n•]/

√
nan) a LDP of speed (an) and rate J defined

in (11): thanks to (28) and (29), this LDP is also satisfied by the sequence (X̃(n)
• ), hence
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Theorem 2 is proved.

5 Proof of theorem 3

• Let us first prove the following result.

Lemma 2 Let (Mn) be an adapted sequence with values in Mδ,d, C an invertible δ × δ
covariance matrix, and (Cn) a sequence of δ × δ symmetric random matrices such that, for
some speed sequences (vn) and (an) with an = o(vn), we have for every r > 0

lim
1
an

log P
[∥∥∥∥Cn

vn
− C

∥∥∥∥ > r

]
= −∞. (33)

a) If Qn = Id + Cn, then for any r > 0

lim
1
an

log P
[ ‖vnQ

−1
n − C−1‖ ≥ r

]
= −∞.

b) Let I be a rate on R
δd such that lim‖x‖→∞ I(x) = +∞. If (vecMn/

√
anvn) satisfies a

LDP (resp. an upper LDP) of speed (an) and rate function I, then (
√
vn/anvec(Q−1

n Mn))
satisfies a LDP (resp. an upper LDP) of same speed and of rate function defined by

J(x) = I(vec (Cmat x)) (∀x ∈ R
δd).

Proof:

a) Let A be a symmetric positive-definite matrix, with eigenvalues λ1, . . . , λδ, and an or-
thonormal base of eigenvectors e1, . . . , eδ. We then have

‖A− I‖ = sup
i

|λi − 1| et ‖A−1 − I‖ = sup
i

1
λi

|λi − 1| ≤ ‖A− I‖/λminA.

Hence, as ‖AB‖ ≤ ‖A‖‖B‖, and setting Rn = C−1/2 Qn

vn
C−1/2,

lim sup
1
vn

log P [ ‖Rn − I‖ ≥ r ] ≤ lim sup
1
vn

log P
[
‖Qn

vn
− C‖ ≥ rλminC

]
< 0,

for all r > 0, as ‖C−1‖ = 1/λminC. Moreover,

P

[ ‖vnQ
−1
n − C−1‖ ≥ r

] ≤ P

[
‖R−1

n − I‖ ≥ r

‖C−1‖
]
≤ P

[
‖Rn − I‖ ≥ r

λminRn

λminC

]
,

hence, as λminRn ≤ 1/2 implies that ‖Rn − I‖ ≥ 1/2, we obtain

P

[ ‖vnQ
−1
n − C−1‖ ≥ r

] ≤ P [ ‖Rn − I‖ ≥ 1/2 ] + P [ ‖Rn − I‖ ≥ r/2λminC ]

and we have proved a).

b) Let us study the case of a full MDP (as the following argument only relies on contiguity
in large deviations, the case of an upper MDP follows easily). The function x ∈ R

δd 7→
vec (C mat x) ∈ R

δd is continuous and one to one, of inverse y 7→ vec (C mat y): the
contraction principle thus entails that the sequence (vec (C−1Mn)/

√
anvn) satisfies a

LDP of speed (an) and rate function J(·). Therefore it remains to prove the exponential
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contiguity of speed (an) between (vec (C−1Mn)/
√
anvn) and (

√
vn/an vec (Q−1

n Mn)); in
other words, we must prove that, for every ρ > 0 ,

lim
1
an

log P
[ ∥∥∥∥
√
vn

an
Q−1

n Mn − C−1Mn√
anvn

∥∥∥∥ ≥ ρ

]
= −∞. (34)

If ρ > 0 and r > 0, we have

P

[
‖
√
vn

an
Q−1

n Mn − C−1Mn√
anvn

‖ ≥ ρ

]
≤ P

[ ‖vnQ
−1
n − C−1‖ ≥ r

]
+ P

[
‖ Mn√

anvn
‖ ≥ ρ

r

]
.

As by assumption (vecMn/
√
anvn) satisfies a LDP of rate I(·) and speed (an), we have

lim sup
1
an

log P
[
‖ Mn√

anvn
‖ ≥ ρ

r

]
≤ −I(Ar)

for every given r > 0, where Ar = {x ∈ R
δd/‖x‖ ≥ ρ/r}. By assumption, we have

limr→0 I(Ar) = +∞, hence by a), making r → 0, (34) comes and the proof is complete.

• The following result is the central result of [Wor98a]:

Theorem 5 Let (Yn) be an adapted sequence with values in R
δ , and (εn) a subGaussian noise

of dimension d, dominated by a centered Gaussian distribution of covariance L. We suppose
that (Yn) satisfies, for some δ × δ covariance matrix C 6= 0 and some speed sequences (vn)
and (an) such that an = o(vn), the exponential convergence

lim
1
an

log P



∥∥∥∥∥∥

1
vn

n∑
j=1

(Yj−1)(Yj−1)t − C

∥∥∥∥∥∥ ≥ r


 = −∞, for any r > 0. (35)

We consider the regressive series

Mn =
n∑

j=1

Yj−1ε
t
j .

a) The sequence (vecMn/
√
anvn)n∈N satisfies in R

δd an upper-LDP of speed (an) and rate

IC,L(ξ) = sup
θ̄∈Rδd

{< θ̄, ξ > −1
2 θ̄

tC ⊗ Lθ̄} (∀ξ ∈ R
δd); (36)

if C and L are invertible, then IC,L(ξ) = 1
2ξ

t(C ⊗ L)−1ξ = 1
2ξ

tC−1 ⊗ L−1ξ.

b) In addition, if the noise is white with distribution N (0,Γ), or if the noise satisfies
property (PΓ) and (Yn) satisfies the exponential Lindeberg condition (C2), then the
sequence (vecMn/

√
anvn)n∈N satisfies a LDP of speed (an) and rate

IC,Γ(ξ) = sup
θ̄∈Rδd

{< θ̄, ξ > −1
2 θ̄

tC ⊗ Γθ̄} (∀ξ ∈ R
δd ) (37)

and IC,Γ(ξ) = 1
2ξ

tC−1 ⊗ Γ−1ξ if C and Γ are invertible.

• Theorem 3 is now ready to be proved. Part a) of Theorem 5 above applies with Yj = Φj,
hence the sequence (vecMn/

√
anvn) satisfies an upper-LDP of speed (an) and rate IC,L(·)

defined in (36): the application of part b) of Lemma 2 entails that (
√
vn/anvec (Q−1

n Mn))
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satisfies the upper-LDP of speed (an) and rate

JC,L(ξ) = IC,L (vec (C mat ξ)) =
1
2
(vec (C mat ξ))tC−1 ⊗ L−1(vec (C mat ξ)) = ξtC ⊗ L−1ξ.

In order to transfer this LDP to the sequence (
√
vn/anvec θ̃n), it thus suffices to prove the

exponential contiguity of speed (an) between this sequence and (
√
vn/anvec (Q−1

n Mn)). This
contiguity is provided by part a) of Lemma 2: indeed, for ρ > 0 and r > 0, there exists some
n0 = n0(ρ, r) such that for n ≥ n0,

r+‖C−1‖
‖θ‖√anvn

≤ ρ,

P[ ‖√vn/anθ̃n −√vn/anQ
−1
n Mn‖ > ρ ] = P[ ‖√vn/anQ

−1
n θ‖ > ρ ]

≤ P[ ‖vnQ
−1
n ‖ > ρ‖θ‖√anvn ]

≤ P[ ‖vnQ
−1
n ‖ > r + ‖C−1‖ ]

≤ P[ ‖vnQ
−1
n − C−1‖ > r ]

and the latter tends “(an)-exponentially fast” to 0 thanks to part a) of Lemma 2.

The proof of the full MDP (part b)) follows the same scheme as above, just by replacing L
by Γ at each occurence, and using part b) of Theorem 5.

6 Proof of theorem 4

As it was outlined at the end of 3.2.2, it suffices to prove Proposition 2. As a matter of fact, when
the latter is applied to the AR(1) model (II), then part 1) of Theorem 4 is achieved, and part 2)
results form the application of Theorem 3 to the regression model (I), whose sequence of explicative
variables is the sequence (X(p)

n ): indeed, relations (17), (18), and (19) correspond respectively to
the conditions (C1), the exponential Lyapunov condition (in case 2), and an obvious sufficient
condition to the exponential Lindeberg condition (in case 1).

6.1 Preliminaries

• As the spectral radius ρ(A) of A is such that 0 < ρ(A) < a < 1 for some a, there exists a
norm |.| that satisfies

|Ax| ≤ |A||x| ≤ a|x|.
This norm will be much more convenient to use here, and we have the relations

c1| · | ≤ ‖ · ‖ ≤ c2| · |(with 0 < c1 < 1 < c2),

where ‖.‖ is the usual Euclidian matrix norm. Note that for some k, ‖Ak‖ < a < 1.

• Let C denote the stationary covariance of this stable AR(1) model, i.e.

C =
∞∑

j=0

AjΓ(Aj)t = lim
k→∞

C(k) where C(k) =
k−1∑
j=0

AjΓ(Aj)t

(in case 1, Γ is the noise’s covariance and C the covariance of the stationary distribution of
the Markov model, whereas in case 2, Γ = E [ εnεtn| Fn−1 ]). Here we set Cn =

∑n
j=0XjX

t
j
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and have to show that

P[ ‖Cn/n− C‖ > ε ]
ld
< 0 for every ε > 0.

In 6.2 we prove the latter relation (which is a rewriting of (17)) and relation (18), the proof
being valid in both case 1 and case 2. At the end of the section, we will finaly prove, in case
1 (white noise setting with β = 2), that relation (19) is a consequence of (17).

Remark 5: If, in case 1, we had assumed an exponential moment of order β strictly greater
than 2, then (17) would have resulted from the application of Proposition 1 proved in Section
4.2 (with g(x) = xxt, Λn(g) = Cn/n, and µ(g) = C).

6.2 Proof of proposition 2

• Exponential upper bound of ‖Xn‖/
√

n: we have for every θ and n,

Xn = AnX0 +
n∑

j=1

An−jεj.

The noise being generalized Gaussian, ∃Λ > 0 such that E [ exp < u, ε > |Fj−1 ] ≤ exp Λ‖u‖2,
and we have for every θ

E

[
exp < nθ, 1√

n

∑n
j=1A

n−jεj >
]

≤ ∏n
j=1 expnΛ‖(At)n−jθ‖2

≤ expnΛ( c2
c1

)2‖θ‖2(
∑n−1

i=0 a
i)

≤ expnΛ′‖θ‖2

with Λ′ = Λ( c2
c1

)2/(1 − a). Therefore the Gärtner-Ellis theorem implies that the sequence(
1√
n

∑n
j=1A

n−jεj

)
satisfies the upper LDP of speed (n) and rate defined by J(x) = 1

4Λ′ ‖x‖2;
hence, for every r > 0,

lim sup
1
n

log P [ ‖ 1√
n

n∑
j=1

An−jεj‖ ≥ r ] ≤ −r2/4Λ′.

Moreover, with E0 = E [ exp τ‖X0‖2 ], it comes
1
n

log P
[ ‖X0‖/

√
n ≥ r

] ≤ logE0

n
− τr2.

We thus have established the following result.

Proposition 3 In the framework of proposition 2, there exists a constant K such that

lim sup
1
n

log P
[ ‖Xn‖/

√
n ≥ r

] ≤ −Kr2 (∀r > 0). (38)

• Exponential upper bound for TrCn: Proceeding as in 4.2.1, we have

(1 − a)β
n∑

k=1

|Xk|β ≤ |X0|β +
n∑

k=1

|εk|β.
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With E ≥ supn E [ exp τ‖εn‖β |Fn−1 ], λ ≤ (1 − a)βcβ1 τ , and R sufficiently large, we have

P

[
1
n

n∑
k=1

|Xk|β ≥ R

]
≤ E0 expn(−λR+ logE)

ld
< 0.

Hence (18) is proved, as well as the following relation, taking β = 2 in the previous calcula-
tions:

P

[
TrCn

n
> R

]
ld
< 0 (∀r > 0). (39)

• A splitting of Cn/n − C: let R > 0 such that (39) is verified, and ε > 0 be given. We
have

Cn

n
− C =

Cn −AkCn(Ak)t

n
− C(k) +

AkCn(Ak)t

n
+ C(k) − C.

If we choose k sufficiently large such that ‖C(k) −C‖ < ε
3 and ‖Ak‖2 < ε

3R , then by (39), as{‖AkCn(Ak)t‖
n

>
ε

3

}
⊂
{
TrCn

n
>

ε

3‖Ak‖2

}
⊂
{
TrCn

n
> R

}
,

all we need to prove to obtain (17) is that for every r > 0

P

[
‖Cn −AkCn(Ak)t

n
− C(k)‖ > r

]
ld
< 0. (40)

• Exponential upper bound of the distance from (Cn − ACnAt)/n to Γ

We have
XjX

t
j = AXj−1X

t
j−1A

t + εjε
t
j +AXj−1ε

t
j + εj(AXj−1)t,

hence, taking the sum from j = 1 to n,

Cn −ACnA
t = ∆n +Dn + nΓ

where


 ∆n = X0X

t
0 −AXnX

t
nA

t +
∑n

j=1(εjε
t
j − Γ),

Dn =
∑n

j=1(AXj−1ε
t
j + εj(AXj−1)t).

By our assumption on (εnεtn − Γ) in case 2 (which is automatically satisfied in case 1, by the
Cramer Theorem), and by (38). we have for any r > 0,

P

[ ‖∆n‖
n

≥ r

]
ld
< 0.

Let us show that it is also true with Dn. If u, v ∈ R
d , we have

utDnv =
∑n

j=1(u
tAXj−1ε

t
jv + utεj(AXj−1)tv)

=
∑n

j=1(< u,AXj−1 >< v, εj > + < u, εj >< v,AXj−1 >);

but ‖<v,AXj−1>u‖2 ≤ ‖u‖2‖v‖2‖A‖2Tr(Xj−1X
t
j−1), and the noise is generalized Gaussian,

hence if Λ > 0 is such that E [ exp < u, ε > |Fj−1 ] ≤ exp Λ‖u‖2 (∀u ∈ R
d), then(

exp(utDnv − 2‖u‖2‖v‖2‖A‖2ΛTr(Ck−1))
)
k≥1
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is a positive supermartingale for every u, v ∈ R
d . We take u = ei and v = tej where t > 0

and (ei)ni=1 denotes the canonical base of Rd , and consider the supermartingale

(Yk)k≥1 =
(
exp(tetiDnej − 2t2‖A‖2ΛTr(Ck−1))

)
k≥1

and the stopping time

τ(n) = inf{k ≥ 1;
1
n
TrCk ≥ R}.

The sequence (TrCk)k≥1 is an increasing sequence, hence {τ(n) ≤ n} ⊂ { 1
nTrCn > R} (as

well as {τ(n) > n} ⊂ {TrCn−1 ≤ nR}), and (39) entails

P [ τ(n) ≤ n ]
ld
< 0.

For r > 0, we then write

P

[
et
iDnej

n > r
]

≤ P[ τ(n) ≤ n ] + P[Yn > expn(rt− 2t2Λ‖A‖2(R + 1)) ]

≤ P[ τ(n) ≤ n ] + exp−n(rt− 2t2Λ‖A‖2(R+ 1)),

and thus, taking 0 < t < r/2Λ‖A‖2(R+ 1), we obtain for every 1 ≤ i, j ≤ n and every r > 0,

P

[
etiDnej
n

> r

]
ld
< 0.

Proceeding in the same manner for P[ eiDnej/n < −r ] (with u = ei and v = −tej) we achieve

P[ ‖Dn‖ > r ]
ld
< 0 for every r > 0, and consequently

P

[
‖Cn −ACnA

t

n
− Γ‖ > r

]
ld
< 0. (41)

• Exponential upper bound for the distance from (Cn − AkCn(Ak)t)/n to C(k)

Let us introduce the notation

Ck,r
j =

j∑
i=1

Xr+ikX
t
r+ik

and consider, with k and r fixed, the sequence (Xnk+r)n≥0, that satisfies to the relation

X(n+1)k+r = AkXnk+r + ε(n+1)k+r +Aε(n+1)k+r−1 + . . .+Ak−1εnk+r+1

= AkXnk+r + η
(k,r)
n+1 .

It is indeed a stable autoregressive model of noise (η(k,r)
n )n≥1 still generalized Gaussian, with

C(k) as its stationary covariance, and to which we can apply relation (41): in other words
we have

P

[
‖C

k,r
n −AkCk,r

n (Ak)t

n
− C(k)‖ > ρ

]
ld
< 0 (∀ρ > 0).

But C(n+1)k−1 = Ck,0
n + . . .+ Ck,k−1

n =
∑k−1

r=0 C
k,r
n , hence

P

[
‖C(n+1)k−1 −AkC(n+1)k−1(Ak)t

nk
− C(k)‖ > ρ

]
ld
< 0 (∀ρ > 0),
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and, by Proposition 3, we see that we can replace in this last line C(n+1)k−1 by C(n+1)k.
Consequently, it results rather easily that

P

[
‖C[n/k]k −AkC[n/k]k(Ak)t

[n/k]k
− C(k)‖ > η

]
ld
< 0 (∀η > 0). (42)

For every n ∈ N, n = [n/k]k + (n mod k) = pnk + rn (where 0 ≤ rn < k,∀n), and

Cn = C[n/k]k +
rn∑

j=1

X[n/k]k+jX
t
[n/k]k+j = C[n/k]k +Rn.

But relation (38) of Proposition 3 implies that

P

[
‖Rn

n
‖ > η

]
ld
< 0 (∀η > 0), (43)

and [n/k]k
n

n→∞−→ 1, hence we finally achieve, putting (42) and (43) together, relation (40) and
put an end to the proof of (17). The proof is thus completed in case 2.

• Proof of (19) in case 1

We assume that the noise is white, and denote by µ the stationary distribution of the stable
Markov model (Xn), which satisfies the conditions detailed in Section 1.2.1 (case (ii)). We
end the proof of the theorem in case 1 by proving the following statement.

Lemma 3 If the noise is white, then relation (17) implies property (19).

Proof: We use the notations of Section 1.1.1, and set F (x) = ‖x‖2,

F (R)(x) = F (x)min{ 1 ; (F (x) − (R− 1))+ }, and F̃ (R)(x) = min{F (x);R}.
We have 0 ≤ F (x) I{F (x)≥R} ≤ F (R)(x) ≤ F (x), hence

0 ≤ Λn(F IF≥R) ≤ Λn(F (R) − F̃ (R)) + Λ(F̃ (R)) − µ(F̃ (R)) + µ(F̃ (R))

where
F (R) − F̃ (R) = (F (R) −R) IF (R)≥R ≤ (F −R) IF≥R = F − (F ∧R).

Let r > 0. The functions F̃ (R) and F − (F ∧R) being both continuous, bounded by F (hence
µ-integrable), and with pointwise limit 0 as R → +∞, by Lebesgue’s theorem there exists
some R > 0 sufficiently large such that µ(F̃ (R)) + µ(F − (F ∧ R)) < r

4 , and consequently it
comes from the bounds above

P

[
1
n

∑n−1
j=0 ‖Xj‖2

I{‖Xj‖2≥R} > r
]

≤ P [ Λn(F ) − µ(F ) > r
4 ] + P [ Λn(F ∧R) − µ(F ∧R) > r

4 ] + P [ Λn(F̃ (R)) − µ(F̃ (R)) > r
4 ].

For the second and third term, as the functions F ∧R and F̃ (R) are bounded and continuous,
we apply relation (5) to both of them, and for the first term we use (17): relation (19) is thus
proved. �
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