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Abstract

We present an upper bound on the mixing rate of the equilibrium state of a dynamical
system defined by the one-sided shift and a non Hélder potential of summable variations. The
bound follows from an estimation of the relaxation speed of chains with complete connections
with summable decay, which is obtained via a explicit coupling between pairs of chains with
different histories.

1 Introduction

We consider a dynamical system (X, T, pg) where X is the space of sequences of a finite alphabet,
T is the one-sided shift and 4 is the equilibrium state associated to a continuous function ¢ (see
Section 2 for precise definitions). We address the question of the speed of convergence of the limit

/foT”gdu¢ j>/fdu¢/ gdue - (1.1)
X n—oo Jx X

The dynamical system (X, T, ) is said strongly mizing if the convergence occurs for all functions f,
g in a dense subset of L?(1,). The speed of this convergence —called speed of decay of correlations,
or mizring rate— is an important element in the description of the system. In particular, (1.1)
determines how averages with respect to measures 7" 1, converge to averages with respect to pg,
where pg = gpe/Norm.

In this paper we obtain upper bounds showing that for ¢ with summable variations the mixing
rate is (at least) summable, polynomial or exponential according to the decay rate of the variations
of ¢. The bounds apply for f € L'(u,) that do not depend on the future tail-field and g with
variations decreasing proportionally to those of ¢. To obtain these results, we write the difference
involved in (1.1) in terms of a chain with complete connections [Doeblin and Fortet (1937), Lalley
(1986)] —see identity (3.7) in Section 3 below. The mixing rate is related to the speed with which
such chain looses its memory. We bound the latter using coupling techniques.

Previous approaches to the study of the mixing properties of the one-sided shift rely on the use
of the transfer operator Ly, defined by the duality,

[ torgdus = [ 1izadus. (1:2)
X X

If ¢ is Holder, this operator, acting on the subspace of Holder observables, has a spectral gap and
the limit (1.1) is attained at exponential speed (Bowen, 1975). When ¢ is not Holder, the spectral
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gap of the transfer operator may vanish and the spectral study becomes rather complicated. To
estimate the mixing rate, Kondah, Maume and Schmitt (1996) proved first that the operator
is contracting in the Birkhoff projective metric, while Pollicott (1997), following Liverani (1995),
considered the transfer operator composed with conditional expectations. In contrast, our approach
is based on a probabilistic interpretation of the duality (1.2) in terms of expectations, conditioned
with respect to the past, of a chain with complete connections. The convergence (1.1) is related
to the relaxation properties of this chain, which we study via a coupling method.

Chains with complete connections are processes characterized by having transition probabilities
that depend on the whole past in a continuous manner. They were first introduced by Onicescu
and Mihoc (1935, 1935a) and soon taken up by Doeblin and Fortet (1937). These authors proved
the first existence and convergence results for these processes, later extended by Harris (1955).
[The definition adopted in these works is written in a manner that differs slightly from current
usage in the random-processes literature (see eg. Lalley, 1986). We adopt the latter.] Moreover,
their studies were geared towards more complicated objects —called random systems with complete
connections— where the chain acts as an underlying “index sequence” used to define very general
Markov processes. In this form, the chains have been applied to studies of urn schemes (Onicescu
and Mihoc, 1935a), continued fractions (Doeblin, 1940; Iosifescu 1978), learning processes (Karlin,
1953; Iosifescu and Theodorescu, 1969; Norman, 1972) and image coding (Barnsley et al, 1988).
As a general reference on the subject we mention the book by Iosifescu and Grigorescu (1990) as
well as the historical review presented in Kaijser (1981) and the brief and clear update by Kaijser
(1994). These last two references were our main sources for the preceding account. Our work
introduces a novel application of this useful objects to the field of dynamical systems, where they
appear in a rather natural way.

Coupling ideas were first introduced by Doeblin in his work on the convergence to equilibrium
of Markov chains. He let two independent trajectories evolve simultaneously, one starting from the
stationary measure and the other from an arbitrary distribution. The convergence follows from the
fact that both realizations meet at a finite time. Doeblin wrote his results in 1936, but published
them only much later (Doeblin, 1938). [For a description of Doeblin’s contributions to probability
theory we refer the reader to Lindvall (1991).] Subsequently, he and Fortet applied this idea to
study the existence and relaxation properties of chains with complete connections (Doeblin and
Fortet, 1937; see also the account by Iosifescu, 1992). Doeblin’s results can be improved if, instead
of letting the trajectories evolve independently, one couples them from the beginning so to reduce
the “meeting time” and to ensure that the trajectories evolve together once they meet. Such a
procedure is nowadays known as coupling in the stochastic-processes literature. In this setting it
is specially efficient to use couplings that “load” the diagonal as much as possible. In our work,
we apply a particular coupling with this property, sometimes called the Vaserstein coupling (eg.
in Kaijser, 1981; Lindval, in his 1992 lectures, calls it y-coupling). For instance, this coupling
prescription applied to a Markov process leads to the so-called Dobrushin’s ergodic coefficient.
The sharpness of the convergence rates provided by different types of Markovian couplings has
been recently discussed by Burdzy and Kendall (1998).

The Vaserstein coupling has been applied before to chains with complete connections —for
instance by Harris, 1955; Kaijser (1981, 1994), Barbee (1987) and by us (Bressaud, Ferndndez,
Galves, 1997)— for different purposes. In this paper we use it to obtain a estimation of the
relaxation properties of such chains that strengthens and generalizes that of Doeblin and Fortet
(1937), even in the form given by Iosifescu (1992). As the transition probabilities of the chains
considered here depend on the whole past, the coupling can not ensure that two different trajectories
will remain equal after their first meeting time. But the coupling has the property that if the
trajectories meet they have a large probability of remaining equal, and this probability increases
with the number of consecutive agreements. In the summable case, the coupling is such that with
probability one the trajectories disagree only a finite number of times. In fact, the approach can
also be applied under an assumption weaker than summability [(4.7) below]. This assumption,
which was previously put forward by Harris (1955), ensures that trajectories that differ infinitely
often do so with a probability of disagreement that goes to zero. The method leads, in particular,



to a criterion of uniqueness for g-measures proven by Berbee (1987). The mean time between
successive disagreements provides a bound on the speed of relaxation of the chain and hence,
through the probabilistic interpretation of (1.2), on the mixing rate.

Let us mention, as related developments in the context of dynamical systems, the recent papers
by Coelho and Collet (1995) and Young (1997). These papers consider the time two independent
systems take to become close. This is reminiscent of the coupling ideas.

The paper is organized as follows. The main results and definitions relevant to dynamical systems
are stated in Section 2. The relation between chains with complete connections and the transfer
operator is spelled out in Section 3. In Section 4, we state and prove the central result on relaxation
speeds of chains with complete connections. Theorem 1 on mixing rates for normalized functions
is proven in Section 5, while Theorem 2 on rates for the general case is proven in Section 6. The
upper bounds on the decay of correlations depend crucially on estimations of the probability of
return to the origin of an auxiliary Markov chain, which are presented in Appendix A.

2 Definitions and statement of the results

Let A be a finite set henceforth called alphabet. Let us denote
A= fo=(0)je, v A} (2.1)

the set of sequences of elements of the alphabet indexed by the strictly negative integers. Each
sequence = € A will be called a history. Given two histories = and y, the notation z = y indicates
that x; = y; for all —-m < j < —1.

As usual, we endow the set A with the product topology and the o-algebra generated by the
cylinder sets. We denote by C(A, R) the space of real-valued continuous functions on A.

We consider the one-sided shift T on A,

T: A — A
r +— T(.II) = (mi—l)iﬁ—l-

Given an element a in A and an element z in A, we shall denote by xa the element z in A such
that z_1 = a and T'(z) = .

Given a function ¢ on A, ¢ : A — R, we define its sequence of variations (var,(¢))men,

vat () = sup ¢(x) — 6(y)| - (2.2)

m
r=y

We shall say that it has summable variations if,

Z varp, (@) < +oo, (2.3)
m>1
and that it is normalized if it satisfies,
Ve A, Z @) =1 (2.4)
acA

We say that a shift-invariant measure py on A is compatible with the normalized function ¢ if and
only if, for pg-almost-all z in A,

Eu, (Lo 1=} Feo2)(2) = /T@D, (2.5)

where the left-hand side is the usual conditional expectation of the the indicator function of the
event {z_1 = a} with respect to the o-algebra of the past up to time —2.

An equivalent way of expressing this is by saying that p, is a g-measure for g = e?. If ¢ has
summable variations, and even under a slightly weaker conditions, then such a measure is unique
and will be denoted fi4. The measure g can also be characterized via a variational principle, in
which context it is called equilibrium state for ¢. For details see Ledrappier (1974), Walters (1975),
Quas (1996) and Berbee (1987).



For a non-constant ¢, we consider the seminorm

varg(g)
= su 2.6
||g||¢ kZI()) Vark((b) ( )
and the subspace of C(A, R) defined by,
Vo = {QEC(A,R), ||9||¢<+00}- (2.7)

Given a real-valued sequence (Y, )nen, let (ng))neN be the Markov chain taking values in the
set N of natural numbers starting from the origin

P(s{" =0) = 1 (2.8)

whose transition probabilities are defined by

Diit1 = 1—1y (2.9)
Pio0 = i '
for all ¢ € N. For any n > 1 we define
v =P8 =0). (2.10)

We now state our first result.

Theorem 1 Let ¢ : A — R be a normalized function with summable variations and set

= 1= (@) (2.11)
Then,
o adus [ raus [adus| < Uflhlials Yven@) i (212
k=0
< Ol llllon 213)

for all g € Vy and f € L'(pg) measurable with respect to \J;cy F<i- The constant C can be
explicitly computed.

This theorem is proven in Section 5, using the results obtained in Section 4 on the relaxation speed
of chains with complete connections.

For each non-normalized function ¢ with summable variations there exist a unique positive
function p and a unique real number ¢ such that the function

Yv=¢+logp—logpoT +c (2.14)

is normalized (Walters, 1975). We call ¢ the normalization of ¢. The construction of compatible
measures given in (2.5) loses its meaning for non-normalized ¢. It is necessary to resort to an
alternative characterization in terms of a variational principle (see eg. Bowen 1975) leading to
equilibrium states. In Walters (1975) it is proven that:

(a) ¢ with summable variations admits a unique equilibrium state, that we denote also fi4;

(b) the corresponding normalized v, given by (2.14), admits a unique compatible measure g
(even when the variations of ¢ may not be summable), and

(©) e = ph-



Our second theorem generalizes Theorem 1 to non-normalized functions.

Theorem 2 Let ¢ : A — R be a function with summable variations and let 1 be its normaliza-
tion. Let (nm)men be an increasing subadditive sequence such that the subsequence of the rests,

(Zanm vark(¢))m>0, is summable, and

5, =1 ®Shzn, re(6) | (2.15)
then,
‘/foT”gdw—/fdw/gdw‘ < Ulhllglle Y vara (@) Tos  (216)
k=0
< ClfLllglleTs (2.17)

for all g € Vy and f € L'(ugy) measurable with respect to \J;cy F<i, where C is a computable
constant. Here 7* is defined as in (2.10) but using the sequence (7, )neN-

The estimation of the large-n behavior of the sequence (¥ ),en given the behavior of the original
(Yn)nen only requires elementary computations. For the convenience of the reader we summarize
some results in Appendix A.

3 Transfer operators and chains.
Let P be a family of transition probabilities on A x A,

P: AxA — [0

; 1]
(a,2) +— P(a (3.1)

|2) -

Given a history z, a chain with past x and transitions P, is the process (Z%),en whose conditional
probabilities satisfy

P(Zy=al|Z}, ;=2,j<-1) = Pla|z)forn>0, (3.2)
for all @ € A and all histories z with z;_,, = z;,j < —1, and such that
Zy =, , forn<—1. (3.3)

This chain can be interpreted as a conditioned version of the process defined by the transition
probabilities (3.1), given a past z (for more details, see Quas 1996).

Let ¢ : A — R be a continuous normalized function. The transfer operator associated to ¢ is
the operator Ly acting on C(4, R) defined by,

Lof(x) = > Wiy, (3-4)
y:T(y)=z

This operator is related to the conditional probability (2.5) in the form

Eu, (f|F<—2) = (Lyf)oT. (3.5)

This relation shows the equivalence of (1.2) and (3.4) as definitions of the operator. In addition,
if ¢ is normalized we can construct, for each history z € A, the chain Z% = (Z%),cz with past z

and transition probabilities
P(a|z) = e?@) | (3.6)



Iterates of the transfer operator, ng(m), on functions g € C(A,R) can be interpreted as expec-

tations E[g((Z};,;)j<-1)] of the chain. Indeed,

ng(m) = Z 622:1 d’(wal"'ak)g(mal e an)
ai,...,an€A
n
= Z (H (ar|ak—1-- -aw)) g(zay - -ay)
ai,...,an€A \k=1

Elg((Z745)i<-1)] -

From this expression and the classical duality (1.2) between the composition by the shift and the
transfer operator Ly in L?(ue), we obtain the following expression for the decay of correlations,

/foT”gdu¢—/fdu¢/9dﬂ¢
= /f ) Ly g(x) dpg(z /f (/ zg(y)dw(y))dw(m)

= [ 1@ [ (BlolZz )< 1)) - Blol(ZLy )i ) dus)dbole) . (37

This inequality shows how the speed of decay of correlations can be bounded by the speed with
which the chain looses its memory. We deal with the later problem in the next section.

4 Relaxation speed for chains with complete connections

4.1 Definitions and main result

We consider chains whose transition probabilities satisfy

P
o Elal2)
z,yr=y P(a | y)

for some real-valued sequence (Y )men, decreasing to 0 as m tends to +oo. Without loss of
generality, this decrease can be assumed to be monotonic. To avoid trivialities we assume ~yy < 1.
In the literature, a stationary process satisfying (4.1) is called a chain with complete connections.

For a set of transition probabilities satisfying (4.1), we consider, for each z € A, the chain
(ZZ)nez with past « and transitions P [see (3.2)—(3.3)]. The following proposition plays a central
role in the proof of our results.

Proposition 1 For all histories x,y € A, there is a coupling ((ﬁﬁ’y,ﬁf’y))nez of (Z%)nez and
(Z¥)nez such that the integer-valued process (T2Y) ez defined by

T2 = inf{m>0: U2, # Vil ), (42)

satisfies
P(T;Y=0) <~ (4.3)

= 'In
for n >0, where 7 was defined in (2.10).

The proof of this proposition is given in Section 4.4.



An immediate consequence of this proposition is the following bound on the relaxation rate of
the processes Z7.

Corollary 1 For all histories x and y, for all a € A,
P(zi=a)-P(zy=a) < 7, (4.4)
and, for k>1,

‘P((Zﬁ,...,zm): (ao,...,ak)) _P((zg,...,zg+k) :(ao,...,ak))‘

This corollary is proved in Section 4.5.

Remark 1 Whenever
v =0, (4.6)

inequality (4.4) implies the existence and uniqueness of the invariant measure compatible with a
system of conditional probabilities satisfying (4.1). In fact, property (4.6) holds under the condition

STTIa-m) = +o0, (4.7)

which is weaker than summability. In this case, the Markov chain (Sﬁﬂ))neN is no longer transient
but it is null recurrent and the property P(SS,W) =0) — 0 remains true.

Remark 2 If X = (X,,),ez is a stationary process with transition P satisfying (4.1), then Corol-
lary 1 implies
P(Z =a) - P(X,=a)| < 1, (4.8)

uniformly in the history x.

Remark 3 Inequality (4.3) constitutes a double improvement of the Doeblin-Fortet-Iosifescu re-
sults (see Theorem 1 in Iosifescu, 1992). First, the latter only apply when the remainders >, v
tend to zero with n. Second, even for this case, Doeblin-Fortet-Iosifescu estimation can be seen to
be an upper bound for our 7. The bound is in general strictly larger.

4.2 Maximal coupling

Given two probability distributions p = (u(a))aca and v = (v(a))aca we denote by puxv =
(uxv(a, b))(a,b)cax  the so-called mazimal coupling of the distributions y and v defined as follows:

uxv(a,a) = pu(a) Av(a) ifa=»b

(4.9)

(pla) —v(a)) " (v(b) —p®) " .
Seeah@ vt 7

For more details on maximal couplings see Appendix A.1 in Barbour, Holst and Janson (1992).

pxv(a,b) =

The coupling is maximal in the sense that the distribution ;x» on A x A maximizes the weight
A() = ¢(a,a)

of the diagonal among the distributions ¢ on A x A satisfying simultaneously

> ¢la,b) =v(b) and > ((a,b) = p(a) .

acA beA



For this coupling, the weight A(uxv) of the diagonal satisfies,

A(uiv) = 3 pla) Avla) = 1= 3 (u(a) ~ v(@)* =153 |u(a) ~v(@)].  (410)

a€A acA acA
Moreover,
v(a)\* v(a' v(a
Alpxv)=1="Y" p(a) (1 - uEaD >1-> " p(a) (1 ~ inf, ME@/;) = inf uga;' (4.11)

acA acA

4.3 Coupling of chains with different pasts

Given a double history (z,y), we consider the transition probabilities defined by the maximal
coupling _ .

By (4.1) we have,

> 1— Y.
By (4.11) this implies that
whenever z = y.

Now, we fix a double history (z,y) and we define (ﬁﬁ’y, ‘N/,fy)n ez o be the chain taking values
in A2, with past (z,y) and transition probabilities given by (4.12). If x 2 y, (4.13) yields

P(U5Y #V5") < m. (4.14)

We denote _ _
JN— {szvj,mgjgn}. (4.15)

)

Notice that A_,, _; is the union over all the sequences x,y with z = y of the events {(U;,V;) =
(xj,y;); j < —1}. Using the stationarity of the conditional probabilities, we obtain

P(ﬁn 7é ‘771 | An—m,n—l) < Ym , (416)

for all n > 0.

4.4 Proof of Proposition 1

From this subsection on, we will be working with bounds which are uniform in z,y, hence we will
omit, with a few exceptions, the superscript z,y in the processes T2V (defined below), U*¥ and
Ve,

Let us consider the integer-valued process (T, )necz defined by:

T, = inf{m>0: Up_m # Voom} . (4.17)

For each time n, the random variable T;, counts the number of steps backwards needed to find a
difference in the coupling. First, notice that (4.16) implies that,

P(Top1=k+1|Ty=k) > 1— (4.18)

and
P(T1 = 0| T = k) < 7, (4.19)

all the other transition probabilities being zero. This process (T}, )nez is not a Markov chain.



We now consider the integer-valued Markov chain (ng))nzo starting from state 0 and with
transition probabilities given by (2.9), that is p; ;41 = 1 —+; and p; o = ~;. Proposition 1 follows
from the following lemma, setting k£ = 1.

Lemma 1 For each k € N, the following inequality holds

P(S{) > k) < P(T, > k) (4.20)

Proof We shall proceed by induction on n. Since P(Sév) = 0) = 1, inequalities (4.20) hold for
n = 0. Assume now that (4.20) holds for some integer n. There is nothing to prove for k = 0. For
k>1,

+oo
P(Tho1>k) = Y P(Tup=m)

m=k

+oo

= Y P(Tup=m|T=m—-1)P(T, =m—1)

e
> (1= Y1) P(T, =m—1)
m=k
+oo
= Y =m0 (PTazm—1) = P(T, = m))

m=k

v

+oo
— Q=% )PT k-4 (ot — ) P(Ta 2 m).  (4.21)

m=k

By the same computation, we see that
+
PS> k) = (1-%-)PEY 2k =1+ (ymo1 —9m) P(SY > m) . (4.22)

Hence, using the recurrence assumption and the fact that (y,)n>0 is decreasing we conclude that
P(Thi1 > k) > P(ST), > k),

forallk > 1.0

4.5 Proof of Corollary 1

To prove (4.4), first notice that by construction the process (ﬁn)nel has the same law as (Z%)necz
and (V;,)nez has the same law as (ZY)nez. Thus,
‘P(Zﬁ =a) - P(ZY = a)‘ = ‘P(ﬁn =a)-P(V, =a)| < PT, #V,) (4.23)

Hence, by definition of the process T,, and Lemma 1,

‘P(Zﬁ —a)-P(Z! = a)‘ < P(T,, =0) < P(S =0). (4.24)

The proof of (4.5) starts similarly:

‘P((Zﬁ,...,Zﬁ+k):(ao,...,ak)) P((zy,.. Ve (ao,...,ak))‘
< P(SY), <k+1).

To conclude, we notice that,

k k j—1
PO <h) = SRS —f) = 3 <H<1—7m>> P, 0.0 (425)
7=0



5 Proof of Theorem 1

The proof of Theorem 1 is based on the inequality

[ roradn= [ an [[aau] < 171 swoB oGz o< 6

which follows from (3.7) and the fact that ((ﬁ”’y, ‘7”?’))” ¢z, 1s a coupling between the chains with
pasts z and y, respectively. An upper bound to the right-hand side is provided by Proposition 1.
We see that the transition probabilities (3.6) satisfy condition (4.1), since

P(a|z) $laz)—d(ay) - - @)
= e ax a’ > e Varm41 52
P(aly) - (5:2)

whenever x,y € A are such that = Z y for some m € N. We can therefore apply Proposition 1 with
Y = 1 — evarmi1(9) (5.3)

which tends monotonically to zero if 3, -, vary,(¢) < +oo.

To prove (2.12) we use the process (T>¥),en to obtain the upper bound

EHg UZ)j<-1) — ((Vrffy)ﬂé—l)u

+oo
E (> lrpoo ‘9((Un+j)j§—1) - 9((‘7n+j)j§—1)”

k=0
< Zvark P(T)Y =k)
< llglls Z vary (¢) P(T = k) . (5.4)
k=0

Now, in order to use the bound (4.3) of Proposition (1) we resort to the monotonicity of the
variations of ¢:

n—1

Z varg(9) P(ToY = k) < Z varg (¢) P(T)Y = k) + vary, (¢ Z P(T)Y =k)
= k=0
n—1
= Z var (¢)P(T,Y, = 0) + var, (¢ Z P(TyY =k —n)
k=0
< Y van(¢)P(S, =0), (5.5)
k=0

uniformly in z,y. The bound (2.12) follows from (5.1), (5.4), (5.5) and the fact that

“+o00
S PIyv=j) =1 =P =0). (5.6)
§=0

To prove (2.13) we use the strong Markov property of the process ( Sﬁ)neN to obtain

P(S) =0)=Y P(r s —o0), (5.7)
k=1
where
7 = inf{n > 0;80) =0} . (5.8)

11



We now use (5.7) to bound the last line in (5.5) in the form

S vark(@)P(SY, =0) < > [varo(¢) P(r = k) + var(¢)] P(SL”, = 0)
k=0 k=1
< CY P(r=k)P(S, =0)
k=1
= CPiY =0), (5.9)
with @)
var
C = varg(¢) + sup P(Tkz 3 (5.10)
To conclude, we must prove that the constant C' is finite. By direct computation,
P(r=1) = ~o,
n—2
P(r=n) = v [[(U—mm) forn>2, (5.11)
m=0
+oo
P(r=-to0) = [[1-m).
m=0
From this and (2.11) we obtain
m k@), van(9) L (5.12)

koo P(T=k) koo 1—emvars(d) TTE2 1y 1y~

Since varg(¢) — 0, the first fraction converges to 1. We see from (5.11) that the second frac-
tion converges to 1/P(7 = 400). By elementary calculus, this is finite since ¢ has summable
variations. []

Remark 4 The previous computations lead to stronger results for more regular functions g. For
example, when g satisfies
vark(g) < llglle 6" (5.13)

for some 6 < 1 and some ||g||g < co (Holder norm of g), a chain of inequalities almost identical to
those ending in (5.4) leads to

+oo
[ roma— [ gan [ad] < Al Y lollod*
k=0
< £l llgllo6™> 67~ - (5.14)
k=0

On the other hand, if g is a function that depends only on the first coordinate, we get,

[ soraan— [ an foau] < 1171 s [Bla(z2)] - Bla(z2)]
< |1l lgl|P (@ # 72)
< (51l lgllo - (.15

6 Proof of Theorem 2

We now consider the general case where the function ¢ is not necessarily normalized. In this
case we resort to the normalization v defined in (2.14) and we consider chains with transition
probabilities

P(a]z) = e*@) Mec = V(@) (6.1)
p(x)

12



However, the summability of the variations of ¢ does not imply the analogous condition for 1,
because there are additional “oscillations” due to the cocycle logp — logp o T'. Instead,

var,
vary, (log p) } Z vary (¢ (6.2)

for all m > 0 (see Walters, 1978). Hence, we can apply Theorem 1 only under the condition
Zkvark((b) < 400 (6.3)

If this is the case, the correlations for functions f € L' (u) and g € V,, decay faster than ~},, where
Vim, = eZkZm Vark(d’) _ 1

To prove the general result without assuming (6.3) we must work with block transition proba-
bilities, which are less sensitive to the oscillations of the cocycle. More precisely, given a family
of transition probabilities P on A x A, let P,, denote the corresponding transition probabilities on
A" x A:

Poii(aom|x) = Plan|an—1--- a1z)---P(az|a1x) P(a1 | x) (6.4)

where
aon = (ao,...,an) € At (6.5)

If the transition probabilities P are defined by a normalized function ¢ as in (3.6), then we see
from (6.4) that the transition probabilities P, obey a similar relation

P.(apn-1]x) = en(zao.n-1) (6.6)

with )
On(za0n-1) = Z d(zag---ar) . (6.7)

k=0

In particular, for transitions (6.1) the formula (6.4) yields
Yn = ¢n+logp—logpoT™ +nc. (6.8)

A comparison of (6.8) with (6.2) shows that it is largely advantageous to bound directly the
oscillations of ,,. This is what we do in this section by adapting the arguments of Section 5.

6.1 Coupling of the transition probabilities for blocks
For every integer n, we define a family of transition probability P,, on (A™)? x A? by

Pr(aon—1,b0m-1|7,y) = [Pu(-|2) X Pu(.|y)](a0,n-1;b0,n—1) - (6.9)

_ Let (nm)men be an increasing sequence. For each double history z,y, we consider the coupling
(Ux’y,vgw)m cz of the chains for n,,-blocks with past x and y, defined by,

T7L,Y 7Y
P(UO N - A0, VO N bO,nm)

nm+1 N anm,nm+1 ) bnm,nm+1 An,, QT , by, - -boy) . (6'10)

’.:1:

m=1

13



6.2 The process of last block-differences

We set

<”>=1—inf{wzmi a ...a_eA}. 6.11
Yk Pn(a07n—1|y) Yy, as, y Un—1 ( )

From (4.11) we see that, for L y, the weight of the diagonal of each coupling P,, satisfies

APn(,-|z,y) = inf Plagn-1|x)

> 1M, 6.12
aQ,--yap—1E€A P(a07n_1 | y) Tk ( )

If we denote

ALY T77L:Y LY .
Am,m—i—k = {Uj = Vj s Mm <7 < nm—i—k} )

we deduce from (6.12) that

P(Bpiist | Do) = 1=l mms) (6.13)

Ntk —Nm
We construct the process (T, )nen With
Tﬁ;y = inf {p >0: U"Y # V" for some i, ny,—p < i < nm_p_H} ) (6.14)
By (6.13), the conditional laws of this process satisfy,

P(Tpsr =k+1|Tp=k) > 1 —tmtitt—nmik) (6.15)

Mok —Tm
and _ _
P(Tpsr =0 | Ty = k) < Altmtkss —mmsr) (6.16)

Nm+k—Nm

6.3 The dominating Markov process

Let us choose the length of the blocks in such a way that the sequence (n.,)men is subadditive,
i.e.

Ntk — N, < N (6.17)
for m, k > 0, and that
sup 'yén) <1 (6.18)
n>0

for all £ > 0. These two properties together with (6.15)—(6.16) imply that, for all histories z and
Y,

P(T 4 =k+1|T," =k > 1-7, (6.19)
and
P(T, 1 =0|T," =k) < . (6.20)
with
7, = i‘;‘i%)’ (6.21)
for m > 1.

We now define the “dominating” Markov chain (S’g))neN as in (2.8)—(2.9). Lemma 1 yields

P(T," =0) < P(Sn=0) < 7. (6.22)

m

Hence, if n,,, <n < nppy,

PU." # V") < PILY =0)

IA
!

. (6.23)

6.4 Decay of correlations

We can now mimic the proof of Theorem 5 in terms of barred objects.

14



As (vary, (¢))men is summable, there exists a subadditive sequence (7,)men such that the se-
quence ., of the tails

O = Z vary (¢) (6.24)

k>1m
is summable:
D am < 400 (6.25)
m>0
The transitions for blocks of size n satisfy
Pn(ao,n—l |$) > e—vark(wn) (626)
Pn(aon-11y)

if z £ y. But from (6.8), (6.7) and (6.2) we have

k+n

varg (¢n) < Z—l— Z +Z vary, (4)

m=k m>k+n m>k

A

< 3 Z varm, (o) . (6.27)
m>k
Hence we can choose in (6.21)
¥ < 1—e 3o, (6.28)
a choice for which
> A < +oo. (6.29)
k>1

To prove the theorem, we now proceed as in (5.1) and (5.4)—(5.10) but replacing tildes by bars and

putting bars over the processes (7},) and (SS?)). We just point out that, due to the subadditivity
of Ny,

Va’r(nm+k—nm)(¢) S Va’rnk (¢)
uniformly in m. O

A Returns to the origin of the dominating Markov chain

In this appendix we collect a few results concerning the probability of return to the origin
of the Markov chain (S’S;Y))neN defined via (2.9). (In the sequel we omit the superscript “(y)”
for simplicity.) We point out that the right-hand-side of the displayed formula in Theorem 1 of
Tosifescu (1992) is indeed an upper bound for P(S,, = 0). This bound is clearly less sharp than
our estimations, for instance when (7,,) decreases polynomially.

Proposition 2 Let (7, )nen be a real-valued sequence decreasing to 0 as n — +o0.

(i) If > J[(1 =) = +oo, then P(S, =0) — 0.

m>1k=0

(i) IfZ'yk < 400, then 3, <o P(Sp, =0) < +oo.
k>1

(ii) If (ym ) decreases exponentially, then so does P(S, =0).
(iv) If (ym) is summable and

a = sup limg o0 [P(:izz))] v < P(;’ (A.1)

then



Remark 5 We notice that, according to (5.11), v, ~ P(T =n)/P(1 = +00). Hence, a sufficient
condition for (A.1) is a similar condition for the sequence (vn). In particular, statement (iv)
implies the following criterion. If (ym) is summable, then

N\ 1/k
sup o0 <l> <1 = P(S,=0)=0(). (A.2)
i Vki

7

This criterion applies, for instance, if v, ~ (logn)®n=2, for a > 1 and b arbitrary.
Sketch of the proof of (i)—(iii)

Statement (%) follows from the well known fact that the Markov chain (S, )nen is positive recur-
rent if and only if,

To prove parts (i4) and (743) we introduce the series

+oo
F(s) = ZP(TZTL) s (A.3)

and .
G(s) = Y _P(S,=0)s" (A.4)

n=0

where the random variable 7 is the time of first return to zero, defined in (5.8). The probabilities
P (7 = n) were computed in (5.11) above. The relation (5.7) implies that these series are related
in the form

1
G(s) = T F) (A.5)
for all s > 0 such that F(s) < 1.
It is clear that the radius of convergence of F' is at least 1. In fact,
F(1) = P(1 < 400). (A.6)
Moreover, if Zk21 Y, < +00, the radius of convergence of F' is
lim [y,]~Y/". (A7)

n—oo

This is a consequence of the fact that P(7 = n)/v,—1 — P(7 = +00) > 0, as concluded from
(5.11).

Statement (i) of the proposition is a consequence of the fact that the radius of convergence of
the series G is at least 1if ), ., 7 < 4o00. This follows from the relation (A.5) and the fact that

the right-hand side of (A.6) is strictly less than one when the chain (S’ﬁﬂ)) is transient. In fact,
both sides of (i) are necessary and sufficient conditions for the transience of the zero state.

To prove statement (iii) let us assume that ~,, < C+™ for some constants C < +oo and
0 < v < 1. By (A.7), the radius of convergence of F is larger than v~! > 1 while, by (A.6),
F(1) < 1. By continuity it follows that there exists sop > 1 such that F(sp) = 1 and, hence, by
(A.5), G(s) < 400 for all s < sg. By definition of G, this implies that P(S,, = 0) decreases faster
than ¢" for any ¢ € (sy ', 1).

Proof of (iv)
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We start with the following observation. If i1 +- - -+ = n, then maxi<m<k im > n/k and thus,
for g increasing

g(n) < g(kimax) ,

where imax = Maxi<m<k im- If we apply this to g(n) = 1/P (7 = n), which is increasing by (5.11),

we obtain
P(r=n)

We now invoke the following explicit relation between the coefficients of F' and G.
n k
P(S, =0) = Z Z H P(r =1im), (A.9)
m=1

for n > 1. Multiplying and dividing each factor in the rightmost product by P(r < +00), this
formula can be rewritten as

k
P(S,=0) =ZP(T<+oo)k Z H P(r =im |7 < +00). (A.10)

k=1 i, i > 1 m=1
i1+t ik =n

Combining this with (A.8) we obtain

n k .
P(r= <
P(S,=0) < Pr=n) S P(r<+o0)f 3 H T =im7=to0) =y 1)
k=1 il,.. ik Z 1 m=1
i1+ - + ik
If we single out the factor P(T = imax |7 < +00) = P(T = imax)/P(7 < +00) from the rightmost
product of (A.11) and use the hypothesis (A.1) we get

n
P(S,=0) < C’P(T:n)z:osz(7'<—|—oo)k_1 Z H P(T =iy |7 < +00),
k=1 i1, ig > 1 1<m<k
i din =n imPimax

(A.12)
for some constant C' > 0. To bound the last sum on the right-hand side we introduce a sequence
of independent random variables (7(*));cy with common distribution

P(r = j) = P(r=j|7 < 4). (A.13)
Then
n—k+1 k—1
3 P(ZT@'):n—j) < 1. (A.14)
j=1 i=1
Hence, (A.12) implies
P(S,=0) < Ca Z [ 'P(1 < —l—oo)]k_1 P(r=n) < const P(r =n).0O (A.15)
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