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Abstract

We obtain a Laplace asymptotic expansion, in orders of λ, of

Eρx
{
G(λx)e{−λ

−2F (λx)}
}

the expectation being with respect to a Gaussian process. We extend
a result of Pincus [9] and build upon the previous work of Davies and
Truman [1, 2, 3, 4]. Our methods differ from those of Ellis and Rosen
[6, 7, 8] in that we use the supremum norm to simplify the application of
the result.
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Introduction

There is a considerable literature on the development and use of Laplace asymp-
totic expansions in areas related to mathematical physics. The papers of Schilder
[10] and Pincus [9] dealt with Wiener integrals and Gaussian functional integrals
respectively. Schilder derived the full structure of the asymptotic expansion and
considered examples in the solution of functional equations and the calculus of
variations whilst Pincus derived the leading order behaviour for the asymp-
totic expansion and had applications to Hammerstein integral equations. In
the papers of Davies and Truman [1, 2, 3, 4] the Laplace asymptotic expansion
of a Conditional Wiener integral ( the underlying process being the Brownian
Bridge ) was developed to arbitrarily high orders and applications were made to
obtaining generalized Mehler kernel formulæ (for Hamiltonians including mag-
netic fields) and to the Bender-Wu formula (concerned with the behaviour of
perturbation series for ground state energies of the anharmonic oscillator). One
notable application of this work was in Davies and Truman [5] where the exis-
tence of the Meissner-Ochsenfeld effect was proven for an ideal charged Boson
gas.

Ellis and Rosen [6, 7, 8] have developed Laplace asymptotic expansions for
Gaussian functional integrals working with the L2 norm throughout. This gives,
perhaps, a cleaner approach to the estimates required in the arguments but in
our view the supremum norm is easier to work with especially when one considers
applications. It was this approach that was used in the initial extension of
Schilder’s [10] work and we continued to use it in our subsequent work.

The seminal paper of Schilder has been, and continues to be, of topical
interest. In more recent years Azencott and Doss [18] have used asymptotic
expansions to study the Schrödinger equation, whilst Azencott [19, 20] has used
asymptotic expansions to study the density of diffusions for small time and both
sequential and parallel annealing. Ben Arous (and co-workers) [21, 22, 23, 24]
have developed and utilised Laplace asymptotic techniques to study functional
integrals with respect to possibly degenerate diffusions, Strassen’s functional law
of the iterated logarithm and the asymptotics of solutions to non-homogeneous
versions of the KPP equation. Kusuoka and Stroock [25, 26] have developed
asymptotic expansions of certain Wiener functionals with degenerate extrema
for processes on abstract Wiener space whilst Rossignol [27] has used the Newton
polyhedron to study the case of Laplace integrals on Wiener space with an
isolated degenerate minimum. A generalization of the expansion formula of
Ben Arous has been developed by Takanobu and Watanabe [28] in which one
can handle Wiener functionals which are smooth in the sense of Malliavin but
not necessarily smooth in the sense of Frechet.

Some preliminary notation and the statement of the main result follow in
the next section. The subsequent section contains the necessary lemmas (and
proofs in some cases) to substantiate the theorem. Those lemmas due to Pincus
are included for clarity and his proofs are noted as such. The final section
contains the proof of the theorem. The proof is an amalgam and extension of
the methods of Pincus [9] and Schilder [10] influenced by our previous work on
Conditional Wiener integrals [1, 2, 3, 4].
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The Laplace Asymptotic Expansion

Let ρ(σ, τ), 0 ≤ σ, τ ≤ t, denote a continuous, symmetric, positive-definite
kernel. If ∫ t

0

∫ t

0

ρ(σ, τ)2 dσ dτ <∞

then we may define the Hilbert-Schmidt operator A by

(Ax) (σ) =

∫ t

0

ρ(σ, τ)x(τ) dτ, x ∈ L2[0, t].

Note that A is a compact, self-adjoint, positive-definite operator on L2[0, t].
We call ρ(σ, τ) a covariance function if ρ(σ, τ) = ρ(τ, σ) and if for any finite
set 0 < τ1 < τ2 · · · < τn < t the matrix [ρ(τi, τj] is non-negative definite.
Let Eρx denote expectation with respect to the mean zero Gaussian process with
covariance function ρ(σ, τ) and sample paths x ∈ C[0, t], the space of continuous
functions on [0, t]. Let Cρ[0, t] ⊂ C[0, t] denote the paths of the process.

Given that A has positive eigenvalues let {ρi}∞i=1 be the reciprocal eigenval-
ues in order of increasing magnitude. We will make use of the notation

(x, x) = ‖x‖22 =

∫ t

0

x2(τ) dτ, x ∈ L2[0, t],

and

‖x‖∞ = sup
0≤τ≤t

|x(τ)|, x ∈ C[0, t].

Theorem. Let ρ(σ, τ), 0 ≤ σ, τ ≤ t, be a continuous, symmetric, positive-
definite kernel for which there is a Gaussian process generated by ρ(σ, τ) hav-
ing continuous sample paths x(τ), 0 ≤ τ ≤ t. Let F (x) and G(x) be real
valued continuous functionals defined on Cρ[0, t] and suppose that the func-

tional H(x) = 1
2(A−

1
2x, A−

1
2x) + F (x) attains its unique global minimum of

b at x∗ ∈ D(A−
1
2 ) ⊂ Cρ[0, t]. If F (x) and G(x) satisfy the conditions below,

then

ebλ
−2

Eρx
{
G(λx)e{−λ

−2F(λx)}
}

= Γ0 + λΓ1 + · · ·+ λn−3Γn−3 +O(λn−2)

as λ → 0, where the Γi are integrals dependent only on the functionals F (x),
G(x) and their Frechet derivatives evaluated at x∗.

1. F (x) is measurable.

2. F (x) ≥ −1
2
c1(x, x)− c2 where c1 < ρ1 and c2 is real.

3. |F (x)− F (y)| ≤ K(x − y, x− y)α2 for ‖x− x∗‖∞ ≤ 2R, ‖y − x∗‖∞ ≤ 2R
and 0 < α < 1 where R is defined by

R = max{1, (4c2/γ)
1
2 , (2 +

√
2)(c2ρ1M/(ρ1 − c1))

1
2 }.

4. F (x) has n ≥ 3 continuous Frechet derivatives in a ball of radius δ centred
at x∗ in Cρ[0, t], δ > 0. We further assume that the Frechet derivatives
DjF satisfy DjF (x∗ + η)(x, x, . . . , x) = O(‖x‖j∞) if ‖η‖∞ < δ.
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5. For some ε > 0, for ‖η‖∞ < δ, Eρx{exp {−(1 + ε)D2F (x∗ + η)x2/2}} is
uniformly bounded.

6. G(x) is measurable and is continuous at x∗.

7. |G(x)| ≤ c4 exp {c3‖x‖2∞}, c3, c4 > 0.

8. G(x) has n− 2 continuous Frechet derivatives in a ball of radius δ centred
at x∗ in Cρ[0, t], δ > 0.

We will only prove the theorem in the case of b = 0 since we can deduce
the corresponding result for b 6= 0 by use of the substitution F (x)→ F (x)− b.
This Theorem is the analogue of Schilder’s Theorem C [10] and the proof follows
essentially the same route as taken by both Schilder [10] and Pincus [9].

Lemmas

Lemma 1. If the symmetric, positive-definite kernel ρ(σ, τ), 0 ≤ σ, τ ≤ t
satisfies

|ρ(σ, τ)− ρ(σ′, τ)| ≤K|σ − σ′|α,

where K > 0 and 0 ≤ α ≤ 1 then there is a Gaussian process generated by
ρ(σ, τ), with continuous sample paths x(τ), 0 ≤ τ ≤ t, such that if a > ξ > 0

Prob{‖x‖∞ ≥ a} ≤ c exp {−γa2},

where c depends only on ξ and γ = 9
(

24/ ln 2(α ln 2)4

2πtα44K

)
.

Proof. See either Simon [11] or Prohorov [13].

The following three lemmas are concerned with the properties of the opera-
tors A and A−

1
2 .

Lemma 2. A−
1
2 is a Hilbert-Schmidt operator with a kernel K(σ, τ) and is a

completely continuous mapping of L2[0, t] into C[0, t].

Proof. See Dunford and Schwarz [14].

Lemma 3.

a) ‖A− 1
2x‖2∞ ≤M(x, x), M = sup0≤σ≤t ρ(σ, σ).

b) (Ax, x) ≤ (x, x)/ρ1 where 1/ρ1 is the largest eigenvalue of the operator A.

c) (Ax,Ax) ≤ (Ax, x)/ρ1.

d) ‖Ax‖2∞ ≤M(x, x)/ρ1.

Proof. See Dunford and Schwarz [14].

Let D(A−1) denote the domain of the operator A−1. Define the Hilbert
space L2

A[0, t] as the Cauchy completion of the space D(A−1) under the norm

(A−1x, x)
1
2 .
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Lemma 4. The domain of A−
1
2 , D(A−

1
2 ) = L2

A.

Proof. See Mikhlin [15].

Now let [x, y]A denote the inner product on L2
A. We see from Lemma 4 that

[x, x]A = (A−
1
2x, A−

1
2x). In terms of L2

A Lemma 2 can be taken to mean that
every bounded set in L2

A is precompact in C.

The following lemmas deal with the functional H(x) = 1
2(A−

1
2 x, A−

1
2x) +

F (x) and its properties.

Lemma 5. Let F (x) be a real valued continuous functional on C[0, t] satisfying

F (x) ≥ −1

2
c1(x, x)− c2,

where c1 < ρ1, c2 ∈ R. It then follows that there exists at least one point
x∗ ∈ D(A−

1
2 ) at which H(x) assumes its global minimum over C[0, t].

Proof. (Pincus) Let B be the set of points at which H(x) attains its global
minimum, and let {xn} be a minimising sequence of H(x). We then have

B ⊂ D(A−
1
2 ) and that there exists a subsequence {xni} of {xn} such that

{xni} converges uniformly to a point x∗ ∈ B. By Lemma 3, (b), we have

1

2
(A−

1
2x, A−

1
2x) + F (x) ≥ 1

2
(ρ1 − c1)(x, x)− c2 ≥ −c2.

Thus we have H(x) bounded below for all x. Without loss of generality we may
assume that the global minimum of H(x) is zero. Clearly, when

(A−
1
2xn, A

−1
2xn)→ ∞ we will have H(xn) →∞ as n→∞. From this we see

that the sequence {(A− 1
2xn, A

−1
2xn) = [xn, xn]A} is bounded. By what imme-

diately follows the proof of Lemma 4 we see that {xn} contains a subsequence
{xni} which forms a Cauchy sequence in C[0, t]. Let limi→∞ xni = y ∈ C[0, t].

We now proceed to show that y ∈ D(A−
1
2 ). {xni} is a bounded set in L2

A and so
is weakly precompact. Since any Hilbert space is weakly complete we see that
there exists a subsequence of {xni} which converges weakly in L2

A to a point
u ∈ L2

A. We also denote this subsequence as {xni} to retain clarity. By the
definition of weak convergence we have

[z, xni]A → [z, u]A

as i→∞ for all z ∈ L2
A. In particular, when z ∈ D(A−1) we have

[z, xni − u]A = (A−1z, xni − u)→ 0

as i → ∞. Since {xni} converges uniformly to y it follows that if z ∈ D(A−1)
then

|(A−1z, xni − y)|2 ≤ (A−1z, A−1z)(xni − y, xni − y) → 0

as i→∞. Therefore, we have

lim
i→∞

[z, xni]A = (A−1z, u) = (A−1z, y)
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for all z ∈ D(A−1) which implies that u = y ∈ D(A−
1
2 ). In any normed linear

space the norm is weakly lower semi-continuous, i.e xn → x weakly implies

|x| ≤ lim
n

inf |xn|, (|x| = norm x).

Applying this to L2
A we write H(x) = 1

2 [x, x]A + F (x) and obtain

0 = lim
i→∞

H(xni) = lim
i

inf(
1

2
[xni, xni]A + F (xni)) ≥

1

2
[y, y]A + F (y) ≥ 0.

Therefore, 1
2(A−

1
2 y, A−

1
2 y) + F (y) = 0 which implies y = x∗ for some

x∗ ∈ B.

Lemma 6. Let F (x) satisfy the conditions of Lemma 5. Of those x satisfying
‖x−x∗‖∞ ≤ R let x∗ be the only point of B satisfying H(x)=0. It then follows
that given δ > 0 there exists a θ(δ) > 0 such that δ < ‖x − x∗‖∞ ≤ R implies
H(x) ≥ θ(δ).
Proof. (Pincus) From Lemma 5 we have that every minimizing sequence {xn}
that converges in C[0, t] and satisfies ‖x − x∗‖∞ ≤ R must converge to x∗.
Suppose that there exists a δ > 0 such that δ < ‖x − x∗‖∞ ≤ R implies
H(x) ≤ θ for all θ > 0. This implies that there exists a minimising sequence
{xn} such that δ ≤ ‖x− x∗‖∞ ≤ R. The first statement of the proof shows us
that the above is a contradiction.

Lemma 7. If H(x) has a global minimum at x∗, H(x∗) = 0, and F (x) is a
continuous, real valued functional on C[0, t] then

inf
x∈L2

[
1

2
(Ax, x) + F (Ax)] = 0.

Proof. Setting y = Ax, we have for x ∈ L2,

1

2
(Ax, x) + F (Ax) =

1

2
(A−1y, y) + F (y),

given y ∈ D(A−1). Since D(A−1) is dense in L2
A = D(A−

1
2 ), and convergence

in L2
A implies uniform convergence, we have the lemma.

We now state and prove six lemmas which give us two transformations for
the functional integral and specific bounds to ensure its existence.

Lemma 8. Let G(x) be a real valued, continuous functional on C[0, t], then

Eρx {G(x)} = Eρx
{
G(x+ y)e{−[y,y]A/2−[y,x]A}

}
where if one side of the equality exists then so does the other and they are equal.

Proof. See Kuo [16].

Lemma 9. Given ρ(σ, τ) continuous, G(x) an integrable functional and d > 0,
then

Eρx {G(x)} = Dρ(−d)Eρx
{
G(x+ dAx)e{−d

2(Ax,x)/2−d(x,x)}
}

where Dρ( ) is the Fredholm determinant of ρ(σ, τ). As in Lemma 8, if one side
of the inequality exists then so does the other and they are equal.
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Proof. Refer to Varberg [17] for the proof.

Lemma 10. Let Dρ( ) be the Fredholm determinant of ρ(σ, τ) then we have

Dρ(−d) ≤ Kβ exp {(1 + 2ρ1)tβ2d2/2ρ1}, d ≥ 1,

where β > 0. Kβ depends on β and may be explicitly determined.

Proof. From Lemma 9 we have,

Eρx {1} = Dρ(−d)Eρx
{
e{−d

2(Ax,x)/2−d(x,x)}
}
, d > 0.

Lemma 3, (b), enables us to write

1 ≥ Dρ(−d)Eρx
{
e{−(d2/2ρ1)(x,x)−d(x,x)}

}
= Dρ(−d)Eρx

{
e{−η(x,x)}

}
where η = d+ d2/2ρ1 > 0. Using (x, x) ≤ t‖x‖2∞ we have

1 ≥ Dρ(−d)Eρx
{
e{−ηt‖x‖

2
∞}
}
.

Let J = {x : ‖x‖∞ < β}, then

1 ≥ Dρ(−d)Eρx∈J
{
e{−ηtβ

2}
}

where Eρx∈J {G(x)} = Eρx {XJ(x)G(x)}, XJ (x) being the characteristic function
of the set J . Thus,

1 ≥ Dρ(−d)e{−ηtβ
2}Eρx∈J {1}

and so

Dρ(−d) ≤Kβ exp {(1 + 2ρ1)tβ2d2/2ρ1},

where K−1
β = Eρx∈J {1}, for d ≥ 1. Note that Kβ is a monotonic decreasing

function of β bounded below at infinity by 1.

Lemma 11. Suppose F (x) and G(x) are real valued measurable functions de-
fined on C[0, t] satisfying

|G(x)| ≤ c4 exp {c3‖x‖2∞}

F (x) ≥ −1

2
c1(x, x)− c2

where c3, c4 > 0, c1 < ρ1. If

0 < λ < min{1, (ρ1 − c1)/(ρ1c1 + 2Mc3), γ/(2c3 + 4c3
√
Mt/ρ1)}

then

Eρx
{
|G(λx)|e{−λ

−2F(λx)}
}

= Dρ(−λ−1)Eρx
{
|G(λx+Ax)|e{−λ−2{(Ax/2+λx,x)+F(λx+Ax)}}

}
is finite.
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Proof. Lemma 9 with d = λ−1 gives the equality of the two functional integrals
and using the given conditions on F (x) and G(x) we may write

Eρx
{
|G(λx+ Ax)|e{−λ

−2{(Ax/2+λx,x)+F(λx+Ax)}}
}

≤ c4Eρx
{

exp
{
c3λ

2‖x‖2∞ + 2c3λ‖x‖∞‖Ax‖∞ + c3‖Ax‖2∞
}

exp {−λ−2{(Ax/2 + λx, x)− c1(Ax+ λx, Ax+ λx)/2− c2}}
}

By Lemma 3, we have

(Ax/2 + λx, x)− c1(Ax+ λx, Ax+ λx)/2− λ2c3‖Ax‖2∞
= (Ax, x)/2− c1(Ax,Ax)/2 + λ[(x, x)− c1(x, Ax)]− λ2[c1(x, x)/2 + c3‖Ax‖2∞]

≥ (1− c1/ρ1)(Ax, x)/2 + λ(1− c1/ρ1)(x, x)− λ2[c1/2 +Mc3/ρ1](x, x)

= (1− c1/ρ1)(Ax, x)/2 + λ[(1− c1/ρ1)− λ(c1/2 +Mc3/ρ1)](x, x)

≥ (1− c1/ρ1)(Ax, x)/2 + λ(1− c1/ρ1)(x, x)/2, by choice of λ

≥ 0

since (Ax, x) ≥ ρ1(Ax,Ax) ≥ 0. Using the above and Lemma 3 again we have

Eρx
{
|G(λx+ Ax)|e{−λ

−2{(Ax/2+λx,x)+F(λx+Ax)}}
}

≤ c4 exp {c2λ−2}Eρx
{

exp {c3λ2‖x‖2∞ + 2c3λ
√
Mt/ρ1‖x‖2∞}

}
≤ c4 exp {c2λ−2}Eρx

{
exp {(γ/2)‖x‖2∞}

}
, by choice of λ.

Setting f(u) = Prob{‖x‖∞ < u} the integral above may be written as∫ ∞
0

eγu
2/2 df(u)

which is finite by virtue of Lemma 1. We have the existence of Dρ(−λ−1) by
Lemma 10 and so

Eρx
{
|G(λx)|e{−λ−2F(λx)}

}
is finite.

Lemma 12. If the covariance function ρ(σ, τ) is continuous with 0 < α ≤ 1,
K > 0 and 0 < λ ≤ 1 then

Eρx
{

exp {K(x, x)α/2/λ2−α − (x, x)/λ}
}

≤ 2 exp {K2/(2−α)/λ2−α/2}.

Proof. (Pincus) Let g(u) = Prob{‖x‖2 < u}, then

Eρx
{

exp {K(x, x)α/2/λ2−α − (x, x)/λ}
}

=

∫ ∞
0

exp {Kuα/λ2−α − u2/λ} dg(u)

≤
∫ K1/(2−α)

λ(1−α)/(2−α)

0

exp {Kuα/λ2−α − u2/λ}dg(u) + 1

8



since exp {Kuα/λ2−α − u2/λ} ≥ 1 for u in the latter range of integration
and

∫∞
0

dg(u) = 1. The supremum of the exponent above will be less than
Kuα/λ2−α evaluated at the largest possible value of u, and so

Eρx
{

exp {K(x, x)α/2/λ2−α − (x, x)/λ}
}
≤ exp {K2/(2−α)/λ(4−3α)/(2−α)}+ 1.

Since (4−3α)/(2−α) ≤ 2−α/2 and the fact that the exponent is always greater
than 1, the lemma is proven.

Lemma 13. Let F (x) and G(x) be real valued, continuous functionals on C[0, t]
such that the following conditions are satisfied.

1. F (x) ≥ −1
2
c1(x, x)− c2 where c1 < ρ1 and c2 is real.

2. |G(x)| ≤ c4 exp {c3‖x‖2∞}, c3, c4 > 0.

3. There exists an x∗ ∈ Cρ[0, t] such that the functional

H(x) = (A−
1
2x, A−

1
2x)/2 +F (x) attains its global minimum of zero at x∗

over C[0, t] and G(x) is continuous at x∗.

4. |F (x)− F (y)| ≤ K(x − y, x− y)α2 for ‖x− x∗‖∞ ≤ 2R, ‖y − x∗‖∞ ≤ 2R
and 0 < α < 1 where

R = max{1, (4c2/γ)
1
2 , (2 +

√
2)(c2ρ1M/(ρ1 − c1))

1
2 }.

Furthermore, suppose that x∗ is the only point in the sphere
{x ∈ C[0, t] : ‖x − x∗‖∞ ≤ R} at which H(x) attains its global minimum
of zero.

5. Both F (x) and G(x) are measurable.

Then for δ > 0 sufficiently small and the set J1, defined by

J1 = {x ∈ C[0, t] : ‖λx‖∞ ≤ δ/2, ‖Ax− x∗‖∞ ≤ δ/2}

we have

Dρ(−λ−1)Eρx∈Jc1
{
G(λx+Ax)e{−λ

−2{(Ax/2+λx,x)+F(λx+Ax)}}
}

= O(exp {−ξλ−2})
(1)

ξ > 0, for sufficiently small λ, Jc1 being the complement of J1.

This Lemma lies at the heart of the proof of the Theorem. It highlights the
connection with the standard large deviation estimates (Stroock [12]) but our
interest in a fully constructive result leads to the proof being somewhat involved.

Proof. Choose a δ such that δ < min{1, R} and θ(δ) < 1 where θ is as defined
in Lemma 6 and choose λ > 0 such that

λ < min{1, (1− c1/ρ1)/(c1 + 2Mc3/ρ1), (1/cv1 − 1/ρ1), (γ/4c3)
1
2 ,

γ/2c3(1 + 2
√
Mt/ρ1), [min{γδ2/32, θ(δ/2)/4}/K2/(2−α)

1 ]2/α}.

9



Let J1 be as defined in the hypothesis of the lemma and split Jc1 into the four
sets

J2 = {x : δ/2 < ‖λx‖∞ ≤ R, ‖Ax− x∗‖∞ ≤ R}
J3 = {x : ‖λx‖∞ ≤ δ/2, δ/2 < ‖Ax− x∗‖∞ ≤ R}
J4 = {x : R < ‖λx‖∞, ‖Ax− x∗‖∞ ≤ R}
J5 = {x : R < ‖Ax− x∗‖∞}

From Lemma 10 we have that

Dρ(−λ−1) ≤ Kβ exp {(1 + 2ρ1)tβ2/2ρ1λ
2}

and we may vary β > 0 as we desire. We will consider the integral as given in
the hypothesis over the above sets.

Let E2 be given by

E2 =
∣∣∣Eρx∈J2

{
G(λx+ Ax)e{−λ

−2{(Ax/2+λx,x)+F(λx+Ax)}}
}∣∣∣

≤ Eρx∈J2

{
|G(λx+Ax)|e{−λ

−2{(Ax/2+λx,x)+F(λx+Ax)}}
}

= Eρx∈J2

{
|G(λx+Ax)|e{−λ−2{(Ax/2,x)+F(Ax)+F(λx+Ax)−F(Ax)+(λx,x)}}

}
Now recall from Lemma 7 that infx∈L2 {(Ax/2, x) + F (Ax)} = 0 and so

E2 ≤ Eρx∈J2

{
|G(λx+Ax)|e{−λ−2{F(λx+Ax)−F(Ax)+λ(x,x)}}

}
.

By condition (2)

|G(λx+Ax)| ≤ c4 exp {c3‖λx+ Ax‖2∞}
≤ c4 exp {c3‖λx‖2∞ + 2c3‖λx‖∞‖Ax‖∞ + c3‖Ax‖2∞}.

Given that x ∈ J2 we have ‖λx‖∞ and ‖Ax‖∞ both bounded and so we may
choose K2 ∈ R+, an absolute constant, such that

|G(λx+ Ax)| ≤ K2.

Also for x ∈ J2 we have ‖Ax+ λx− x∗‖∞ ≤ 2R and ‖Ax− x∗‖∞ ≤ 2R giving

|F (Ax+ λx)− F (Ax)| ≤ K1(λx, λx)
α
2

and so we obtain

E2 ≤ K2Eρx∈J2

{
exp {K1(x, x)

α
2 /λ2−α − (x, x)/λ}

}
≤ K2

[
Eρx
{

exp {2K1(x, x)
α
2 /λ2−α − 2(x, x)/λ}

}] 1
2 [Eρx {XJ2(x)}]

1
2

by use of the Cauchy-Schwarz inequality. Now apply the result of Lemma 1

Eρx {XJ2(x)} ≤ c exp {−γδ2/4λ2}

and Lemma 12 to get

E2 ≤
√

2K2 exp {−λ−2{γδ2/8− λα/2K2/(2−α)
1 }} (2)
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Now consider the integral in equation (1) over the set J3. Let E3 be given
as

E3 =
∣∣∣Eρx∈J3

{
G(λx+ Ax)e{−λ

−2{(Ax/2+λx,x)+F(λx+Ax)}}
}∣∣∣

≤ Eρx∈J3

{
|G(λx+Ax)|e{−λ

−2{(Ax/2+λx,x)+F(λx+Ax)}}
}

≤ K2Eρx∈J3

{
e{−λ

−2{(Ax/2,x)+F(Ax)}}e{K1(x,x)
α
2 /λ2−α−(x,x)/λ}

}
using two of our previous arguments. Letting y = Ax we have (Ax/2, x) +
F (Ax) = H(y) and x ∈ J3 implies δ/2 < ‖y − x∗‖∞ ≤ R. Thus by Lemma 6,

(Ax/2, x) + F (Ax) > θ(δ/2) > 0, x ∈ J3.

Therefore,

E3 ≤ K2 exp {−λ−2θ(δ/2)}Eρx∈J3

{
exp {K1(x, x)

α
2 /λ2−α − (x, x)/λ}

}
≤ 2K2 exp {−λ−2{θ(δ/2)− λα/2K2/(2−α)

1 }}
(3)

by lemma 12.
Next define E4 by

E4 =
∣∣∣Eρx∈J4

{
G(λx+ Ax)e{−λ

−2{(Ax/2+λx,x)+F(λx+Ax)}}
}∣∣∣

≤ Eρx∈J4

{
|G(λx+Ax)|e{−λ−2{(Ax/2+λx,x)+F(λx+Ax)}}

}
.

By condition (2) of the hypothesis of the lemma

|G(λx+Ax)| ≤ c4 exp
{
c3‖λx+Ax‖2∞

}
≤ c4 exp

{
c3‖λx‖2∞ + 2λc3‖x‖∞‖Ax‖∞ + c3‖Ax‖2∞

}
.

Since x ∈ J4, ‖Ax− x∗‖∞ ≤ R implying ‖Ax‖∞ ≤ R+ ‖x∗‖∞. Thus,

E4 ≤ c4e{c3(R+‖x∗‖∞)2}Eρx∈J4

{
exp

{
c3‖λx‖2∞ + 2λc3‖x‖∞(R+ ‖x∗‖∞)

}
exp {−λ−2{(Ax/2 + λx, x) + F (λx+ Ax)}}

}
By condition (1) of our hypothesis and Lemma 3

(Ax/2 + λx, x) + F (λx+Ax)

≥ (Ax, x)/2 + λ(x, x)− c1(Ax+ λx, Ax+ λx)/2− c2
= (Ax, x)/2 + λ(x, x)− c1λ2(x, x)/2− c1λ(x, Ax)− c1(Ax,Ax)/2− c2
≥ (1− c1/ρ1)(Ax, x)/2 + λ(1− c1/ρ1 − c1λ/2)(x, x)− c2
≥ (1− c1/ρ1)[(Ax, x) + λ(x, x)]/2− c2, by choice of λ

≥ −c2.

Thus,

E4 ≤ c4 exp
{
c3(R+ ‖x∗‖∞)2

}
exp{c2λ−2}

Eρx∈J4

{
exp

{
c3‖λx‖2∞ + 2λc3‖x‖∞(R+ ‖x∗‖∞)

}}
≤K3 exp{c2λ−2} [Eρx {XJ4(x)}]

1
2[

Eρx
{

exp
{

2c3‖λx‖2∞ + 4λc3‖x‖∞(R+ ‖x∗‖∞)
}}] 1

2

11



by the Cauchy-Schwarz inequality. Using Lemma 1 and the bound of λ we may
now write

E4 ≤ K4 exp
{
−λ−2{γR2/2− c2}

}
. (4)

We finally consider E5,

E5 =
∣∣Eρx∈J5

{
G(λx+ Ax) exp {−λ−2{(Ax/2 + λx, x) + F (λx+ Ax)}}

}∣∣
≤ Eρx∈J5

{
|G(λx+Ax)| exp {−λ−2{(Ax/2 + λx, x) + F (λx+Ax)}}

}
≤ c4Eρx∈J5

{
exp

{
c3‖λx‖2∞ + 2λc3‖x‖∞‖Ax‖∞ + c3‖Ax‖2∞

}
exp {−λ−2{(Ax/2 + λx, x) + F (λx+ Ax)}}

}
≤ c4Eρx∈J5

{
exp

{
c3λ

2‖x‖2∞ + 2λc3
√
Mt/ρ1‖x‖2∞

}
exp {−λ−2{(Ax/2 + λx, x) + F (λx+ Ax)− c3λ2‖Ax‖2∞}}

}
≤ c4 exp{c2λ−2}Eρx∈J5

{
exp

{
(c3λ

2 + 2λc3
√
Mt/ρ1)‖x‖2∞

}
exp {−λ−2{(Ax/2 + λx, x)− (λx +Ax, λx+Ax)/2− c3λ2‖Ax‖2∞}}

}
.

From the proof of Lemma 11 we have

(Ax/2 + λx, x)− (λx+ Ax, λx+Ax)/2− c3λ2‖Ax‖2∞
≥ (1− c1/ρ1)(Ax, x)/2

≥ 0

and so we have

E5 ≤ c4 exp{c2λ−2}Eρx∈J5

{
exp

{
(c3λ

2 + 2λc3
√
Mt/ρ1)‖x‖2∞

}
exp

{
−λ−2(1− c1/ρ1)(Ax, x)/2

}}
.

If x ∈ J5 then ‖Ax− x∗‖∞ > R, and from Lemma 3 we have

R ≤ ‖Ax− x∗‖∞
= ‖A 1

2 (A
1
2 x−A− 1

2x∗)‖∞
≤M 1

2 (A
1
2 x−A− 1

2x∗, A
1
2x−A− 1

2 x∗)
1
2 .

Now

(Ax, x)
1
2 = (A

1
2x, A

1
2x)

1
2

≥ R/
√
M − (A−

1
2x∗, A−

1
2x∗)

1
2 .

From the given conditions on H(x) we have

0 = H(x∗) = (A−
1
2x∗, A−

1
2x∗)/2 + F (x∗) ≥ (ρ1 − c1)(x∗, x∗)/2− c2

and also

(A−
1
2x∗, A−

1
2 x∗) = −2F (x∗)

≤ c1(x∗, x∗) + 2c2

≤ 2c1c2/(ρ1 − c1) + 2c2

= 2c2ρ1/(ρ1 − c1).
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We now have (Ax, x)
1
2 ≥ R/

√
M −

√
2c2ρ1/(ρ1 − c1) and so

E5 ≤ c4 exp

{
−λ−2

{
(1− c1/ρ1)

[
R/
√
M −

√
2c2ρ1/(ρ1 − c1)

]2
/2− c2

}}
Eρx∈J5

{
exp

{
(c3λ

2 + 2λc3
√
Mt/ρ1)‖x‖2∞

}}
.

Since

Eρx∈J5

{
exp

{
(c3λ

2 + 2λc3
√
Mt/ρ1)‖x‖2∞

}}
≤ Eρx

{
exp

{
(c3λ

2 + 2λc3
√
Mt/ρ1)‖x‖2∞

}}
≤ K5/c4

for some choice of K5 ∈ R+ by choice of λ we finally obtain

E5 ≤K5 exp

{
−λ−2

{
(1− c1/ρ1)

[
R/
√
M −

√
2c2ρ1/(ρ1 − c1)

]2
/2− c2

}}
.

(5)

Recalling equation (1) we see that

|Dρ(−λ−1)Eρx∈Jc1
{
G(λx+ Ax) exp {−λ−2{(Ax/2 + λx, x) + F (λx+Ax)}}

}
|

≤ Dρ(−λ−1)Eρx∈Jc1
{
|G(λx+Ax)| exp {−λ−2{(Ax/2 + λx, x) + F (λx+ Ax)}}

}
≤ Dρ(−λ−1) [E2 + E3 + E4 + E5] .

We have the following equalities to consider.

Dρ(−λ−1)E2 ≤
√

2KβK2 exp
{
−λ−2{γδ2/8− λα/2K2/(2−α)

1 − (1 + 2ρ1)tβ2/2ρ1}
}
,

Dρ(−λ−1)E3 ≤ 2KβK2 exp
{
−λ−2{θ(δ/2)− λα/2K2/(2−α)

1 − (1 + 2ρ1)tβ2/2ρ1}
}
,

Dρ(−λ−1)E4 ≤ KβK4 exp
{
−λ−2{γR2/2− c2 − (1 + 2ρ1)tβ2/2ρ1}

}
,

Dρ(−λ−1)E5 ≤ KβK5 exp
{
− λ−2

{
(1− c1/ρ1)

[
R/
√
M −

√
2c2ρ1/(ρ1 − c1)

]2
/2

− c2 − (1 + 2ρ1)tβ2/2ρ1

}}
.

We choose β > 0 such that

β2 = (2ρ1/t(1 + 2ρ1)) min{γδ2/32, θ(δ/2)/4, (γR2/2− c2)/2,

((1 − c1/ρ1)
[
R/
√
M −

√
2c2ρ1/(ρ1 − c1)

]2
/2− c2)/2}

and we have

λ ≤ [min{γδ2/32, θ(δ/2)/4}/K2/(2−α)
1 ]2/α

giving

Dρ(−λ−1)E2 ≤
√

2KβK2 exp
{
−λ−2γδ2/16

}
Dρ(−λ−1)E3 ≤ 2KβK2 exp

{
−λ−2θ(δ/2)/2

}
13



Our choice of R gives

Dρ(−λ−1)E4 ≤ KβK4 exp
{
−λ−2γR2/8

}
Dρ(−λ−1)E5 ≤ KβK5 exp

{
−λ−2(1− c1/ρ1)

[
R/
√
M −

√
2c2ρ1/(ρ1 − c1)

]2
/8

}
If we define ξ by

min

{
1, γδ2/16, θ(δ/2)/2, γR2/8, (1− c1/ρ1)

[
R/
√
M −

√
2c2ρ1/(ρ1 − c1)

]2
/8

}

then we have

Dρ(−λ−1)Eρx∈Jc1
{
G(λx+ Ax) exp {−λ−2{(Ax/2 + λx, x) + F (λx+Ax)}}

}
= O(exp {−ξλ−2})

proving the lemma.

Proof of Theorem

Proof. First pick a δ that satisfies both the hypothesis of the Theorem and the
conditions in the proof of Lemma 13. Let X(δ/λ, x∗/λ, x) be the characteristic
function of the set {x ∈ Cρ[0, t] : ‖λx − x∗‖∞ ≤ δ}. We now consider the
integral

Eρx
{

[1−X(δ/λ, x∗/λ, x)]G(λx) exp
{
−λ−2F (λx)

}}
= Dρ(−λ−1)Eρx

{
[1−X(δ/λ, x∗/λ, x+ λ−1Ax)]G(λx+ Ax)

exp
{
−λ−2 {(Ax/2 + λx, x) + F (λx+ Ax)}

}
(the integral above is over the complement of the set {x : ‖λx+Ax−x∗‖∞ ≤ δ}).
If x ∈ J1, with J1 as in Lemma 13, then

‖λx+ Ax− x∗‖∞ ≤ ‖λx‖∞ + ‖Ax− x∗‖∞
≤ δ/2 + δ/2

= δ

and so x ∈ J1 implies x ∈ {x : ‖λx+Ax − x∗‖∞ ≤ δ} and thus
{x : X(δ/λ, x∗/λ, x+ λ−1Ax) = 1}c ⊂ Jc1. From Lemma 13 and the hypothesis
of the Theorem we have

Eρx
{

[1−X(δ/λ, x∗/λ, x)]G(λx) exp
{
−λ−2F (λx)

}}
= O(exp{−ξλ−2})

for λ sufficiently small. We need now only consider the integral

E1 = Eρx
{
X(δ/λ, x∗/λ, x)G(λx) exp

{
−λ−2F (λx)

}}
since O(exp{−ξλ−2}) ≤ O(λn−2) for any n. We now use the translation of
Lemma 8 with x→ x+ x∗/λ to give

E1 = Eρx
{
X(δ/λ, 0, x)G(λx+ x∗)

exp
{
−λ−2F (λx+ x∗)− λ−2(A−

1
2 x∗, A−

1
2x∗)/2− λ−1(A−

1
2x∗, A−

1
2x)
}}

.
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From Taylor’s theorem for functionals we have

F (λx+ x∗) = F (x∗) + λDF (x∗)x+ λ2D2F (x∗)(x, x)/2 + k3(λx)

= f0(0) + λf1(0, x) + λ2f2(0, x) + k3(λx), say for convenience1,

where |k3(λx)| = O(λ3‖x‖3∞) for ‖λx‖∞ < δ. Therefore,

E1 = Eρx
{
X(δ/λ, 0, x)G(λx+ x∗) exp

{
− λ−2[F (x∗) + (A−

1
2x∗, A−

1
2x∗)/2]

− λ−1[DF (x∗)x+ (A−
1
2x∗, A−

1
2x)]− f2(0, x)− λ−2k3(λx)

}}
= Eρx

{
X(δ/λ, 0, x)G(λx+ x∗) exp

{
− f2(0, x)− λ−2k3(λx)

}}
since

F (x∗) + (A−
1
2x∗, A−

1
2x∗)/2 = 0

DF (x∗)x+ (A−
1
2x∗, A−

1
2x) = 0

except possibly on a set of zero measure by definition of x∗.
The Taylor series for exp{z} is

∑n−1
i=0 z

i/i! + Rn(z) where

|Rn(z)| ≤
{

(zn/n!) exp{z} z ≥ 0,

|z|n/n! z < 0.

We may now write E1 in the form

E1 =
n−3∑
i=0

(1/i!)Eρx
{
X(δ/λ, 0, x)G(λx+ x∗) exp

{
− f2(0, x)

}
[−λ−2k3(λx)]i

}
+ Vn−2(λ)

Setting B(λ, x) to be the characteristic function of the set {x : k3(λx) ≥ 0},

|Vn−2(λ)|

≤ (1/(n− 2)!)Eρx
{
X(δ/λ, 0, x)|G(λx+ x∗)||λ−2k3(λx)|n−2

exp
{
− f2(0, x)

}
B(λ, x)

}
+ (1/(n− 2)!)Eρx

{
X(δ/λ, 0, x)|G(λx+ x∗)||λ−2k3(λx)|n−2

exp
{
− f2(0, x)− λ−2k3(λx)

}
[1−B(λ, x)]

}
From Taylor’s theorem for functionals it follows that if ‖λx‖∞ ≤ δ, then

λ2f2(0, x) + k3(λx) = k2(λx) = λ2f2(η, x)

for some η ∈ C[0, t] with ‖η‖∞ ≤ δ where by hypothesis |k3(λx)| ≤ C3λ
3‖x‖3∞,

1fj(η, x) ≡ DjF (x∗ + η)(x,x, . . . , x)/j!
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C3 being a constant. Thus

|Vn−2(λ)|

≤ (1/(n− 2)!)Eρx
{
X(δ/λ, 0, x)|G(λx+ x∗)|(C3λ)n−2‖x‖3(n−2)

∞

exp
{
− f2(0, x)

}
B(λ, x)

}
+ (1/(n− 2)!)Eρx

{
X(δ/λ, 0, x)|G(λx+ x∗)|(C3λ)n−2‖x‖3(n−2)

∞

exp
{
− f2(η, x)

}
[1− B(λ, x)]

}
By using the Cauchy-Schwarz inequality (or Hölder’s inequality) and condition
(5) of the theorem we have that Vn−2(λ) = O(λn−2). We have now proved that

E1 =
n−3∑
i=0

(1/i!)Eρx
{
X(δ/λ, 0, x)G(λx+ x∗) exp

{
− f2(0, x)

}
[−λ−2k3(λx)]i

}
+O(λn−2).

Since G(x) has n− 2 continuous Frechet derivatives in a neighbourhood of
x∗ we may write

G(λx+ x∗) =
n−3∑
j=0

λjgj(0, x) + Sn−2(λx)

where Sn−2(λx) = O(‖λx‖n−2
∞ ). Thus, using a similar argument to before we

have

E1 =
n−3∑
j=0

n−3∑
i=0

(1/i!)λjEρx
{
X(δ/λ, 0, x)gj(0, x) exp

{
− f2(0, x)

}
[−λ−2k3(λx)]i

}
+O(λn−2).

However k3(λx) = λ3f3(0, x) + · · ·+ λn−1fn−1(0, x) + kn(λx) where
λ−2kn(λx) = O(λn−2‖x‖n∞) for ‖λx‖∞ ≤ δ and so by using the above, condition
(5) of the theorem and Hölder’s inequality

E1 =
n−3∑
j=0

n−3∑
i=0

(−1)i(1/i!)λjEρx
{
X(δ/λ, 0, x)gj(0, x) exp

{
− f2(0, x)

}
[λf3(0, x) + · · ·+ λn−3fn−1(0, x)]i

}
+ O(λn−2).

It can be seen from the Hölder inequality, Lemma 1 and condition (5) of the
theorem that

n−3∑
j=0

n−3∑
i=0

(−1)i(1/i!)λjEρx
{

[1−X(δ/λ, 0, x)]gj(0, x) exp
{
− f2(0, x)

}
[λf3(0, x) + · · ·+ λn−3fn−1(0, x)]i

}
= O(P (λ) exp{−ηλ−2}),
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where P is a polynomial and η is a positive constant. ReplacingX by [1−(1−X)]
finally gives

E1 =
n−3∑
j=0

n−3∑
i=0

(−1)i(1/i!)λjEρx
{
gj(0, x) exp

{
− f2(0, x)

}
[λf3(0, x) + · · ·+ λn−3fn−1(0, x)]i

}
+ O(λn−2),

so that

E1 = Γ0 + λΓ1 + λ2Γ2 + · · ·+ λn−3Γn−3 + O(λn−2),

where the Γi are only dependent on the Frechet derivatives of F and G at x∗

for i = 1, 2, 3, . . ., n− 3. This completes the proof of the theorem.
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