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Abstract

We study random points on the real line generated by the eigenvalues in unitary
invariant random matrix ensembles or by more general repulsive particle systems.
As the number of points tends to infinity, we prove convergence of the empirical
distribution of nearest neighbor spacings. We extend existing results for the spacing
distribution in two ways. On the one hand, we believe the empirical distribution to
be of more practical relevance than the so far considered expected distribution. On
the other hand, we use the unfolding, a non-linear rescaling, which transforms the
ensemble such that the density of particles is asymptotically constant. This allows
to consider all empirical spacings, where previous results were restricted to a tiny
fraction of the particles. Moreover, we prove bounds on the rates of convergence.
The main ingredient for the proof, a strong bulk universality result for correlation
functions in the unfolded setting including optimal rates, should be of independent
interest.
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1 Introduction

The universal behaviour of eigenvalue statistics of random matrices has attracted
much interest over the last decades. Although random matrices have already been
studied by Wishart [35] in the 1920s, the development of the theory was promoted in
the 1950s by Wigner [34], who used eigenvalues of random matrices to model spectra of
complex nuclei. Montgomery’s surprising discovery [24] that zeros of the Riemann zeta
function behave statistically as eigenvalues of random matrices, led to a further increase
of interest. In recent years, the belief has emerged that limit laws obtained in random
matrix theory are also ubiquitous in large systems of strongly correlated particles on
the real line. One instance of this belief is the Bohigas-Giannoni-Schmit conjecture [5],
stating that level spacings of quantum systems with classically chaotic motion should be
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Empirical spacings of unfolded eigenvalues

given by random matrix laws. The ubiquity of certain limit laws has been established
within Random Matrix Theory (RMT) as the universality phenomenon, which means that
for large matrix sizes many eigenvalue statistics exhibit the same limit distributions for
essentially different matrix models, provided these models share the same symmetry
(e.g. real-symmetry, complex-Hermiticity etc.). These universal limits usually arise for
gap probabilities, spacing statistics or correlations of close eigenvalues in the bulk or at
the edge of the spectrum if the mean spacing between consecutive eigenvalues is one.

This paper is motivated by the following problem: Assume that we consider a compli-
cated (real-world) system. Based on a data set of real values obtained as a particular
realization of that system, we want to study the appearance of universal RMT laws. The
central question is how to detect such a universal behavior.

From a practical point of view, the easiest and most common statistic to consider is the
empirical nearest-neighbor spacing distribution: for an ordered N -tuple x1 ≤ · · · ≤ xN
and an interval IN we denote by σ(IN , x) the counting measure of the nearest neighbor
spacings in IN as

σ(IN , x) :=
∑

xj ,xj+1∈IN

δxj+1−xj . (1.1)

For a non-ordered x, we may define σ(IN , x) := σ(IN , x̄), where x̄ is an ordered tuple
built from the elements of x. The empirical nearest-neighbor spacing distribution of x in
IN is then given by the probability measure

σ̂(IN , x) :=
1∫∞

0
dσ(IN , x)

σ(IN , x).

If
∫∞

0
dσ(IN , x) = 0, then we define σ̂(IN , x) as an arbitrary probability measure on

R. Here, σ̂(IN , x) represents a histogram of the spacings from the data x and has as
such a high practical relevance. Indeed, histograms of spacings obtained in numerous
(real-world) systems have been compared to limit distributions from RMT, ranging from
level spacings in nuclear physics (see Mehta’s classical book [23] and the references
therein) to bus waiting times in certain Mexican cities [16].

Despite its relevance, results on empirical spacings in otherwise well-understood
random matrix ensembles are surprisingly sparse. Most results in the literature are
available for the expected spacing distribution instead of empirical spacings. Briefly
speaking, the expected spacing distribution is obtained by averaging over all realizations
of σ(IN , x) or σ̂(IN , x). A more formal definition and discussion is given below. This
preference of the expected spacing distribution is partly due to its direct relation to
correlation functions (marginals of fixed dimension). For important classes of random
matrices, these have particularly nice forms. This led to the convention of establishing
local universality in terms of correlation functions. However, to deduce strong univer-
sality results of empirical spacing statistics, quite strong forms of convergence of the
correlation functions are needed, e.g. uniformity in intervals growing with N . These
requirements are often not met by standard formulations of universality results.

In this paper, we prove the convergence of the empirical spacing distribution of
unfolded eigenvalues or more general particles on the real line to a universal distribu-
tion, the Gaudin distribution. The unfolding basically consists of applying the limiting
spectral distribution function to the eigenvalues/particles. This non-linear rescaling
transforms the limiting spectral measure into the uniform measure on [0, 1] and allows
for considering spacings of eigenvalues/particles from IN of macroscopic length, even
the whole spectrum. Our main theorem, Theorem 2.2, states the uniform convergence of
the distribution function of σ̂(IN , x) towards the Gaudin distribution function G in mean,
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i.e.

lim
N→∞

EN

(
sup
s∈R

∣∣∣∣∫ s

0

dσ̂(IN , x)−G(s)

∣∣∣∣) = 0. (1.2)

We also obtain rates of convergence in terms of the length of the interval IN .
Let us define the two models of this paper. In the first model, we consider the

eigenvalues of Hermitian matrices from unitary invariant ensembles: Given functions
V, f : J → R on J = [L−, L+] ∩R, which is a finite or infinite interval (−∞ ≤ L− < L+ ≤
∞, for precise assumptions see (GA)1), we define a density on RN by

PN,V,f (x) :=
1

ZN,V,f

∏
1≤i<j≤N

|xi − xj |2e−N
∑N
j=1 V (xj)+

∑N
j=1 f(xj)1J(xj). (1.3)

If f = 0, then we write PN,V instead of PN,V,0. We will slightly abuse notation by not
using different symbols for the measure and its density. PN,V,f is the joint density
of the eigenvalues of a random Hermitian matrix whose distribution has a density
proportional to exp(−Tr(NV (M) + f(M))) with respect to the “Lebesgue measure”
dM =

∏N
j=1 dMjj

∏
1≤j<k≤N dMR

jkdM I
jk on the space of N × N Hermitian matrices M

with the property that all eigenvalues of M lie in J . Most prominent in this class and
arguably in the entire RMT is the Gaussian unitary ensemble (GUE), which is obtained
by choosing V (t) = t2, f = 0 and J = R.

As a second model, we will consider ensembles recently studied by Götze and the
second author in [13], which generalize (1.3) by allowing for different interactions
between particles. Given Q, h : R → R smooth (see (GA)2 for our assumptions), we
define

PhN,Q(x) :=
1

ZhN,Q

∏
1≤i<j≤N

|xi − xj |2e−h(xi−xj)e−N
∑N
j=1Q(xj). (1.4)

We will call PhN,Q a repulsive particle system. As h is smooth, the densities PhN,Q and
PN,V,f vanish at the same order if two particles approach each other. It is conjectured
(cf. [13]) that the universal local limit laws should only depend on the strength of the
repulsion but be independent of the interaction at a non-zero distance and of the external
field Q.

Returning to spacings, let us review known results in RMT. The spacing distribution
has been understood best for a particular ensemble of random unitary matrices, the
circular unitary ensemble (CUE). It was introduced by Dyson [11] as a Haar distributed
unitary matrix, which may be seen as having a uniform distribution on the group of
N ×N unitary matrices. The eigenvalues lie on the unit circle and have a joint density
proportional to ∏

j<l

|eiθj − eiθl |2, (1.5)

where θ1, . . . , θN ∈ [0, 2π). Note the similarity in the interaction of (1.5) and (1.3). It has
been shown by Katz and Sarnak [15] that for some limiting function G we have

lim
N→∞

ECUE,N sup
s∈R

∣∣∣∣∫ s

0

2π

|IN |
dσ(IN , (N/2π)θ)−G(s)

∣∣∣∣ = O
(
|IN |−1/6+ε

)
(1.6)

for any ε > 0, where IN = [0, 2πN). Soshnikov [28] proved that (1.6) holds with a
rate of O((|IN |)−1/2+ε) for any ε > 0, where IN ⊂ [0, 2πN) is such that |IN | → ∞ as
N →∞, in expectation as in (1.6) and also almost surely. Furthermore, he proved that
the fluctuations around the limit G(s) are Gaussian.
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In (1.6),

G(s) :=
∑
k≥2

(−1)k

(k − 1)!

∫
[0,s]k

det [(S(zi − zj))1≤i,j≤k] |z1=0dz2 . . . dzk

is the distribution function of the so-called Gaudin distribution and S is the sine kernel,

S(t− s) :=
sin(π(t− s))
π(t− s)

. (1.7)

This probability measure had already been studied before in the physics literature (see
e.g. [23] for references). In particular, the density G′(s) is given as the second derivative
of the Fredholm determinant of the integral operator with the sine kernel on L2((0, s)).
Although this density does not seem to have a nice closed form expression, for many
practical purposes it is sufficient to consider the so-called Wigner surmise instead,
i.e. p2(s) := 32

π2 s
2e−

π
4 s

2

provides a good approximation to G′(s).
Before we can further review results on the spacing distribution for invariant ensem-

bles, we first need to introduce the notion of the equilibrium measure in order to rescale
the particles. It is well-known that under very mild assumptions on V and J , there is a
measure µV on R with compact support that is the weak limit of the expected empirical
spectral distribution of PN,V , i.e. for all continuous and bounded g : R → R

lim
N→∞

EN,V
1

N

N∑
j=1

g(xj) =

∫
gdµV . (1.8)

Here EN,V denotes the expectation w.r.t. PN,V . The measure µV is the unique probability
measure among all Borel measures on J which minimizes the functional

µ 7→
∫ ∫

|t− s|−1dµ(t)dµ(s) +

∫
V (t)dµ(t).

Throughout our paper we will assume that V is convex and real-analytic on a neighbor-
hood of the support of µV (see (GA)1). Then µV has a density, which we will abusing
notation also denote by µV , strictly positive in the interior of the support of µV .

In invariant ensembles the results for the spacing distribution are by far weaker
than for circular ensembles. For instance, until the recent [27] by the first author, only
the absolutely continuous intensity measure Eσ(IN , x) had been considered for these
ensembles. We recall that if x is random, then σ(IN , x) is a random measure and its
intensity measure is defined as∫

B

dEσ(IN , x) := E

∫
B

dσ(IN , x) (1.9)

for any measurable set B and E denotes expectation w.r.t. the probability measure
underlying the random variable x. We will call this measure the expected spacing
measure.

To our knowledge, the first rigorous result on the spacing distribution for unitary
invariant matrix ensembles is due to Deift et al. [10]. Let a ∈ supp(µV )◦ and tN > 0 such
that tN →∞ and tN/N → 0 as N →∞. Setting IN = [a− tN , a+ tN ], it has been shown
in [10] following the method of Katz and Sarnak that for real-analytic V and f ≡ 0 in
(1.3), we have

lim
N→∞

1

|IN |µV (a)

∫ s

0

dEN,V σ
(
IN , NµV (a)x

)
= G(s). (1.10)
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We observe that (1.10) clearly shows universality, as the r.h.s. of (1.10) does not
depend on V . Let us also remark that (1.10) expresses the weak convergence of the
distribution function of the asymptotically normalized expected spacing distribution to
the Gaudin distribution. Furthermore, due to the continuity of G, (1.10) actually holds
uniformly in s.

An analogous result for certain Hermitian Wigner matrices was proved by Johansson
in [14]. Universality was proved for large classes of Wigner matrices and invariant
ensembles in terms of the expected spacing measures by Bourgade, Erdős, Schlein,
Yau, Yin et al. (see [7] and the references therein). In particular, they show vague
convergence of the asymptotically normalized expected spacing measure. Moreover, the
limiting distribution has been proved to be universal for large classes of real-symmetric,
Hermitian or quaternionic self-dual random matrices as well as for general β-ensembles,
which are variants of (1.3) in which a parameter β > 0 replaces the exponent 2. The
universal limit depends on the symmetry type or on β, respectively [32].

Recently, there has been quite some interest in the distribution of a single spacing.
This was initiated by Tao, who proved in [29] that the Gaudin distribution is also the limit
in law of a single spacing in the bulk of the spectrum, say of xbN/2c+1−xbN/2c. This shows
that for expected spacings, an average over an increasing number of spacings as in
(1.10) is not necessary to obtain the limiting distribution. Tao proved this for Hermitian
Wigner matrices and the result was later extended in [12] and [4] to all symmetry classes
and β-ensembles. Moreover, the results in [12] and [4] allow to consider statistics of the
form (for ordered xi)

EN,V
1

|I|
∑
i∈I

g(µV,iN(xi+1 − xi)), (1.11)

where µV,i := µV (qi) and qi is the i/N -quantile of the distribution µV . The test function g
is assumed to be smooth and of compact support, thus determining vague convergence.
The index set I is assumed to contain only bulk eigenvalues in case of [12] and is
arbitrary in [4]. Both works show that in the large N limit, (1.11) become independent
of V , thereby showing universality. However, to deduce convergence to the Gaudin
distribution via [29], the set I has to fulfill εN ≤ min I ≤ max I ≤ (1 − ε)N for some
ε > 0.

It is instructive to compare the statements (1.11) and (1.2). In (1.11) as well as
in (1.10), by first taking the expectation, the spacing statistics are averaged over all
realizations, thus making it non-empirical. After that, this average is compared to the
limiting quantity. In (1.2), the empirical statistic is first compared to the limit. The error
of that comparison is then shown to vanish in L1. It is further important to note that
for statements like (1.2), the number of eigenvalues in the statistic necessarily has to
increase with N . Indeed, the smooth function G can only be approximated well by the
step function

∫ ·
0
dσ̂(IN , x) if the number of steps goes to infinity. The convergence of

(1.11) for a finite set I is only possible since taking the expectation means averaging
over infinitely many spacings (from all different realizations).

Let us turn to empirical spacings. In [27] the first author of this work shows under
certain assumptions on the Christoffel-Darboux kernel (see (2.5) for a definition of the
kernel) that for unitary invariant ensembles

lim
N→∞

EN,V sup
s∈R

∣∣∣∣∫ s

0

1

µV (a)|IN |
dσ(IN , NµV (a)x)−G(s)

∣∣∣∣ = 0 (1.12)

with IN , a as in (1.10). This result is quite analogous to (1.6) for the CUE and was also
shown in [27] for eigenvalues of real-symmetric and quaternionic self-dual ensembles.
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However, this result has the drawback that the considered spacing statistics are very
inefficient in an empirical sense in that only a tiny fraction of the eigenvalues is used
for the statistics. Indeed, the expected number of rescaled eigenvalues NµV (a)xj in
IN = [a − tN , a + tN ] is about 2tN and thus by the condition tN/N → 0, the fraction of
used eigenvalues even goes to 0, as N gets large. This unsatisfying situation is due to
the scaling of the eigenvalues

NµV (a)xj , j = 1, . . . , N, (1.13)

which we will call localized around the point a. To obtain a universal limit, the eigen-
values have to be rescaled such that their mean spacing is (asymptotically) one. This
is achieved by the rescaling (1.13) in a small vicinity of a point a in the bulk of the
spectrum, where the mean spacing is (µV (a)N)−1 + o(N−1). But as the equilibrium
density µV (a) is generically not constant in a (in contrary to the CUE), a linear rescaling
such as (1.13) does not allow to consider spacings of eigenvalues which are spread over
an interval of macroscopic size. To overcome this problem, we will in this article unfold
the eigenvalues with the distribution function of µV . This natural non-linear rescaling
produces an ensemble with constant equilibrium density.

2 Statement of Results

Before we give a precise formulation of our results, we specify our assumptions for
the ensembles (1.3) and (1.4). Except for the support J , the class of ensembles PhN,Q
formally subsumes the unitary invariant ensembles PN,V . However, our assumptions
depend on the specific type of ensemble and therefore we will consider two different
sets of assumptions. For PN,V,f these assumptions are

(GA)1

1. V, f : J → R are real analytic, J = [L−, L+] ∩ R with −∞ ≤ L− <

L+ ≤ ∞.

2. inft∈J V
′′(t) > 0. (strict convexity)

3. lim|x|→∞ V (x)−cf(x) =∞ for some c > 0 in case that J is unbounded.

4. L−, L+ do not belong to the support of the equilibrium measure µV .

If f = 0, then (2) can be replaced by the weaker condition

(2’) V ′ is strictly increasing.

For the ensembles PhN,Q, we make the following assumptions.

(GA)2

1. Q, h : R → R are real-analytic and symmetric around 0.

2. αQ := inft∈RQ
′′(t) > 0.

3. h is a Schwartz function with exponentially fast decaying Fourier
transform.

Under (GA)2 , it has been shown in [13] that for given h, for each Q with αQ large
enough (depending on h), there exists a probability measure µhQ such that (1.8) holds

with µhQ replacing µV and EhN,Q replacing EN,V . Furthermore, µhQ has also the generic
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form (4.6) for V := Q+ h ∗ µhQ, where ∗ denotes convolution.

Remark 2.1 (On the assumptions). One could without substantial changes also introduce
the external field f to the model PhN,Q. For the sake of notational convenience this is not
done here. The model could also be studied on an interval J , which might not be the
whole line. This would require a condition analogous to (GA)1 (4) for PhN,Q. For repulsive
particle systems the equations (4.1), which determine the endpoints of the equilibrium
measure, depend on the equilibrium measure itself, which makes checking an analog of
(GA)1 (4) more complicated than for invariant ensembles. Nevertheless, we will show
in our analysis that a truncation to large enough J only produces an asymptotically
negligible error.

To define the scaling of the particles, for PN,V,f let FV denote the distribution function
of the equilibrium measure µV and consider the unfolded eigenvalue

x̃i := NFV (xi).

If x is a random configuration sampled from PN,V,f , then x̃ is a point process on [0, N ]

with asymptotically constant density and mean spacing 1, at least in the bulk. If x is
distributed according to the repulsive particle system PhN,Q, let FhQ denote the distribution

function of µhQ and define

x̃i := NFhQ(xi).

Now, our main theorem on the spacing distribution reads as follows.

Theorem 2.2. Let IN ⊂ [0, N ] be a sequence of intervals with

lim inf
N→∞

1

N
dist(IN , {0, N}) > 0 and lim

N→∞
|IN | → ∞.

1. Let PN be either PN,V,f satisfying (GA)1 or PhN,Q satisfying (GA)2 with αQ large
enough (this depends on h only) and h negative-definite. Then for any ε > 0

EN

(
sup
s∈R

∣∣∣∣∫ s

0

dσ̂(IN , x̃)−G(s)

∣∣∣∣) = O
(
|IN |−

1
4 +ε
)
. (2.1)

2. If PN = PhN,Q with h not necessarily negative-definite, then for αQ large enough
(2.1) holds with the O-term being replaced by o(1).

In (1) and (2), σ̂(IN , x̃) can be replaced by |IN |−1σ(IN , x̃) without altering the result.

Remark 2.3.

1. In the language of mathematical statistics, (2.1) implies that σ̂(IN , x̃) is an asymp-
totically consistent estimator for the Gaudin distribution, considered in the Kol-
mogorov metric. Note that similar results on the expected spacing distribution
like (1.10) only show the asymptotic unbiasedness. For applications, it would be
favorable to have the unfolding with F := FV or F := FhQ being replaced by an
unfolding based solely on the empirical values. We remark that using the empirical
distribution function as a naive estimator for F would result in a non-random x̃.
However, we expect that a smoothed empirical distribution function should yield
the desired. In fact, this is a typical procedure in statistical analysis. It will be
considered in a future work.
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2. To our knowledge, Theorem 2.2 is the first result on rates of convergence to
the Gaudin distribution for invariant ensembles. For the simpler CUE a rate of
O(|IN |−1/6+ε) for any ε > 0 was derived in [15] resp. a rate of O(|IN |−1/2+ε) was
shown in [28]. Numerical experiments (cf. [19]) suggest that the optimal rate for
the GUE is |IN |−1/2, possibly with some logarithmic factor. The dependence of
the rate on |IN | reflects the fact that necessarily a growing number of empirical
spacings has to be considered in order to obtain convergence.

3. For negative-definite h, an exact representation of PhN,Q in terms of determinantal
ensembles will be derived in Section 5, which allows to transfer rates of conver-
gence from the unitary invariant ensembles to the repulsive particle systems. For
general h, only convergence can be shown, see Remark 5.2 for more details. On
the other hand, if h is positive-definite, then it suffices to have αQ > supt∈R−h′′(t).

Abandoning any rate of convergence, we an also deduce the result of Theorem 2.2
for IN = [0, N ].

Corollary 2.4. With PN as in Theorem 2.2 (1) or (2), we have

lim
N→∞

EN

(
sup
s∈R

∣∣∣∣∫ s

0

dσ̂([0, N ], x̃)−G(s)

∣∣∣∣) = 0. (2.2)

Remark 2.5. Note that in (2.2), edge spacings are included. Although correlations
between eigenvalues at the edge are not given by the sine kernel, the number of edge
spacings is relatively small and thus does not change the limit distribution.

The next corollary shows a much better rate of convergence for the expected spacing
distribution. We believe that this rate is almost optimal.

Corollary 2.6. Let PN , IN be as in Theorem 2.2 (1). Then for any ε > 0

sup
s∈R

∣∣∣∣∫ s

0

1

|IN |
dENσ(IN , x̃)−G(s)

∣∣∣∣ = O
(
|IN |−1+ε

)
.

Remark 2.7. Recall from the discussion around (1.11) that a similar result should also
hold for intervals with |IN | of order 1, probably with rate O(N−1+ε). As Corollary 2.6 is
merely a byproduct of an analysis which necessarily deals with growing intervals, we
will not pursue this here.

A major ingredient to the proof of Theorem 2.2 is a strong form of bulk universality
for correlation functions, which should be of independent interest. To state it, let us
recall the notion of correlation functions. For a probability measure PN (x)dx on RN ,
invariant under permutations of its arguments, the k-th correlation function is the map
RkN : Rk → R,

RkN (t1, . . . , tk) :=
N !

(N − k)!

∫
RN−k

PN (t1, . . . , tN )dtk+1 . . . dtN . (2.3)

Note that in previous works of the second author, the correlation functions are defined
as the k-dimensional marginal densities of PN and therefore differ from (2.3) by the
factor N !/(N − k)!. The definition in (2.3) is more convenient for dealing with sums and
will be used throughout this article.

A crucial fact for many computations and universality proofs is that unitary invariant
ensembles are determinantal, that is

RkN,V,f (t) = det(KN,V,f (ti, tj))1≤i,j≤k, (2.4)
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such that the analysis boils down to studying the so-called Christoffel-Darboux kernel

KN,V,f (t, s) :=

N−1∑
j=0

pj,N (t)pj,N (s)e−N/2(V (t)+V (s))+1/2(f(t)+f(s), (2.5)

where pj,N , j = 0, 1, . . . are the orthonormal polynomials with positive leading coefficients
to the weight e−(1/2)(NV (t)−f(t)) on J .

To formulate a certain uniformity in the field f , let for a domain D ⊂ C, (XD, ‖ · ‖D)

denote the Banach space of functions f : D → C which are analytic, bounded and
real-valued on D ∩R. Here ‖ · ‖D denotes the sup-norm on D.

Theorem 2.8. Let IN ⊂ [0, N ] be such that lim infN→∞ dist(IN , {0, N})/N > 0.

1. Let V, f satisfy (GA)1. Then

1

NµV (F−1
V ( tN ))

KN,V,f

(
F−1
V

(
t

N

)
, F−1

V

( s
N

))
=

sin(π(t− s))
π(t− s)

+O
(

1

N

)
,

where the error term is uniform for t, s ∈ IN .
2. Assume in addition to (1) that J is compact and let 0 < η < 1. Then there is a

complex domain D ⊃ J such that (1) holds uniformly for f ∈ XD with ‖f‖D ≤ Nη if
O(1/N) in (1) is replaced by O(Nη−1).

3. Let RkN be the k-th correlation function of PN with PN as in Theorem 2.2 (1). Then,
abbreviating t̂j := F−1

V (tj/N) in the unitary invariant case and t̂j := (FhQ)−1(tj/N)

in the case PN = PhN,Q, as well as writing µ for µV and µhQ, respectively, we have
for any ε > 0

1

Nk
∏k
j=1 µ(t̂j)

RkN (t̂1, . . . , t̂k) = det

[
sin(π(ti − tj))
π(ti − tj)

]
1≤i,j≤k

+O
(
N−1+ε

)
with the O term being uniform for t1, . . . , tk ∈ IN . If PN = PN,V,f , then the
statement is valid for ε = 0. For PN as in Theorem 2.2 (2), the statement is valid
with the O term replaced by o(1).

Remark 2.9. The convergence of the Christoffel-Darboux kernel of some determinantal
ensemble to the sine kernel is a very typical result in RMT and the content of numerous
papers in the field. We will mention here only very few seminal papers and refer to [20]
for an overview instead. A first universality proof was given by Pastur and Shcherbina
[25] (see also [26]) for sufficiently smooth V . Deift et al. [10] showed universality for
real-analytic V using Riemann-Hilbert techniques and more recently Levin and Lubinsky
[21] established it under very mild assumptions on V using complex analysis.

In the existing literature, the kernel is usually considered in the localized scaling, that
is KN (a+ t

Nµ(a) , a+ s
Nµ(a) ), where a is in the bulk of the spectrum and µ is the limiting

spectral density. Then t and s are typically assumed to lie in some fixed compact set,
that is their distance is bounded in N . In the recent [17], convergence is shown under
the assumption |t− s| = o(N) with the rate O((1 + |t|+ |s|)/N), which is optimal in the
localized scaling. To our knowledge, Theorem 2.8 is the first version of bulk universality
for unitary invariant ensembles which does not require all eigenvalues to lie in a vicinity
of some point a. Moreover, the rate in part (1) of the theorem is optimal, as can be seen
for instance in (4.8).

Theorem 2.2 will be deduced from the following more general result.

Theorem 2.10. Let for each N , IN ⊂ [0,∞) be an interval and PN (x)dx be a probability
measure on RN , invariant under permutation of the coordinates. Let RkN denote the k-th
correlation function of PN (x)dx, defined in (2.3). Further let C0 > 0 denote a constant
such that the following conditions are satisfied:
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1. For all N ∈ N we have

sup
t1,...,tk∈IN

∣∣∣∣ 1

Nk
RkN (t1/N, . . . , tk/N)

∣∣∣∣ ≤ Ck0 .
2. There exists κN > 0 with limN→∞ κN =∞ such that for all N ∈ N we have

sup
t1,...,tk∈IN

∣∣∣∣ 1

Nk
RkN (t1/N, . . . , tk/N)− Sk(t1, . . . , tk)

∣∣∣∣ ≤ kk/2+1 · Ck0 ·
1

κN
,

where for S as in (1.7), Sk is given by

Sk(t1, . . . , tk) := det [S(ti − tj)]1≤i,j≤k .

Then for any ε > 0

EN

(
sup
s∈R

∣∣∣∣∫ s

0

dσ̂(IN , Nx)−G(s)

∣∣∣∣) = O
(

min(|IN |, κN )−
1
4 +ε
)
.

The same result holds with σ̂(IN , Nx) being replaced by |IN |−1σ(IN , Nx).

The preceding theorem can also be used to show universality of the spacing distribu-
tion in the localized scaling.

Corollary 2.11. Let PN be as in Theorem 2.2 (1). Set µ = µV if PN = PN,V,f and µ = µhQ
if PN = PhN,Q. Let a be such that µ(a) > 0 and IN ⊂ J be a symmetric interval with
center a and limN→∞|IN | =∞ but limN→∞|IN |/N = 0. Then

EN

(
sup
s∈R

∣∣∣∣∫ s

0

dσ̂(IN , Nµ(a)x)−G(s)

∣∣∣∣) = O
(

min(|IN |, N/|IN |)−
1
4 +ε
)
.

If PN is as in Theorem 2.2 (2), the last statement is valid with the O term being replaced
by o(1). In either case, the statements remain valid if σ̂(IN , Nµ(a)x) is replaced by
(|IN |µ(a))−1σ(IN , Nµ(a)x).

Remark 2.12. Note that for |IN | �
√
N , Theorem 2.2 provides a better rate of conver-

gence for the unfolded particles than Corollary 2.11 for the localized particles.

We will finish this section with some concluding remarks. The repulsive particle
systems PhN,Q appeared first in a more general setting with many-body interactions in
[8], where under some convexity condition on the additional interaction results on the
equilibrium measure were announced. Further results associated with global asymptotics
in such models can be found in [6] and [9]. Local bulk universality was proved for PhN,Q
in [13] and for the β variants in [33]. Edge universality and fine asymptotics of the
largest particle have been considered for PhN,Q in the recent [18].

The paper is organized as follows: After a brief outline, the proof of Theorem 2.10 will
be given in Section 3. Here we follow the method developed by Katz and Sarnak in [15],
streamlining and optimizing in order to obtain better rates of convergence. Theorem 2.8
(1) and (2) will be proved in Section 4. The proof of Theorem 2.8 (3) for the repulsive
particle systems relies on a non-trivial reduction to the unitary invariant case. An outline
of the method from [13] and the proof of Theorem 2.8 (3) are contained in Section 5.
The proofs of Theorem 2.2 and the corollaries are given in Section 6.
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3 Investigation of the Spacing Distribution
– Proof of Theorem 2.10

Theorem 2.10 will be proved first with the asymptotic and non-random normalization
|IN |, the case of the exact but random normalization will be discussed at the end of the
proof. Moreover, let us note that in this case the statement of Theorem 2.10 is trivial
if |IN | is bounded in N . Hence, we will from now on assume that |IN | → ∞, as N →∞.
Let us furthermore make some notational remarks. By C we denote absolute positive
constants that may change from line to line. Finally, note that we often suppress certain
N -dependencies.

A major disadvantage of σ(IN , x) is its dependence on the ordering x1 ≤ · · · ≤
xN , which prevents an efficient use of correlation functions. This problem can be
circumvented by using the measures

γk(IN , x) :=
1

|IN |
∑

i1<...<ik,
xi1 ,xik∈IN

δ(max1≤j≤k xij−min1≤j≤k xij ),

which are symmetric and fulfill the relations

1

|IN |

∫ s

0

dσ(IN , x) =

N∑
k=2

(−1)k
∫ s

0

dγk(IN , x), N ∈ N, (3.1)

(−1)m
1

|IN |

∫ s

0

dσ(IN , x) ≤ (−1)m
m∑
k=2

(−1)k
∫ s

0

dγk(IN , x), m ≤ N. (3.2)

The proof of Theorem 2.10 consists of three steps. The first step establishes the
point-wise convergence

lim
N→∞

EN

(∫ s

0

1

|IN |
dσ(IN , Nx)

)
= G(s) (3.3)

and bounds the difference of
∫ s

0
1
|IN |dσ(IN , Nx) and G(s) in terms of the variances of the

γk’s. In the second step, these variances are estimated. From this we can deduce a
bound on

EN

(∣∣∣∣ 1

|IN |

∫ s

0

dσ(IN , Nx)−G(s)

∣∣∣∣) (3.4)

(see Corollary 3.4). The difference between (3.4) and the quantity to be estimated
in Theorem 2.10, is that we need to take the supremum over all s before taking the
expectation. This issue is addressed by considering (3.4) at a (growing) number of nodes
si rather than at a single s. The respective results are provided in Section 3.3.

Before we turn to the proof of Theorem 2.10, we note an important estimate for power
sums. We will frequently encounter sums of the form

∑L
k=2 akz

k with L and z growing
in N and with different sequences (ak). To provide a unified and efficient treatment of
these sums, the following simple lemma will prove useful. For an entire function f , recall
that f is said to be of finite order if the inequality

max
|z|≤r
|f(z)| < er

κ
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holds for all r large enough and some κ <∞. The greatest lower bound of all such κ is
called order of f . If f has a power series expansion

∑∞
k=0 akz

k, then the order ρ can be
found via

ρ = lim sup
k→∞

− k log k

log|ak|
. (3.5)

If f has finite order ρ, then it is said to be of finite type, if

max
|z|≤r
|f(z)| < eζr

ρ

holds for r large enough and some finite ζ. The greatest lower bound ν of all such ζ is
called the type of f and can be determined via

(νeρ)1/ρ = lim sup
k→∞

k1/ρ|ak|1/k. (3.6)

Lemma 3.1. Let f(z) =
∑∞
k=0|ak|zk be an entire function of order at most 2 and finite

type. Let (LN )N , (δN )N , (MN )N be sequences with LN > 0, LN = o(logMN ) and 0 <

δN <
√

logMN . Then ∣∣∣∣∣
LN∑
k=0

akδ
k
N

∣∣∣∣∣ = O(Mε
N )

for any ε > 0.

Proof. Let ε > 0 and ν denote the type of f . For any K > 1, we have the trivial estimate

LN∑
k=0

|ak|δkN ≤ KLN

LN∑
k=0

|ak|
(
δN
K

)k
≤ KLN f(δN/K) ≤ CKLN eν

δ2N
K2 ≤ CKLNM

ν
K2

N .

Choosing K = K(ε) large enough, the lemma is proved. Here we used that KLN is of
subpolynomial growth in MN , due to our assumption on LN .

3.1 The convergence of EN
(∫ s

0
1
|IN |dσ(IN , Nx)

)
We turn to the proof of (3.3). For s > 0 and t1, . . . , tk ∈ R, we denote by χs,IN the

function

χs,IN (t1, . . . , tk) := 1(0,s)

(
max

i=1,...,k
ti − min

i=1,...,k
ti

) k∏
i=1

1IN (ti).

To select certain entries of a vector x = (x1, . . . , xN ) ∈ RN we use the notation

xT := (xi1 , . . . , xik), T = {i1, . . . , ik}, 1 ≤ i1 < . . . < ik ≤ N.

With this notation we can rewrite∫ s

0

dγk(IN , Nx) =
1

|IN |
∑

T⊂{1,...,N},|T |=k

χs,IN (NxT ) (3.7)

and we obtain

EN

(∫ s

0

dγk(IN , Nx)

)
=

1

|IN |k!Nk

∫
χs,IN (t1, . . . , tk)RkN (t1/N, . . . , tk/N)dt1 . . . dtk. (3.8)
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The following lemma establishes the convergence of the terms EN
(∫ s

0
dγk(IN , Nx)

)
and further provides a useful estimate for the proof of Theorem 2.10. The proof is
essentially contained in [27] and we revisit the arguments in order to adjust them to the
current setting.

Lemma 3.2. Let the conditions of Theorem 2.10 be satisfied.

1. For k ≥ 2 we have

EN

(∫ s

0

dγk(IN , Nx)

)
=

∫
0≤z2≤...≤zk≤s

Sk(0, z2, . . . , zk)dz2 . . . dzk

+
1

(k − 1)!
skO

(
1

|IN |

)
Ck0 + sk−1Ck0

kk/2+1

(k − 1)!

1

κN
, (3.9)

where the O-term is uniform for s ∈ R and k ∈ N.

2. For AN := min(|IN |, κN ), 0 < s := sN , sN = O(
√

logAN ) and L := LN ∈ N such that√
logAN = o(LN ) and LN = o(logAN ), we have for any ε > 0∣∣∣∣G(s)− 1

|IN |

∫ s

0

dσ(IN , Nx)

∣∣∣∣ ≤ L∑
k=2

∣∣∣∣EN (∫ s

0

dγk(IN , Nx)

)
−
∫ s

0

dγk(IN , Nx)

∣∣∣∣
+O

(
1

A1−ε
N

)
.

Proof. In order to prove (1), we consider (3.8) and use the uniform convergence of the
correlation functions in (2) of Theorem 2.10, i.e. we use that 1

Nk
RkN (t1/N, . . . , tk/N) =

Sk(t1, . . . , tk) + kk/2+1 · Ck0 · 1
κN

uniformly on IN . We further use the obvious estimate

1

|IN |k!

∫
Rk
χs,IN (t)dt ≤ sk−1

(k − 1)!
(3.10)

to obtain

EN

(∫ s

0

dγk(IN , Nx)

)
=

1

|IN |k!

∫
Rk
χs,IN (t)Sk(t)dt+

sk−1

(k − 1)!
kk/2+1Ck0 ·

1

κN
.

The translational invariance of Sk and the change of variables z1 = t1, zi = ti − t1, i =

2, . . . , k lead to

1

|IN |k!

∫
Rk
χs,IN (t)Sk(t)dt =

1

|IN |

∫
0≤z2≤...≤zk≤s

z1∈IN , z1+zj∈IN ,j=2,...

Sk(0, z2, . . . , zk)dz1 . . . dzk.

Observe that in the latter integral, we integrate over z1 from IN except for an interval
which has at most length s. The estimate in (1) is then obvious from supt∈IkN |Sk(t)| ≤ Ck0
(see Theorem 2.10 (1)). Observe that statement (1) together with (3.2) already implies
(3.3).

To show (2), we first introduce the notation

E(s, k) :=

∫
0≤z2≤...≤zk≤s

Sk(0, z2, . . . , zk)dz2 . . . dzk. (3.11)

The idea is to use (3.2) and bound G(s) and
∫ s

0
dσ(IN , Nx) from above and from below

by alternating sums over E(s, k) and
∫ s

0
dγk(IN , Nx), respectively. Then we obtain for
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L ∈ N ∣∣∣∣G(s)− 1

|IN |

∫ s

0

dσ(IN , Nx)

∣∣∣∣ ≤ L∑
k=2

∣∣∣∣EN (∫ s

0

dγk(IN , Nx)

)
−
∫ s

0

dγk(IN , Nx)

∣∣∣∣
+

L∑
k=2

∣∣∣∣EN (∫ s

0

dγk(IN , Nx)

)
− E(s, k)

∣∣∣∣+ E(s, L) + E(s, L+ 1).

Introducing the notation s̄ := max(1, s), we conclude from (3.10)

E(s, L) + E(s, L+ 1) ≤ CL+1
0 s̄L

(L− 1)!

and using (1), we arrive at∣∣∣∣G(s)− 1

|IN |

∫ s

0

dσ(IN , Nx)

∣∣∣∣ ≤ L∑
k=2

∣∣∣∣EN (∫ s

0

dγk(IN , Nx)

)
−
∫ s

0

dγk(IN , Nx)

∣∣∣∣
+
CL+1

0 s̄L

(L− 1)!
+O

(
1

|IN |

) L∑
k=2

skCk0
(k − 1)!

+
1

κN

L∑
k=2

sk−1Ck0
kk/2+1

(k − 1)!
.

Now, under our assumptions on the growth of s and L,
CL+1

0 s̄L

(L−1)! is o(1/AN ). The sum

L∑
k=2

skCk0
(k − 1)!

= sC0

L−1∑
k=1

skCk0
k!

is O(AεN ) for any ε > 0 by Lemma 3.1, applied with f(z) = eC0z. To deal with the
remaining sum, first observe that the series

f(z) :=

∞∑
k=0

skCk0
kk/2+2

k!

converges absolutely and defines an entire function. Using (3.5) and Stirling’s formula,
we readily compute its order as ρ = 2 and using (3.6) and again Stirling’s formula, its
type as ν = C2

0e/2. Thus Lemma 3.1 finishes the proof.

3.2 The variance of

∫ s

0

dγk(IN , Nx)

Taking expectations in Lemma 3.2 (2), we arrive at a sum of expected absolute
differences of

∫ s
0
dγk(IN , Nx) to its expectation. We will estimate this in terms of the

squareroot of the variance of
∫ s

0
dγk(IN , Nx), which we now bound.

Lemma 3.3. In the situation of Lemma 3.2, there exists a positive constant C such that
for k ∈ N, k ≥ 2 and N sufficiently large we have

Var

(∫ s

0

dγk(IN , Nx)

)
≤ C(2s̄)2kC2k

0 2k

|IN |(k − 1)!
+

(2k)k+1

(k!)2
C3k

0 k2O
(

1

κN

)
s̄2k

Proof. In order to calculate the variance of
∫ s

0
dγk(IN , Nx), we first consider the second

moment EN
((∫ s

0
dγk(IN , Nx)

)2)
using the representation (3.7). We expand

EN

((∫ s

0

dγk(IN , Nx)

)2
)

=
1

|IN |2
2k∑
l=k

∑
T,M⊂{1,...,N}

|T |=|M |=k,T∪M=l

∫
RN

χs,IN (NtT )χs,IN (NtM )RNN (t)dt. (3.12)
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First, we consider the inner sum in (3.12) for l = 2k, i.e. in the case that T,M ⊂
{1, . . . , N} satisfy |T | = |M | = k and T ∩M = ∅. Since there are

(
N
k

)(
N−k
k

)
= N !

k!2(N−2k)!

such sets, we obtain by the symmetry of the correlation functions

1

|IN |2
∑

T,M⊂{1,...,N}
|T |=|M |=k,T∩M=∅

∫
RN

χs,IN (NtT )χs,IN (NtM )RNN (t)dt

=
1

(k!)2

1

|IN |2N2k

∫
R2k

χs,IN (t1, . . . , tk)χs,IN (tk+1, . . . , t2k)R2k
N (t1/N, . . . , t2k/N)dt1 . . . dtk.

(3.13)

We consider the terms with l < 2k in (3.12) later and observe that by (3.8) with t′ :=

(t1, . . . , tk), t′′ := (tk+1, . . . , t2k) we have(
E

(∫ s

0

dγk(IN , Nx)

))2

=
1

(k!)2

1

|IN |2N2k

∫
R2k

χs,IN (t′)χs,IN (t′′)RkN (t′/N)RkN (t′′/N)dt1 . . . dtk. (3.14)

To calculate the difference of (3.13) and (3.14) we use

1

N2k
(R2k

N (t′/N, t′′/N)−RkN (t′/N)RkN (t′′/N))

= S2k(t′, t′′)− Sk(t′)Sk(t′′) + (2k)k+1C3k
0 O

(
1

κN

)
.

By (3.10) we obtain

1

(k!)2

1

|IN |2N2k

∫
R2k

χs,IN (t′)χs,IN (t′′)(R2k
N (t′/N, t′′/N)−RkN (t′/N)RkN (t′′/N))dt′dt′′

=
1

(k!)2

1

|IN |2

∫
R2k

χs,IN (t′)χs,IN (t′′)(S2k(t′, t′′)− Sk(t′)Sk(t′′))dt′dt′′

+
(2k)k+1

(k!)2
C3k

0 k2O
(

1

κN

)
s̄2k.

We now claim that

S2k(t′, t′′)− Sk(t′)Sk(t′′) ≤ 0, t′, t′′ ∈ Rk. (3.15)

If two components of (t′, t′′) are equal, then S2k(t′, t′′) = 0 and the claim is trivially true,
as Sk ≥ 0. If all components are distinct, then(

sin(π(tn − tm))

π(tn − tm)

)
1≤n,m≤j

is a positive-definite matrix (its principal minors are exactly S1, S2, . . . , Sj−1 > 0). Now,
(3.15) follows from Fischer’s inequality. With (3.15) we can further estimate

1

(k!)2

1

|IN |2N2k

∫
R2k

χs,IN (t′)χs,IN (t′′)(R2k
N (t′/N, t′′/N)−RkN (t′/N)RkN (t′′/N))dt′dt′′

≤ (2k)k+1

(k!)2
C3k

0 k2O
(

1

κN

)
s̄2k.
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So far, we showed

Var

(∫ s

0

dγk(IN , Nx)

)
≤ 1

|IN |2
2k−1∑
l=k

∑
T,M⊂{1,...,N}

|T |=|M |=k,T∪M=l

∫
RN

χs,IN (NtT )χs,IN (NtM )RNN (t)dt

+
(2k)k+1

(k!)2
C3k

0 k2O
(

1

κN

)
s̄2k.

We continue to consider the integrals in the double sum. For l ∈ {k, . . . , 2k − 1} and sets
T,M ⊂ {1, . . . , N} with |T | = |M | = k and T ∪M = l (i.e. T and M have a non-empty
intersection) we have (using the symmetry of RkN and 1

N l
RlN ≤ Cl0)∫

RN
χs,IN (NtT )χs,IN (NtM )RNN (t)dt

≤ (N − l)!
N !

1

N l

∫
IlN

1(0,2s)

(
max
i=1,...,l

ti − min
i=1,...,l

ti

)
RlN (t1/N, . . . , tl/N)dt1 . . . dtl

≤ (N − l)!
N !

l|IN |(2s̄)2kC2k
0 . (3.16)

We observe that for given l there are CN,l,k :=
(
N
l

)(
l
k

)(
k

2k−l
)

sets T,M ⊂ {1, . . . , N} with
|T | = |M | = k and T ∪M = l by some easy combinatorial argument. Hence, by (3.16)
and 1

N ! (N − l)!CN,l,k = 1
(2k−l)!(l−k)!2 , we obtain

1

|IN |2
2k−1∑
l=k

∑
T,M⊂{1,...,N}

|T |=|M |=k,T∪M=l

∫
RN

χs,IN (tT )χs,IN (tM )RN,N (t/N)dt

≤ 1

|IN |
(2s̄)2kC2k

0

2k−1∑
l=k

l

(2k − l)!(l − k)!2
.

By the easy calculation

2k−1∑
l=k

l

(2k − l)!(l − k)!2
=

1

k!

k−1∑
l=0

l + k

l!

(
k

l

)
≤ 2k

k!

k−1∑
l=0

(
k

l

)
≤ 2k

(k − 1)!
,

we get

1

|IN |2
2k−1∑
l=k

∑
T,M⊂{1,...,N}

|T |=|M |=k,T∪M=l

∫
RN

χs,IN (tT )χs,IN (tM )RNN (t/N)dt ≤ (2s̄)2kC2k
0

|IN |
2k

(k − 1)!
.

Summarizing, we have shown

Var

(∫ s

0

dγk(IN , Nx)

)
≤ C

|IN |
(2s̄)2kC2k

0 2k
1

(k − 1)!
+

(2k)k+1

(k!)2
C3k

0 k2O
(

1

κN

)
s̄2k.

From Lemma 3.3, we can already derive an estimate on the expected deviation of the
spacing distribution from its limit at a given point s.

Corollary 3.4. Let the conditions of Lemma 3.2 be satisfied. Then we have for any
ε > 0, s ≥ 0

EN

(∣∣∣∣ 1

|IN |

∫ s

0

dσ(IN , Nx)−G(s)

∣∣∣∣) = O

(
1

A
1/2−ε
N

)
.

EJP 20 (2015), paper 120.
Page 16/37

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v20-4436
http://ejp.ejpecp.org/


Empirical spacings of unfolded eigenvalues

Proof. By statement (2) in Lemma 3.2, it suffices to bound

EN

(
L∑
k=2

∣∣∣∣EN (∫ s

0

dγk(IN , Nx)

)
−
∫ s

0

dγk(IN , Nx))

∣∣∣∣
)
≤

L∑
k=2

√
Var

(∫ s

0

dγk(IN , Nx)

)
.

The subadditivity of the square root together with Lemma 3.3 give

L∑
k=2

√
Var

(∫ s

0

dγk(IN , Nx)

)
= O

(
1√
|IN |

)
L∑
k=2

1√
(k − 1)!

s̄k(2C0)k
√

2
k

+O
(

1
√
κN

) L∑
k=2

(2k)(k+1)/2

k!
C

3k/2
0 ks̄k.

Similar to the proof of Lemma 3.2, we can apply Lemma 3.1 with the functions

f1(z) :=

∞∑
k=0

1√
k!
zk(2C0)k

√
2
k
,

f2(z) :=

∞∑
k=0

(2k)(k+1)/2

k!
Ck0C

k/2
0 kzk,

which are both of order 2 and finite type, as can be checked easily using (3.5) and
(3.6).

3.3 Completing the proof of Theorem 2.10

The idea for the rest of the proof of Theorem 2.10 is to replace the supremum over s
with a maximum over a finite set of certain nodes si. Then, we can choose the number of
these nodes, growing with N in such a way, that the error estimates lead to the error
claimed in Theorem 2.10.

Let M = M(N) ∈ N and let si, i = 0, . . . ,M , denote the i/M -quantile of G, that is

G(si) =
i

M
, i = 0, . . . ,M.

The existence of these nodes is ensured as G is continuous by definition, increasing and
limt→∞G(t) = 1. Now, set

∆(s, IN , Nx) :=
1

|IN |

∫ s

0

dσ(IN , Nx)−G(s), ∆M (IN , Nx) := max
i=1,...,M−1

|∆(si, IN , Nx)|.

Furthermore, denote the largest non-trivial node by

δN := max(1, sM−1).

It is known (cf. [15, Proposition 3.1.9]) that the Gaudin distribution has sub-Gaussian
tails, that is,

1−G(s) ≤ Ae−Bs
2

(3.17)

for some A,B > 0. This implies that δN fulfils

δN = O(
√

logM). (3.18)

Proof of Theorem 2.10. We first establish the inequality

EN

(
sup
s∈R
|∆(s, IN , Nx)|

)
≤ 1

M
+ EN (∆M (IN , Nx)) + EN

(∣∣∣∣ 1

|IN |

∫
R

dσ(IN , Nx)− 1

∣∣∣∣) .
(3.19)
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It has been given in [15], so we only sketch its simple proof. For fixed sj−1 ≤ s ≤ sj with
j ≤M − 1, we have

∆(s, IN , Nx) ≤ |IN |−1

∫ sj

0

dσ(IN , Nx)−G(sj−1) = ∆(sj , IN , Nx) +G(sj)−G(sj−1)

= ∆(sj , IN , Nx) +
1

M
≤ ∆M (IN , Nx) +

1

M
.

Similarly,

−∆(s, IN , Nx) ≤ ∆M (IN , Nx) +
1

M
.

The term
∣∣∣ 1
|IN |

∫
R
dσ(IN , Nx)− 1

∣∣∣ stems from an analogous estimate for ∆(sj , IN , Nx)

with s > sM−1.
Next, we show that

EN

(∣∣∣∣ 1

|IN |

∫
R

dσ(IN , Nx)− 1

∣∣∣∣) = O(A
− 1

2

N ). (3.20)

Using the notation S(IN , Nx) := #{i : Nxi ∈ IN}, we can write

EN

∣∣∣∣ 1

|IN |

∫
R

dσ(IN , Nx)− 1

∣∣∣∣2 = EN

(
S(IN , Nx)− 1

|IN |

)2

− 2EN
S(IN , Nx)− 1

|IN |
+ 1.

(3.21)

Hence, we need to calculate the first and second moment of S(IN , Nx). By an easy
computation, we obtain (using the symmetry of RNN )

EN (S(IN , Nx)) =

∫
t1,...,tN

(
N∑
i=1

1IN (Nti)

)
RNN (t1, . . . , tN )dt1 . . . dtN

=
1

N

∫
IN

R1
N (t1/N)dt1 = |IN |

(
1 +O

(
1

κN

))
. (3.22)

In a similar fashion, using
∫
I2N
S2(x, y)dxdy = |IN |2 +O(|IN |), we have

EN (S(IN , Nx)2) =

∫
t1,...,≤tN

 N∑
i,j=1

1IN (Nti)1IN (Ntj)

RNN (t1, . . . , tN )dt1 . . . dtN

= |IN |2
(

1 +O
(

1

κN

))
+O(|IN |),

which shows together with (3.21) and (3.22)

EN

∣∣∣∣ 1

|IN |

∫
R

dσ(IN , Nx)− 1

∣∣∣∣2 = O(A−1
N ). (3.23)

Now Jensen’s inequality proves the claim in (3.20). We further use the crude bound

EN (∆M (IN , Nx)) ≤
M−1∑
i=1

EN (|∆(si, IN , Nx)|) .

Now, choosing M as the smallest natural number larger than A1/4
N , we get with (3.19)

and Corollary 3.4

EN

(
sup
s∈R
|∆(s, IN , Nx)|

)
≤ 1

A
1/4
N

+A
1/4
N O

(
1

A
1/2−ε
N

)
+O

(
1

A
1/2
N

)
,
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which proves Theorem 2.10 for |IN |−1σ(IN , Nx). To deduce the result for σ̂(IN , Nx), let
for 0 < ι < 1 denote

A :=

{
x :

∣∣∣∣∣
∫∞

0
dσ(IN , Nx)

|IN |
− 1

∣∣∣∣∣ ≤ A−ιN
}
.

We will assume that N is so large that x ∈ A implies
∫∞

0
dσ(IN , Nx) > 0. Then

EN

(
sup
s∈R

∣∣∣∣∫ s

0

dσ̂(IN , Nx)−G(s)

∣∣∣∣)
≤ EN

(
1A(x) sup

s∈R

∣∣∣∣∣ |IN |∫∞
0
dσ(IN , Nx)

∫ s

0

1

|IN |
dσ(IN , Nx)−G(s)

∣∣∣∣∣
)

+ PN (Ac).

It is straightforward to check that x ∈ A implies |IN |/
∫∞

0
dσ(IN , Nx) = 1 + O(A−ιN ),

where the O term is independent of the specific x. This gives

EN

(
sup
s∈R

∣∣∣∣∫ s

0

dσ̂(IN , Nx)−G(s)

∣∣∣∣)
≤ EN

(
1A(x) sup

s∈R

∣∣∣∣∫ s

0

1

|IN |
dσ(IN , Nx)−G(s)

∣∣∣∣+O(A−ιN )1A(x) sup
s∈R

∫ s
0
dσ(IN , Nx)

|IN |

)
+ PN (Ac)

= O(A
−1/4+ε
N ) +O(A−ιN ) + PN (Ac).

It remains to estimate the probability of Ac. The bound (3.23) gives with Markov’s
inequality

PN (Ac) = O(A2ι−1
N ).

Now the theorem follows choosing ι = 1/4.

4 Proof of Theorem 2.8 (1) and (2)

We need to introduce some of the notation of [17]. Let us define the Mhaskar-
Rakhmanov-Saff numbers aV and bV via the relations∫ bV

aV

V ′(t)√
(bV − t)(t− aV )

dt = 0,

∫ bV

aV

tV ′(t)√
(bV − t)(t− aV )

dt = 2π. (4.1)

It is known that for convex, smooth V , aV and bV are uniquely determined by (4.1) and
that these are the endpoints of the support of the equilibrium measure µV . Moreover, it
is important for us to see them as functions of V .

The linear rescaling that maps [−1, 1] onto [aV , bV ] is denoted by

λV : R → R, λV (s) :=
bV − aV

2
s+

bV + aV
2

. (4.2)

Its inverse is

λ−1
V (t) =

2

bV − aV
t− bV + aV

bV − aV
. (4.3)
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Hence, [−1, 1] ⊂ Ĵ := λ−1
V (J) (cf. (GA)1(1)). Moreover, set

hV : Ĵ × Ĵ → R, hV (t, x) :=

∫ 1

0

(V ◦ λV )′′(x+ u(t− x)) du (4.4)

=
(V ◦ λV )′(t)− (V ◦ λV )′(x)

t− x
,

GV : Ĵ → R, GV (x) :=
1

π

∫ 1

−1

hV (t, x)√
1− t2

dt, (4.5)

ρV : R → R, ρV (x) :=

{
1

2π

√
1− x2GV (x) , if |x| ≤ 1,

0 , else,
(4.6)

â : (−1, 1) → R, â(x) :=

(
1− x
1 + x

)1/4

. (4.7)

Note that ρV is the equilibrium measure of V rescaled such that its support is [−1, 1].
The actual equilibrium measure µV is related to ρV via

µV (t) =
2

bV − aV
ρV (λ−1

V (t)).

Proof of Theorem 2.8 (1) and (2). We will mostly deal with the more involved case (2).
Let us abbreviate V, f for V − f/N . We will also write ‖ · ‖ instead of ‖ · ‖D.

Combining [17, Theorem 1.3] with [17, Proposition 4.1] gives

bV,f − aV,f
2

KN,V,f (λV,f (r), λV,f (s)) =
1

2π

(
â(r)

â(s)
+
â(s)

â(r)

)
sin
(
Nπ

∫ r
s
ρV,f (s) ds

)
r − s

+
1

2π
cos

(
N

2
g(r, s)

)(
1

â(r)
+

1

â(s)

)
â(r)− â(s)

r − s
+O

(
1

N

)
, (4.8)

where g(r, s) is some function which is not important here. Formula (4.8) holds for all
r, s ∈ (−1 + δ, 1− δ) with arbitrary δ > 0, where the O term is uniform in r, s for fixed δ
and uniform for V −f/N ∈ XD for some D. In order to use (4.8) for the proof of Theorem
2.8, we first have to show that for N large enough and some δ > 0

λ−1
V,f (F−1

V (t/N)) ∈ (−1 + δ, 1− δ), for all f with ‖f‖ ≤ Nη (4.9)

for some η > 0 small. By [17, Lemma 2.4], the maps V 7→ aV , V 7→ bV , defined by (4.1)
are Frechet differentiable with (uniformly) bounded derivatives on a neighborhood of V .
This lemma was proved in [17] only for V satisfying (GA)2 but the proof goes through
also for V with (GA)1. Hence

aV,f = aV (1 +O(‖f‖/N)), bV,f = bV (1 +O(‖f‖/N)) (4.10)

and thus

λV,f (t) = λV (t)(1 +O(‖f‖/N)) (4.11)

uniformly for t ∈ [−1, 1]. For given 0 < η < 1, assertions (4.10) and (4.11) hold uniformly
for all f with ‖f‖ ≤ Nη, which proves (4.9). We have thus shown that formula (4.8) can be
applied. The second summand on the rhs (4.8) is uniformly bounded for r, s ∈ (−1+δ, 1−δ)
and hence negligible when multiplied by 1

N . Now, we claim that uniformly on (−1+δ, 1−δ)

â(r)

â(s)
+
â(s)

â(r)
= 2 +O(|r − s|2).

EJP 20 (2015), paper 120.
Page 20/37

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v20-4436
http://ejp.ejpecp.org/


Empirical spacings of unfolded eigenvalues

Setting z := â(r)
â(s) , this claim is equivalent to the relation (z − 1)2/z = O(|r − s|2). It is

now a straightforward application of Taylor’s formula to show z − 1 = O(|r − s|). Writing

t̂ := F−1
V

(
t

N

)
, ŝ := F−1

V

( s
N

)
, (4.12)

we arrive at

1

NµV (t̂)
KN,V,f (t̂, ŝ) =

sin

(
Nπ

∫ λ−1
V,f (t̂)

λ−1
V,f (ŝ)

ρV,f (r) dr

)
NµV (t̂)π(t̂− ŝ)

+O(1/N). (4.13)

Now, using (4.10) together with the definitions (4.3), (4.4), (4.5) and (4.6), we find

λV,f (t)−1 = λV (t)−1(1 +O(‖f‖/N)) and ρV,f (t) = ρV (t)(1 +O(‖f‖/N)) (4.14)

uniformly on [−1, 1]. Define

µV,f (t) :=
2

bV,f − aV,f
ρV,f (λ−1

V,f (t)) and FV,f (t) :=

∫ t

aV,f

µV,f (s)ds.

Furthermore, let gV,f (t) := FV,f (t)− FV (t). We conclude∫ λ−1
V,f (t̂)

λ−1
V,f (ŝ)

ρV,f (r)dr = (FV + gV,f )(t̂)− (FV + gV,f )(ŝ) =
t− s
N

+ gV,f (t̂)− gV,f (ŝ).

Using (4.14) and the smoothness of ρV (see (4.6)), it is straightforward to establish the
relation

µV,f (t) = µV (t) +O(‖f‖/N)

uniformly on R. It follows that

gV,f (t̂)− gV,f (ŝ) = O(‖f‖/N)|F−1
V (t/N)− F−1

V (s/N)| = O(‖f‖/N)
|t− s|
N

,

where we used in the last step that µV is bounded away from 0 on [aV + δ, bV − δ]. Hence
(4.13) reduces to

1

NµV (t̂)
KN,V,f (t̂, ŝ) =

sin
(
π(t− s) +O(‖f‖/N)|t− s|

)
NµV (t̂)π(t̂− ŝ)

+O(1/N) (4.15)

=
sin
(
π(t− s)

)
NµV (t̂)π(t̂− ŝ)

+
O(‖f‖)|t− s|

N2µV (t̂)π(t̂− ŝ)
+O(1/N), (4.16)

where we used the simple inequality |sin(t+ s)− sin(t)| ≤ |s|.
If 1/|t−s| = O(1/N), i.e. |t−s|N ≥ c for some constant c > 0, then F−1

V (t/N)−F−1
V (s/N)

is bounded away from 0 and hence we see that the first term on the right-hand side of
(4.15) is O(1/N) which proves the theorem in this case (as the sine kernel of t− s is then
also O(1/N)).

If |t− s| = o(N), using Taylor’s expansion on F−1
V

(
s
N

)
at t

N leads for some ν between
t/N and s/N to

F−1
V

(
t

N

)
− F−1

V

( s
N

)
=

1

µV (F−1
V (t/N))

(t− s)
N

− 1

2
(F−1
V )′′(ν)

(t− s)2

N2
.
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Hence, the second summand in (4.16) is O(‖f‖/N) and we arrive at

1

NµV (t̂)
KN,V,f

(
t̂, ŝ
)

=
sin(π(t− s))

π(t− s)− πA(t, ν,N) (t−s)2
N

+O(‖f‖/N), (4.17)

where

A(t, ν,N) := µV (F−1
V (t/N))

1

2
(F−1
V )′′(ν).

Note that in (4.17) the O-term will be of order N−1 for f fixed in case (1) and Nη−1 in
case (2). By the simple equality

1

a+ b
− 1

a
=

−b
a(a+ b)

we get

sin(π(t− s))
π(t− s)− πA(t, ν,N) (t−s)2

N

=
sin(π(t− s))
π(t− s)

+
sin(π(t− s))πA(t, ν,N) (t−s)2

N

π(t− s)(π(t− s)− πA(t, ν,N) (t−s)2
N )

=
sin(π(t− s))
π(t− s)

+
1

πN

sin(π(t− s))A(t, ν,N)

1−A(t, ν,N) (t−s)
N

=
sin(π(t− s))
π(t− s)

+O
(

1

N

)
.

The last equality is due to the boundedness of A(t, ν,N) for t ∈ IN and our assumption
(t− s)/N → 0.

5 Repulsive Particle Systems – Proof of Theorem 2.8 (3)

Note that part (3) of Theorem 2.8 for unitary invariant ensembles follows immediately
from part (1) and the determinantal relations (2.4). To prove (3) for repulsive particle
systems, we need to introduce some of the method developed in [13] to tackle these
ensembles. We remark that in comparison to [13], there are several new (technical)
elements, in particular the truncation to ‖f‖D ≤ Nκ and the necessity to work with
complex-valued processes. Furthermore, aiming at rates of convergence requires a
separate investigation of the cases of negative-definite h and of arbitrary h.

The first step is to decompose the additional interaction term
∑
i<j h(xi − xj) into

a linear term and a bivariate term of lower order. This will be done by the Hoeffding
decomposition w.r.t. a (so far arbitrary) probability measure µ on R. Setting hµ(t) :=∫
h(t − s)dµ(s) and for another measure ν on R hµν :=

∫ ∫
h(t − s)dµ(t)dν(s), we may

write ∑
i<j

h(xi − xj) =
1

2

∑
i,j

h(xi − xj)−
N

2
h(0)

=N

N∑
j=1

hµ(xj) +
1

2

∑
i,j

[h(xi − xj)−Nhµ(xi)−Nhµ(xj) + hµµ] + CN , (5.1)

where we set CN := −(N/2)h(0) − (N2/2)hµµ. The term N
∑N
j=1 hµ(xj) is of the same

shape asN
∑N
j=1Q(xj), giving rise to the external field Vµ := Q+hµ. Our aim is to choose

µ such that PhN,Q and the unitary invariant ensemble PN,Vµ have the same equilibrium
measure. To achieve this, the statistic

Uµ(x) := −1

2

∑
i,j

[h(xi − xj)−Nhµ(xi)−Nhµ(xj) + hµµ]
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should be concentrated under PN,Vµ . As Uµ is a global statistic, we should have

lim
N→∞

1

N2
EN,VµUµ(x) = −1

2
(hνν − 2hµν + hµµ), (5.2)

where ν now is the equilibrium measure to Vµ. As we will not divide by N2 and thus will
be at the scale of fluctuations, the rhs of (5.2) should be 0. This leads us to the condition
ν = µ, or in other terms, µ should be the equilibrium measure to Vµ. This recursive
problem was solved by a fixed point argument in [13, Lemma 3.1], showing existence of
a measure µ with the desired property. The uniqueness followed later by proving that
any fixed point is the limiting measure for PhN,Q. From now on let µ denote the fixed
point, set V := Vµ and U := Uµ. The identity

PhN,Q(x) =
ZN,V
ZN,V,U

PN,V (x)eU(x)

with ZN,V,U := ZhN,Qe
CN allows to carry many properties from PN,V over to PhN,Q. Con-

centration of U under PN,V was proved in [13, Proposition 4.7] by showing that the
ratio ZN,V /ZN,V,U is bounded in N and bounded away from 0 provided that αQ is large
enough. More precisely, for any λ > 0, there is a constant α(λ) <∞ such that for some
0 < C1 < C2 <∞ and all αQ ≥ α(λ) we have

C1 ≤ EN,V eλU ≤ C2 (5.3)

for all N . A main ingredient to this is the following concentration of measure result for
linear statistics (cf. [13, Corollary 4.4]), which will be used lateron.

Proposition 5.1. Let Q be a real analytic external field with Q′′ ≥ c > 0. Then for any
Lipschitz function f with third derivative bounded on an open interval D containing
suppµQ, we have for arbitrary ε > 0

EN,Q exp
{
ε
( N∑
j=1

f(xj)−N
∫
f(t)dµQ(t)

)}
≤ exp

{ε2Lipf2

2c
+ εC(‖f‖∞ + ‖f (3)‖∞)

}
.

Here C is uniform in f , Lipf denotes the Lipschitz constant of f on D and ‖ · ‖∞ is the
sup norm on D.

The key to the local statistics is a linearization method, which transforms the bivariate
statistic U into random linear statistics. We give an outline for negative-definite h, that
means ĥ ≤ 0, where ĥ(t) := 1√

2π

∫
R
e−itsh(s)ds denotes the Fourier transform of h. For

such function, −h may be seen as the covariance function of a centered stationary
Gaussian process (f(t))t∈R, i.e. a stochastic process on R whose finite-dimensional
distributions are all multivariate Gaussian and such that Cov(f(t), f(s)) = −h(t − s).
Then a quick computation verifies that

exp{−1

2

∑
i,j

h(xi − xj)} = E exp{
N∑
j=1

f(xj)}, (5.4)

where the expectation is w.r.t. the probability space underlying the Gaussian process.
S. Jansen has pointed out to the second author that the linearization (5.4) is known in
mathematical physics as the Sine-Gordon transformation. Furthermore,

exp{U(x)} = E exp{
N∑
j=1

f(xj)−N
∫
fdµ} (5.5)

EJP 20 (2015), paper 120.
Page 23/37

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v20-4436
http://ejp.ejpecp.org/


Empirical spacings of unfolded eigenvalues

holds. The term
∑N
j=1 f(xj) − N

∫
fdµ can now be added to N

∑N
j=1 V (xj), resulting

in a perturbation of lower order, which does not influence the equilibrium measure.
The limiting bulk correlations are not altered by the function f either, as can be seen
from Theorem 2.8. It should be noted that the scaling of the correlation functions is
independent of f . To summarize, the ensemble PhN,Q is an average over determinantal
ensembles PN,V−f/N with a small random perturbation of the external field. We will show
that universality of PhN,Q can be deduced from universality of the invariant ensembles
PN,V−f/N . Note that the averaging over f results in a weaker rate of convergence as
uniformity in f has to be shown (cf. Theorem 2.8 (1) and (2)).

5.1 Alternative representation of correlation functions and truncation

Let us define the generalized invariant ensemble

PMN,Q,f (x) :=
1

ZMN,Q,f

∏
1≤i<j≤N

|xi − xj |2e−M
∑N
j=1Q(xj)+

∑N
j=1 f(xj), (5.6)

where M ∈ N. If M = N , we have PN,Q,f = PMN,Q,f and PMN,Q = PMN,Q,f , if f = 0. Then
the k-th correlation function of PN,V at t1, . . . , tk can be rewritten as

RkN,V (t1, . . . , tk)

=
N !

(N − k)!

∫
RN−k

1

ZN,V
exp

{
−N

N∑
j=k+1

V (xj) + 2
∑

i<j; i,j>k

log
∣∣xj − xi∣∣}

× exp
{
−N

k∑
j=1

V (t1, . . . , tk) + 2
∑

i<j; i,j≤k

log
∣∣ti − tj∣∣}

× exp
{

2
∑

i≤k, j>k

log
∣∣ti − xj∣∣}dxk+1 . . . dxN

=
N !

(N − k)!
F (t)

ZNN−k,V
ZN,V

ENN−k,V exp
{

2
∑

i≤k, j>k

log|ti − xj |
}

with

F (t) := exp
{
−N

k∑
j=1

V (tj) + 2
∑

i<j; i,j≤k

log|ti − tj |
}

Labeling the eigenvalues of the ensemble PNN−k,V by xk+1, . . . , xN and denoting

O := ONN−k,V (t, x) := 2
∑

i≤k, j>k

log|ti − xj |+ log
[
F (t)

ZNN−k,V
ZN,V

]
, (5.7)

we arrive at the representation

RkN,V (t1, . . . , tk) =
N !

(N − k)!
ENN−k,V exp

{
O
}
. (5.8)

By analogous steps, we represent the k-th correlation function Rh,kN,Q of PhN,Q as

Rh,kN,Q(t1 . . . , tk) =
N !/(N − k)!

EN,V exp
{
U(x)

}ENN−k,V exp
{
U(t, x) +O

}
, (5.9)

where we abbreviated U(t1, . . . , tk, xk+1, . . . , xN ) by U(t, x). By [13, Lemma 28] we can
assume that xk+1, . . . , xN ∈ [−L,L] for L large enough. To be precise, the lemma shows
that for each k we have L,C > 0 such that for all N and for all t1, . . . , tk

|Rh,kN,Q(t1, . . . , tk)− N !/(N − k)!

EN,V ;L exp
{
U(x)

}ENN−k,V ;L exp
{
U(t, x) +OL

}
| ≤ e−CN , (5.10)
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where EMN,V ;L denotes expectation w.r.t. PMN,V ;L, which is the normalized restriction of
PMN,V to [−L,L]N and OL is the analog of O, obtained by replacing integrations over R
by integrations over [−L,L]. For later use, let us also state one more inequality from
that lemma,

N−1Rh,1N,Q(t) ≤ exp{CN − c1N [V (t)− c2 log(1 + t2)]}, (5.11)

valid for some constants C, c1, c2 > 0. It will allow us to restrict the whole ensemble
(instead of correlation functions) to some compact [−L,L].

5.2 Linearization and proof of Theorem 2.8 (3) for negative-definite h

Let us give more details on the linearization method for negative-definite h. For such
h, −h can indeed be seen as the covariance function of a centered stationary Gaussian
process on R such that (5.4) and (5.5) hold. Since the sample paths of that process will
become a part of the external field, we have to show analyticity. This can be done by
invoking an explicit representation. Recall that ĥ(t) denotes the Fourier transform of h
and that we have −ĥ ≤ 0.

For the representation of f , let (B1
t )t, (B

2
t )t denote two independent Brownian motions

and define

f(t) := (2/π)1/4

∫ ∞
0

cos(ts)

√
−ĥ(s)dB1

s + (2/π)1/4

∫ ∞
0

sin(ts)

√
−ĥ(s)dB2

s . (5.12)

Here it is convenient to understand the stochastic integral as a Wiener integral,∫ ∞
0

g(s)dB1
s := −

∫ ∞
0

B1
sdg(s) = −

∫ ∞
0

B1
sg
′(s)ds.

which exists for g sufficiently smooth and of a certain decay at ±∞ (note that by the
law of the iterated logarithm, |Bt| is almost surely bounded by

√
2t log log t). Using that

Gaussianity of f is equivalent to Gaussianity of all linear combinations of the random
variables {f(t) : t ∈ R}, it is not hard to check that f(t)t∈R defined in (5.12) forms a
Gaussian process on R. Furthermore, it has mean 0 and covariance function −h.

By the assumption on the exponential decay of ĥ, the rhs of (5.12) can be extended to
a strip {x+ iy : x ∈ R, |y| < c} for some c > 0 which implies analyticity of f in that strip
a.s.. Let

D := (−L− δ, L+ δ)× (−c/2, c/2) (5.13)

with δ > 0. Then it also follows from (5.12) that the extended process (f(w))w∈D is a
complex-valued centered Gaussian process with covariance function E(f(w1)f(w2)) =

−h(w1 − w2).
Recall the abbreviation

Sk(t) = det

[
sin(π(ti − tj))
π(ti − tj)

]
1≤i,j≤k

and set (5.14)

t̂j := (FhQ)−1(tj/N), C(t) := N−k
k∏
j=1

µ(t̂j)
−1.

To prove Theorem 2.8 (3), in view of (5.10) we have to show

N !C(t)

(N − k)!
ENN−k,V ;L exp

{
U(t̂, x) +OL

}
− EN,V ;L exp

{
U(x)

}
Sk(t) = O

(
N−1+ε

)
(5.15)

for any ε > 0 in the prescribed uniformity. Here we used that by (5.3), EN,V exp
{
U(x)

}
is bounded and bounded away from 0, which carries over to the truncated setting. Note
also the slight abuse of notation by not indicating the local scaling of the tj ’s in OL.
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Proof of Theorem 2.8 (3), negative-definite h. Let h be negative-definite. Furthermore,
let f̃ denote a centered Gaussian process with covariance function −h and define
f := f̃ −

∫
f̃dµ. Then we have

C(t)
N !

(N − k)!
ENN−k,V ;L exp

{
U(t̂, x) +OL

}
=C(t)

N !

(N − k)!
E
[
ENN−k,V ;L exp

{ N∑
j=1

f((t̂, x)j) +OL
}]

=E
[
EN,V ;L exp

{ N∑
j=1

f(xj)
}
C(t)RkN,V,f ;L(t̂1, . . . , t̂k)

]
,

where we used the identity

RkN,V,f ;L(t̂1, . . . , t̂k) =
N !/(N − k)!

EN,V,f ;Le
∑N
j=1 f(xj)

E
[
ENN−k,V ;L exp

{ N∑
j=1

f((t̂, x)j) +OL
}]
,

which can be obtained analogously to (5.9). Thus the first summand of (5.15) equals

E
[
EN,V ;L exp

{ N∑
j=1

f(xj)
} (
C(t)RkN,V,f ;L(t̂1, . . . , t̂k)− Sk(t)

) ]
. (5.16)

To apply Theorem 2.8 (2), we will replace the integration over all f by an integration over
f with ‖f‖D ≤ Nη, where D is the complex domain defined in (5.13). More precisely, we
will show that

E1{‖f‖D>Nη}

[
EN,V ;L exp

{ N∑
j=1

f(xj)
}

×
(
C(t)RkN,V,f ;L(t̂1, . . . , t̂k)− Sk(t)

)]
= O(e−cN

2η

) (5.17)

for some c > 0. This will be done by applying Hölder’s inequality to separate the
expectations of 1{‖f‖D>Nη}, of EN,V ;L exp

{∑N
j=1 f(xj)

}
and of

C(t)RkN,V,f ;L(t̂1, . . . , t̂k)− Sk(t).

Let us reconsider the complex-valued process (f̃(t))t∈D, which is the extension of the
Gaussian process f̃ on [−L,L] with covariance function −h. It follows from (5.12) that
real and imaginary parts of f̃ on D are (real-valued) centered Gaussian processes. Their
covariance functions are readily computed as

E(Re f̃(w1) Re f̃(w2)) = −1

2
(Re h(w1 − w2) + Re h(w1 − w2)),

E(Im f̃(w1) Im f̃(w2)) =
1

2
(Re h(w1 − w2)− Re h(w1 − w2)), w1, w2 ∈ D,

giving the variances

E(Re f̃(w))2 = −1

2
(Re h(0) + Re h(2i Imw)),

E(Im f̃(w))2 =
1

2
(Re h(0)− Re h(2i Imw)), w ∈ D.

Now Borell’s inequality (see e.g. [2, Theorem 2.1.1]) states that the supremum ‖X‖K of
a continuous centered Gaussian process Xt over a compact K has sub-Gaussian tails,
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more precisely it is dominated by a Gaussian random variable with a certain expecta-
tion and variance σ := supt∈K EX

2
t . Since the sum of sub-Gaussian variables is sub-

Gaussian as well, we see with supw∈D|f+(w)| ≤ supw∈D̄|Re f+(w)| + supw∈D̄|Im f+(w)|
that supw∈D|f+(w)| is also sub-Gaussian. The same reasoning leads to the conclusion
that supw∈D|f(w)| is sub-Gaussian, giving

P{‖f‖D > Nη} = O(e−cN
2η

) (5.18)

for some c > 0.
Next, we provide a bound for EN,V ;L exp

{∑N
j=1 f(xj)

}
. Proposition 5.1 also holds

for the ensemble truncated to [−L,L] with an exponentially small error which we will
neglect. However, it is crucial that in the truncated case the Lipschitz constant is taken
over [−L,L] instead of the whole real line. Thus we get

EN,V ;L exp
{ N∑
j=1

f(xj)
}
≤ exp

{ (Lipf)2

2αV
+ C(‖f‖[−L,L] + ‖f (3)‖[−L,L])

}
(5.19)

for some C. f̃ ′ is again a centered stationary Gaussian process with covariance function
−h′′ and thus, by similar arguments as above, sub-Gaussianity of Lipf and analogously
also sub-Gaussianity of ‖f (3)‖[−L,L] follow. Hence for some λ > 1 (close to 1, coming
from Hölder’s inequality) there is a constant C such that for all N

E
[
EN,V ;L exp

{ N∑
j=1

f(xj)
}]λ

< C, (5.20)

if αQ (and hence αV ) is large enough.
It is important to note that, as the processes are stationary on R, the variances of

Lipf, ‖f‖[−L,L] and ‖f (3)‖[−L,L] and therefore the required αQ are independent of the
truncation threshold L and k.

Now we will estimate C(t)RkN,V,f ;L(t̂1, . . . , t̂k) − Sk(t). If ti = tj for some i 6= j, then
this quantity is 0, hence we will only consider t with distinct elements. For such t,
(2.4) and PN,V,f ;L(x) > 0 for any x ∈ [−L,L]N with distinct components, imply that
(KN,V,f ;L(ti, tj))1≤i,j≤k =: A is a positive definite matrix and can hence be written as
A = B2 for some matrix B. Using Hadamard’s inequality then gives

detA = (detB)
2 ≤

k∏
j=1

k∑
i=1

|Bij |2 =

k∏
j=1

Ajj ,

which is

RkN,V,f ;L

(
t̂1, . . . , t̂k

)
≤

k∏
j=1

KN,V,f ;L(t̂j , t̂j) =

k∏
j=1

R1
N,V,f ;L(t̂j). (5.21)

Let us employ the representation as inverse Christoffel function (see e.g. [31])

R1
N,V,f (t) =

e−NV+f

λN (e−NV+f , t)
,

λN (e−NV+f , t) := inf
PN−1(t)=1

∫
|PN−1(s)|2e−NV (s)+f(s)ds,

where the infimum is taken over all polynomials PN−1 of at most degree N − 1 with
PN−1(t) = 1. This representation immediately implies the bound

R1
N,V,f ;L(t̂j) ≤ R1

N,V ;L(t̂j)e
2‖f‖[−L,L] .
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To bound R1
N,V ;L, we can now use the uniform convergence stated in Theorem 2.8 (2)

together with the boundedness of the sine kernel, giving

N−1R1
N,V,f ;L(t̂j) ≤ Ce2‖f‖[−L,L] and hence

C(t)RkN,V,f ;L

(
t̂1, . . . , t̂k

)
≤ C ′e2k‖f‖[−L,L] , (5.22)

where C,C ′ do not depend on f . As ‖f‖[−L,L] is sub-Gaussian, we have for some λ′ > 1

and some C ′′ that for all N

E|C(t)RkN,V,f ;L(t̂1, . . . , t̂k)− Sk(t)|λ
′
≤ C ′′. (5.23)

Combining (5.18), (5.20) and (5.23), it follows that (5.17) is of order O(e−cN
2η

). Thus
Theorem 2.8 (2) yields

E
[
EN,V ;L exp

{ N∑
j=1

f(xj)
}(
C(t)RkN,V,f ;L(t̂1, . . . , t̂k)− Sk(t)

)]
= O(N−1+ε),

for any ε > 0, given that αQ is large enough.

5.3 Proof of Theorem 2.8 (3) for general h

A general h may be decomposed into positive-definite functions as follows. Let ±
denote positive and non-positive part and write ĥ = (ĥ)+−(ĥ)−. Then h = h+−h−, where

h± := (̂ĥ)± and furthermore, h± are positive-definite. To use h± for our linearization
method, we need these functions to be real-analytic. The real-analyticity is somewhat
surprisingly equivalent to the exponential decay of ĥ at infinity. On the one hand,
exponential decay of ĥ allows to extend h± to the complex plane via Fourier inversion,
thereby showing real-analyticity. On the other hand, [22, Theorem 2] tells us that any
real-analytic positive-definite function has a Fourier transform of exponential decay.

Instead of −h, we will use −hz := zh+ + h−, z > 0, as a covariance function and use
complex analysis to show the desired. To this end define for complex z ∈ C

Uz(x) :=
z

2

( N∑
i,j=1

h+(xi − xj)−
[
h+
µ (xi) + h+

µ (xj)− h+
µµ

] )
(5.24)

+
1

2

( N∑
i,j=1

h−(xi − xj)−
[
h−µ (xi) + h−µ (xj)− h−µµ

] )
. (5.25)

Again, we have to show

N !C(t)

(N − k)!
ENN−k,V ;L exp

{
Uz(t̂, x) +OL

}
− EN,V ;L exp

{
Uz(x)

}
Sk(t) = o(1) (5.26)

for z = −1. The proof for negative-definite h implies (5.26) for z > 0. This is basically
enough, as Vitali’s theorem implies, which we state for the convenience of the reader
(cf. [30, 5.21]): Let gn(z) be a sequence of analytic functions on a domain U ⊂ C with
|gn(z)| ≤M for all n and all z ∈ U . Assume that limn→∞ gn(z) exists for a set of z having
a limit point in U . Then limn→∞ gn(z) exists for all z in the interior of U and the limit is
an analytic function in z.

The set containing a limit point will be chosen as a small interval (0, δ) for some δ > 0.
We remark in passing that δ can be arbitrarily small and as a consequence h+ has no
influence on the necessary size of the convexity constant αQ.

To transfer the required uniformity in the tj from the case z > 0 to z = −1 is a
technical issue as taking absolute values and suprema would destroy the analyticity in
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z, which is necessary for the application of Vitali’s theorem. Therefore, we will use the
following characterization of uniform convergence in terms of sequences: A sequence
of continuous real-valued functions (gn)n, defined on Rl, converges uniformly on the
sequence of compact sets (Bn)n, Bn ⊂ Rl towards a continuous function g if and only
if for all sequences (nm)m ⊂ N with limm→∞ nm = ∞ and all sequences (tm)m with
tm ∈ Bnm we have limm→∞ gnm(tm)− g(tm) = 0.

We will take Bn := IN . Let (Nm)m ⊂ N be a sequence going to infinity and (t(m))m be
a sequence with t(m) ∈ INm . Let us define Wm : C → C as

Wm(z) :=C(t(m))E
Nm
Nm−k,V ;L exp

{
Uz(t̂(m), x) +OL

}
− ENm,V ;L exp

{
Uz(x)

}
Sk(t(m)). (5.27)

Note that we suppressed some of the m-dependencies. Clearly, (Wm)m is a sequence
of analytic functions.

Remark 5.2. Vitali’s theorem allows to deduce convergence in a region of the complex
plane from convergence in another region. As rates of convergence might well be
different according to the region one is looking at, it is clear that we cannot transfer the
rate O(N−1+ε), valid for z > 0, to z = −1 with the same technique. This seems to be
rather a technical issue, we in fact believe that the correct rate should also be (at least)
O(N−1+ε).

Proof of Theorem 2.8 (3), general h. We will often drop the dependence on m in the
following. For positive z, we can apply the linearization procedure as described above,
as then hz is a positive-definite function. Thus we have Wm(z) = o(1) for any z ∈ (0, δ) for
some δ provided αQ is large enough, where δ is chosen so small that the lower bound on
αQ does not depend on δ. Hence, to apply Vitali’s theorem, we need to show boundedness
uniform in m and z from a domain containing −1 and (0, δ). This domain may in fact be
chosen as the halfplane {z ∈ C : Re z < δ}, which can be seen as follows. Bounding Wm

termwise, (5.24) shows that Im z only gives a phase which vanishes by taking absolute
values, hence we can concentrate on real z. For z < 0, (5.24) is non-positive, since it is
minus 1/2 times the variance of a Gaussian random variable (cf. (5.5)), implying that
in this case the influence of (5.24) in bounding Wm will vanish as well, due to taking
absolute values. It is thus sufficient to consider z > 0. In this case we get as above that
Wm(z) equals

E
[
EN,V ;L exp

{ N∑
j=1

fz(xj)
}(
C(t)RkN,V,fz ;L(t̂1, . . . , t̂k)− Sk(t)

)]
, (5.28)

where fz is a centered Gaussian process with covariance function −hz. Now, the bounds
(5.15) and (5.22) can be used again to show uniform boundedness in m. To check that
these bounds are uniform in z ∈ (0, δ) for δ > 0 small, is straightforward and left to the
reader. The theorem is proved.

6 Proofs of remaining statements

Proof of Theorem 2.2. Let an interval IN ⊂ [0, N ] be given such that
lim infN→∞ dist(IN , {0, N})/N > 0. We will apply Theorem 2.10 with PN being the
distribution of the unfolded ensembles PN,V,f and PhN,Q, respectively. We start with the

former case. Let F [−1]
V be a function with the following properties:

1. F [−1]
V : R → J strictly monotonically increasing, continuously differentiable,

2. F [−1]
V (R) = J ,
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3. F [−1]
V (t) = F−1

V (t) for t ∈ U with U ⊃ lim infN→∞ IN/N open.

Now, we define

PN (x) :=

N∏
j=1

F
[−1]
V

′
(xj)PN,V,f (F

[−1]
V (x1), . . . , F

[−1]
V (xN )).

By properties (1) and (2), PN is a probability measure on RN . By property (3), we have

F
[−1]
V

′
(t) = (µV (F−1

V (t)))−1 for all t such that Nt ∈ IN for N large enough. Then the
correlation function RkN is (for N large enough) on IkN given by

RkN (t1/N, . . . , tk/N) =

k∏
j=1

µV (F−1
V (tj/N))−1RkN,V,f (F−1

V (t1/N), . . . , F−1
V (tk/N)).

It remains to check conditions (1) and (2) in Theorem 2.10. For condition (1), we may
use inequality (5.22), giving

k∏
j=1

µV (t̂j)
−1RkN,V,f

(
t̂1, . . . , t̂k

)
≤ C ′

k∏
j=1

µV (t̂j)
−1e2k‖f‖∞ ,

which is valid also for ensembles with non-compact support. Here we use again the
abbreviation t̂j := F−1

V (tj/N). Positivity of µV on (aV , bV ) yields condition (1) for the
unitary invariant ensembles.

For condition (2), another application of Hadamard’s inequality may be used, which
we cite from [3, Lemma 4.3.2]. For kernels K1,K2, defined on some locally compact
A×A and all t ∈ Ak, the following inequality holds:

|det(K1(ti, tj))1≤i,j≤k − det(K2(ti, tj))1≤i,j≤k| ≤ kk/2+1‖K1 −K2‖ ·max(‖K1‖, ‖K2‖)k−1.

(6.1)

Here ‖K‖ := supt,s∈A|K(t, s)| denotes the sup-norm of a kernel K on A× A. Choosing
K1(t, s) := (NµV (F−1

V (t/N)))−1KN,V,f (F−1
V (t/N), F−1

V (s/N)) and K2 as the sine kernel,
we find with A := IN that by Theorem 2.10 (1) ‖K1 − K2‖ = O(1/N). Moreover,
the boundedness of the sine kernel and the uniform convergence of K1 imply that
max(‖K1‖, ‖K2‖) ≤ C for some C > 1. This proves condition (2) of Theorem 2.10 for
PN,V,f .

For the repulsive particle systems PhN,Q, we will first truncate the ensemble to
a compact [−L,L]N and apply Theorem 2.10 to the truncated ensemble. This will be
convenient as the truncation threshold L in (5.10) depends on the order of the correlation
function k and in the subsequent linearization several constants depend on L, which
would complicate checking conditions (1) and (2) of Theorem 2.10 significantly.

For any L > 0 we have the crude bound

EhN,Q

(
1([−L,L]N )c(x) sup

s∈R

∣∣∣∣ 1

|IN |

∫ s

0

dσ(IN , x̃)−G(s)

∣∣∣∣) ≤ NPhN,Q (([−L,L]N )c
)

≤ N
∫ ∞
L

Rh,1N,Q(t)dt.

Now, (5.11) tells us that choosing L large enough, the last expression is bounded by
exp(−N), hence negligible. This also shows that replacing the normalizing constant
ZhN,Q by its truncated variant ZhN,Q;L, obtained by replacing the integrations in ZhN,Q by
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integrations over [−L,L], only results in an error of at most exp(−N). Summarizing, we
get

EhN,Q

(
sup
s∈R

∣∣∣∣ 1

|IN |

∫ s

0

dσ(IN , x̃)−G(s)

∣∣∣∣)
= EhN,Q;L

(
sup
s∈R

∣∣∣∣ 1

|IN |

∫ s

0

dσ(IN , x̃)−G(s)

∣∣∣∣)+O(e−N ),

where EhN,Q;L denotes expectation w.r.t. the truncated ensemble PhN,Q;L. Note that both

ensembles have the same limiting measure µhQ and therefore, there is no change in the
unfolding of the particles. The case of σ̂ instead of |IN |−1σ is completely analogous.

The same procedure as above can now be applied to fit PhN,Q;L into the framework of
Theorem 2.10. Condition (1) then follows using the linearization procedure introduced
in Section 5. Indeed, an inequality of the form

Rh,kN,Q
(
t̂1, . . . , t̂k

)
≤ C

for some C, uniformly in t1, . . . , tk, is equivalent to

ENN−k,V ;L exp
{
Uz(t̂, x) +OL

}
≤ C ′ (6.2)

uniformly in t1, . . . , tk for small positive z. By linearization, the l.h.s. of (6.2) is equal to

E
[
EN,V ;L exp

{ N∑
j=1

f(xj)
}
RkN,V,f ;L(t̂1, . . . , t̂k)

]
,

to which now (5.22) may be applied for almost all f . The sub-Gaussianity of ‖f‖∞ gives
the desired bound.

For condition (2), we can use the same arguments and (6.1).

Proof of Corollary 2.4. Let IN be a sequence of proper compact sub-intervals of [0, N ]

with IN/N → [0, 1]. We will use the simple inequality

EN sup
s∈R

∣∣∣∣ 1

N − 1

∫ s

0

dσ([0, N ], x̃)−G(s)

∣∣∣∣
≤ EN sup

s∈R

∣∣∣∣ 1

N − 1

∫ s

0

dσ(IN , x̃)−G(s)

∣∣∣∣+ EN
1

N − 1

∫ ∞
0

dσ([0, N ] \ IN , x̃), (6.3)

The last term is

1

N − 1

(
EN#

{
j : xj ∈ F−1

(
[0, N ] \ IN

N

)}
− 1

)
,

where F = FV or F = FhQ, respectively. F−1(([0, N ] \ IN )/N) consists of the two intervals
(−∞, aV + ε′N ) and (bV − εN ,∞) for two sequences of positive numbers εN , ε′N , both
converging to 0. Let us exemplarily deal with (bV − εN ,∞). We have

1

N − 1
EN# {j : xj ∈ (bV − εN ,∞)} =

1

N − 1

∫ ∞
bV −εN

R1
N (t)dt. (6.4)

For R1
N,V,f , [17, Theorem 1.5] provides the following asymptotics. For a certain c > 0

and all t ∈ Ĵ with t > 1 + c−1N−2/3, we have

R1
N,V,f (λV,f (t))

=
1

2π(bV,f − aV,f )N
e−NηV,f (t)

(
1

t2 − 1
+O

(
1

N(t− 1)5/2

)
+O

(
1

N

))
, (6.5)
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where

ηV (t) :=

∫ t

1

√
s2 − 1GV (s)ds (6.6)

and GV has been defined in (4.5). Similarly to (4.10), (4.11) and (4.14), we can show
ηV,f = ηV (1 +O(‖f‖/N)). As V ′ is strictly increasing and limt→∞ V (t) =∞, we have for
all t large enough and s ∈ [−1, 1] that (V ◦ λV )′(t) − (V ◦ λV )′(s) ≥ c′ for some c′ > 0.

Thus (cf. (4.4)) hV (t, s) ≥ c′

t− s
and (cf. (4.5))

GV (t) ≥ c′

π

∫ 1

−1

1

(t− s)
√

1− s2
ds =

c′√
t2 − 1

,

where the last equality is due to t > 1. Hence ηV (t) ≥ c′t and we conclude that for some
c′′ > 0 ∫ ∞

bV +c′′N−2/3

R1
N,V,f (t)dt = o(1). (6.7)

With the linearization technique, this bound can be transfered to the ensemble PhN,Q. We

note in passing that due to the mixing over f , for PhN,Q the bound for the first correlation
function is somewhat worse than (6.5), see [18] for details.

For the edge regime, i.e. bV − εN < t < bV + c′′N−2/3, the following asymptotics are
given in [17, Theorem 1.5], valid for 1− c < t < 1 + cN−2/5 (with the same c as above),

R1
N,V,f (λV,f (t)) =

2N−1/3γV,f
bV,f − aV,f

KAi

(
γV,fN

2/3(t− 1), γV,fN
2/3(t− 1)

)
(1 + r(t)),

where γV,f := 2−1/3GV,f (1)2/3,

r(t) =

{
O(1− t) +O(N−2/3), if t ≤ 1

O(N(t− 1)5/2) +O(N−2/3), if t ≥ 1

is uniform in f as above and as before, we can neglect the f -dependence. Here KAi is
the Airy kernel,

KAi(t, s) :=
Ai(t) Ai′(s)−Ai′(t) Ai(s)

t− s
.

On the diagonal, the Airy kernel is given as KAi(t, t) = Ai′(t)2 − tAi(t)2. We are therefore
left to estimate

R1
N,V (t) =

2N−1/3γV
bV − aV

KAi

(
γVN

2/3(λ−1
V (t)− 1), γVN

2/3(λ−1
V (t)− 1)

)
.

Let us first consider the case t < bV , i.e. λ−1
V (t) < 1. Setting ζ(t) := 2

3 t
3/2, [1, 10.4.60,

10.4.62] provide the following asymptotics, valid as t > 0,

Ai(−t) = π−1/2t−1/4
(

sin
(
ζ(t) +

π

4

)
+O(ζ(t)−1)

)
, (6.8)

Ai′(−t) = −π−1/2t1/4
(

cos
(
ζ(t) +

π

4

)
+O(ζ(t)−1)

)
, (6.9)

from which we conclude

Ai(−t)2 = O(t−1/2), Ai′(−t)2 = O(t1/2).
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Thus we get uniformly for bV − εN < t ≤ 1

N−1/3KAi

(
γVN

2/3(λ−1
V (t)− 1), γVN

2/3(λ−1
V (t)− 1)

)
= O(λ−1

V (t)− 1) = o(1).

For 1 ≤ t ≤ 1 + cN−2/5, the formulae [1, 10.4.59, 10.4.61] provide

Ai(t)2 = O(t−1/2e−
4
3 t

3/2

), Ai′(t)2 = O(t1/2e−
4
3 t

3/2

),

which yields uniformly for bV ≤ t < bV + c′′N−2/5

R1
N,V (t) = o(1)

in an analogous way. This gives∫ bV +c′′N−2/5

bV −εN
R1
N,V,f (t)dt = o(1). (6.10)

This estimate can by the now familiar procedure be extended to the ensemble PhN,Q.
Altogether we have combining (6.4), (6.7) and (6.10)

1

N − 1
EN# {j : xj ∈ (bV − εN ,∞)} = o(1).

Returning to (6.3), we wish to apply Theorem 2.10 for an interval IN which exhausts
[0, N ] for N →∞. It suffices to show uniform convergence of the correlation functions
towards the sine kernel, as conditions (1) and (2) of Theorem 2.10 will then follow exactly
as in (5.22) and (6.1). Hence our task is to extend the proof of Theorem 2.8 to regions
close to the edges.

Formula (4.8) was valid for r, s ∈ (−1 + δ, 1 − δ) for some arbitrary but fixed δ > 0.
As now IN covers some of the left and right edge regions, we also have to consider
correlations between particles from different regions. Here the general [17, Theorem
1.3] is useful which gives

KN,V,f (t, s) =
k1(t)k2(s)− k2(t)k1(s)

t− s
+O(N−1),

where k1, k2 are bounded functions and the O term is uniform for t, s from bounded
subsets of J . This means that KN,V,f (t, s) is bounded if t − s is bounded away from 0,
which includes the case of one particle at the left and the other at the right edge. Dividing
by N , we see that Theorem 2.8 (1) and (2) hold in this case. The correlations between
bulk particles and edge particles are more subtle, as these regions are adjacent and a
transition from sine kernel to Airy kernel statistics occurs. Without loss of generality we
will consider this transition at the right edge only. To state the analogue of (4.8) at the
edge, we need some more notation. Let us remark that we restrict ourselves to the case
t ≤ bV , the void region not being of interest here thanks to (6.7) and (6.10).

Recalling (4.6), define

ξV : R → R, ξV (t) := 2π

∫ 1

t

ρV (s)ds

and for some 0 < δ < 1

fN,V : [1− δ, 1] → R, fN,V (t) := −N2/3

(
3

4
ξV (t)

)2/3

, (6.11)

dV : [1− δ, 1] → R, dV (t) := â(t)−1γ
−1/4
V

(
3

4
ξV (t)

)1/6

. (6.12)
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Abbreviating fN := fN,V , [17, Proposition 4.1] states that for some δ > 0 uniformly for
r, s ∈ [1− δ, 1]

bV,f − aV,f
2

KN,V,f (λV,f (r), λV,f (s)) = KAi(fN (r), fN (s))
fN (r)− fN (s)

r − s

+

(
Ai(fN (r)) Ai′(fN (s))

dV (s)
+

Ai(fN (s)) Ai′(fN (r))

dV (r)

)
dV (r)− dV (s)

r − s
+O(1/N).

Note that this formula covers a part of the bulk region. By (6.8) and (6.9),

KAi(fN (r), fN (s))(fN (r)− fN (s))

= Ai(fN (r)) Ai′(fN (s))−Ai′(fN (r)) Ai(fN (s)) (6.13)

=
1

π

[
cos
(
ζ(fN (s))− π

4

)
cos
(
ζ(fN (r)) +

π

4

)
− cos

(
ζ(fN (r))− π

4

)
cos
(
ζ(fN (s)) +

π

4

) ]
+O

(
ζ(|fN (r)|)−1 + ζ(|fN (s)|)−1

)
=

1

π
sin(ζ(fN (r))− ζ(fN (s))) +O

(
ζ(|fN (r)|)−1 + ζ(|fN (s)|)−1

)
=

1

π
sin

(
Nπ

∫ r

s

ρV (u)du

)
+O

(
ξV (r)−1 + ξV (s)−1

N

)
.

Hence we have for r, s < 1, r 6= s,

bV,f − aV,f
2

KN,V,f (λV,f (r), λV,f (s)) =
1

π

sin
(
Nπ

∫ r
s
ρV,f (u)du

)
r − s

+

(
Ai(fN (r)) Ai′(fN (s))

dV (s)
+

Ai(fN (s)) Ai′(fN (r))

dV (r)

)
dV (r)− dV (s)

r − s
(6.14)

+O
(
ξV,f (r)−1 + ξV,f (s)−1

N(r − s)

)
+O(1/N).

We have thus recovered the leading term of (4.8). However, the O-term involving ξ(r)−1

will only be small for r and s being not too close to each other. We will therefore first
consider the case of |r − s| ≥ N−2+p for some small p > 0. From (6.8), (6.11), (6.12) and
the boundedness of the derivative of dV it follows that for 1 − δ < r, s < 1 − ε′N with
ε′N > 0 converging to 0 slowly enough, we have

bV,f − aV,f
2N

KN,V,f (λV,f (r), λV,f (s)) =
sin
(
Nπ

∫ r
s
ρV,f (u)du

)
πN(r − s)

+O(N−ι)

for some ι > 0, uniformly for r, s with |r − s| ≥ N−2+p. Now we can proceed as in the
proof of Theorem 2.8 (1) and (2). We get with properly chosen εN > 0 converging to 0,
that uniformly in t, s ∈ [(1− δ)N, (1− εN )N ]

1

NµV (F−1
V ( tN ))

KN,V,f

(
F−1
V

(
t

N

)
, F−1

V

( s
N

))
=

sin(π(t− s))
π(t− s)

+O
(
N−ι

)
. (6.15)

Here we already replaced FV,f and µV,f by their counterparts FV and µV , which has
been justified in the proof of Theorem 2.8.

For |r − s| < N−2+p, we may use Taylor’s expansion in s at the point r in (6.13)
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together with Ai′′(t) = tAi(t) to obtain

KAi(fN (r), fN (s))(fN (r)− fN (s))

= f ′N (r)fN (r) Ai(fN (r))2(s− r)− f ′N (r) Ai′(fN (r))2(s− r) (6.16)

+
1

2
Ai(fN (r))

[
f ′N (ν)2 Ai(fN (ν)) + fN (ν)f ′′N (ν) Ai(fN (ν))

+ fN (ν)f ′N (ν)2 Ai′(fN (ν))
]
(s− r)(s− ν) (6.17)

+
1

2
Ai′(fN (r))

[
fN (λ)f ′N (λ) Ai(fN (λ)) + f ′′N (λ) Ai′(fN (λ))

]
(s− r)(s− λ) (6.18)

for certain ν, λ between s and r. Using KAi(t, t) = Ai′(t)2 − tAi(t)2, we see that (6.16)
equals

f ′N (r)KAi(fN (r), fN (r))(r − s).

From (6.8), (6.9), (6.11) and |r − s| < N−2+p, we find

bV,f − aV,f
2N

KN,V,f (λV,f (r), λV,f (s)) =
f ′N (r)

N
KAi(fN (r), fN (r)) +O(N−1+p)

with the O term being uniform in r, s. Using (6.8) and (6.9) again, we can for t→ −∞
derive

KAi(t, t) =
1

π
(−t)1/2(1 +O((−t)−3/2)).

With these asymptotics and (6.11) we see that

f ′N (r)

N
KAi(fN (r), fN (r)) = ρV (r) +O(N−ι)

uniformly for 1− δ ≤ r < 1− ε′N with ε′N →∞ slowly enough, which establishes (6.15)
also close to the diagonal. As written above, this suffices to apply Theorem 2.10 to finish
the proof. The transfer to correlation functions is made with (2.4) and to PhN,Q with the
linearization method. This proves Corollary 2.4.

Proof of Corollary 2.11. The corollary follows from Theorem 2.10 by setting

PN (x) := µV (a)−NPN,V,f

(
a+

x1

µV (a)
, . . . , a+

xN
µV (a)

)
.

The case of repulsive particles is analogous. By the two-fold application of Hadamard’s
inequality (cf. (5.21) and (6.1)) and the linearization method, it suffices to show

1

NµV (a)
KN,V,f

(
a+

t

NµV (a)
, a+

s

NµV (a)

)
=

sin(π(t− s))
π(t− s)

+O
(

1 + |t|+ |s|
N

)
.

This is precisely the statement of [17, Theorem 1.8], which can also easily be deduced
from (4.8). Here we used again that the f -dependence in the scaling can be neglected.

Proof of Corollary 2.6. A careful reading of the proof of Lemma 3.2 shows that we have
for any s, L and any ε > 0∣∣∣∣∫ s

0

1

|IN |
dENσ(IN , x̃)−G(s)

∣∣∣∣
≤

L∑
k=2

[
skCk0

(k − 1)!
O
(

1

|IN |

)
+
sk−1Ck0 k

k/2+1

(k − 1)!N1−ε

]
+ E(s, L) + E(s, L+ 1),
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where E(s, k) has been defined in (3.11). Choosing L ∈ N such that
√

log|IN | = o(L) and
L = o(log|IN |), we get similarly as in the proof of Lemma 3.2∣∣∣∣∫ s

0

1

|IN |
dENσ(IN , x̃)−G(s)

∣∣∣∣ = O(|IN |−1+ε′)

for any ε′ > 0, where the O term is uniform in 0 < s = O(
√

log|IN |). Thus it remains
to see that taking the supremum over [0,O(

√
log|IN |)) is sufficient. It follows from the

sub-Gaussian tails of G that 1 − G(O(
√

log|IN |)) = O(|IN |−1) (cf. (3.18)). From (3.22)
we know that the expected total mass of |IN |−1σ(IN , x̃) is 1 +O(|IN |−1+ε) for any ε > 0

and hence the uniform approximation on [0,O(
√

log|IN |)) gives that∫ ∞
O(
√

log|IN |)

1

|IN |
dENσ(IN , x̃) = O(|IN |−1+ε′)

for any ε′ > 0. This proves the corollary.
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