
E l e c t r o n i
c

J
o

u
r n a l

o
f

P
r

o b a b i l i t y

Electron. J. Probab. 20 (2015), no. 104, 1–21.
ISSN: 1083-6489 DOI: 10.1214/EJP.v20-4296

The characteristic polynomial
of a random unitary matrix and

Gaussian multiplicative chaos - The L2-phase

Christian Webb*

Abstract

We study the characteristic polynomial of Haar distributed random unitary matrices.
We show that after a suitable normalization, as one increases the size of the matrix,
powers of the absolute value of the characteristic polynomial as well as powers of
the exponential of its argument converge in law to a Gaussian multiplicative chaos
measure for small enough real powers. This establishes a connection between random
matrix theory and the theory of Gaussian multiplicative chaos.
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1 Introduction

Studying the eigenvalues of the Circular Unitary Ensemble (CUE) - that is Haar
distributed random unitary matrices - is a classical problem in random matrix theory
[22]. More recently it has gotten a lot of attention due to the conjectured relationship
between the Riemann ζ-function on the critical line t 7→ 1

2 + it and characteristic
polynomials of large random matrices - namely it is believed that statistical properties
of the ζ function evaluated at a random point on the critical line are related to the
corresponding properties of the characteristic polynomial of a large random matrix, see
e.g. [35]. The goal of this note is to describe the asymptotic behavior of the characteristic
polynomial of a large Haar distributed unitary matrix when the characteristic polynomial
is evaluated on the unit circle (where the eigenvalues lie).

There are of course existing results on the asymptotic behavior of the characteristic
polynomial. For example, in [35], it is shown that after normalizing by the variance, the
logarithm of the characteristic polynomial at a single point is asymptotically Gaussian.
This was refined in [7], where an exact decomposition for the law of the characteristic
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polynomial at a single point was given. On the other hand, in [11], it was shown
that on the microscopic scale, the characteristic polynomial behaves like a random
analytic function up to a normalization. The results that are closest to ours, and also
the strongest motivation for this work, are those of Diaconis and Shahshahani [17] as
well as Hughes, Keating, and O’Connell [30], who proved among other things, that the
real and imaginary parts of the logarithm of the characteristic polynomial restricted to
the unit circle converge in law to a pair of Gaussian fields which can be represented as
random generalized functions whose covariance kernel has a logarithmic singularity.

In the 80s, Kahane constructed a theory for exponentiating such fields and under-
standing this exponential as a random multifractal measure [32]. The theory is known as
Gaussian Multiplicative Chaos (GMC). For a comprehensive review, see [46]. Recently
these measures have been of great interest due to their role in the mathematical study of
two-dimensional quantum gravity (see e.g. [36] for the physical motivation and [19, 14]
for mathematical results). Thus conjecturally, these measures also play a role in the
study of random planar maps (see e.g. [19, 14] for mathematical conjectures, and
[13] for a physical and historical point of view). Other applications of multiplicative
chaos are construction of random planar curves through conformal welding [2, 50],
Quantum Loewner Evolution [43], studying properties of Gibbs measures of disordered
systems [10], energy dissipation in turbulence [37, 44], and models for asset returns in
mathematical finance [3].

In [27], Fyodorov and Keating essentially conjectured that as the size of the matrix
tends to infinity, real powers of the absolute value of the characteristic polynomial of a
CUE matrix converges to a GMC measure once suitably normalized. They then used this
conjecture to make further conjectures about the absolute value of the characteristic
polynomial and the ζ-function on the critical line. Our main result will be that indeed,
for small enough real powers, powers of the absolute value of the characteristic poly-
nomial on the unit circle (as well as powers of the exponential of the argument of the
characteristic polynomial) will converge in law to a GMC measure.

In addition to perhaps describing some properties of the ζ-function, another moti-
vation for this work is that this type of result can be seen as a new type of geometric
limit theorem in the framework of random matrices. These types of results are likely
to be rather universal in random matrix theory (see the discussion at the end of this
paper), though to our knowledge it is the first of its kind. As mentioned, limit theorems
concern often a single point or the microscopic scale (or perhaps the mesoscopic scale).
The global results of [17, 30] describe convergence to a rough object whose geometry is
not easy to study. In fact, it seems that these measures are the correct way to study the
geometry of the underlying Gaussian field. For example, these measures play a critical
role in understanding the extrema of the field [8, 41, 18]. Also the measures can be used
to study the field’s fractal properties (e.g. thick points of the field and a geometrical KPZ
relation [32, 19, 45, 46]). In [6] it was shown in the particular case of the Gaussian Free
Field that this exponentiation does not lose any information about the field so all of the
geometric properties of the field should be visible in the measure.

On the other hand, from the point of view of the theory of Gaussian Multiplicative
Chaos itself, our result gives a very different type of construction of the measure
than those common in the literature. Usually one uses Gaussian or even martingale
approximations to the field which are essentially tailored to ensure convergence of the
approximating measure. Here we have an approximation arising from a completely
different model and one has no martingale property or Gaussianity until one passes to
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the limit. Thus the results here suggest that perhaps the measures are quite universal
objects, or that this procedure of exponentiating a distribution is continuous in some
sense, namely any "reasonable" approximation to the field should give a way to construct
a GMC measure.

As the methods used in this paper are not that original (we use a natural approxi-
mation for the characteristic polynomial and a rather elementary approach to proving
convergence coupled with powerful recent results on Toeplitz determinants in [15, 12]),
the main goal of this article is pointing out this connection between two important areas
in modern probability theory and some of the interesting questions that this connection
implies for both random matrix theory as well as the theory of Gaussian multiplicative
chaos.

The outline of this paper is the following. We begin with recalling some facts and
results about the CUE, describe our object of interest and state our main theorem
and sketch the strategy of our proof. Next we discuss the relationship between the
characteristic polynomial and Toeplitz determinants with Fisher-Hartwig singularities.
We then review recent results from [12, 15] on asymptotics of such Toeplitz determinants.
Using these results we prove convergence to a GMC measure. Finally we discuss some
open questions this result implies. For the convenience of the reader, we also have an
appendix on Gaussian Multiplicative Chaos measures and Sobolev Spaces.

2 The Circular Unitary Ensemble, the Main Result, and the Strat-
egy of the Proof

In this section, we will describe our basic model, object of interest, and main theorem
as well as sketch the strategy for proving it.

As noted in the introduction, we are interested in n× n-dimensional random matrices
distributed according to the (unique) Haar probability measure on the unitary group
U(n). Let us denote such a matrix by Un. By the Weyl integration formula applied to
U(n), the eigenvalues of Un, which we denote by (eiθ1 , ..., eiθn) (with θi ∈ [0, 2π)), are
distributed according to

1

n!

∏
k<j

|eiθk − eiθj |2
n∏
k=1

dθk
2π

. (2.1)

We are interested in the characteristic polynomial of Un, namely we evaluate it on
the unit circle (where all of its zeros lie) and define

pn(θ) = det(1− e−iθUn) =

n∏
k=1

(1− ei(θk−θ)). (2.2)

To describe the asymptotic properties of pn(θ), we study its absolute value and phase.
It will turn out to be natural to consider suitable powers of these. More precisely, we
introduce the following object, which will be the main object of interest in the rest of
this article.

Definition 2.1. For α, β ∈ R, n ∈ Z+ and θ ∈ [0, 2π), let

fn,α,β(θ) = |pn(θ)|αeβIm log pn(θ), (2.3)

where by Im log pn(θ) we mean the branch of the logarithm where
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Im log pn(θ) =

n∑
k=1

Im log(1− ei(θk−θ)) (2.4)

and

Im log(1− ei(θk−θ)) ∈
(
−π

2
,
π

2

]
. (2.5)

We also consider the random Radon measure on the unit circle defined by

µn,α,β(dθ) =
fn,α,β(θ)

E(fn,α,β(θ))
dθ. (2.6)

We then recall a result from [17] concerning traces of powers of Un.

Theorem 2.2 (Diaconis and Shahshahani). Let (Zi)
∞
i=1 be i.i.d. standard complex Gaus-

sians, i.e. complex random variables whose real and imaginary parts are independent
centered real Gaussians with variance 1

2 . Then for any fixed k,(
TrUn,

1√
2

TrU2
n...,

1√
k

TrUkn

)
d→ (Z1, ..., Zk) (2.7)

as n→∞.

We also recall the following result from [30] where it was noted that Theorem 2.2
can be used to describe the asymptotic behavior of the logarithm of the characteristic
polynomial. For the definition of the Sobolev space H−ε0 , see the appendix.

Theorem 2.3 (Hughes, Keating, and O’Connell). For any ε > 0, (log |pn(θ)|, Im log pn(θ))

(where Im log pn(θ) is interpreted as in Definition 2.1) converges in law in H−ε0 ×H
−ε
0 to

the pair of Gaussian fields (X(θ), X̂(θ)), where

X(θ) =
1

2

∞∑
k=1

1√
k

(Zke
ikθ + Z∗ke

−ikθ), (2.8)

X̂(θ) =
1

2

∞∑
k=1

1√
k

(iZke
ikθ − iZ∗ke−ikθ), (2.9)

and (Zk)∞k=1 are i.i.d. standard complex Gaussians.

Remark 2.4. Note that as iZk
d
= Zk, we have X

d
= X̂. Moreover, for real α, β, the

rotation invariance of the law of Zk implies that

αX + βX̂
d
=
√
α2 + β2X. (2.10)

This does not imply that X and X̂ are independent - they are not. For example,
formally (one can make this precise if one wishes)

E(X(θ)X̂(θ′)) =

∞∑
k=1

1

k
sin(k(θ − θ′)) (2.11)

which is non-zero unless |θ − θ′| = kπ for some integer k. We also point out that (again
formally though one can make this too precise with little effort)

E(X(θ)X(θ′)) =
1

2

∞∑
k=1

1

k
cos(k(θ − θ′)) = −1

2
log |eiθ − eiθ

′
|. (2.12)

EJP 20 (2015), paper 104.
Page 4/21

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v20-4296
http://ejp.ejpecp.org/


Random unitary matrices and GMC

Motivated by these remarks and Theorem 2.3, we expect that in distribution, fn,α,β

should asymptotically behave like e
√
α2+β2X . The following theorem is our main result

and makes this statement precise. For a proper definition of the measure µ√
α2+β2(dθ),

see the appendix.

Theorem 2.5. For α > − 1
2 and α2 + β2 < 2, the measure µn,α,β(dθ) converges in

distribution in the space of Radon measures on the unit circle equipped with the topol-
ogy of weak convergence to the (non-trivial) Gaussian multiplicative chaos measure
µ√

α2+β2(dθ) which can be formally written as

µ√
α2+β2(dθ) = e

√
α2+β2X(θ)−α

2+β2

2 E(X(θ)2)dθ. (2.13)

Strategy of proof: Our starting point for the proof is the remark that the conver-
gence of µn,α,β in distribution to µ√

α2+β2 in the space of Radon measures on the unit

circle with the topology of weak convergence is equivalent to∫ 2π

0

g(θ)µn,α,β(dθ)
d→
∫ 2π

0

g(θ)µ√
α2+β2(dθ), (2.14)

as n → ∞ for each continuous non-negative function g defined on the unit circle. For
details on this, see e.g. Chapter 4 in [34]. We prove this by approximating µn,α,β by
truncating the Fourier series of the logarithm of fn,α,β. More precisely, we note that
using the expansion of log(1− z), we have

log fn,α,β(θ) ∼ −1

2

∞∑
j=1

1

j

(
(α− βi)TrU jne

−ijθ + (α+ βi)TrU−jn eijθ
)
. (2.15)

We then approximate log fn,α,β by truncating this series.

Definition 2.6. For k, n ∈ Z+, α, β ∈ R and θ ∈ [0, 2π), let

f
(k)
n,α,β(θ) = e−

1
2

∑k
j=1

1
j ((α−βi)TrU

j
ne
−ijθ+(α+βi)TrU−jn eijθ) (2.16)

and

µ
(k)
n,α,β(dθ) =

f
(k)
n,α,β(θ)

E(f
(k)
n,α,β(θ))

dθ. (2.17)

The idea now is to show that for any fixed continuous function g, as we let n → ∞
and then k →∞, ∫ 2π

0

g(θ)µ
(k)
n,α,β(dθ)−

∫ 2π

0

g(θ)µn,α,β(dθ) (2.18)

tends to zero in distribution while in the same limit,
∫ 2π

0
g(θ)µ

(k)
n,α,β(dθ) converges to∫ 2π

0
g(θ)µ√

α2+β2(dθ) in distribution. The first fact will be established through a variance

estimate in the next section, where we make use of a Toeplitz determinant representation
and results of [15, 12]. The second fact follows from Theorem 2.2 and the definition of
µ√

α2+β2 .

Finally we note that it is reasonable to expect that the restriction in the values of the
parameters α and β is simply due to the method of our proof and convergence will hold
for a larger set of values. For further discussion, see the last section of this paper.

EJP 20 (2015), paper 104.
Page 5/21

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v20-4296
http://ejp.ejpecp.org/


Random unitary matrices and GMC

3 Variance estimates and asymptotics of Toeplitz determinants
with Fisher-Hartwig singularities

The goal of this section is to prove the following result:

Proposition 3.1. For α > − 1
2 and β ∈ R such that α2 + β2 < 2,

lim
k→∞

lim sup
n→∞

E

((∫ 2π

0

g(θ)µ
(k)
n,α,β(dθ)−

∫ 2π

0

g(θ)µn,α,β(dθ)

)2
)

= 0 (3.1)

for any given continuous non-negative function g defined on the unit circle.

Much of this section will be well known to experts of random matrix theory, but we
give a detailed presentation for the benefit of readers less familiar with it.

Expanding the square in the expectation and using Fubini, we see that what is
relevant is obtaining uniform asymptotics for E(f

(k)
n,α,β(θ)f

(k)
n,α,β(θ′)), E(f

(k)
n,α,β(θ)fn,α,β(θ′)),

and E(fn,α,β(θ)fn,α,β(θ′)), as well as E(f
(k)
n,α,β(θ)) and E(fn,α,β(θ)) for all values of θ and

θ′ (even as θ → θ′). As we will see, all of these quantities can be represented as Toeplitz
determinants and their asymptotic behavior follows from existing work. To see the
Toeplitz determinant representation, let us first recall the Heine-Szegö identity (see e.g.
[9]).

Theorem 3.2 (Heine-Szegö identity). Consider a function defined on the unit circle:
f(φ) =

∑
n∈Z fne

inφ which is in L1(dφ). Then if (eiθk)nk=1 are the eigenvalues of a Haar
distributed n× n unitary matrix, then

E

(
n∏
k=1

f (θk)

)
= Dn−1(f), (3.2)

where the Toeplitz determinant Dn−1(f) is the determinant of the matrix


f0 f1 · · · fn−1
f−1 f0 · · · fn−2

...
...

. . .
...

f−n+1 f−n+2 · · · f0

 . (3.3)

Remark 3.3. It follows for example from the translation invariance of the law of (θi)
n
i=1,

that for any fixed θ, one also has

E

(
n∏
k=1

f (θ + θk)

)
= Dn−1(f) (3.4)

or if we denote by fθ, the translation of f by θ: fθ(φ) = f(θ+φ), then Dn−1(fθ) = Dn−1(f).

The following fact is a direct consequence of Theorem 3.2:
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Lemma 3.4.

E

((∫ 2π

0

g(θ)µ
(k)
n,α,β(dθ)−

∫ 2π

0

g(θ)µn,α,β(dθ)

)2
)

=
1(

E(f
(k)
n,α,β(0))

)2 ∫ 2π

0

∫ 2π

0

g(θ)g(θ′)Dn−1(σ1,θ,θ′)dθdθ
′ (3.5)

− 2
1

E(f
(k)
n,α,β(0))E(fn,α,β(0))

∫ 2π

0

∫ 2π

0

g(θ)g(θ′)Dn−1(σ2,θ,θ′)dθdθ
′

+
1

(E(fn,α,β(0)))
2

∫ 2π

0

∫ 2π

0

g(θ)g(θ′)Dn−1(σ3,θ,θ′)dθdθ
′,

where

σ1,θ,θ′(φ) = e
− 1

2

∑k
j=1

1
j

(
(α−βi)(e−ijθ+e−ijθ

′
)eijφ+(α+βi)(eijθ+eijθ

′
)e−ijφ

)
, (3.6)

σ2,θ,θ′(φ) = e−
1
2

∑k
j=1

1
j ((α−βi)e

−ijθeijφ+(α+βi)eijθe−ijφ)

× |eiθ
′
− eiφ|αeβIm log(1−ei(φ−θ

′)) (3.7)

and

σ3,θ,θ′(φ) = |eiθ − eiφ|αeβIm log(1−ei(φ−θ))|eiθ
′
− eiφ|αeβIm log(1−ei(φ−θ

′)), (3.8)

where the branch of the logarithm is such that Im log(1− ei(φ−θ′)) ∈ (−π2 ,
π
2 ] and similarly

for θ.

Proof. This follows from applying Theorem 3.2 to the remark that for any θ, θ′ ∈ [0, 2π)

f
(k)
n,α,β(θ)f

(k)
n,α,β(θ′) =

n∏
p=1

σ1,θ,θ′(θp) (3.9)

and similar arguments for f (k)n,α,β(θ)fn,α,β(θ′) and fn,α,β(θ)fn,α,β(θ′). Remark 3.3 implies

that the denominators E(f
(k)
n,α,β(θ)) are independent of θ and can be taken outside of the

integrals.

Remark 3.5. Due to our choice of the branch of the logarithm, we have

Im log(1− ei(φ−θ)) =

{
−π2 + φ−θ

2 , 0 ≤ θ ≤ φ < 2π
π
2 + φ−θ

2 , 0 ≤ φ < θ < 2π
(3.10)

implying that we can write

σ2,θ,θ′(φ) = e−
1
2

∑k
j=1

1
j ((α−βi)e

−ijθeijφ+(α+βi)eijθe−ijφ)

× |eiθ
′
− eiφ|αeβ

φ−θ′
2 geiθ′ ,−i β2

(eiφ) (3.11)

and

σ3,θ,θ′(φ) = |eiθ − eiφ|αeβ
φ−θ
2 geiθ,−i β2

(eiφ)|eiθ
′
− eiφ|αeβ

φ−θ′
2 geiθ′ ,−i β2

(eiφ), (3.12)
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where

geiθ,β(eiφ) =

{
eiπβ , 0 ≤ φ < θ

e−iπβ , θ ≤ φ < 2π
. (3.13)

In the definition of geiθ,β we have followed the notation of [15] to avoid confusion when
referring to their results.

The asymptotics of such Toeplitz determinants have been studied extensively. The
asymptotics of Dn−1(σ1,θ,θ′) go back to Szegö [52]. Dn−1(σ2,θ,θ′) and Dn−1(σ3,θ,θ′) are
special cases of Toeplitz determinants with Fisher-Hartwig singularities. Conjectures
about their asymptotic behavior go back to Fisher and Hartwig [25] as well as Lenard
[40]. The first rigorous results are due to Widom [53] though there is still a lot of
research activity related to the problem (see e.g. [23, 15, 16, 12]). Let us now discuss
the asymptotics of the different terms.

3.1 Asymptotics of Dn−1(σ1)

As noted, the pointwise asymptotics of such a determinant go back to Szegö:

Theorem 3.6 (Strong Szegö theorem). Let L be a real valued function on the unit
circle such that L ∈ L1, eL ∈ L1 and let L̂k denote the Fourier coefficients of L:
L̂n =

∫ 2π

0
e−inφL(φ)dφ2π . Then

logDn−1(eL) = nL̂0 +

∞∑
k=1

k|L̂k|2 + o(1). (3.14)

As it is, this is not quite enough for us. In our case, L depends on the variables θ and
θ′ which we wish to integrate over so we need a uniform version for this. Actually as
σ1,θ,θ′ is real and

∫ 2π

0
log σ1,θ,θ′(φ)dφ = 0, Dn−1(σ1) is increasing in n:

Theorem 3.7. Let L be as in the previous theorem with the extra condition that L̂0 = 0.
Then for any n ∈ Z+,

Dn−1(eL) ≤ Dn(eL). (3.15)

Proof. This is proven for example in [51]. More precisely, in Section 2 (Theorems 2.1-2.4)
of [51] it is proven that

lim
n→∞

(
Dn−1(eL)

) 1
n = lim

n→∞

Dn(eL)

Dn−1(eL)
(3.16)

and that if this limit (which following [51] we denote by F ) is positive, then for some
increasing sequence (Gn),

Dn−1(eL) = Gn−1F
n (3.17)

As noted in Theorem 5.1 of [51], it then follows from these results and Szegö’s
theorem (the "weaker" one i.e. that 1

n logDn−1(eL) = L̂0 + o(1) - Theorem 4.1 of [51])

that F = eL̂0 = 1 and Dn−1(eL) = Gn−1 is increasing.

Thus these two theorems and the dominated convergence theorem imply the following
asymptotic behavior:
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Corollary 3.8. For any α, β ∈ R, and continuous g

lim
n→∞

∫ 2π

0

∫ 2π

0

g(θ)g(θ′)Dn−1(σ1,θ,θ′)dθdθ
′

=

∫ 2π

0

∫ 2π

0

g(θ)g(θ′)e
1
4

∑k
j=1

1
j (α

2+β2)|eijθ+eijθ
′
|2dθdθ′ (3.18)

= e
1
2 (α

2+β2)
∑k
j=1

1
j

∫ 2π

0

∫ 2π

0

g(θ)g(θ′)e
(α2+β2)

2

∑k
j=1

1
j cos(j(θ−θ′))dθdθ′.

3.2 Asymptotics of Dn−1(σ2)

The asymptotic behavior of determinants of the form of Dn−1(σ2) was already an-
alyzed in [53] and generalized in [5] and [24]. Nevertheless, we shall formulate the
results in terms of those of [15] as similar notations are used in [12] which we shall rely
on for the asymptotics of Dn−1(σ3).

As noted, σ2 and σ3 have Fisher-Hartwig singularities, namely they are both of the
form

f(z) = eV (z)z
∑m
j=0 βj

m∏
j=0

|z − zj |2αjgzj ,βj (z)z
−βj
j , (3.19)

where z = eiφ and zj are some fixed distinct points on the unit circle, in our notation
they correspond to eiθ and eiθ

′
, and gzj ,βj was defined in (3.13).

For σ2 the exact correspondence is the following: m = 0, α0 = α
2 , z0 = eiθ

′
, β0 = −iβ2 ,

and

V (z) = −1

2

k∑
j=1

1

j
(α− βi)e−ijθzj − 1

2

k∑
j=1

1

j
(α+ βi)eijθzj . (3.20)

In [15] a normalization is chosen where z0 = 1, but making use of Remark 3.3, we
can recover this by shifting θ 7→ θ − θ′, φ− θ′ → φ, and θ′ → 0.

The main result of [15] (proven in [23] in the case where V ∈ C∞ - that is infinitely
differentiable) is

Theorem 3.9 (Ehrhardt; Deift, Its, and Krasovsky). Let f be of the form (3.19) and let
|||β||| := maxj,k |Reβj −Reβk| < 1, Reαj > − 1

2 , αj ±βj 6= −1,−2, ... for j = 0, ...,m and let
V (z) =

∑
k∈Z Vkz

k satisfy

∑
k∈Z

|k|s|Vk| <∞ (3.21)

for

s >
1 +

∑m
j=0((Imαj)

2 + (Reβj)
2)

1− |||β|||
. (3.22)

Then as n→∞, for zi 6= zj for all i 6= j,
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Dn(f) = enV0+
∑∞
k=1 kVkV−k

m∏
j=0

e(βj−αj)
∑∞
k=1 Vkz

k
j e−(αj+βj)

∑∞
k=1 V−kz

−k
j

× n
∑m
j=0(α

2
j−β

2
j )

∏
0≤j<k≤m

|zj − zk|2(βjβk−αjαk)
(

zk
zjeiπ

)αjβk−αkβj
(3.23)

×
m∏
j=0

G(1 + αj + βj)G(1 + αj − βj)
G(1 + 2αj)

(1 + o(1)),

where G is the Barnes G-function and the product
∏

0≤j<k≤m is set to 1 if m = 0.

Remark 3.10. One can show that the error term is uniform in compact subsets of
{zi 6= zj}: see e.g. [15, Remark 1.4]. For σ2 and σ3 this can be seen also from the proofs
of [24, 53]. More precisely, looking at the proof in [24] for the asymptotics corresponding
to σ2, one sees from the end of the proof ([24, p. 254]) that the crucial estimate for
uniformity is a uniform bound on the trace norm of the operator A (defined on [24,
p. 249]). This then translates (through [24, propositions 4.2 and 4.5]) into regularity
conditions on the potential V which in our case is uniformly bounded and all of its
derivatives are uniformly bounded and one is able to prove uniform bounds on the trace
norm of A. For σ3, one can trace through the proof of [53] and uniform estimates boil
down to the partial sums of

∑
l(
zi
zj

)l are uniformly bounded in say |zi − zj | ≥ ε - see [53,
p. 345] for the relevance of this estimate.

Plugging in the values corresponding to σ2 and shifting θ′ → 0, θ → θ− θ′ (i.e. setting
β0 = −iβ2 , α0 = α

2 , Vj = − 1
2 (α− βi)e−ij(θ−θ′), V−j = Vj), we see that

Dn−1(σ2,θ,θ′) = e
1
4 (α

2+β2)
∑k
j=1

1
j e

1
2 (α

2+β2)
∑k
j=1

1
j cos j(θ−θ′)n

α2+β2

4

×
G
(

1 + α
2 − i

β
2

)
G
(

1 + α
2 + iβ2

)
G(1 + α)

(1 + o(1)). (3.24)

As, there is only one Fisher-Hartwig singularity in σ2, we see by Remark 3.10 that
the error is uniform in θ, θ′. Thus we have

Corollary 3.11. For any continuous function g defined on the unit circle, α > −1, and
β ∈ R, as n→∞

∫ 2π

0

∫ 2π

0

g(θ)g(θ′)Dn−1(σ2,θ,θ′)dθdθ
′

= n
α2+β2

4

G
(

1 + α
2 − i

β
2

)
G
(

1 + α
2 + iβ2

)
G(1 + α)

e
1
4 (α

2+β2)
∑k
j=1

1
j (3.25)

×
(∫ 2π

0

∫ 2π

0

g(θ)g(θ′)e
1
2 (α

2+β2)
∑k
j=1

1
j cos j(θ−θ′)dθdθ′ + o(1)

)
.

3.3 Asymptotics of Dn−1(σ3)

We again have a Toeplitz determinant with Fisher-Hartwig singularities. Compared
to (3.19), the relationship is V = 0, m = 1, z0 = eiθ, z1 = eiθ

′
, α0 = α1 = α

2 , and

β0 = β1 = −iβ2 , or shifting to the normalization of Theorem 3.9, z0 = 1 and z1 = ei(θ
′−θ).

Theorem 3.9 and Remark 3.10 then imply that for any ε > 0,
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lim
n→∞

Dn−1(σ3,θ,θ′)

n
1
2 (α

2+β2)
=
∣∣∣eiθ − eiθ′ ∣∣∣−α2+β2

2
G
(

1 + α
2 −

β
2 i
)2
G
(

1 + α
2 + β

2 i
)2

G(1 + α)2
(3.26)

uniformly in |θ − θ′| ≥ ε.

Compared to Dn−1(σ2) we have here the important difference that we must also
consider the situation θ → θ′ and we can’t simply rely on Theorem 3.9.

Luckily the situation where θ → θ′ has recently been analyzed in [12]. In fact, the
following is essentially their proof of Theorem 1.8 in [12], but as on a superficial level,
our setting looks slightly more general, we write down the details. Specifying their
Theorem 1.5 into our setting (α1 = α2 = α

2 , β1 = β2 = −iβ2 ) and ignoring the finer
asymptotics that aren’t needed for our result, we have the following

Theorem 3.12 (Claeys and Krasovsky). There exists a t0 > 0 such that for α > − 1
2 and

0 < |θ − θ′| < 2t0,

logDn−1(σ3,θ,θ′) = logDn−1(σ3,0,0) +

∫ −in|θ−θ′|
0

1

s

(
σ(s)− 1

2
(α2 + β2)

)
ds

− 1

2
(α2 + β2) log

2 sin |θ−θ
′|

2

|θ − θ′|
+ o(1), (3.27)

where the integral is along the negative imaginary axis, o(1) is uniform in 0 < |θ−θ′| < 2t0,
and

logDn−1(σ3,0,0) = (α2 + β2) log n+ log
G(1 + α− iβ)G(1 + α+ iβ)

G(1 + 2α)
+ o(1). (3.28)

Moreover σ is a continuous function (depending only on α and β - not θ, θ′, or n)
whose asymptotic behavior is the following: there is some δ > 0 such that

σ(s) =
1

2
(α2 + β2) +O(|s|δ), (3.29)

as s→ 0 along the negative imaginary axis, and

σ(s) = O(|s|−δ) (3.30)

as s→∞ along the negative imaginary axis.

We shall also make use of their Theorem 1.11 which in our situation simplifies to the
following.

Theorem 3.13 (Claeys and Krasovsky). Let α > −1. Then there exists a sufficiently
small t0 such that for logn

n ≤ |θ − θ′| < 2t0

logDn−1(σ3,θ,θ′) =
1

2
(α2 + β2) log n− 1

2
(α2 + β2) log

(
2 sin

|θ − θ′|
2

)
+ log

G(1 + α
2 − i

β
2 )2G(1 + α

2 + iβ2 )2

G(1 + α)2
+ o(1) (3.31)

and the error term is uniform in logn
n ≤ |θ − θ′| < t0.
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Combining these results we have the following asymptotics (essentially Theorem 1.15
of [12]):

Corollary 3.14. For any continuous function g defined on the unit circle, α > − 1
2 , and

α2 + β2 < 2

lim
n→∞

n−
α2+β2

2

∫ 2π

0

∫ 2π

0

g(θ)g(θ′)Dn−1(σ3,θ,θ′)dθdθ
′

=
G(1 + α

2 − i
β
2 )2G(1 + α

2 + iβ2 )2

G(1 + α)2
(3.32)

×
∫ 2π

0

∫ 2π

0

g(θ)g(θ′)|eiθ − eiθ
′
|−

α2+β2

2 dθdθ′.

Proof. Let us split the θ, θ′ integrals into four parts: I1, being the integral over 0 < |θ′ −
θ| ≤ 1

n , I2 corresponding to 1
n < |θ

′ − θ| < logn
n , I3 corresponding to logn

n ≤ |θ′ − θ| < 2t0,
and I4 corresponding to 2t0 ≤ |θ′ − θ|.

By Theorem 3.9 and Remark 3.10, we have

lim
n→∞

n−
α2+β2

2 I4 =
G(1 + α

2 − i
β
2 )2G(1 + α

2 + iβ2 )2

G(1 + α)2

×
∫
|θ−θ′|≥2t0

g(θ)g(θ′)|eiθ − eiθ
′
|−

α2+β2

2 dθdθ′. (3.33)

For I1, we note that Theorem 3.12 implies that

I1 = nα
2+β2G(1 + α− iβ)G(1 + α+ iβ)

G(1 + 2α)

×
∫
|θ−θ′|≤ 1

n

g(θ)g(θ′)e
∫−in|θ−θ′|
0

1
s (σ(s)−

1
2 (α

2+β2))ds (3.34)

× e−
1
2 (α

2+β2) log
2 sin

|θ−θ′|
2

|θ−θ′| +o(1)
dθdθ′.

Moreover, the asymptotics of σ near zero on the negative imaginary axis, imply
that the integrand in the exponential converges and the integrand in the θ, θ′-integral

is bounded, so we see that I1 = O(nα
2+β2−1) and as α2+β2

2 < 1, this implies that

n−
1
2 (α

2+β2)I1 → 0 as n→∞.

For I2, using Theorem 3.12 we write for 1
n < |θ − θ

′| < logn
n

logDn−1(σ3,θ,θ′)

= (α2 + β2) log n+ log
G(1 + α− iβ)G(1 + α+ iβ)

G(1 + 2α)

+

∫ −i
0

σ(s)− 1
2 (α2 + β2)

s
ds− 1

2
(α2 + β2) log n (3.35)

+

∫ −in|θ−θ′|
−i

σ(s)

s
ds− α2 + β2

2
log

(
2 sin

|θ − θ′|
2

)
+ o(1)

and we have

EJP 20 (2015), paper 104.
Page 12/21

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v20-4296
http://ejp.ejpecp.org/


Random unitary matrices and GMC

I2 = n
α2+β2

2
G(1 + α− iβ)G(1 + α+ iβ)

G(1 + 2α)
e
∫−i
0

σ(s)− 1
2
(α2+β2)

s ds

×
∫

1
n≤|θ−θ′|≤

logn
n

g(θ)g(θ′)

(
2 sin

|θ − θ′|
2

)−α2+β2

2

(3.36)

× e
∫−in|θ−θ′|
−i

σ(s)
s ds+o(1)dθdθ′.

The asymptotics of σ(s) as s→∞ along the negative imaginary axis imply that the

integrand can be bounded by a constant times |θ − θ′|−
α2+β2

2 which is an integrable

singularity as α2+β2

2 < 1. We conclude that as n→∞, n−
α2+β2

2 I2 → 0.

For I3, we make use of Theorem 3.13. This yields immediately that

n−
α2+β2

2 I3 =
G(1 + α

2 − i
β
2 )2G(1 + α

2 + iβ2 )2

G(1 + α)2

×
∫

logn
n ≤|θ−θ′|<2t0

g(θ)g(θ′)|eiθ − eiθ
′
|−

α2+β2

2 eo(1)dθdθ′. (3.37)

As the singularity |eiθ − eiθ′ |−
α2+β2

2 = (2 sin |θ−θ
′|

2 )−
α2+β2

2 is integrable as θ → θ′, and
the error is uniform, we find

n−
α2+β2

2 I3 →
G(1 + α

2 − i
β
2 )2G(1 + α

2 + iβ2 )2

G(1 + α)2

×
∫
0≤|θ−θ′|<2t0

g(θ)g(θ′)|eiθ − eiθ
′
|−

α2+β2

2 dθdθ′. (3.38)

Putting things together yields the claim.

3.4 Asymptotics of the normalization constants

To prove Proposition 3.1, we only need to calculate the asymptotics of the normalizing
constants, i.e. E(f

(k)
n,α,β(0)) and E(fn,α,β(0)).

Lemma 3.15. For any fixed k,

lim
n→∞

E(f
(k)
n,α,β(0)) = e

α2+β2

4

∑k
j=1

1
j (3.39)

and

lim
n→∞

n−
α2+β2

4 E(fn,α,β(0)) =
G(1 + α

2 − i
β
2 )G(1 + α

2 + iβ2 )

G(1 + α)
(3.40)

Proof. By Heine-Szegö (Theorem 3.2),

E(f
(k)
n,α,β(0)) = Dn−1

(
e−

1
2

∑k
j=1

1
j ((α−βi)e

ijφ+(α+iβ)e−ijφ)
)

(3.41)

and by the Strong Szegö theorem (Theorem 3.6)

Dn−1

(
e−

1
2

∑k
j=1

1
j ((α−βi)e

ijφ+(α+iβ)e−ijφ)
)

= e
α2+β2

4

∑k
j=1

1
j+o(1). (3.42)
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For the second normalizing constant, one could note that it is a Selberg-Morris
integral and can be written explicitly as a product of ratios of Γ-functions, but to
avoid computations, we make use of Theorem 3.9. We have E(fn,α,β(0)) = Dn−1(|1 −
eiφ|αeβIm log(1−eiφ)) which in the framework of Theorem 3.9 corresponds to m = 0, V = 0,
α0 = α

2 , and β0 = −iβ2 so that the theorem implies that

lim
n→∞

n−
α2+β2

4 E(fn,α,β(0)) =
G(1 + α

2 − i
β
2 )G(1 + α

2 + iβ2 )

G(1 + α)
. (3.43)

3.5 Proof of Proposition 3.1

Putting together Corollaries 3.8, 3.11, and 3.14 as well as Lemma 3.15 with Lemma
3.4, we find

lim
n→∞

E

((∫ 2π

0

g(θ)µ
(k)
n,α,β(dθ)−

∫ 2π

0

g(θ)µn,α,β(dθ)

)2
)

=
e

1
2 (α

2+β2)
∑k
j=1

1
j
∫ 2π

0

∫ 2π

0
g(θ)g(θ′)e

(α2+β2)
2

∑k
j=1

1
j cos(j(θ−θ′))dθdθ′(

e
α2+β2

4

∑k
j=1

1
j

)2
− 2 lim

n→∞

n
α2+β2

4
G(1+α

2−i
β
2 )G(1+α

2 +i β2 )
G(1+α) e

1
4 (α

2+β2)
∑k
j=1

1
j

n
α2+β2

4
G(1+α

2−i
β
2 )G(1+α

2 +i β2 )

G(1+α) e
α2+β2

4

∑k
j=1

1
j

×
∫ 2π

0

∫ 2π

0

g(θ)g(θ′)e
1
2 (α

2+β2)
∑k
j=1

1
j cos j(θ−θ′)dθdθ′

+ lim
n→∞

n
α2+β2

2
G(1+α

2−i
β
2 )2G(1+α

2 +i β2 )2

G(1+α)2(
n
α2+β2

4
G(1+α

2−i
β
2 )G(1+α

2 +i β2 )

G(1+α)

)2 (3.44)

×
∫ 2π

0

∫ 2π

0

g(θ)g(θ′)|eiθ − eiθ
′
|−

α2+β2

2 dθdθ′

=

∫
[0,2π]2

g(θ)g(θ′)

(
|eiθ − eiθ

′
|−

α2+β2

2 − e
α2+β2

2

∑k
j=1

1
j cos j(θ−θ′)

)
dθdθ′.

As this quantity is non-negative for all k (it is a limit of variances), it tends to zero as
k →∞ due to Fatou’s lemma once we write the integral as a difference of two integrals.

4 Proof of the main result

We are now in a position to prove our main theorem. In the previous section, we
proved that for a non-negative continuous function g

E

((∫ 2π

0

g(θ)µ
(k)
n,α,β(dθ)−

∫ 2π

0

g(θ)µn,α,β(dθ)

)2
)
→ 0 (4.1)

as we first let n→∞ and then k →∞, so in particular,∫ 2π

0

g(θ)µ
(k)
n,α,β(dθ)−

∫ 2π

0

g(θ)µn,α,β(dθ)
d→ 0 (4.2)

in the same limit. Thus if we are able to prove that
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∫ 2π

0

g(θ)µ
(k)
n,α,β(dθ)

d→
∫ 2π

0

g(θ)µ√
α2+β2(dθ) (4.3)

in the same limit, we will be done (for a detailed formulation of this type of argument see
e.g. Theorem 4.28 in [33]). To do this, we first prove the following lemma, which is just
a corollary of the results of Diaconis and Shahshahani - (ie. Theorem 2.2 in this paper).

Lemma 4.1. For any fixed k, any α, β ∈ R, and any continuous function g defined on the
unit circle ∫ 2π

0

g(θ)µ
(k)
n,α,β(dθ)

d→
∫ 2π

0

g(θ)µ
(k)√
α2+β2

(dθ) (4.4)

as n→∞ (for the definition of µ(k)√
α2+β2

(dθ) see the appendix).

Proof. Consider the function F : Ck → C,

F (z1, ..., zk) =

∫ 2π

0

g(θ)e
− 1

2

∑k
j=1

1√
j ((α−iβ)zje

−ijθ+(α+iβ)zje
ijθ)dθ. (4.5)

This is continuous as g is bounded, so we see (by [33, Theorem 4.27]) that Theorem
2.2 implies that

F

(
TrUn, ...,

1√
k

TrUkn

)
=

∫ 2π

0

f
(k)
n,α,β(θ)g(θ)

dθ

2π

d→
∫ 2π

0

e
− 1

2

∑k
j=1

1√
j ((α−iβ)Zje

−ijθ+(α+iβ)Z∗j e
ijθ)dθ (4.6)

d
=

∫ 2π

0

e

√
α2+β2

2

∑k
j=1

1√
j (Zje

ijθ+Z∗j e
−ijθ)dθ

as n → ∞. Here (Zj)j are i.i.d. standard complex Gaussians and we used again the

fact that for any φ ∈ R, (eiφZj)j
d
= (−Zj)j as well as the fact that (Zj)j

d
= (Z∗j )j . Now

combining this with Lemma 3.15 gives the desired result.

As µ√
α2+β2 is defined to be the limit of µ(k)√

α2+β2
, this immediately implies that for

continuous functions g, as we first let n→∞ and then k →∞,∫ 2π

0

g(θ)µ
(k)
n,α,β(dθ)

d→
∫ 2π

0

g(θ)µ√
α2+β2(dθ) (4.7)

Putting things together, we conclude that∫ 2π

0

g(θ)µn,α,β(dθ)
d→
∫ 2π

0

g(θ)µ√
α2+β2(dθ) (4.8)

which was what we wanted to prove.

5 Discussion and open problems

The main goal of this article was to prove a new type of geometric limit theorem
describing the asymptotic behavior of the characteristic polynomial of a large random
unitary matrix and thus linking random matrix theory to the theory of Gaussian mul-
tiplicative chaos. As noted in the introduction, to the author’s knowledge, this is the
first rigorous proof of such a link. From the point of view of random matrix theory,
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this connection sheds light on the global multifractal structure of the eigenvalues of a
CUE matrix, and gives one new tools for studying some asymptotic properties of the
eigenvalues. From the point of view of Gaussian multiplicative chaos, this is - to the
author’s knowledge - the first non-trivial model where Gaussian multiplicative chaos
appears naturally. By non-trivial we mean here an approximation of a Gaussian field that
is neither Gaussian nor a martingale, and appears naturally from other considerations.
From either point of view, this connection suggests exciting new questions to explore
and we discuss some of them here.

5.1 Other values of α and β

Non-trivial multiplicative chaos measures eγX(θ)− γ
2

2 E(X(θ)2)dθ can be constructed for
all values of γ. Our restriction to the L2-phase i.e. α2 + β2 < 2 was due to the fact that
we estimated variances. For α2 + β2 ≥ 2, these variances will blow up and the estimates
would no longer be good. Moreover, the condition that α > − 1

2 was due to asymptotic
analysis of the Toeplitz determinant being valid in this regime.

A natural question to ask is then can one go beyond these values of α and β. In
the L1-phase, namely where the martingale defining the multiplicative chaos measure
is uniformly integrable (in our setting this means α2 + β2 < 4), one could expect that
perhaps instead of estimating variances one could estimate moments of order p with
1 < p < 2. While this would seem to make the Toeplitz determinant approach impossible,
perhaps there is a way to rely on variance estimates as is common in multiplicative
chaos theory (there moments of order p are often estimated using variance estimates in
a clever way).

Going out of the L1-phase, the construction of multiplicative chaos measures becomes
much more challenging (it is no longer enough to normalize by the mean - see [20, 21, 42]
- and presumably one will need a different kind of approach in this regime. A related
question is studying the maximum of log |pn(θ)|. The conjecture of Fyodorov and Keating
is that this should behave like the maximum of a log-correlated field (see [41, 8, 18]).
In the case of a log-correlated field, the multiplicative chaos measures play a role
in understanding the behavior of the maximum. Again, analyzing this in the case of
log |pn(θ)| will presumably require some other kind of approach.

It might also be possible to relax the α > − 1
2 condition to some degree. For example,

in the case of a single Fisher-Hartwig singularity, the condition that Re(α0) > − 1
2 in

Theorem 3.9 can be significantly relaxed - see [24].

Another natural extension is to the case of complex α and β (for simplicity, let us
discuss the L2 phase). Indeed as remarked in the appendix (see Remark 5.7) com-
plex Gaussian multiplicative chaos can be considered. Also asymptotics of Toeplitz
determinants with complex parameters are known. The issue here is that for complex
parameters, logDn−1(σ3,θ,θ′) may have singularities for some values of θ, θ′ - see Theo-
rem 1.8 in [12]. That being said, these singularities should correspond to zeros in the
asymptotics of Dn−1(σ3,θ,θ′) (see Remark 1.9 in [12]) so they should not be problematic.

5.2 Other random matrix models

Another natural question is what depends on the special structure of the CUE here.
The author’s guess is that perhaps this connection between multiplicative chaos and
random matrix theory is quite universal. There are many random matrix models where
the fluctuations of the characteristic polynomial are log-correlated Gaussian fields:
the GUE, one-dimensional β-ensembles, the Ginibre ensemble, and random normal
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matrices[28, 31, 47, 1]. Moreover, for the GUE, there are results in [38] corresponding
to Theorem 3.9 here and one essentially needs to modify the results in [12] to the GUE
setting to prove a result as ours in the GUE case. Again in the GUE case presumably the
L2-phase is the simplest one and extending beyond that may be difficult. For conjectures
regarding for example the maximum of the characteristic polynomial, see [29].

What is common for all of these mentioned models is that they are β-ensembles.
Indeed, for when the Dyson index β equals 2 in a one-dimensional model (on the real
axis or the unit circle), our approach will lead to a Toeplitz or Hankel determinant
whose analysis is presumably possible under suitable regularity conditions. In fact,
generalizing our result to the case with a non-trivial potential on the unit circle (say
analytic in a neighborhood of the unit circle) should not require much. The much more
complicated question is what can one do in the two-dimensional case or when β 6= 2 and
a Riemann-Hilbert approach might not exist.

5.3 Limiting distribution of the total mass

We also point out a conjecture of Fyodorov and Bouchaud [26] on the total mass of
the measure µβ . Combining this with our results suggests a conjecture on the asymptotic
distribution of powers of the absolute value of the characteristic polynomial. There
they provide an analytic continuation of the positive integer moments of the total mass
and conjecture that the law of the total mass can be given in terms of negative powers
of an exponentially distributed random variable. Such an analytic continuation is not
unique (only finitely many positive integer moments exist so they can’t determine the
distribution) so this result is still an open question.

Appendix: Gaussian Multiplicative Chaos and Sobolev Spaces

As mentioned in the introduction, Gaussian Multiplicative Chaos is a theory due to
Kahane [32]. One of the consequences of the theory is that it provides a method for
exponentiating Gaussian fields with a logarithmic singularity in their covariance. More
precisely, assume that one has a centered Gaussian field (X(x))x∈A, where A is say some
open subset of Rd and the covariance kernel C(x, y) = E(X(x)X(y)) has a logarithmic
singularity: C(x, y) ∼ − log |x− y| as x→ y. The goal is to construct a random measure
of the form eX(x)− 1

2E(X(x)2)dx.

Due to the logarithmic singularity in the covariance of X, the field can not be realized
as a random function, though it can be understood as a random distribution. In any
event, the exponentiation can not be performed directly. The most natural way to do
it is to regularize X into a function say Xn (where Xn → X in some suitable sense
as n → ∞), construct the measure eXn(x)−

1
2E(Xn(x)

2)dx, and if this converges to some
limiting measure, interpret the limit as eX(x)− 1

2E(X(x)2)dx.

One then is posed with the question of how should the field be regularized. One would
naturally want the regularization to behave nicely with respect to a limiting procedure.
One of the simplest random objects with rich limit theory is a martingale. This was
Kahane’s approach and his fundamental theorem is the following (see [32, 46]).

Theorem 5.1 (Kahane). Assume that for x, y ∈ A, T > 0 and a continuous and bounded
function g,

C(x, y) = log
T

|x− y|
+ g(x, y), (5.1)

and assume that we have a decomposition
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C(x, y) =

∞∑
k=1

Kk(x, y), (5.2)

where Kk are continuous and positive definite covariance kernels. Then if one defines
on the same probability space the centered Gaussian random fields (Yk)∞k=1 , where
Yk is independent of Yk′ for k 6= k′ and Yk has covariance Kk, as well as the fields
Xn =

∑n
k=1 Yk then for β ∈ R, the measures

Mβ,n(dx) = eβXn(x)−
β2

2

∑n
k=1Kk(x,x)dx (5.3)

converge almost surely in the space of Radon measures (with respect to the topology
of weak convergence) to some random measure Mβ(dx). This measure is non-trivial for
β2 < 2d and the zero measure for β2 ≥ 2d. If all of the Kk in the decomposition of C are
non-negative, the law of Mβ is independent of the specific decomposition.

Our interest will be in the field X which can be viewed as the restriction of the
whole plane Gaussian Free Field restricted to the unit circle, namely it has covariance
E(X(θ)X(θ′)) = − 1

2 log |eiθ − eiθ′ | (we choose the normalizing constant 1
2 simply to be

consistent in notation). To make precise sense of this object, we interpret it as an
element of a Sobolev space.

Definition 5.2. For s ∈ R, consider the space of formal Fourier series

Hs =

{
f ∼

∑
k∈Z

fke
ikθ

∣∣∣∣∣∑
k∈Z

(1 + k2)s|fk|2 <∞

}
(5.4)

with inner product

〈f, g〉s =
∑
k∈Z

(1 + k2)sfkg
∗
k. (5.5)

The subspace {f ∈ Hs|f0 = 0} is denoted by Hs0.

Remark 5.3. These are Hilbert spaces for all values of s ∈ R. Moreover, for s ≥ 0, they
can be interpreted as subspaces of square integrable functions on the unit circle while
for s < 0 they are dual spaces of these and can be interpreted as spaces of generalized
functions.

One can then check that if (Zk)∞k=1 are i.i.d. standard complex Gaussians, then

X :=
1

2

∞∑
k=1

1√
k

(
Zke

ikθ + Z∗ke
−ikθ) (5.6)

is almost surely an element ofH−s0 for any s > 0 and it has covariance kernel − 1
2 log |eiθ−

eiθ
′ |. Moreover, being a sum of i.i.d. Gaussian terms, this fits immediately into Kahane’s

theorem. Let us make the following definition:

Definition 5.4. Let (Zi)
∞
i=1 be i.i.d. standard complex Gaussians and

Xn(θ) =
1

2

n∑
k=1

1√
k

(Zke
ikθ + Z∗ke

−ikθ). (5.7)

Moreover, let

µ
(k)
β (dθ) = eβXk(θ)−

β2

2 E(Xk(θ)
2)dθ (5.8)

and
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µβ(dθ) = lim
k→∞

µ
(k)
β (dθ) (5.9)

which exists for all β ∈ R (when the limit is in the topology of weak convergence) and is
non-trivial for |β| < 2.

Remark 5.5. Note that the measures appearing in our case are µβ for |β| <
√

2. This
corresponds to the situation where E(µβ([0, 2π))2) <∞ or "the L2-phase".

Remark 5.6. Note that we don’t have the positivity of the covariances required for the
uniqueness in Kahane’s theorem, so it is not immediately clear that this measure is the
same one gets through other constructions such as the one in [2]. There have recently
been generalizations to the construction of Kahane, see e.g. [48, 49]. In particular,
uniqueness questions relevant to our situation have been addressed in [49].

Remark 5.7. We point out that it is natural to consider such objects also for a com-
plex parameter β. In this case, these objects might not be complex measures: the

total variation of the measure eβXn(θ)−
β2

2 E(Xn(θ)
2)dθ is eRe(β)Xn(θ)−Re(β)2−Im(β)2

2 E(Xn(θ)
2)dθ.

As eRe(β)Xn(θ)−Re(β)2

2 E(Xn(θ)
2)dθ will converge to a non-trivial chaos measure (for small

enough Re(β)) it is reasonable to expect that for any β with Im(β) 6= 0, the e
Im(β)2

2 E(Xn(θ)
2)-

term will cause the total variation of the limit eβX(θ)− β
2

2 E(X(θ)2)dθ/2π to be almost surely
infinite, so perhaps it can’t be understood as a complex measure. One possibility for

a natural interpretation of eβX(θ)− β
2

2 E(X(θ)2) is as a random distribution, for example
an element of H−s for large enough s > 0. Much of the reasoning goes through here
too - one can use martingale arguments etc. For further results on complex Gaussian
multiplicative chaos, see for example [4, 39].
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