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Abstract

We give a sufficient condition for a random sequence in [0,1] generated by a Ψ-
process to be equidistributed. The condition is met by the canonical example – the
max-2 process – where the nth term is whichever of two uniformly placed points falls in
the larger gap formed by the previous n− 1 points. This solves an open problem from
Itai Benjamini, Pascal Maillard and Elliot Paquette. We also deduce equidistribution
for more general Ψ-processes. This includes an interpolation of the min-2 and max-2
processes that is biased towards min-2.
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1 Introduction

A sequence in [0, 1] is equidistributed if the limiting proportion of points in each
subinterval is equal to the subinterval’s length. Over a century ago Weyl proved that
{βn mod 1}n≥1 is equidistributed for any irrational number β (see [Wey10]). Since then
connections have been found in ergodic theory, number theory, complex analysis and
computer science ([BM72], [Vau77], [FSZ09], [CKK+07]). See [KN06] for an overview.

Not long after Weyl’s Theorem, attention turned to equidistribution of random se-
quences. One way to obtain a random sequence in [0, 1] is to independently choose points
uniformly. Call the resulting sequence the uniform process. The strong law of large
numbers guarantees this is equidistributed almost surely.

Another random process known to equidistribute points is the Kakutani interval
splitting procedure (introduced in [Kak76]), where at each step a point is added uniformly
to the current largest subinterval. Almost sure equidistribution is proven in [Zwe78] and
[Loo78] using stopping times. Because points are placed in the largest gaps they ought
to spread more evenly than the uniform process. Indeed, [Pyk80] proves the size of the
largest interval is asymptotic to 2/n; the same order as the average interval. Compare
to log n/n in the uniform process (see [Dar53]).

[MP14] introduces a family of interval splitting processes that exhibit a wider range
of behavior. The canonical example is the max-2 process. The dynamics are as follows:
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Choices, intervals and equidistribution

• Partition [0, 1] into subintervals by placing finitely many points in any manner.

• At each step sample two points uniformly from [0, 1]. Each lies in a subinterval
formed by the previous configuration.

• Keep the point contained in the larger subinterval and disregard the other point.
Break a tie by flipping a fair coin.

A discrete analogue of the max-2 process appears in [ABKU99] where n balls are
placed into n bins. For each ball two bins are selected uniformly and the ball is placed
in the bin with fewer balls. They find that the most-filled bin has ≈ log2 log n balls;
significantly less then ≈ log n/ log log n if the balls were instead placed uniformly. This is
studied in more detail in [MRS00] and [LM05].

In the max-2 process choosing the larger gap should spread points more evenly.
Despite our intuition this is difficult to formalize, and equidistribution was a primary
open problem from [MP14]. The natural counterpart is the min-2 process where the
point contained in the smaller subinterval is kept. Unlike the previous processes, points
are prone to clump together. It is natural to also define the max-k and min-k processes;
in these the max or (resp.) min of k candidate points is selected at each step.

Before we can state the theorem we describe a more general splitting procedure
known as a Ψ-process (introduced in [MP14]). For technical convenience we will assume
that points arrive according to a Poisson process with intensity et. Suppose at time t
that Nt points have arrived and we have interval lenghts I(t)

1 , I
(t)
2 , . . . , I

(t)
Nt+1. Define the

size-biased empirical distribution function

Ãt(x) =

Nt+1∑
i=1

I
(t)
i 1{I(t)

i ≤ x}.

This function is now defined to evolve according to Markovian dynamics as follows. Let
us say that the next point arrives at time s > t, for the Ns-th step (with Ns = Nt + 1) we
choose an interval at random, with length `s = Ã−1

s− (u), where u is sampled from a law on
(0, 1] whose distribution function we denote by Ψ. This randomly chosen interval is now
subdivided into two pieces at a point chosen uniformly inside the interval. This produces
a new sequence of interval lengths I(s)

1 , . . . I
(s)
2 , . . . , I

(s)
Ns

and the process is repeated. Note

that Ãt(x) is constant (in t) between point arrivals. We remark that the max-k, uniform
and min-k processes are Ψ-processes with Ψ(u) = uk, u, and 1− (1− u)k, respectively.

We abbreviate a few common assumptions for Ψ:

(C) Ψ is continuous.

(C1) Ψ is continuously differentiable.

(C2) Ψ is twice continuously differentiable.

(D) There exist c > 0 and κΨ ∈ [1,∞), such that 1−Ψ(u) ≥ c(1− u)κΨ for all u ∈ (0, 1).

Set At(x) = Ãt(e
−tx). The main theorem of [MP14] proves that, when (C) and (D) hold,

At(x) converges pointwise to a (deterministic) continuously differentiable distribution
function FΨ(x). For future theorem statements we note that (C1) and (C2) both imply
(D).

Here we study Ãαt , the restriction of Ãt to the Nα
t subintervals contained in [0, α].

We find conditions on Ψ that guarantee pointwise convergence Aαt → αFΨ, where
Aαt (x) = Ãαt (e−tx) and αFΨ denotes the map x 7→ α · FΨ(x). When this holds the
subinterval lengths in [0, α] evolve to look the same as those in all of [0,1]. This sameness
is enough to deduce equidistribution.
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Theorem 1. Let ψ = Ψ′. If Ψ satisfies (C2) and for some δ ∈ (0, 1] and all z ≥ 0

|zψ′(FΨ(z))(FΨ)′(z)− ψ(FΨ(z))| ≤ (2− δ)ψ(FΨ(z)), (1.1)

then the Ψ-process is equidistributed a.s.

The condition (1.1) arises from a technical computation (see the proof Proposition 4)
used to show that a family of processes containing (Aαt )t≥0 contract in a certain norm.
We stress that it is not at all obvious which Ψ and FΨ should satisfy this condition. Our
only tools are the properties of FΨ established in [MP14]. Most importantly, it satisfies
the integro-differential equation (see [MP14, Lemma 3.5]):

(FΨ)′(z) = z

∫ ∞
z

1

y
dΨ(FΨ(y)), (1.2)

and the differential equation (see [MP14, Proposition 8.1]):

z(FΨ)′′(z)− (FΨ)′(z) + zψ(FΨ(z))(FΨ)′(z) = 0. (1.3)

Remarkably, this is enough information to deduce (1.1) holds for the max-2 process, an
interpolation of max-2 and min-2 processes that is biased towards min-2, and arbitrary
interpolations of max-k, uniform and min-k processes that place enough weight on the
uniform process.

Corollary 2. The following are equidistributed a.s.

1. The max-2 process.

2. The interpolation that is 60%-min-2 and 40%-max-2; Ψ(u) = .6(1− (1− u)2) + .4u2.

3. The interpolation of max-k, uniform and min-k processes given by a probability
measure p = (pk)k 6=−1,0 on Z \ {−1, 0}, that satisfes

∑
k≥2 k(k − 1)[pk + p−k] ≤ 1/2;

Ψ(u) = p1u+
∑
k≥2

pku
k + p−k(1− (1− u)k).

For example, this includes the interpolations

(a) (1/k2)%-min-k for a single fixed k and otherwise uniform.

(b) 99.95%-uniform and (5−k)%-min-k for all k = 2, 3, . . ..

The reason our approach works for only certain Ψ is unclear. Numerical methods
indicate the inequality fails for other processes, suggesting a different approach is
needed. This is surprising since processes which ought to better equidistribute points,
like a max-3 process, do not meet our criterium. Nonetheless, we conjecture that all max-
k and min-k processes are equidistributed. The properties established in Proposition 5

are an important step in exploring this for max, min and more general Ψ-processes. The
rate of convergence to a uniform placement of points and also the asymptotic size of the
largest interval are other important open problems. More thorough discussion can be
found in [MP14].

Overview

This article is organized to quickly arrive at the proof of Theorem 1. In Section 2 we
describe the evolution of intervals in [0, α] and give the major definitions. In Section 3 we
state without proof Proposition 4 and Proposition 5. The first proposition describes the
importance of (1.1) holding. The second shows that Aαt has similar properties as those
needed of At to deduce convergence in [MP14]. We then use this to establish Theorem 1.
Section 4 contains the proofs for the previous section. Finally, in Section 5 we prove
Corollary 2 by showing that various interpolations satisfy (1.1).
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Choices, intervals and equidistribution

2 Subintervals in [0, α]

We start with a formal definition for a process to be equidistributed. Suppose n0

points are initially placed. After n iterations of an interval splitting process let Nα
n be the

number of the first n0 + n points smaller than α. We say a sequence is equidistributed
if n−1Nα

n → α for all α ∈ [0, 1]. It is convenient to work in continuous time. Following
[MP14] we have points arrive as a Poisson process with intensity et. Formal details are
in Proposition 4. So, in continuous time equidistribution is equivalent to e−tNα

t → α for
all α ∈ [0, 1].

2.1 Describing Ãα
t

Fix α ∈ [0, 1]. We use the convention that a bold face letter represents a process
indexed by time (i.e. Ã = (Ãt)t≥0). Define the joint processes (Ãα, Ãα+ , Ã) to be the
size-biased empirical distributions of interval lengths contained in [0, α], [α, 1] and [0, 1],

respectively. Formally, letting Iα,(t)1 , . . . , I
α,(t)
Nαt

be the lengths of subintervals contained in
[0, α] at time t we define

Ãαt (x) =

Nαt∑
j=1

I
α,(t)
j · 1{Iα,(t)j ≤ x},

and similarly for Ã
α+

t and Ãt. The spark for the refined analysis comes from the relation

Ãαt (x) + Ã
α+

t (x) = Ãt(x), ∀t, x ≥ 0. (2.1)

To ensure that no intervals are double counted assume the initial set of points placed
in [0, 1] always contains {α}. This assumption is only for convenience. Our proof could be
adapted to omit it by running the process until two points α1 ≤ α ≤ α2 land sufficiently
close to α, and then using the bound Nα1

t ≤ Nα
t ≤ N

α2
t . We further remark that the same

reasoning extends our theorems to the unit circle.
In [MP14, Section 2] the authors prove that

Ãt(x) = Ã0(x) +

∫ t

0

esx2

∫ ∞
x

ψ(Ãs(z))

z
dÃs(z) + M̃t

for some martingale M̃t. The following proposition shows that Ãαt satisfies a similar
equation.

Proposition 3. Let ψ = Ψ′. For any Ψ-process satisfying (C1), the joint processes
(Ãα, Ãα+ , Ã) satisfy the equation

Ãαt (x) = Ãα0 (x) +

∫ t

0

esx2

∫ ∞
x

ψ(Ãs(z))

z
dÃαs (z)ds+ M̃α

t (x),

with M̃α
t a martingale.

Proof. We first build up some necessary definitions. Let Ψ be a continuously differ-
entiable distribution function. Define a Poisson random measure

∏
on [0,∞) × [0, 1]2

with intensity etdt ⊗ dΨ(u) ⊗ dv. Set `t(u) = Ã−1
t− (u). We use the function h(v, `, x) =

v1{`v ≤ x}+ (1− v)1{`(1− v) ≤ x}) to “cut" our sampled interval by v.
We need to detect whether the sampled interval belongs to [0, α]. We use the function

gαt (`t(u)) = 1{`t(u) ⊂ [0, α]}. The function gαt can be constructed rigorously by assuming
all of the subintervals have different lengths, and putting a point mass on each length of
subintervals in [0, α]. This is a harmless simplification; even for starting configurations
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with same-length subintervals we know that (when Ψ ∈ C1) after an a.s. finite time a
point will be added to each interval. Once this happens all of the subintervals are of
different lengths a.s. and will continue to be of different lengths a.s.

We combine all of this to define

B̃α(s, u, v, x) = `s(u)1{`s(u) > x}gαt (`s(u))h(v, `s(y)),

so that Ãαt (x) = Ãα0 (x) +
∑

(s,u,v,x)∈Π,s≤t B̃
α(s, u, v, x).

Looking to obtain the semimartingale decomposition of Ãαt (x) we integrateB(t, u, v, x).

Note that
∫ 1

0
h(v, `, x)dv = (x/`)2. We then write

∫ ∫
B̃α(t, u, v, x)dvdΨ(u) =

∫ 1

0

`t(u)1{`t(u) > x}gαt (`s(u))(x/`t(u))2dΨ(u)

= x2

∫ 1

0

1

`t(u)
1{`t(u) > x}gαt (`t(u))dΨ(u)

= x2

∫ ∞
x

1

z
gαt (z)dΨ(Ãt−(z)).

The last line follows from the fact that for a bounded Borel function, f ,∫ 1

0

f(`t(u))dΨ(u) =

∫ ∞
0

f(z)dΨ(Ãt−(z)).

Recall that Ψ is assumed to be C1, and that the indicator function gαt is zero unless
the selected interval belongs to [0, α]. This lets us write

gαt (z)dΨ(Ãt−(z)) = ψ(Ãt−(z))dÃαt−(z).

We now rewrite the integral of B̃αt as∫ ∫
B̃α(t, u, v, x)dvdΨ(u) = x2

∫ ∞
x

ψ(Ãt−(z))

z
dÃαt−(z).

Integrate this from 0 to t and we arrive at the claimed decomposition of Ãαt (x).

2.2 Definitions and notation

What follows are the essential facts and notation for understanding the proof of
Theorem 1. Let non-tilde processes represent the original process scaled by e−t (i.e.
At(x) = Ãt(e

−tx)). In light of Proposition 3, a change of variables gives the relationship

Aα = C (Aα,A) + Mα, (2.2)

where C : X × X → C([0,∞), L1
loc) is defined by

C (F,G)t(x) = F0(e−tx) +

∫ t

0

(es−tx)2

∫ ∞
es−tx

ψ(Gs(z))

z
dFs(z)ds.

Here X = B([0,∞),D) where D = {F : [0,∞) → [0, 1], cádlág, increasing}. The set X is
a subspace of the space B([0,∞), L1

loc) of measurable maps from [0,∞) to L1
loc with the

topology of locally uniform convergence, which we denote by the symbol
X→.

We say that a family of functions (F(n))n∈N in X is asymptotically equicontinuous if
for every compact K ⊂ [0,∞),

lim
δ→0

lim
n→∞

sup
s,t≥0
|s−t|≤δ

∫
K

|F (n)
s (x)− F (n)

s (x)|dx = 0.
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A family of distributions (Ft)t≥0 is tight if for all ε > 0 there exists N such that Ft(N) ≥
1− ε for all t ≥ 0.

We will use F̂ and FΨ interchangeably to denote the a.s. pointwise limiting distribu-
tion of At from [MP14, Theorem 1.1]. Also define the stationary distribution F̂∗ so that
F̂ ∗t = F̂ for all t ≥ 0. With the convergence At → F̂ in mind, we consider the operator

C ∗(F)t = C (F, F̂∗)t = F0(e−tx) +

∫ t

0

(es−tx)2

∫ ∞
es−tx

ψ(F̂ (z))

z
dFs(z)ds.

We will see in the proof of Theorem 1 that the limiting distribution of Aαt belongs to the
set of fixed points

Fα = {F ∈ X1 : F = C ∗(F), Ft(+∞) = α and ( 1
αFt)t≥0 tight}.

Here X1 = B([0,∞), {F ∈ D : ‖F‖x−2 ≤ 1}), where ‖ · ‖x−2 is the case δ = 1 of the
following family of norms on L1

loc([0,∞)):

‖f‖x−1−δ =

∫ ∞
0

x−1−δ|f(x)|dx, δ ∈ (0, 1]. (2.3)

The norm used exclusively in [MP14] is ‖f‖x−2 =
∫∞

0
x−2|f(x)|dx. This extra δ of freedom

lets us prove the interpolation between min-2 and max-2 is equidistributed. The effect of
working in this norm is the appearance of the (2− δ) term in (1.1).

We remark that ‖ · ‖x−2 does have special significance. A key property (see Proposi-
tion 5 (I)) is that ‖Ãαt ‖x−2 = e−tNα

t . Thus, we can recover the number of points added to
the interval [0, α], which is the fundamental quantity for proving equidistribution.

3 Proof of Theorem 1

We delay the proofs of the following two propositions until the next section. Our
goal is to make transparent the necessary ingredients for proving Theorem 1. The first
proposition describes the benefit of when a Ψ-process satisfies (1.1).

Proposition 4. If Ψ satisfies (C1) and there exists δ ∈ (0, 1] such that (1.1) holds for all
z ≥ 0, then

‖Ft − αF̂‖x−1−δ ≤ 2(1 + δ−1)e−δt

for all F ∈ Fα.

We will also need several general properties of Aα.

Proposition 5. The following hold for any Ψ satisfying (C2):

(I) ‖Aαt ‖x−2 = e−tNα
t and ‖αF̂‖x−2 = α.

(II) The collection of distribution functions ( 1
αA

α
t )t≥0 is tight.

(III) The family (Aα,(n)) defined by Aα,(n)
t = Aαt+n is asymptotically equicontinuous.

(IV) Mα,(n) X→ 0 as n→∞, where Mα,(n)
t (x) = Mα

t+n(x)−Mα
n (e−tx) for every t ≥ 0.

(V) Suppose additionally that supz≥0 zF̂
′(z) <∞ (discussion of this hypothesis appears

in Lemma 4.1). Define A(n) by A
(n)
t = At+n. If F(n) X→ F then C (F(n),A(n))

X→
C ∗(F).

EJP 20 (2015), paper 97.
Page 6/18

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v20-4191
http://ejp.ejpecp.org/


Choices, intervals and equidistribution

Proof of Theorem 1. All statements are meant to hold almost surely. Also we abbreviate
items from Proposition 5 as a roman numeral. In the continuous process points are
added as a Poisson process with intensity etdt. So, it suffices to show e−tNα

t → α.
By (II), (III) and the version of the Arzelá-Ascoli theorem in [MP14, Lemma 7.3]

we may choose a sequence (Aα,(nk)) which converges to a family of (scaled by α)

distributions Fα,(∞) with Fα,(∞))
t (+∞) = α for every t ≥ 0. Taking limits in the formula

at (2.2) we obtain

C (Aα,(nk),A(nk)) + Mα,(nk) X→ Fα,(∞).

By (IV) and (V) we have

C (Aα,(nk),A(nk))
X→ C ∗(Fα,(∞)).

Thus, Fα,(∞) ∈ Fα. Since we are assuming (1.1) holds, Proposition 4 implies that
‖Fα,(∞)

t − αF̂‖x−1−δ ≤ (2 + δ−1)e−δt. A similar argument as the conclusion of the proof
of [MP14, Theorem 7.1] gives almost sure pointwise convergence Aαt → αF̂ . [MP14,
Theorem 1.1] states that At → F̂ pointwise. We can then deduce from (2.1) that
A
α+

t → (1−α)F̂ . Combining pointwise convergence, (2.1) and Fatou’s lemma we deduce
that ‖Aαt ‖x−2 → ‖αF̂‖x−2 . Indeed,

lim inf ‖Aαt ‖x−2 ≥ ‖αF̂‖x−2 ,

lim sup ‖Aαt ‖x−2 = 1− lim inf ‖Aα+

t ‖x−2 ≤ 1− (1− α) = ‖αF̂‖x−2 .

This finishes the proof since (I) states that ‖Aαt ‖x−2 = e−tNα
t and ‖αF̂‖x−2 = α.

4 Proof of Proposition 4 and Proposition 5

4.1 Proposition 4

The proof of Proposition 4 proceeds analogously to [MP14, Lemma 4.1 and Proposition
3.4]. A significant difference is that they apply integration by parts to

1

z
dΨ(F̃s(z)),

whereas our operator C ∗ requires applying integration by parts to

ψ(F̂ (z))

z
dF̃s(z).

The requirement at (1.1) arises from the extra term ψ(F̂ (z)). Also, note that we work in
the norm ‖ · ‖x−1−δ to obtain the constant (2− δ) in (1.1).

Proof of Proposition 4. Let F ∈ Fα. We consider the rescaled processes F̃t(x) = F (etx),
F̃Ψ
t (x) = F̂ (etx). It then holds that F̃ = C̃ (F̃) where

C̃ (F̃)t(x) = F̃0(x) +

∫ t

0

esx2

∫ ∞
x

ψ(F̂ (z))

z
dF̃s(z)ds.

Our goal is to prove the distance between F̃ and α ˜̂F∗ is decreasing in t:

∂t‖F̃t − αF̃Ψ
t ‖x−1−δ =

∫ ∞
0

x−1−δ∂t|F̃t(x)− αF̃Ψ
t (x)|dx ≤ 0. (4.1)

We start by differentiating under the integral sign

∂tC̃ (F̃)t(x) = etx2

∫ ∞
x

ψ(F̂ (z))

z
dF̃t(z)
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to write for each x ≥ 0 the dynamics for the difference F̃t(x)− αF̃Ψ
t (x) as

∂t(F̃t(x)− αF̃Ψ
t (x)) = etx2It(x),

It(x) =

∫ ∞
x

ψ(F̂ (z))

z
∂z(F̃t(z)− αF̃Ψ

t (z))dz.

Multiply both sides by sgn(F̃t − αF̃Ψ
t ) to obtain

e−t∂t|F̃t(x)− αF̃Ψ
t (x)| = x2

{
sgn(F̃t(x)− αF̃Ψ

t (x))It(x), F̃t(x) 6= αF̃Ψ
t (x)

0, F̃t(x) = αF̃Ψ
t (x)

.

Let f̂(z) = zψ′(F̂ (z))F̂ ′(z)−ψ(F̂ (z)). An application of integration by parts to the integral
gives

It(x) = −ψ(F̂ (x))

x
(F̃t(x)− αF̃Ψ

t (x)) +

∫ ∞
x

f̂(z)

z2
(F̃t(z)− αF̃Ψ

t (z))dz.

The previous two equations therefore yield

e−t∂t|F̃t(x)− αF̃Ψ
t (x)| ≤ −xψ(F̂ (x))|F̃t(x)− αF̃Ψ

t (x)|+ x2

∫ ∞
x

|f̂(z)| |F̃t(z)− αF̃
Ψ
t (z)|

z2
dz.

We next multiply both sides by x−1−δ and integrate with respect to x from 0 to infinity to
obtain the bound

e−t
∫ ∞

0

x−1−δ∂t|F̃t(x)− αF̃Ψ
t (x)|dx ≤

∫ ∞
0

−ψ(F̂ (x))
|F̃t(x)− αF̃Ψ

t (x)|
xδ

dx

+

∫ ∞
0

x1−δ
∫ ∞
x

|f̂(z)| |F̃t(z)− αF̃
Ψ
t (z)|

z2
dzdx.

An application of Fubini’s theorem lets us rewrite the second integral as∫ ∞
0

x1−δ
∫ ∞
x

|f̂(z)| |F̃t(z)− αF̃
Ψ
t (z)|

z2
dzdx =

∫ ∞
0

|f̂(z)| |F̃t(z)− αF̃
Ψ
t (z)|

z2

∫ z

0

x1−δdxdz

=

∫ ∞
0

(2− δ)−1|f̂(z)| |F̃t(z)− αF̃
Ψ
t (z)|

zδ
dz.

Hence we can combine the integrals to obtain the bound

e−t
∫ ∞

0

x−2∂t|F̃t(x)− αF̃Ψ
t (x)|dx ≤

∫ ∞
0

(
(2− δ)−1|f̂(z)| − ψ(F̂ (z))

) |F̃t(z)− αF̃Ψ
t (z)|

zδ
dz.

Our hypothesis (1.1) guarantees that the term inside the integral:

(2− δ)−1|f̂(z)| − ψ(F̂ (z)) ≤ 0.

Therefore (4.1) holds. This establishes that

‖F̃t − αF̃Ψ
t ‖x−1−δ ≤ ‖F̃0 − αF̃Ψ

0 ‖x−1−δ = ‖F0 − αF̂‖x−1−δ . (4.2)

A change of variables x = e−tz gives

‖Ft − αF̂‖x−1−δ =

∫ ∞
0

x−1−δ|Ft(x)− αF̂ (x)|dx

= e−δt
∫ ∞

0

z−1−δ|F̃t(z)− αF̃Ψ
t (z)|dz

= e−δt‖F̃t − αF̃Ψ
t ‖x−1−δ

≤ e−δt‖F0 − αF̂‖x−1−δ , (4.3)
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where at the last line we apply (4.2).

It remains to prove that ‖F0 − αF̂‖x−1−δ ≤ C, for some C > 0. By assumption, F ∈ X1

and therefore ‖F0‖x−2 ≤ 1. As 0 ≤ F0(x) ≤ 1 we can break up the integral and use
integrability of x−1−δ1{x > 1}:∫ ∞

0

x−1−δF0(x)dx ≤
∫ 1

0

x−2F0(x)dx+

∫ ∞
1

x−1−δdx ≤ ‖F0‖x−2 + δ−1 ≤ 1 + δ−1.

Similarly, ‖αF̂‖x−1−δ ≤ 1+δ−1. Apply the triangle inequality to conclude ‖F0−αF̂‖x−1−δ ≤
‖F0‖x−1−δ + ‖αF̂‖x−1−δ ≤ 2(1 + δ−1).

4.2 Proposition 5

In Proposition 5 we prove that Aαt and At have similar properties. Each statement
requires some manipulation. Fortunately [MP14] contains much of the heavy-lifting.
We make one remark concerning the proof of (V). In [MP14] they prove continuity of
an operator S Ψ with domain X . Our operator C has domain X × X . This makes the
proof more involved, and also restricts us to proving continuity in sequences of the form
(F(n),A(n)).

Proof of (I). The equality ‖αF̂‖x−2 = α is [MP14, Lemma 3.5]. For the other equality, take

I
α,(t)
j to be the length of an interval in [0, α]. Define the measure µαt = e−t

∑Nαt
1 δ

etI
α,(t)
j

.

This gives µαt is the empirical distribution of rescaled interval lengths. We can then write

Aαt (x) =

∫ x

0

yµt(dy).

Applying Fubini’s theorem shows that

‖Aαt ‖x−2 =

∫ ∞
0

x−2

∫ x

0

yµαt (dy)dx =

∫ ∞
0

µαt (dy) = e−tNα
t .

Proof of (II). Recall that a family of distributions (Ft)t≥0 is tight if for all ε > 0 there
exists N such that Ft(N) ≥ 1 − ε for all t ≥ 0. [MP14, Proposition 6.3] implies (At)t≥0

is tight. Fix ε > 0 and let N be such that At(N) ≥ 1− αε for all t ≥ 0. The relationship
at (2.1) ensures Aαt (N) +A

α+

t (N) ≥ 1− αε. As Aαt ≤ α and A
α+

t ≤ 1− α, this inequality
could only hold if Aαt (N) ≥ α− αε for all t ≥ 0. Hence, ( 1

αA
α
t )t≥0 is tight.

Proof of (III). Recall, that a family of functions (F(n))n∈N in X is asymptotically equicon-
tinuous if for every compact K ⊂ [0,∞),

lim
δ→0

lim
n→∞

sup
s,t≥0
|s−t|≤δ

∫
K

|F (n)
s (x)− F (n)

s (x)|dx = 0.

The proof is similar to [MP14, Lemma 7.5]. The idea is that it suffices to show the
existence of a δ0 > 0 and constant C so that for every 0 < δ1 < δ0 there exists almost
surely a Tδ1 <∞ so that

sup
t≥Tδ1 ,0≤δ≤δ1

∫ ∞
0

|Aαt+δ(x)−Aαt (x)|
x2

dx ≤ Cδ1. (4.4)
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This is sufficient since we for any δ1 > 0 and any M > 0, almost surely

lim
n→∞

sup
s,t≥0,|s−t|≤δ1

∫ M

0

|Aα,(n)
s (x)−Aα,(n)

t (x)|dx ≤ sup
t≥Tδ1 ,0≤δ≤δ1

∫ ∞
0

|Aαt+δ(x)−Aαt (x)|
x2

dx

≤M2Cδ1.

As this holds jointly with probability 1 for a countable sequence of δ1 going to 0 and
M ∈ N, the asymptotic equicontinuity of (A(n))n≥0 follows.

The formula at (4.4) follows from the fact that Ãαt satisfies the monotonicity condition,
for any δ > 0,

Ãαt (x) ≤ Ãαt+δ(e−δx) ≤ Ãαt+δ(x). (4.5)

Another necessary fact is that number of points kept in [0, α] from time t to t + δ is
bounded by the number of points added to [0, 1] in that same time interval. Formally, for
any δ > 0 we have Nα

t+δ −Nα
t ≤ N1

t+δ −N1
t . This lets us deduce the equivalent for Nα

t as
for Nt in [MP14, Lemma 7.6]. Namely, that there is a δ > 0 so that for every 0 < δ < δ0
there exists almost surely a Tδ <∞ so that

sup
t≥Tδ

Nα
t+δ −Nα

t ≤ 2δet.

The argument finishes by using the formula from Proposition 5 (I) for Nα
t in terms of

‖Aαt ‖x−2 . See the proof of [MP14, Lemma 7.5] for further details.

Proof of (IV). The proof is similar to the decay of the noise subsection in [MP14, Section
7]. The idea is to bound the martingale Mα by computing various moments of the
underlying process Bα. We can use the same bounds as in [MP14] because points are
added to [0, α] no faster than to [0, 1]. This ensures that Bα(s, u, v, x) ≤ B(s, u, v, x). Here
B(s, u, v, x) is the function defined at [MP14, (3)].

Proof of (V). Suppose that F(n) X→ F. An equivalent notion of convergence in the topology

of local uniform convergence is that F(n) X→ F if and only if for all compact K ⊂ [0,∞)

lim
n→∞

sup
0≤s≤t

∫
K

|F (n)
s (x)− Fs(x)|dx = 0.

[MP14, Theorem 7.1] implies A(n) X→ F∗. Thus it suffices to prove for any fixed T > 0

and K > 0 ∫ K

0

|C (F,F∗)t(x)− C (F(n),A(n))t(x)|dx→ 0 (4.6)

uniformly for t ≤ T . For fixed n we can write

C (F(n),A(n))t(x) = F
(n)
0 (x) +

∫ t

0

(es−tx)2

∫ ∞
es−tx

ψ(A
(n)
s (z))

z
dF (n)

s (z)ds.

If we write ψ(A
(n)
s (z)) = ψ(F̂ (z)) + ψ(A

(n)
s (z))− ψ(F̂ (z)) the above becomes

C (F(n),A(n))t(x) = C (F(n),F∗)t(x) +

∫ t

0

(es−tx)2

∫ ∞
es−tx

ψ(A
(n)
s (z))− ψ(F̂ (z))

z
dF (n)

s (z)ds.

EJP 20 (2015), paper 97.
Page 10/18

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v20-4191
http://ejp.ejpecp.org/


Choices, intervals and equidistribution

We can then bound the left side of (4.6) by∫ K

0

|C (F,F∗)t(x)− C (F(n),F∗)t(x)|dx (4.7)

+

∫ K

0

∫ t

0

(es−tx)2

∫ ∞
es−tx

|ψ(A
(n)
s (z))− ψ(F̂ (z))|

z
dF (n)

s (z)dsdx. (4.8)

It suffices to show that as n → ∞ each summand converges to zero uniformly for
t ≤ T .

First summand

Start by bounding the summand at (4.7) by∫ K

0

|F0(e−tx)− F (n)
0 (e−tx)|dx+

∫ K

0

∫ t

0

(es−tx)2

∣∣∣∣ ∫ ∞
es−tx

ψ(F̂ (z))

z
d(Fs(z)− F (n)

s (z))

∣∣∣∣dsdx.
The first quantity goes to zero uniformly for t ≤ T by the definition of F(n) X→ F since a
change of variables gives∫ K

0

|F0(e−tx)− F (n)
0 (e−tx)|dx ≤ et

∫ K

0

|F0(x)− F (n)
0 (x)|dx.

Expand the interior of the second quantity with integration by parts and take the
absolute value signs inside to bound it by

ψ(F̂ (es−tx))

es−tx
|Fs(es−tx)dx− F (n)

s (es−tx)|︸ ︷︷ ︸
term one

+

∫ ∞
es−tx

∣∣∣∣ ddz ψ(F̂ (z))

z

∣∣∣∣|Fs(z)− F (n)
s (z)|dzdx︸ ︷︷ ︸

term two

.

Multiply term one by (es−tx)2 and integrate so it becomes∫ K

0

∫ t

0

(es−tx)ψ(F̂ (es−tx))|Fs(es−tx)− F (n)
s (es−tx)|dsdx.

Since F̂ is a distribution function and ψ is continuous we have (ψ◦F̂ )(u) ≤ supu∈[0,1] ψ̂(u) <

D <∞ for some constant D. Thus, the above is bounded by

D

∫ K

0

∫ t

0

(es−tx)|Fs(es−tx)− F (n)
s (es−tx)|dx.

The above goes to zero by the definition of F(n) χ→ F. As for term two, we differentiate
to rewrite it as ∫ ∞

es−tx

|zψ′(F̂ (z))F̂ ′(z)− ψ(F̂ (z))|
z2

|Fs(z)− F (n)
s (z)|dz. (4.9)

Our additional hypothesis is that zF̂ ′(z) is bounded. Since the range of F̂ is contained
in the compact interval [0, 1] and Ψ ∈ C2 we have ψ ◦ F̂ and ψ′ ◦ F̂ are also bounded.
Therefore, C = sup0≤z≤∞ |zF̂ ′(z)ψ′(F̂ (z)) − ψ(F̂ (z))| < ∞. It follows that (4.9) is less
than

C

∫ ∞
es−tx

1

z2
|Fs(z)− F (n)

s (z)|dz. (4.10)

Finally we are in the position of I2 from [MP14, Lemma 3.3] and can conclude that (4.10)
goes to zero uniformly for t ≤ T .
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Second summand

Fix M > 0 and for any function f : [0,∞)→ [0, 1] define fM = f |[0,M ] to be the restriction
to the domain [0,M ]. We have in [MP14, Theorem 7.1] that AM converges pointwise to
F̂M . Observe that each AMt is an increasing function with compact domain, and F̂M is
continuous by [MP14, Lemma 3.5]. Together these imply (see [Rud76, exercise 7.13])
that for any ε > 0 there exists tε such that for all z ∈ [0,M ]

sup
t≥tε
|AMt (z)− F̂Mt (z)| < ε.

Because the functions A(n)
t are translates of At it follows that for all n > tε we have

sup
t≥0
|A(n),M
t (z)− F̂Mt (z)| ≤ sup

t≥tε
|AMt (z)− F̂Mt (z)| < ε.

As the functions A(n)
t and F̂ are supported on [0, 1], we have their compositions with ψ

are uniformly continuous. We conclude that there exists n0 such that for all z ∈ [0,M ]

sup
t≥0
|ψ(A

(n)
t (z))− ψ(F̂ (z))| < ε, for n ≥ n0. (4.11)

We truncate the integral then apply (4.11) to bound the absolute value of (4.8) by

ε

∫ K

0

∫ t

0

(es−tx)2

∫ M

es−tx

1

z
dF (n)

s (z)dsdx (4.12)

+

∫ K

0

∫ t

0

(es−tx)2

∫ ∞
M

|ψ(A
(n)
s (z))− ψ(F̂ (z))|

z
dF (n)

s (z)dsdx. (4.13)

We can use the fact that F (n)
s (z) ≤ 1 and bound the inside integral of (4.12) by

1

es−tx

∫ M

es−tx

dF (n)
s (z) ≤ 2

es−tx
.

Thus (4.12) is bounded by

ε

∫ K

0

∫ t

0

2es−txdsdx ≤ ε(1− e−t)K2 ≤ εK2.

As K is fixed, this can be made arbitrarily small.
Lastly we consider (4.13). Since supu≥0 ψ(u) = D <∞ we use similar estimates as in

(4.12) and start with the bound∫ K

0

∫ t

0

(es−tx)2

∫ ∞
M

|ψ(A
(n)
s (z))− ψ(F̂ (z))|

z
dF (n)

s (z)dsdx

≤ 4D

∫ K

0

∫ t

0

(es−tx)2 1

M
dsdx

≤ 4DK3(1− e−2t)

6M
.

Since M can be made arbitrarily large, this can be made as small as we like. Therefore,
the absolute value of (4.8) can be bounded by any ε > 0 uniformly for t ≤ T .

Lemma 4.1. If Ψ satisfies (C2) and either ψ(1) > 0 or Ψ(u) = 1 − (1 − u)k for some
positive integer k then supz≥0 zF̂

′(z) <∞.
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Proof. [MP14, Proposition 8.2] states that when ψ(1) > 0 it holds that F̂ ′(x) ≤ Ce−ax for
some constants C, a > 0. Additionally, for the min-k process (Ψ(u) = 1 − (1 − u)k) it is
shown in [MP14, Proposition 8.4] that F̂ ′(x) ≤ Ckx−1−εk for some Ck, εk > 0. Note that
supk≥0 Ck <∞ and εk → 0.

Corollary 6. From Lemma 4.1 zF̂ ′(z) is bounded for all interpolations of the max-k and
min-k processes.

We remark that it appears boundedness of zF̂ ′(z) does not necessarily hold for
general Ψ. At the very least it does not obviously follow from (1.2) or (1.3).

5 Proving Corollary 2

For this entire section we will let F denote FΨ. To establish (1.1), we rely almost
entirely on (1.2) and (1.3). For convenience we rerecord them here:

|zψ′(F (z))F ′(z)− ψ(F (z))| ≤ (2− δ)ψ(F (z)), δ ∈ (0, 1], (1)

F ′(z) = z

∫ ∞
z

1

y
dΨ(F (y)), (2)

zF ′′(z)− F ′(z) + zψ(F (z))F ′(z) = 0. (3)

We start with the proof of Corollary 2. It follows from a sequence of lemmas.

Proof of Corollary 2. First off we need the conclusion of Corollary 6 to guarantee Propo-
sition 5 (V) holds for the interpolations we consider. Equidistribution for the max-2
process then follows from Lemma 5.1 by taking p2 = 1. The fact that the interpolation
that is 60%-min-2 satisfies (1.1) follows by taking p−2 = .6 in Lemma 5.4. Part three (for
general interpolations) follows from Lemma 5.8.

Now we give the proofs of the necessary lemmas. We break this up into two sec-
tions: one for interpolations of max-2 and min-2 processes and the other for general
interpolations.

5.1 Interpolations of min-2 and max-2

Fix p−2, p2 ∈ [0, 1] with p2 + p−2 = 1. We will work exclusively in this subsection with
Ψ that are interpolations of the min-2 and max-2 process. Thus,

Ψ(u) = p2u
2 + p−2(1− (1− u)2),

ψ(u) = 2p2u+ 2p−2(1− u),

ψ′(u) = 2p2 − 2p−2,

This is the distribution function (and derivatives) for an interpolation where at each step
we add a point according the min-2 process with probability p−2 and according to the
max-2 process with probability p2.

Our first lemma establishes (1.1) holds so long as p−2 ≤ p2. Note that the case p2 = 1

is the max-2 process.

Lemma 5.1. If p−2 ≤ p2 then (1.1) holds.

Proof. Dropping the constant 2− δ from the right side of (1.1) it suffices to prove that

|ψ(F (z))− zψ′(F (z))F ′(z)| ≤ ψ(F (z)). (5.1)

We break into two cases:
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• First suppose ψ(F (z)) ≥ zψ′(F (z))F ′(z) so that (5.1) reduces to proving that

−zψ′(F (z))F ′(z) ≤ 0.

As F is increasing we know F ′(z) ≥ 0. The hypothesis p−2 ≤ p2 guarantees that
ψ′(F (z)) ≥ 0. Thus, the inequality is satisfied.

• Next, suppose ψ(F (z)) ≤ zψ′(F (z))F ′(z). Rearranging (5.1) we seek to show

2(p2 − p−2)zF ′(z) ≤ 2ψ(F (z)).

Note that both sides are zero at z = 0. By the fundamental theorem of calculus it
then suffices to prove the above inequality holds for the derivatives. Differentiating
and again using the fact that ψ′(F (z)) = 2(p2 − p−2) reduces the problem to
establishing

2(p2 − p−2)(zF ′′(z) + F ′(z)) ≤ 4(p2 − p−2)F ′(z).

After some algebra this is equivalent to

zF ′′(z) ≤ F ′(z). (5.2)

From (1.3) we know that zF ′′(z) = F ′(z)− zψ(F (z))F ′(z). Substitute this into (5.2)
and we have a sufficient condition is that

F ′(z)− 2zψ(F (z))F ′(z) ≤ F ′(z).

This holds as F ′(z) and ψ(F (z)) are nonnegative.

To prove (1.1) holds when p−2 > p2 requires a different analysis of the differential
equation at (1.3). Lemma 5.3 shows zF ′(z) can be bounded in terms of p2.

Lemma 5.2. If p−2 > p2 then limε→0 F
′(ε)/ε ≤ 2.

Proof. Starting from the formula at (1.2) then integrating by parts gives

lim
ε→0

F ′(ε)

ε
=

∫ ∞
0

1

y
dΨ(F (y)) = ‖Ψ ◦ F‖x−2 . (5.3)

Plugging into Ψ we have

Ψ(F (y)) = p2F (y)2 + p−2(1− (1− F (y))2) (5.4)

= F (y)[(p2 − p−2)F (y) + 2p−2].

The hypothesis p2 < p−2 means an upper bound for the above is

Ψ(F (y)) ≤ 2p−2F (y) ≤ 2F (y). (5.5)

Proposition 5 (I) implies that ‖F‖x−2 = 1. It follows from (5.3) and (5.5) that

lim
ε→0

F ′(ε)

ε
≤ 2‖F‖x−2 = 2.

Lemma 5.3. It p−2 > p2 then
zF ′(z) ≤ 2(p2e)

−2.
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Proof. Integrate (1.3) as in [MP14, Proposition 8.1] so that for any ε > 0

F ′(z) =
F ′(ε)

ε
z exp

(
−
∫ z

ε

ψ(F (y))dy

)
.

Taking ε→ 0 and applying Lemma 5.2 gives

F ′(z) ≤ 2z exp

(
−
∫ z

0

ψ(F (y))dy

)
. (5.6)

We observe that ψ(F (y)) = 2p2F (y) + 2p−2(1 − F (y)). Since we are assuming p−2 > p2

and know that F (y) ≤ 1 we obtain a lower bound by evaluating at ψ(1):

ψ(F (y)) ≥ ψ(1) = 2p2. (5.7)

Applying this to (5.6) and multiplying by z gives

zF ′(z) ≤ 2z2e−2p2z.

The maximum of z2e−2p2z is at z = 1/p2. Plug this in above to obtain the claimed
bound.

Lemma 5.4. If p2 < p−2 ≤ .6 then (1.1) holds.

Proof. Using the triangle inequality on the left side of (1.1) it suffices to find δ such that
for all z ≥ 0

|zψ′(F (z))F ′(z)|+ |ψ(F (z))| ≤ (2− δ)ψ(F (z)). (5.8)

Because F is a distribution function, we know that F ′ ≥ 0. Also, note that

(2− δ)ψ(F (z))− |ψ(F (z))| ≤ (1− δ)ψ(F (z)).

Thus, to establish (5.8) it is enough to prove

zF ′(z) ≤ (1− δ)ψ(F (z))

|ψ′(F (z))|
, for z ≥ 0.

We have from (5.7) that ψ(u) ≥ 2p2 and can compute |ψ′(u)| = 2|p2−p−2|. It then suffices
to prove

zF ′(z) ≤ p2(1− δ)
|p2 − p−2|

.

By Lemma 5.3 it suffices to choose δ, p−2 and p2 so that

2 (p2e)
−2 ≤ p2(1− δ)

|p2 − p−2|
.

Combining with our hypotheses we have the following system of constraints

2e−2|p2 − p−2| ≤ (1− δ)(p2)3,

p2 + p−2 = 1,

p2 < p−2,

0 < δ ≤ 1.

Take δ → 0 and use the fact that p−2 is assumed to be larger than p2, and the solution
must be strictly smaller than the real root of the cubic

2

e2
(p−2 − (1− p−2)) = (1− p−2)3.

This is approximately .61, thus p−2 ≤ .6 lies in the solution set.

Remark 5.5. The bound p−2 ≤ .6 could be optimized further in the preceding lemmas,
but the gain would be marginal. Something like p−2 ≤ .68 is the best that comes out of
optimizing our argument. We sacrifice this marginal gain for the sake of clarity.
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5.2 General interpolations

We will reprove versions of the previous three lemmas for more general interpolations.
Let p = (pk)k 6=−1,0 be a probability measure on Z\{−1, 0}. In this subsection we consider
the interpolations

Ψ(u) = p1u+
∑
k≥2 pku

k + p−k(1− (1− u)k).

Define Cp =
∑
k≥2 k(k − 1)(pk + p−k). This constant arises because supu≥0 |ψ′(u)| ≤ Cp.

First we give a bound on F ′ that holds for any Ψ-process.

Lemma 5.6. Let Ψ satisfy (C) and (D). For all z ≥ 0 it holds that F ′(z) ≤ 1.

Proof. This follows from a simple bound on (1.2):

F ′(z) = z

∫ ∞
z

ψ(F (y))

y
F ′(y)dy ≤ z · 1

z

∫ ∞
z

ψ(F (y))F ′(y)dy

= Ψ(1)−Ψ(F (z)).

Since Ψ(1) = 1 we conclude that F ′(z) ≤ 1.

Now let us return to the setting where Ψ is an interpolation of max-k, uniform and
min-k processes given by p.

Lemma 5.7. Suppose that p1 > 0. It holds that

zF ′(z) ≤ 2e−1

(p1)2
.

Proof. Integrate (1.3) as in [MP14, Proposition 8.1] so that for any ε > 0

F ′(z) =
F ′(ε)

ε
z exp

(
−
∫ z

ε

ψ(F (y))dy

)
.

Taking ε = 1 and applying Lemma 5.6 gives

F ′(z) ≤ z exp

(
−
∫ z

1

ψ(F (y))dy

)
. (5.9)

Notice that

ψ(u) = p1 +
∑
k≥2 k[pku

k−1 + p−k(1− u)k−1] ≥ p1. (5.10)

Apply this to (5.9) then multiply by z to obtain the bound

zF ′(z) ≤ ep1z2e−p1z

The maximum of z2e−p1z is at z = 2/p1. Plug this in above to obtain the claimed
bound.

Lemma 5.8. If Cp ≤ 1
2 then (1.1) holds.

Proof. As in Lemma 5.4 it suffices to show for some δ ∈ (0, 1] and all z ≥ 0

zF ′(z) ≤ (1− δ)ψ(F (z))

|ψ′(F (z))|
.
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We have from (5.10) that ψ(u) ≥ p1 and can compute

|ψ′(u)| ≤
∑
k≥2

k(k − 1)|uk−2 − (1− u)k−2| ≤ Cp.

It then suffices to prove

zF ′(z) ≤ (1− δ)p1

Cp
. (5.11)

By Lemma 5.7 and the hypothesis Cp ≤ 1/2 it suffices to choose the pk so that

2e−1

(p1)2
≤ 2(1− δ)p1.

Rewriting and letting δ → 0 we require that e−1/3 < p1. It is easy to verify (by just
checking the case pk = 0 for k 6= 1, 2) that we must have

∑
k 6=1 pk < 1/4 in order to satisfy

Cp < 1/2. Thus, p1 > 3/4. Since e−1/3 ≈ .71 < 3/4 = p1 the above displayed inequality
holds.
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