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Abstract

The focus of this work is on local stability of a class of nonlinear ordinary differential
equations (ODE) that describe limits of empirical measures associated with finite-state
exchangeable weakly interacting N -particle systems. Local Lyapunov functions are
identified for several classes of such ODE, including those associated with systems
with slow adaptation and Gibbs systems. Using results from [5] and large deviations
heuristics, a partial differential equation (PDE) associated with the nonlinear ODE
is introduced and it is shown that positive definite subsolutions of this PDE serve as
local Lyapunov functions for the ODE. This PDE characterization is used to construct
explicit Lyapunov functions for a broad class of models called locally Gibbs systems.
This class of models is significantly larger than the family of Gibbs systems and several
examples of such systems are presented, including models with nearest neighbor
jumps and models with simultaneous jumps that arise in applications.
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1 Introduction

In this paper we consider local stability properties of the nonlinear ordinary differen-
tial equation (ODE)

d

dt
p(t) = p(t)Γ(p(t)). (1.1)

where p(t) takes values in P(X ). Here X is a finite set that we denote by X = {1, . . . , d},
P(X ) is the space of probability measures on X equipped with the topology of weak
convergence, which we identify with the unit (d− 1)-dimensional simplex S = {r ∈ Rd :

rx ≥ 0, x ∈ X ,
∑
x∈X rx = 1} and for each p ∈ P(X ), Γ(p) is a rate matrix for a Markov
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Stability of Nonlinear Markov Processes

chain on X . Such ODEs describe the evolution of the law of so-called nonlinear Markov
or McKean-Vlasov processes that arise as limits of weakly interacting Markov chains.
Specifically, consider an N -dimensional time-homogeneous X -valued Markov process
XN = {Xi,N}i=1,...,N , where for t ≥ 0, Xi,N (t) represents the state of the ith particle at
time t. The jump intensity of any given particle depends on the configuration of other
particles only through the empirical measure

µN (t)
.
=

1

N

N∑
i=1

δXi,N (t), t ∈ [0,∞), (1.2)

where δa is the Dirac measure at a. More precisely, the transitions ofXN are determined
by a family of matrices {ΓN (r)}r∈P(X ), where for each r ∈ P(X ), ΓN (r) = {ΓNx,y(r), x, y ∈
X} is a transition rate matrix of a continuous time Markov chain on X , in the following
manner. Given XN (t) = x ∈ XN , an index i ∈ {1, . . . , N} and y 6= xi, the jump rate at
time t for the transition

(x1, . . . , xi−1, xi, xi+1, . . . , xN )→ (x1, . . . , xi−1, y, xi+1, . . . , xN )

is ΓNxiy(rN (x)), where rN (x) is the empirical measure given as rNz (x)
.
= 1

N

∑N
i=1 1{xi=z},

z ∈ X . The jump rates for transitions of any other type are zero. If ΓN converges to
a Lipschitz function Γ, uniformly on S, and µN (0) converges in probability to q ∈ P(X )

then µN converges uniformly on compact time intervals, in probability, to p(·) given as
the unique solution of (1.1) with initial condition q (see Theorem 2.2 of [5]). It can be
shown that there is a X -valued stochastic process whose law at time instant t is given
by the solution p(t) of (1.1) and the ODE (1.1) is referred to as the forward equation
of this nonlinear Markov process. The focus of the current paper is local stability (see
Definition 2.3) of the ODE (1.1), and therefore of the corresponding nonlinear Markov
process, for several families of models.

As usual in the study of stability of dynamical systems, the basic approach is to
construct a suitable local Lyapunov function (see Definition 2.5). It is known that for an
ergodic linear Markov process on X (i.e., the case where Γ is constant) the mapping
q 7→ R(q‖π), where R is relative entropy and π is the unique stationary distribution,
defines a Lyapunov function for the associated linear Kolmogorov equation. The proof
of this result uses the fact that if p(t) and q(t) denote the law of the Markov process
with two different initial conditions, then the forward equations for p(·) and q(·) are
governed by the same fixed rate matrix Γ(see, for example, [12, pp. I-16-17] and [5,
Section 3]). For nonlinear Markov processes, since the rate matrices at time t depend on
the law of the process at that time instant, one does not expect this property to hold in
general. However, in Section 3 we consider a family of models, which we call systems
with slow adaptation, for which relative entropy is in fact a Lyapunov function when
the adaptation parameter is sufficiently small. This result says that relative entropy
continues to serve as a Lyapunov function for suitably small non-linear perturbations of
linear Markov processes, but it does not yield Lyapunov functions for general nonlinear
Markov processes. For one particular family of models whose stationary distributions
take an explicit form and which we call systems of Gibbs type, Section 4 of [5] proposed a
candidate local Lyapunov function defined as the limit of certain scaled relative entropies
that involve the stationary distributions of the associated N -particle weakly interacting
Markov processes. Specifically, denoting the unique invariant measure of the N -particle
Markov process XN by πN ∈ P(XN ), the candidate Lyapunov function F : P(X )→ R is
defined by

F (q) = lim
N→∞

F̃N (q)
.
= lim
N→∞

1

N
R
(
⊗Nq

∥∥πN) , q ∈ P(X ). (1.3)
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Stability of Nonlinear Markov Processes

The paper [5] shows that for systems of Gibbs type the function defined in (1.3) has
a simple closed form expression. In Section 4 of the current work we show that this
function is in fact a local Lyapunov function in the sense of Definition 2.5 under suitable
positive definiteness assumptions.

For non-Gibbs families, stationary distributions usually will not take an explicit form
and thus a different approach is needed. One such approach was developed in Section 5
of [5], where instead of considering limits of F̃N , we consider the limits of

FNt (q)
.
=

1

N
R(⊗Nq‖pN (t)),

where pN (t) is the (exchangeable) probability distribution of XN (t) with some exchange-
able initial distribution pN (0) on XN , as N → ∞ and t → ∞. We then identify the
limit as N →∞ of FNt (q) as Jt(q), where Jt is the large deviations rate function for the
collection of P(X )-valued random variables {µN (t)}N∈N. The limit of Jt as t→∞ was
proposed in [5] as a local Lyapunov function for the ODE (1.1), though the question of
when these limits exist and how they can be evaluated was not tackled. In this work
we approach this question as follows. We begin by formally deriving a nonlinear partial
differential equation (PDE) for {Jt(q), t ≥ 0, q ∈ S}. We next show that classical sense
positive definite subsolutions of the stationary form of the PDE (see (5.7)), which is
formally the equation governing the limit of Jt as t→∞, are local Lyapunov functions
for (1.1). With this result, the problem of constructing Lyapunov functions reduces
to finding suitable subsolutions of (5.7). Although finding explicit subsolutions can be
challenging in general, in Section 6 we introduce an interesting family of models, which
we call locally Gibbs systems, for which one can in fact give an explicit solution for
(5.7). As shown in Section 6.1, these models contain, as a special case, the Gibbs type
systems studied in Section 4. Moreover, in Sections 6.2 – 6.5 we present other examples
of locally Gibbs systems, including models with nearest neighbor jumps and models with
simultaneous jumps that arise in telecommunications applications. Finally we give an
example to illustrate that solutions to the PDE (5.7) can be found for systems that are
not locally Gibbs as well.

The paper is organized as follows. Section 2 collects some definitions and basic
results related to stability of the ODE (1.1). In Section 3 we study systems with slow
adaptation. Section 4 considers the setting of systems of Gibbs type. We then study
more general models than the Gibbs systems of Section 4. In Section 5, we present
the formal derivation of a nonlinear time-dependent PDE that is satisfied by the large
deviation rate function {Jt(q)}. The main result of this section shows that a positive
definite subsolution of the stationary version of this PDE is a local Lyapunov function of
(1.1). Finally, in Section 6 we identify a broad family of models, referred to as locally
Gibbs systems, for which a non-trivial subsolution of (5.7) can be given explicitly and
thus under suitable additional conditions that ensure positive definiteness, one can
obtain tractable Lyapunov functions for such systems, ensuring local stability. We also
present several examples that illustrate the range of applicability of these results.

2 Local Stability and Lyapunov Functions

In this section we will collect some definitions and basic results related to stability
of the dynamical system (1.1). The following condition will be assumed on several
occasions.

Condition 2.1. The function p 7→ Γ(p) is a Lipschitz continuous map from S to R.

Some results, such as the main result of this section (Proposition 2.6), only need that
Γ be continuous, which is sufficient to ensure the existence of a solution for any initial
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Stability of Nonlinear Markov Processes

condition. Denote by S◦ the relative interior of S:

S◦ .= {p ∈ S : pi > 0 for all i = 1, . . . , d}.

We first recall the definition of a locally stable fixed point of an ODE.

Definition 2.2. A point π∗ ∈ S is said to be a fixed point of the ODE (1.1) if the
right-hand side of (1.1) evaluated at p = π∗ is equal to zero, namely,

π∗Γ(π∗) = 0.

Definition 2.3. A fixed point π∗ ∈ S◦ of the ODE (1.1) is said to be locally stable if
there exists a relatively open subset D of S that contains π∗ and has the property that
whenever p(0) ∈ D, the solution p(t) of (1.1) with initial condition p(0) converges to π∗

as t→∞.

Our approach to proving local stability will be based on the construction of suitable
Lyapunov functions. In order to state the Lyapunov function property precisely, we begin
with some notation. Let

H1
.
=

{
v ∈ Rd :

d∑
i=1

vi = 1

}
be the hyperplane containing the simplex S, and let

H0
.
=

{
v ∈ Rd :

d∑
i=1

vi = 0

}

be a shifted version of this hyperplane that goes through the origin.
Given a setD ⊂ H1, a function U : D→ Rwill be called differentiable (respectively C1)

if it can be extended as a differentiable function (respectively, continuously differentiable
function) to some relatively open subset D′ of H1 such that D ⊂ D′. In particular, for
a differentiable function U on a relatively open subset D of H1, for every r ∈ D, there
exists a unique vector DtanU(r) ∈ H0, called the gradient of U at r, such that

lim
h∈H0, ‖h‖→0

U(r + h)− U(r)− 〈DtanU(r), h〉
‖h‖

= 0.

Note that if {hi, i = 1, . . . , d − 1} is an orthonormal basis of the subspace H0, we can
write

DtanU(r) =

d−1∑
i=1

〈DtanU(r), hi〉hi, r ∈ D.

Finally, we say that the differentiable function U : D → R is C1 if the mapping r 7→
DtanU(r) from D to H0 is continuous. Frequently, with an abuse of notation, we write
DtanU simply as DU .

We introduce the following notion of positive definiteness.

Definition 2.4. Let π∗ ∈ S◦ be a fixed point of (1.1) and let D be a relatively open
subset of S that contains π∗. A function J : D→ R is called positive definite if for some
K∗ ∈ R, the sets MK = {r ∈ D̄ : J(r) ≤ K} decrease continuously to {π∗} as K ↓ K∗.

In Definition 2.4, by “decrease continuously to {π∗}” we mean that: (i) for every
ε > 0, there exists Kε ∈ (K∗,∞) such that MKε ⊂ Bε(π∗) ∩D, where Bε(π∗) is the open
Euclidean ball of radius ε, centered at π∗, and (ii) for every K > K∗, there exists ε > 0

such that Bε(π∗)∩S ⊂MK . Note that if J is a uniformly continuous function on D which
attains its minimum uniquely at π∗ then J is positive definite. A basic example of such a
function is the relative entropy function p 7→ R(p‖π∗) introduced in the next section.

EJP 20 (2015), paper 81.
Page 4/30

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v20-4004
http://ejp.ejpecp.org/


Stability of Nonlinear Markov Processes

Definition 2.5. Let π∗ ∈ S◦ be a fixed point of (1.1), and letD be a relatively open subset
of S that contains π∗. A positive definite, C1 and uniformly continuous function J : D→ R

is said to be a local Lyapunov function associated with (D, π∗) for the ODE (1.1) if,
given any p(0) ∈ D, the solution p(·) to the ODE (1.1) with initial condition p(0) satisfies
d
dtJ(p(t)) < 0 for all 0 ≤ t < τ such that p(t) 6= π∗, where τ

.
= inf{t ≥ 0 : p(t) ∈ Dc}. In

the case D = S◦, we refer to J as a Lyapunov function.

The following result shows that, as one would expect, existence of a local Lyapunov
function implies local stability. The proof is standard, but is included for completeness.

Proposition 2.6. Let π∗ ∈ S◦ be a fixed point of (1.1) and suppose that Condition 2.1
holds. Suppose there exists a local Lyapunov function associated with (D, π∗) for (1.1)
where D is some relatively open subset of S that contains π∗. Then π∗ is locally stable.

Proof. Let J be a local Lyapunov function associated with (D, π∗) for (1.1). Since J is
positive definite, there exists K∗ ∈ R such that the sets MK = {r ∈ D̄ : J(r) ≤ K}
decrease continuously to {π∗} as K ↓ K∗. In particular, there exists L ∈ (K∗,∞) and a
relatively open subset D0 of S such that π∗ ∈ D0 ⊂ML ⊂ D.

We will prove that (1.1) is locally stable on D0, namely

whenever p(0) ∈ D0, the solution p(t) of (1.1) converges to π∗ as t→∞. (2.1)

Note that (2.1) is clearly true if p(0) = π∗. Suppose now that p(0) 6= π∗. If p(t) ∈ D then

d

dt
J(p(t)) = 〈DJ(p(t)), p(t)Γ(p(t))〉.

Let τ
.
= inf{t ≥ 0 : p(t) ∈ Dc}, and assume that τ < ∞. Since q 7→ 〈DJ(q), qΓ(q)〉

is a continuous function on D and d
dtJ(p(t)) < 0 whenever p(t) ∈ D \ {π∗}, we have

d
dtJ(p(t)) ≤ 0 for all t ∈ [0, τ). Combining this with the fact that J extends continuously
to D̄ due to uniform continuity, we have J(p(τ)) ≤ L and consequently p(τ) ∈ ML ⊂ D.
This contradicts the assumption τ <∞. Hence τ =∞ and

d

dt
J(p(t)) < 0 for all t ≥ 0 whenever p(t) 6= π∗. (2.2)

Let Kn ∈ (K∗, L) be a strictly decreasing sequence such that Kn ↓ K∗ as n→∞. Let

τn = inf{t ≥ 0 : p(t) ∈MKn}.

Note that if τn < ∞, then p(t) ∈ MKn for all t ≥ τn. Since the sets MKn decrease
continuously to {π∗}, it suffices to show that τn <∞ for every n.

Consider n = 1. If p(0) ∈MK1
, τ1 <∞ is immediate. Suppose now that p(0) 6∈MK1

.
Let ε0 > 0 be such that Bε0(π∗) ∩ S ⊂MK1

⊂ML. From (2.2), for every q ∈ (Bε0)c ∩ML,
d
dtJ(pq(t))|t=0 < 0 where pq(t) is the solution of (1.1) with p(0) = q. Recalling the
continuity of q 7→ 〈DJ(q), qΓ(q)〉 and observing that (Bε0)c ∩ML is a closed subset of D
we have that

sup
q∈(Bε0 )c∩ML

〈DJ(q), qΓ(q)〉 < 0.

Also, since Bε0(π∗) ∩ S ⊂ MK1
, for all t < τ1, p(t) ∈ (Bε0)c ∩ML. Thus we have that

supt<τ1
d
dtJ(p(t)) < 0. This shows that τ1 <∞. By repeating this argument we see that

τn <∞ for every n, and the result follows.
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3 Systems with Slow Adaptation

Here we consider the case where the ODE (1.1) exhibits a structure we call slow
adaptation, for which the strength of the nonlinear component is adjusted through
a small parameter. The long-time behavior of systems of this type, in the context of
nonlinear diffusions arising as limits of weakly interacting Itô diffusions, is studied in
[14] based on coupling arguments and hitting times (and not in terms of Lyapunov
functions).

Suppose that Condition 2.1 holds and π∗ ∈ P(X ) is a fixed point of the ODE (1.1).
The rate matrix Γλ(p) = Γ(λ(p−π∗) +π∗) corresponds to a version of the original system
but with slow adaptation when λ > 0 is small. With λ ∈ (0, 1] fixed, the rate matrices
Γλ(p), p ∈ P(X ), determine a family of nonlinear Markov processes. The corresponding
forward equation

d

dt
pλ(t) = pλ(t)Γλ(pλ(t)) (3.1)

has a unique solution given any initial distribution p(0) ∈ P(X ). Note that for any
λ ∈ [0, 1], π∗ is also a fixed point for (3.1). We are interested in the question of when the
fixed point π∗ is locally stable for sufficiently slow adaptation.

Recall that given p, π∗ ∈ P(X ), the relative entropy of p with respect to π∗ is given by

R (p‖π∗) .
=
∑
x∈X

px log

(
px
π∗x

)
. (3.2)

It is known (see, e.g., [12, pp. I-16-17] or [5, Lemma 3.1]) that the mapping

F̄ (p) = R (p‖π∗) , (3.3)

serves as a Lyapunov function for finite-state linear Markov processes. The forward
equation of a finite-state linear Markov process has the form (1.1), but with a constant
rate matrix Γ, and the proof of the Lyapunov function property of relative entropy for such
Markov processes crucially uses the fact that Γ is constant. In contrast, since in general
the rate matrix in the ODE (1.1) depends on the state, one does not expect R(·‖π∗)
to serve as a Lyapunov function for general finite-state nonlinear Markov processes.
Nevertheless, in this section we will show that for systems with slow adaptation with
λ sufficiently small, the function R(·‖π∗) does in fact have the desired property. The
following is the main result of the section. Note that the function F̄ in (3.3) is positive
definite (in the sense of Definition 2.4) and is uniformly continuous on S◦. Thus the
Proposition below, together with Definition 2.5, says that F̄ is a Lyapunov function
associated with π∗ for the ODE (3.1).

Proposition 3.1. Suppose Condition 2.1 holds. Let pλ(·) be defined by (3.1) and F̄ by
(3.3). Suppose that Γ(π∗) is irreducible. Then there is λ0 > 0 such that if λ ∈ [0, λ0], then
for all t ≥ 0

d

dt
F̄ (pλ(t)) ≤ 0,

with a strict inequality if and only if pλ(t) 6= π∗.

Proof. By construction and hypothesis, there exists C ∈ (1,∞) such that for all x, y ∈ X ,
all λ > 0, and all p ∈ P(X ), ∣∣Γλyx(p)− Γyx(π∗)

∣∣ ≤ λC‖p− π∗‖,
where ‖p− π∗‖ .=

∑
x∈X |px − π∗x|. Recall that since π∗ is stationary π∗Γλ(π∗) = 0. Using

the definition (3.2) of relative entropy, the ODE (3.1), and the relation
∑
x,y∈X pyΓλyx(p) =
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∑
x,y∈X pyΓyx(π∗) = 0,

d

dt
R
(
pλ(t)‖π∗

)
=
∑
x,y∈X

pλy (t)

(
log

(
pλx(t)

π∗x

)
+ 1

)
Γλyx(pλ(t))

=
∑

x,y∈X :x 6=y

pλy (t)

(
log

(
pλx(t)π∗y
pλy (t)π∗x

)
−
pλx(t)π∗y
pλy (t)π∗x

+ 1

)
Γyx(π∗)

+
∑
x,y∈X

pλy (t) log

(
pλx(t)

π∗x

)(
Γλyx(pλ(t))− Γyx(π∗)

)
=

∑
x,y∈X :x 6=y

pλy (t)

(
log

(
pλx(t)π∗y
pλy (t)π∗x

)
−
pλx(t)π∗y
pλy (t)π∗x

+ 1

)
Γyx(π∗)

+
∑

x,y∈X :x 6=y

pλy (t) log

(
pλx(t)π∗y
pλy (t)π∗x

)(
Γλyx(pλ(t))− Γyx(π∗)

)
,

where we use the convention that 0 log 0 = 0. For x, y ∈ X with x 6= y and p ∈ P(X ), set

γyx(p)
.
= py

(
log

(
pxπ

∗
y

pyπ∗x

)
−
pxπ

∗
y

pyπ∗x
+ 1

)
Γyx(π∗),

ρλyx(p)
.
= py log

(
pxπ

∗
y

pyπ∗x

)(
Γλyx(p)− Γyx(π∗)

)
.

To complete the proof we will show that there is λ0 > 0 such that for every p ∈ P(X ),∑
x,y∈X :x6=y

(
γyx(p) + ρλyx(p)

)
≤ 0 for all λ ∈ [0, λ0], (3.4)

with equality if and only if p = π∗.
It is straightforward to check that p 7→ γyx(p) is concave. However we will need more

than that, namely a uniform estimate on its second derivative. Let r ∈ H0 with ‖r‖ = 1.
Evaluation of the derivatives gives

d

ds

∑
x,y∈X :x6=y

γyx(π∗ + sr)

∣∣∣∣∣∣
s=0

= 0,

d2

ds2

∑
x,y∈X :x 6=y

γyx(π∗ + sr)

∣∣∣∣∣∣
s=0

= −
∑

x,y∈X :x 6=y

π∗y

(
ry
π∗y
− rx
π∗x

)2

Γyx(π∗). (3.5)

If the expression in (3.5) is zero then, since π∗y > 0 for all y and all states communicate,

ry
π∗y

=
rx
π∗x

for all x 6= y. However this is impossible, since r ∈ H0 requires that at least one
component be of the opposite sign of some other component. Hence the expression in
(3.5) is negative. Using that {r : ‖r‖ = 1} is compact and continuity in r show that (3.5)
is in fact bounded above away from zero on this set, which shows the matrix of second
derivatives is negative definite. Using the fact that P(X ) is compact, we find that there
is c > 0, not depending on p, such that∑

x,y∈X :x6=y

γyx(p) ≤ −c‖p− π∗‖2,
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which is equivalent to∑
x,y∈X :x 6=y

γyx(p) ≤ − c
2
‖p− π∗‖2 +

1

2

∑
x,y∈X :x 6=y

γyx(p). (3.6)

Set γmin
.
= min{Γyx(π∗) : Γyx(π∗) > 0} > 0 and note that maxx∈X

1
π∗x

< ∞ since

π∗min
.
= minx∈X π

∗
x > 0. Let x, y ∈ X , x 6= y, and set z

.
=

pxπ
∗
y

pyπ∗x
. We distinguish two cases.

Case 1: z ≥ 1
2 or Γλyx(p)− Γyx(π∗) ≥ 0. Suppose first that py 6= 0 and z ≥ 1/2. Since

| log s| ≤ 2|s− 1| for all s ≥ 1
2 ,

ρλyx(p) = py log z
(
Γλyx(p)− Γyx(π∗)

)
≤ 2py

∣∣∣∣pxπ∗ypyπ∗x
− 1

∣∣∣∣ ∣∣Γλyx(p)− Γyx(π∗)
∣∣

=
2

π∗x
|pxπ∗y − pyπ∗x|

∣∣Γλyx(p)− Γyx(π∗)
∣∣

≤ 2

π∗min

(
π∗y |px − π∗x|+ π∗x|π∗y − py|

)
Cλ‖p− π∗‖.

This inequality is trivially true if py = 0 or if z < 1/2 and Γλyx(p)− Γyx(π∗) ≥ 0, and thus
is always valid for Case 1.

Case 2: Γλyx(p)− Γyx(π∗) < 0 and z ∈ [0, 1
2 ). Since log s− s+ 1 ≤ 0 for all s ≥ 0,

1
2γyx(p) + ρλyx(p) = py

(
1
2 (log z − z + 1) Γyx(π∗) + log z

(
Γλyx(p)− Γyx(π∗)

))
≤ py

(
1
2 (log z − z + 1) γmin + | log z|2Cλ

)
≤ 1

2py (−| log z| (γmin − 4Cλ) + (1− z)γmin) .

This quantity is non-positive for z ∈ [0, 1
2 ) whenever λ ≤ λ1

.
= γmin

16C ∧1. Recalling inequality
(3.6), we have for λ ∈ [0, λ1] that∑

x,y:x6=y

(
γyx(p) + ρλyx(p)

)
≤ − c

2
‖p− π∗‖2 +

2Cλ

π∗min

‖p− π∗‖
∑

x,y∈X :x6=y

(
π∗y |px − π∗x|+ π∗x|π∗y − py|

)

≤ − c
2
‖p− π∗‖2 +

2Cλ

π∗min

‖p− π∗‖

∑
x∈X
|px − π∗x|+

∑
y∈X
|π∗y − py|


≤ − c

2
‖p− π∗‖2 +

4Cλ

π∗min

‖p− π∗‖2.

This last quantity is strictly negative if λ < λ2
.
= min{λ1, c

π∗min

8C } and p 6= π∗, and zero for
p = π∗. Choosing λ0 ∈ (0, λ2), we find that (3.4) holds, with equality if and only if p = π∗.

The bound on λ obtained in the proof is obviously conservative, and better bounds
that depend on Γ(π∗) and π∗ can be found.

4 Systems of Gibbs Type

In this section we revisit the class of Gibbs models introduced in Section 4 of [5]. We
begin by recalling the basic definitions. Let K : X ×Rd → R be such that for each x ∈ X ,
K(x, ·) is a continuously differentiable function on Rd. We sometimes write K(x, p) as
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Kx(p). One special case we discuss in detail is given by

K(x, p) = V (x) + β
∑
y∈X

W (x, y)py, (x, p) ∈ X ×Rd (4.1)

where V : X → R, W : X × X → R and β > 0.
Let (α(x, y))x,y∈X be an irreducible and symmetric matrix with diagonal entries equal

to zero and off-diagonal entries either one or zero. Define H : X ×Rd → R by

H(x, p)
.
= Hx(p) = Kx(p) +

∑
z∈X

(
∂

∂px
Kz(p)

)
pz

=
∂

∂px

(∑
z∈X

Kz(p)pz

)
(4.2)

and Ψ : X × X ×Rd → R by

Ψ(x, y, p)
.
= Hy(p)−Hx(p), (x, y, p) ∈ X × X ×Rd.

Let
Γx,y(p)

.
= e−(Ψ(x,y,p))+α(x, y), x 6= y, p ∈ P(X ), (4.3)

where recall that we identify P(X ) with the simplex S. Then for p ∈ S, Γ(p) is the
generator of an ergodic finite-state Markov process, and the unique invariant distribution
on X is given by π(p) with

π(p)x
.
=

1

Z(p)
exp (−Hx(p)) , (4.4)

where
Z(p)

.
=
∑
x∈X

exp (−Hx(p)) .

By studying the asymptotics of certain scaled relative entropies, the following candi-
date Lyapunov function was identified in Theorem 4.2 of [5]:

F (p) =
∑
x∈X

(Kx(p) + log px)px (4.5)

for p ∈ S. We note that in [5] K(x, ·) was taken to be twice continuously differentiable
(this property was used in the proof of Lemma 4.1 of [5]), however here we merely
assume that K(x, ·) is C1. Also note that in the special case of (4.1),

F (p) =
∑
x∈X

V (x) + β
∑
y∈X

W (x, y)py + log px

 px. (4.6)

Since
∑
x∈X px log px is the negative of the entropy of p, F is the sum of a convex function,

an affine function and a quadratic function on P(X ). This fact is useful in determining
whether or not the fixed points of (1.1) are stable.

Recall the set H0 introduced in Section 2 and note that for p ∈ S◦ = {p ∈ S : px >

0 for all x = 1, . . . , d} the directional derivative of the function F in (4.5) in any direction
v ∈ H0 is given by

∂

∂v
F (p)

.
= 〈DF (p), v〉 =

∑
x∈X

vx

log px +Kx(p) +
∑
y∈X

py
∂

∂px
Ky(p)

 , (4.7)

where we have used that
∑
x∈X vx = 0. The following result shows that the fixed points

of (1.1) can be characterized as critical points of F .
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Theorem 4.1. Let Γ be as defined in (4.3) and p ∈ P(X ). Then p is a fixed point for (1.1)
if and only if p ∈ S◦ and ∂

∂vF (p) = 0 for all v ∈ H0.

Proof. Recall that π(p) is the unique invariant probability associated with Γ(p), and
hence π(p)Γ(p) = 0. Also note that p is a fixed point for (1.1) if and only if pΓ(p) = 0,
which, since Γ(p) is a rate matrix of an ergodic Markov process, can be true if and only
if p = π(p). Since π(p) ∈ S◦ for every p ∈ S we have that any fixed point of (1.1) is in S◦.
For x, y ∈ X , x 6= y, let vx,y

.
= ex − ey, where ex is the unit vector in direction x. Then by

(4.7), (4.2) and (4.4), for any p ∈ S◦

∂

∂vx,y
F (p) = log px − log py +Kx(p)−Ky(p)

+
∑
z∈X

(
∂

∂px
Kz(p)− ∂

∂py
Kz(p)

)
pz

= log px − log py + (Hx(p)−Hy(p))

= log

(
px
py

)
− log

(
π(p)x
π(p)y

)
. (4.8)

If p is a fixed point of (1.1) then p = π(p), and so ∂
∂vx,yF (p) = 0 for all x, y ∈ X , x 6= y.

From this it follows that ∂
∂vF (p) = 0 for all v ∈ H0.

Conversely, suppose p ∈ S◦ and ∂
∂vF (p) = 0 for all v ∈ H0. Then from (4.8)

px
py

=
π(p)x
π(p)y

for all x, y ∈ X .

Thus p = π(p), which says that p is a fixed point of (1.1).

According to Theorem 4.1, the equilibrium points of the forward equation (1.1) are
precisely the critical points of F on P(X ). Note that although for each p, Γ(p) is a rate
matrix of a Markov process with a unique invariant measure, the dynamical system (1.1)
can have multiple stable and unstable equilibria. Here is an example.

Example 4.2. Assume that X = {1, 2}, and K is given as in (4.1) with V ≡ 0, W (1, 1) =

0 = W (2, 2), and W (1, 2) = 1 = W (2, 1). Then F (p) = f(p1) with

f(x)
.
= x log x+ (1− x) log(1− x) + 2β(1− x)x, x ∈ [0, 1].

The critical points of F on P({1, 2}) are in a one-to-one correspondence with the critical
points of f on [0, 1]. We have f(0) = 0 = f(1), and for x ∈ (0, 1)

f ′(x) = log x− log(1− x) + 2β − 4βx, f ′′(x) =
1

x
+

1

1− x
− 4β.

Moreover, f ′(x)→ −∞ as x tends to zero, and f ′(x)→∞ as x tends to one.
If β ≤ 1 then f has exactly one critical point, namely a global minimum at x = 1

2 . If
β > 1 then there are three critical points, one local maximum at x = 1

2 and two minima
at xβ and 1− xβ, respectively, for some xβ ∈ (0, 1

2 ), where xβ → 1
2 as β ↓ 1, xβ → 0 as

β goes to infinity. The two minima of f correspond to stable equilibria of the forward
equation, while the local maximum corresponds to an unstable equilibrium.

4.1 Lyapunov function property

Suppose that the function F defined in (4.5) is positive definite (in the sense of
Definition 2.4) in a neighborhood of a fixed point π∗ of (1.1) which contains no other
fixed point of (1.1). In this section we show that F is a local Lyapunov function for the
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ODE (1.1) (associated with the neighborhood and the fixed point π∗), with Γ defined by
(4.3). This result is an immediate consequence of the theorem below and Definition 2.5.
Together with Proposition 2.6 this will imply π∗ is locally stable.

Theorem 4.3. Let p(·) be a solution to the forward equation (1.1) with Γ as defined in
(4.3) and some initial distribution p(0) ∈ P(X ). Then for all t ≥ 0,

d

dt
F (p(t)) =

d

dt
R (p(t)‖π(q))

∣∣∣∣
q=p(t)

≤ 0. (4.9)

Moreover, d
dtF (p(t)) = 0 if and only if p(t) = π(p(t)).

Proof. We will show that if p(·) is the solution to (1.1) with p(0) = q then

d

dt
F (p(t))

∣∣∣∣
t=0

=
d

dt
R (p(t)‖π(q))

∣∣∣∣
t=0

. (4.10)

In view of the semigroup property of solutions to the ODE (1.1), and since q is arbitrary,
the validity of (4.10) implies the first equality in (4.9).

Let p(0) = q. By the definition (4.5) of F and since
∑
x∈X

dpx
dt (0) = 0,

d

dt
F (p(t))

∣∣∣∣
t=0

=
∑
x∈X

log qx
dpx
dt

(0) +
∑
x∈X

Kx(q)
dpx
dt

(0) +
∑
x,y∈X

qx
∂

∂py
Kx(q)

dpy
dt

(0).

On the other hand, by the definition of relative entropy, (4.4) and (4.2), and again using
the relation

∑
x∈X

dpx
dt (0) = 0, we have

d

dt
R (p(t)‖π(q))

∣∣∣∣
t=0

=
d

dt

(∑
x∈X

px(t) log px(t)

)∣∣∣∣∣
t=0

−
∑
x∈X

dpx
dt

(0) log πx(q) (4.11)

=
∑
x∈X

log qx
dpx
dt

(0) +
∑
x∈X

Kx(q)
dpx
dt

(0)

+
∑
x,z∈X

qz
∂

∂px
Kz(q)

dpx
dt

(0).

Comparing the right sides of the last two displays we see that (4.10) holds.

The rest of the assertion follows from the observation that π(q) is the stationary
distribution for the (linear) Markov family associated with Γ(q) and from the Lyapunov
property of relative entropy in the case of ergodic (linear) Markov processes; see Lemma
3.1 in [5].

Remark 4.4. Consider the slow adaptation setting of Section 3 for the Gibbs model
with K as in (4.1). Thus we start from a family of rate matrices Γ(p), p ∈ P(X ), defined
according to (4.3). Suppose that π∗ is a fixed point of the mapping p 7→ π(p). For
λ ∈ [0, 1], p ∈ P(X ), set Γλ(p)

.
= Γ(π∗ + λ(p− π∗)). The rate matrices Γλ(p) are again of

Gibbs type, that is, Γλ(p) satisfies (4.3), but with Ψ replaced by Ψλ, where Ψλ is defined
exactly as Ψ is with K as in (4.1), but with different potentials in place of V and W . In
particular, the potentials V λ,β , Wλ are given by

V λ,β(x)
.
= V (x) + 2β(1− λ)

∑
z∈X

W (x, z)π∗z , Wλ(x, y)
.
= λW (x, y).
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Fix λ ≥ 0. Then (4.6) and Theorem 4.3 imply that if the function

Fλ(p)
.
=
∑
x∈X

px log px +
∑
x∈X

V λ,β(x)px + β
∑
x,y∈X

Wλ(x, y)pxpy

=
∑
x∈X

px log px +
∑
x∈X

(
V (x) + 2β(1− λ)

∑
z∈X

W (x, z)π∗z

)
px

+ λβ
∑
x,y∈X

W (x, y)pxpy,

is positive definite in some neighborhood of π∗, then it is a local Lyapunov function for
(3.1) (associated with that neighborhood and the fixed point π∗). Proposition 3.1, on
the other hand, implies that F̄ (p)

.
= R (p‖π∗) is also a local Lyapunov function when λ is

positive but sufficiently small. By the definition of relative entropy, (4.4), (4.2) and (4.1),

F̄ (p) = R (p‖π∗)

=
∑
x∈X

px log px −
∑
x∈X

px log π∗x

=
∑
x∈X

px log px + logZ(π∗) +
∑
x∈X

(
V (x) + 2β

∑
z∈X

W (x, z)π∗z

)
px,

which is equal to Fλ(p) + logZ(π∗) for λ = 0. Observe that the term logZ(π∗) has no
impact on the Lyapunov function property as it does not depend on p. Thus, the function
Fλ includes “correction terms” (that vanish when λ = 0) and serves as a Lyapunov
function(when positive definite) not just for small λ but rather for all λ ∈ (0, 1].

4.2 Comparison with existing results for Itô diffusions

A situation analogous to that of this section is considered in [13], where the author
studies the long-time behavior of “nonlinear” Itô-McKean diffusions of the form

dX(t) = −
(
∇V

(
X(t)

)
+ 2β

∫
Rd
∇1W

(
X(t), y)

)
µt(dy)

)
dt+

√
2dB(t), (4.12)

where µt is the probability law of X(t), B is a standard d-dimensional Wiener process, V
a function Rd 7→ R, the environment potential, and W a symmetric function Rd×Rd 7→ R

with zero diagonal, the interaction potential. Here ∇1 denotes gradient with respect
to the first Rd-valued variable. Signs and constants have been chosen in analogy with
the finite-state models considered here. Solutions of (4.12) arise as weak limits of the
empirical measure processes associated with weakly interacting Itô diffusions. The
N -particle model is described by the system

dXi,N (t) = −∇V
(
Xi,N (t)

)
dt− 2β

N

N∑
j=1

∇1W
(
Xi,N (t), Xj,N (t)

)
dt+

√
2dBi(t),

where i ∈ {1, . . . , N}, B1, . . . , BN are independent standard Brownian motions.
In [13] a candidate Lyapunov function F : P(Rd) → [0,∞], referred to as the “free

energy function”, is introduced without explicit motivation, and then shown to be in fact
a valid Lyapunov function. The same function is also considered in [6] and plays a key
role in their study of convergence properties of µt as t → ∞. The function takes the
following form. If µ is a probability measure that is absolutely continuous with respect
to Lebesgue measure and of the form fµ(x)dx, then

F (µ)
.
=

∫
log fµ(x)fµ(x)dx+

∫
V (x)µ(dx) +

∫ ∫
W (x, y)µ(dx)µ(dy). (4.13)
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In all other cases F (µ)
.
=∞. This function is clearly a close analogue of the function in

(4.5), which was derived as the limit of scaled relative entropies. There are, however,
some interesting differences in the presentation and proof of the needed properties. The
most significant of these is how one represents the derivative of the composition of the
Lyapunov function with the solution to the forward equation. In [13] the descent property
is established by expressing the orbital derivatives of F in terms of the Donsker-Varadhan
rate function associated with the empirical measures of solutions to (4.12), when the
measure µt is frozen at µ ∈ P(Rd). In contrast, in our case the orbital derivative of the
Lyapunov function is expressed as the orbital derivative of relative entropy with respect
to the invariant distribution π(p) that is obtained when the dynamics of the nonlinear
Markov process are frozen at p. The latter expression also applies to the diffusion case
in the sense that for all t ≥ 0,

d

dt
F (µt) =

d

dt
R (µt‖πν)ν=µt

, (4.14)

where µt is the law of X(t), X being the solution to (4.12) for some (absolutely continu-
ous) initial condition, and πν ∈ P(Rd) is given by

πν(dx)
.
=

1

Zν
exp

(
−V (x)− 2β

∫
Rd
W (x, y)ν(dy)

)
dx, (4.15)

with Zν the normalizing constant. Clearly, the probability measures given by (4.15)
correspond to the distributions π(p) ∈ P(X ) defined in (4.4). The relationship (4.14)
can be established in a way analogous to the proof of Theorem 4.1. On the other hand,
the representation for the orbital derivative of the Lyapunov function in terms of the
Donsker-Varadhan rate function as established in [13] for the diffusion case does not
carry over to the finite-state Gibbs models studied above. Because of this, we argue that
(4.14) is the more natural and general way to demonstrate that F has the properties
required of a Lyapunov function.

To make this more precise, consider the case of linear Markov processes. Let Γ be the
infinitesimal generator (rate matrix) of an X -valued ergodic Markov family with unique
stationary distribution π ∈ P(X ). Let p(·) be a solution of the corresponding forward
equation (1.1). Then

d

dt
R (p(t)‖π) =

∫
X
ftΓ (log ft) dπ = −EΓ (ft, log ft) ,

where ft
.
= dp(t)

dπ is the density of p(t) with respect to π and EΓ(·, ·) is the Dirichlet form
associated with Γ and its stationary distribution π, that is,

EΓ(f, g)
.
= −

∫
X
f Γ(g)dπ = −

∑
x∈X

f(x)

∑
y∈X

g(y)Γxy

πx

for test functions f, g : X → R. On the other hand, the Donsker-Varadhan I-function
associated with Γ is given by

IΓ(µ) = sup
f :X→(0,∞)

(
−
∫
X

Γ(f)(x)

f(x)
µ(dx)

)
, µ ∈ P(X ).

If Γ is also reversible (i.e., Γxyπx = Γyxπy for all x, y ∈ X ), then I takes the more explicit
form

IΓ(µ) = EΓ

(√
dµ

dπ
,

√
dµ

dπ

)
;
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see, for instance, Theorem IV.14 and Exercise IV.24 in [10, pp. 47-50]. In general, the
functions f 7→ EΓ

(√
f,
√
f
)

and f 7→ EΓ (f, log f) with f ranging over all non-degenerate
π-densities are not proportional. As a counterexample, it is enough to evaluate the

Dirichlet forms for Γ =

(
−1 1

1 −1

)
and π = (1/2, 1/2).

5 A PDE for Limits of Relative Entropies

In the last section we saw that the scaling limits of relative entropies with respect
to stationary distributions of certain N -particle Markov processes XN yield candidate
Lyapunov functions for (1.1). In this section we consider the case where closed form
expressions for the stationary distributions are not available and consequently these
limits cannot be evaluated explicitly. Recall from the discussion in Section 5 of [5] that
in such cases our basic approach to constructing Lyapunov functions is to take limits
of the scaled relative entropy FNt specified in equation (1.4) of [5] (see also equation
(5.5) in this section), first as N →∞ and then as t→∞. Theorem 5.5 of [5] shows that
under some basic assumptions, the limit as N →∞ coincides with the large deviation
rate function Jt(·) : S → [0,∞) for a certain sequence of empirical measures of N -
particle systems that converge to the solution of the ODE (1.1). This large deviations
result[11, 4, 8] is recalled in Section 5.1. Next, we formally derive a time-dependent
PDE for the associated large deviation rate function Jt(r) in Section 5.2, and present the
stationary version of this PDE in Section 5.3. These formal calculations simply motivate
the form of the PDE – the main result presented in Section 5.5 that subsolutions to the
stationary PDE serve as local Lyapunov functions for the ODE (1.1), does not rely on
this derivation. The proof of the main result relies on certain properties that are first
established in Section 5.4.

5.1 A large deviation result

Let, as in Section 2 of [5], XN = (X1,N , . . . , XN,N ) be a XN -valued Markov process
with transitions governed by the family of matrices {Γ(r), r ∈ P(X )}, where for each
r ∈ P(X ), Γ(r) = {Γx,y(r), x, y ∈ X} is a transition rate matrix of a continuous time
Markov chain on X (here for simplicity we assume that ΓN = Γ). Specifically, the
transition mechanism is as follows. Given XN (t) = x ∈ XN , an index i ∈ {1, . . . , N} and
y 6= xi, the jump rate at time t for the transition

(x1, . . . , xi−1, xi, xi+1, . . . , xN ) 7→ (x1, . . . , xi−1, y, xi+1, . . . , xN )

is Γxiy(rN (x)), where

rNy (x)
.
=

1

N

N∑
i=1

1{xi=y}, y ∈ X . (5.1)

The jump rates for transitions of any other type are zero. Under the assumption of
exchangeability of the initial random vector {Xi,N (0)}i=1,...,N we have that the processes
{Xi,N}i=1,...,N are also exchangeable. From this, it follows that the empirical measure
process µN = {µN (t)}t≥0 is a Markov chain taking values in SN = S ∩ 1

NZ
d, where S is

the unit simplex which is identified with P(X ), with the generator LN given by

LNf(r) =
∑

x,y∈X :x6=y

NrxΓxy(r)

[
f

(
r +

1

N
(ey − ex)

)
− f(r)

]
(5.2)

for real-valued functions f on SN .
We recall the following locally uniform LDP for the empirical measure process. The

LDP has been established in [11, 4] while the locally uniform version used here is taken
from [8].
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Theorem 5.1. Suppose that for each p ∈ S, Γ(p) is the transition rate matrix of an
ergodic Markov chain and that Condition 2.1 holds. For t ∈ [0,∞) let pN (t) be the
distribution of XN (t) = (X1,N (t), . . . , XN,N (t)). Recall the mapping rN : XN → PN (X )

given by (5.1), i.e., rN (x) is the empirical measure of x . Assume that the initial random
vector {Xi,N (0)}i=1,...,N is exchangeable and assume that rN under the distribution
pN (0) satisfies a large deviation principle (LDP) with a rate function J0. Then for each
t ∈ [0,∞), rN under the distribution pN (t) satisfies a locally uniform LDP on P(X ) with
a rate function Jt, thus given any sequence {qN}N∈N, qN ∈ SN , such that qN → q ∈ S,

lim
N→∞

1

N
log pN (t)

({
y ∈ XN : rN (y) = qN

})
= −Jt(q).

Furthermore, Jt(q) <∞ for all q ∈ P(X ).

We will now formally derive a PDE solved by Jt(q).

5.2 A time-dependent PDE

For notational convenience, throughout this section for t ≥ 0 and r ∈ S we write Jt(r)
as J(r, t). For t ≥ 0, let uN (t) denote the distribution of µN (t), that is, for r ∈ SN , let
uNr (t) = P

(
µN (t) = r

)
. Then, uN satisfies the Kolmogorov forward equation

duN

dt
(t) = uN (t)LN , (5.3)

where LN is as in (5.2). For r ∈ SN , substituting into (5.3) the approximation

uNr (t) ≈ e−NJ(r,t)

that follows from the LDP stated in Theorem 5.1, and recalling the form of the generator
LN from (5.2), we obtain

∂

∂t
e−NJ(r,t) =

∑
x,y∈X ,x 6=y:

r− 1
N (ey−ex)∈SN

e−NJ(r− 1
N (ey−ex),t) (Nrx + 1) Γxy

(
r − 1

N
(ey − ex)

)

−
∑

x,y∈X ,x 6=y:
r+ 1

N (ey−ex)∈SN

e−NJ(r,t)NrxΓxy(r).

Observing that the left-hand side of the last display equals −Ne−NJ(r,t) (∂J(r, t)/∂t), and
multiplying both sides by eNJ(r,t)/N , we obtain

− ∂

∂t
J(r, t)

=
∑

x,y∈X ,x 6=y:
r− 1

N (ey−ex)∈SN

e−N[J(r− 1
N (ey−ex),t)−J(r,t)]

(
rx +

1

N

)
Γxy

(
r − 1

N
(ey − ex)

)

−
∑

x,y∈X ,x 6=y:
r+ 1

N (ey−ex)∈SN

rxΓxy(r).

If J is smooth and N is large, we can use the approximation

J

(
r − 1

N
(ey − ex), t

)
− J(r, t) ≈ − 1

N
〈DJ(r, t), ey − ex〉+ o(1/N).

Substituting this approximation into the previous display, sending N →∞ and recalling
that Γx,y(·) is continuous, we obtain the following PDE for J(r, t): for r ∈ S and t ∈ [0,∞),

− ∂J

∂t
(r, t) =

∑
x,y∈X :x 6=y

[
e〈DJ(r,t),ey−ex〉 − 1

]
rxΓxy(r). (5.4)
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As mentioned earlier, this derivation is not rigorous because we did not establish the
smoothness properties of J assumed in the calculations. In fact, in general one does not
expect this smoothness property to hold and one would have to interpret J as a viscosity
solution to the PDE (5.4) with appropriate boundary conditions. However, the derivation
simply serves to motivate the form of the stationary PDE and the proof of the main result
given in the next section does not rely on this derivation.

5.3 The stationary PDE and Lyapunov functions

We now introduce our main tool for constructing local Lyapunov functions for (1.1).
Recall

FNt (q)
.
=

1

N
R(⊗Nq‖pN (t)), q ∈ S. (5.5)

Formally writing

lim
t→∞

lim
N→∞

FNt (q) = lim
t→∞

Jt(q) = J∗(q), q ∈ S, (5.6)

one expects from the formal derivation of the last section that the function J∗ solves the
following PDE:

H(r,−DJ(r)) = 0, (5.7)

where for (r, α) ∈ S ×Rd,

H(r, α)
.
= −

∑
x,y∈X :x6=y

rxΓxy(r)
[
e−〈α,ey−ex〉 − 1

]
(5.8)

(we use H to distinguish from H(x, p) as used in the section on systems of Gibbs type).
In the introduction of [5] it was discussed why the limit function J∗ may serve as a
(local) Lyapunov function for (1.1). This suggests solutions of the stationary PDE (5.7) as
candidates for a Lyapunov function. The main result of this section makes this precise
by proving that positive definite subsolutions of (5.7) give local Lyapunov functions for
(1.1). To state the precise result we begin by recalling the definition of a subsolution.

Definition 5.2. Let D be a relatively open subset of S. A C1 function J : D→ R is said
to be a subsolution of (5.7) on D if

H(r,−DJ(r)) ≥ 0, for all r ∈ D. (5.9)

Moreover, J is said to be a solution to the PDE if (5.9) holds with equality.

Recall the definition of positive definiteness given in Definition 2.4. Theorem 5.3
below says that a positive definite subsolution of the PDE (5.7) is a local Lyapunov
function.

Theorem 5.3. Suppose Condition 2.1 holds. Let π∗ ∈ S◦ be a fixed point of (1.1), and
let D be a relatively open subset of S that contains π∗. Let J : D→ R be a C1 positive
definite function that is a subsolution of (5.7) on D. Then J is a local Lyapunov function
for (1.1) associated with (D, π∗).

Before proceeding with the proof of the theorem we note some basic properties of
the function H introduced in (5.8).

5.4 Properties of H

Lemma 5.4. Fix r ∈ S and α, α̃ ∈ Rd.

(a) If α̃− α = c1 for some c ∈ R, then H(r, α) = H(r, α̃).

(b) H(r, ·) is smooth and concave on Rd.
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(c) Suppose that for each p ∈ S, Γ(p) is the rate matrix of an ergodic Markov chain.
Then given r ∈ S◦, α̃− α ∈ Rd \ {c1 : c ∈ R} and any ρ ∈ (0, 1),

H(r, ρα̃+ (1− ρ)α) > ρH(r, α̃) + (1− ρ)H(r, α).

Proof. The definition of H in (5.8) immediately implies part (a), and (b) follows since the
map α 7→ e−〈α,v〉 − 1 is smooth and convex for any vector v ∈ Rd and rxΓxy(r) ≥ 0 for all
x 6= y, r ∈ S. To prove (c), fix r ∈ S◦ and α, α̃ ∈ Rd such that w

.
= α̃ − α 6∈ {c1 : c ∈ R}.

Then there exist x̄, ȳ ∈ {1, . . . , d} such that wx̄ 6= wȳ. Due to the smoothness and concavity
of H(r, ·), it suffices to show that

d2

dρ2
H(r, ρα̃+ (1− ρ)α) =

d2

dρ2
H(r, ρw + α) < 0. (5.10)

Note that

d2

dρ2
H(r, ρw + α) =

d2

dρ2

− ∑
x,y∈X :x6=y

(
e〈−α−ρw,ey−ex〉 − 1

)
rxΓxy(r)


= −

∑
x,y∈X :x6=y

(wy − wx)
2
e〈−α−ρw,ey−ex〉rxΓxy(r).

Since Γ is ergodic there is a sequence of distinct states x̄ = x1, x2, . . . , xj = ȳ such that
Γxixi+1(r) > 0. Also, since wx̄ 6= wȳ, for some i we have wxi 6= wxi+1 , and so (5.10)
follows.

For z ∈ [0,∞) let
`(z) = z log z − z + 1.

Given r ∈ S, β ∈ Rd, define

L(r, β)

.
= inf
uxy∈R+,y 6=x

 ∑
x,y∈X :x6=y

rxΓxy(r)`

(
uxy

rxΓxy(r)

)
:

∑
x,y∈X :x 6=y

(ey − ex)uxy = β

 . (5.11)

The following lemma establishes duality relations between L and H.

Lemma 5.5. Fix r ∈ S. For β ∈ Rd

L(r, β) = − inf
α∈Rd

[〈α, β〉 −H(r, α)] , (5.12)

and for α ∈ Rd
H(r, α) = inf

β∈Rd
[〈α, β〉+L(r, β)] . (5.13)

Proof. Fix r ∈ S, and define H̃(r, α) = −H(r,−α) for α ∈ Rd. Let V .
= {ey − ex : x, y ∈

X , x 6= y}. Then note that for α ∈ Rd,

H̃(r, α) =
∑
v∈V

hv(r, α), (5.14)

where for v = ey − ex ∈ V,

hv(r, α) =
[
e〈α,v〉 − 1

]
rxΓxy(r), α ∈ Rd.
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For v ∈ V, let `v(r, ·) be the Legendre transform of hv(r, ·):

`v(r, β) = sup
α∈Rd

[〈α, β〉 − hv(r, α)] , β ∈ Rd.

Then with Λv(r)
.
= rxΓxy(r) when v = ey − ex,

`v(r, β) =

{
Λv(r)`

(
θ

Λv(r)

)
if β = θv for some θ ≥ 0,

∞ otherwise.

From (5.14), it follows using standard properties of Legendre transforms (see, e.g.,
Corollary D.4.2 of [7]) that the function L(r, ·) defined in (5.11) is the Legendre transform
of the function H̃(r, ·), that is,

L(r, β) = sup
α∈Rd

[
〈α, β〉 − H̃(r, α)

]
,

which is easily seen to be equivalent to (5.12). Finally, since H̃ is convex and continuous
by Lemma 5.4(b), the duality property of Legendre transforms shows that

H̃(r, α) = sup
β∈Rd

[〈α, β〉 −L(r, β)] .

This is clearly equivalent to the relation (5.13), and so the proof is complete.

We now return to the proof of Theorem 5.3.

5.5 Proof of Theorem 5.3

We begin by noting that, for any r ∈ S, β(r) = rΓ(r) satisfies

H(r, 0) = inf
β∈Rd

[L(r, β)] = L(r, β(r)) = 0. (5.15)

By (5.12), for any α ∈ Rd

H(r, α) ≤ L(r, β(r)) + 〈α, β(r)〉.

We next prove for any α 6= 0, α ∈ H0, that

H(r, α) < L(r, β(r)) + 〈α, β(r)〉. (5.16)

We argue via contradiction, and thus assume that (5.16) holds with equality. Note that
we must have αx 6= αy for some x, y ∈ X , since otherwise α ∈ H0 implies

0 = α · 1 = dαx, x ∈ X ,

and then α = 0. Since αx 6= αy for some x, y, by Lemma 5.4 (c) it follows that H(r, ρα) >

ρH(r, α) for ρ ∈ (0, 1), and thus

H(r, ρα)− 〈ρα, β(r)〉 > ρL(r, β(r)).

Then from (5.15)

0 = ρL(r, β(r))

<H(r, ρα)− 〈ρα, β(r)〉
≤ − inf

α∈Rd
[〈α, β(r)〉 −H(r, α)]

= L(r, β(r))

= 0,
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which is a contradiction. This proves (5.16).
Recall that by assumption J is positive definite, and thus in particular DJ(r) 6= 0

whenever r 6= π∗. Applying (5.16) to α = −DJ(r) (recall DJ(r) ∈ H0), where r 6= π∗, we
get

0 ≤H(r,−DJ(r)) < −〈DJ(r), β(r)〉+L(r, β(r)) = −〈DJ(r), β(r)〉,

where the first equality is a consequence of the fact that J is a subsolution of (5.7) on
D, while the last equality follows on noting that L(r, β(r)) = 0. Thus 〈DJ(r), β(r)〉 < 0

whenever r 6= π∗. Finally, note that

d

dt
J(p(t)) = 〈DJ(p(t)), p(t)Γ(p(t))〉 = 〈DJ(p(t)), β(p(t))〉 < 0,

for all 0 ≤ t < τ such that p(t) 6= π∗, where τ = inf{t ≥ 0 : p(t) ∈ Dc}, which establishes
the claimed result.

6 Locally Gibbs Systems

The PDE characterization of Section 5 gives an approach for constructing local
Lyapunov functions for (1.1). Although in general explicit solutions of (5.7) are not
available, there is an important class of nonlinear Markov processes introduced below
for which solutions to the PDE (5.7) can be constructed explicitly, and which generalizes
the class of Gibbs systems.

Definition 6.1. A family of transition rate matrices {Γ(r)}r∈S on X is said to be locally
Gibbs if the following two properties hold:

(a) for each r ∈ S, Γ(r) is the rate matrix of an ergodic Markov chain on X , whose
stationary distribution we denote by π(r);

(b) there exists a C1 function U on S such that for every x, y ∈ X , x 6= y,

π(r)y
π(r)x

= exp
(
−Dey−exU(r)

)
, (6.1)

where for v ∈ H0, DvU = 〈DU, v〉.

The function U is referred to as the potential associated with the locally Gibbs family.

The following result gives a local Lyapunov function for the ODE (1.1) associated
with a locally Gibbs family.

Theorem 6.2. Suppose the transition rate matrices {Γ(r)}r∈S are locally Gibbs with
potential function U , and let the function J be defined by

J(r) =
∑
x∈X

rx log rx + U(r), r ∈ S. (6.2)

Then J is a solution to the PDE (5.7) on S◦. Suppose in addition that Condition 2.1
holds and J is positive definite in a relatively open (in S) neighborhood of any fixed
point π∗ ∈ S◦ of the ODE (1.1). Then J is a local Lyapunov function for the ODE (1.1)
associated with π∗ and the neighborhood.

Proof. Let {Γ(r)}r∈S , U and J be as in the statement of the theorem. Let {π(r)}r∈S be
the corresponding collection of stationary distributions on S. Since U is C1 on S◦ by
assumption, J is clearly also C1 on S◦. We now show that J is a solution to the equation
(5.9). First note that, due to the locally Gibbs condition (6.1), for r ∈ S and x, y ∈ X ,
x 6= y,

eDey−exJ(r) =
ryπ(r)x
rxπ(r)y

.
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Moreover, since π(r) is the stationary distribution for the Markov chain with transition
rate matrix Γ(r), for any y ∈ X ,∑

x∈X :x6=y

π(r)xΓxy(r) = −π(r)yΓyy(r).

Therefore,

−H(r,−DJ(r)) =
∑

x,y∈X :x 6=y

[eDey−exJ(r) − 1]rxΓxy(r)

=
∑

x,y∈X :x 6=y

ryπ(r)x − rxπy(r)

π(r)y
Γxy(r)

=
∑
y∈X

ry
π(r)y

∑
x∈X :x6=y

π(r)xΓxy(r)−
∑
x∈X

rx
∑

y∈X :y 6=x

Γxy(r)

= −
∑
y∈X

ryΓyy(r) +
∑
x∈X

rxΓxx(r)

= 0.

Thus J solves the PDE (5.7) on S◦. The result now follows from Theorem 5.3.

In the rest of this section we will describe several examples that correspond to locally
Gibbs systems and also give an example that falls outside this category, and show that
for the latter setting in some cases, the PDE (5.7) can still be used to construct local
Lyapunov functions. In what follows we will not discuss the positive definiteness property,
and instead refer to a function that satisfies (5.9) as a candidate Lyapunov function, with
the understanding that if positive definiteness is added such a function will in fact be a
local Lyapunov function.

The rest of the section is organized as follows. Section 6.1 considers a class of models
that are a slight extension of the Gibbs systems studied in Section 4. A particular case
of locally Gibbs that appears in several contexts is introduced and discussed in Section
6.2. Section 6.3 presents two examples of three-dimensional systems which in particular
illustrate that Gibbs systems are a strict subset of locally Gibbs systems. In Section 6.4
we consider models with nearest neighbor transitions. Section 6.5 studies an example
from telecommunications [1] for which the associated N -particle system has the feature
of “simultaneous jumps.” We show that an explicit construction of a Lyapunov function
carried out in [1] follows as a special case of Theorem 6.2. All examples in Sections
6.1-6.5 are locally Gibbs systems. Section 6.6 considers an example that demonstrates
that the class of models for which a non-trivial solution to the PDE (5.7) can be obtained
is strictly larger than that of locally Gibbs systems.

6.1 Gibbs systems

Recall the empirical measure functional rN : XN → S defined in (5.1). Also recall
that throughout we assume r 7→ Γ(r) is Lipschitz continuous. We now introduce a
class of models that slightly extend those studied in Section 4 which, with an abuse of
terminology, we once more refer to as Gibbs systems.

Definition 6.3. Let K : X × Rd → R be such that for each x ∈ X , K(x, ·) = Kx(·) is a
continuously differentiable function on Rd. We say a family of rate matrices {Γ(r)}r∈S
on X is Gibbs with potential function K, if

(a) For each r ∈ S, Γ(r) is a rate matrix of an ergodic Markov chain with state space
X .
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(b) For each N ∈ N there exists a collection of rate matrices {ΓN (r)}r∈S such that
ΓN → Γ uniformly on S and the N -particle Markov processXN , for which the jump
rate of the transition

(x1, . . . , xi−1, xi, xi+1, . . . , xN ) 7→ (x1, . . . , xi−1, y, xi+1, . . . , xN )

is ΓNxiy(rN (x)), is reversible with unique invariant measure

πN (x) =
1

ZN
exp

(
−

N∑
i=1

K(xi, r
N (x))

)
, x ∈ XN , (6.3)

where ZN is the normalization constant:

ZN =
∑

x∈XN
exp

(
−

N∑
i=1

K(xi, r
N (x))

)
.

From Section 4 of [5] it follows that the family of rate matrices in equation (4.3) is
Gibbs in the sense of Definition 6.3. Note however that Definition 6.3 allows for more
general forms of rate matrices than (4.3).

The following lemma shows that a Gibbs system is locally Gibbs in the sense of
Definition 6.1.

Lemma 6.4. If {Γ(r)}r∈S is Gibbs with some potential K, then it is locally Gibbs with
potential U(r) =

∑
z∈X K

z(r)rz.

Proof. Since XN is reversible, the following detailed balance condition on XN must
hold:

πN (x)Γxjy(rN (x)) = πN
(
T jyx

)
Γyxj (r

N (T jyx)) (6.4)

for every x ∈ XN , y ∈ X and j ∈ {1, . . . , N}, where T jyx has jth coordinate value
equal to y, and all other coordinates having values identical to those of x. Since
rN (T jyx) = rN (x) + 1

N (ey − exj ), by (6.3) and (6.4), it follows that for x ∈ XN ,

exp

[
−

N∑
i=1

K(xi, r
N (x)) +

N∑
i=1

K

(
xi, r

N (x) +
1

N
(ey − exj )

)

+K
(
y, rN (T jyx))−K(xj , r

N (x)
)ΓNxjy(rN (x)) = ΓNyxj (r

N (T jyx)). (6.5)

Fix x, y ∈ X , x 6= y and j ∈ N. Given r ∈ S, let {x1, x2, · · · } be a sequence in X such
that xj = x and with xN = (x1, . . . , xN ), rN (xN )→ r as N →∞. Since K is continuously
differentiable, as N →∞

N∑
i=1

K

(
xi, r

N (xN ) +
1

N
(ey − ex)

)
−

N∑
i=1

K(xi, r
N (xN ))

= N
∑
z∈X

(
K

(
z, rN (xN ) +

1

N
(ey − ex)

)
−K(z, rN (xN ))

)
rNz (xN )

→
∑
z∈X

(
∂

∂ry
K(z, r)− ∂

∂rx
K(z, r)

)
rz.

Now, for r ∈ S, define

π(r)x
.
=

1

Z(r)
exp (−Hx(r)) , r ∈ X ,
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where H was defined in (4.2) and Z(r) is a normalization constant to make π(r) a
probability measure. By sending N → ∞ in (6.5) (with x replaced by xN ), using the
uniform convergence of ΓN to Γ and the fact that K is C1, we have

π(r)x
π(r)y

Γxy(r) = Γyx(r), x, y ∈ X , x 6= y. (6.6)

This shows that π(r) is the stationary distribution for the rate matrix Γ(r), and thus
verifies condition (a) of Definition 6.1. Condition (b) holds because U is C1 due to the
assumptions on K, and (6.1) is verified by combining the last display with the fact
that U(r) =

∑
z∈X K

z(r)rz and (4.4) imply −〈DU(r), ey − ex〉 = log π(r)y − log π(r)x,
x, y ∈ X , x 6= y. Thus, the family {Γ(r)}r∈S is locally Gibbs with potential U .

Given a Gibbs family of matrices {Γ(r)}r∈S , it follows from Lemma 6.4 that the
function J : S → [0,∞) defined in (6.2) solves the stationary PDE (5.7) and thus serves
as a candidate Lyapunov function. Example 4.2 shows that in general multiple fixed
points of the forward equation (1.1) exist and that the function J may be positive definite
in the sense of Definition 2.4 for some of the fixed points and not positive definite for
others.

The locally Gibbs condition is significantly weaker than the Gibbs property. Indeed,
it follows from (6.6) that Gibbs systems satisfy the detailed balance condition for their
corresponding rate matrices, but systems with the locally Gibbs property need not satisfy
this property. The simplest example is as follows. Let π be the invariant distribution
for the ergodic rate matrix Γ, and assume that detailed balance does not hold, so that
it cannot be a Gibbs family. However, it is still locally Gibbs, with U(r) = 〈r, v〉 , vx =

− log πx. Note that in this case, the proposed Lyapunov function J(r) in Theorem 6.2 is
just the relative entropy R(r ‖π ). Example 6.11 below will also illustrate this point.

6.2 A class of locally Gibbs systems

We now introduce a family of ergodic rate matrices {Γ(r)}r∈S that describe limits of
particle systems whose dynamics need not be reversible for each N , (and hence may
not be Gibbs systems), but nevertheless have a structure that has some similarities
with Gibbs systems. We show that they are locally Gibbs, and then give two concrete
examples where they arise.

Condition 6.5. For a family of transition rate matrices {Γ(r)}r∈S on X the following two
properties hold.

(a) For each r ∈ S, Γ(r) is the rate matrix of an ergodic Markov chain on X with
stationary distribution π(r).

(b) There exist R : X × [0, 1] → R and K : X × Rd → R such that for each x ∈ X ,
Rx(·) = R(x, ·) is a continuous function and Kx(·) = K(x, ·) is a C1 function on S,
and such that for each r ∈ S, π(r) has the form

π(r)x =
exp[−H(x, r)−R(x, rx)]

Z(r)
, x ∈ X , (6.7)

where H is defined in terms of K as in (4.2), and Z(r) is, as usual, the normalization
constant

Z(r) =
∑
x∈X

exp[−H(x, r)−R(x, rx)].

Note that the Gibbs systems from Section 6.1 satisfy Condition 6.5 with R(x, t) = 1,
(x, t) ∈ X × [0, 1].
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Remark 6.6. Given a family {Γ(r)}r∈S , suppose there exist R and K as in Condition 6.5
such that for every x, y ∈ S, x 6= y,

exp[H(y, r) +R(y, ry)]Γxy(r) = exp[H(x, r) +R(x, rx)]Γyx(r). (6.8)

Then, for fixed r ∈ S, Γ(r) satisfies the detailed balance conditions with stationary
distribution π(r) given by (6.7), and so {Γ(r)}r∈S satisfies Condition 6.5.

Lemma 6.7. Let {Γ(r)}r∈S satisfy Condition 6.5. Then {Γ(r)}r∈S is locally Gibbs with
potential

U(r) =
∑
z∈X

[∫ rz

0

R(z, w) dw +K(z, r)rz

]
. (6.9)

Proof. First, note that the conditions on R and K ensure that U is a C1 function on S.
Thus, it suffices to verify equation (6.1) of Definition 6.1, namely to show that for every
r ∈ S and x, y ∈ X ,

− log

(
π(r)y
π(r)x

)
= Dey−exU(r).

But this is a simple consequence of the identity

∂

∂rx

[∑
z∈X

∫ rz

0

R(z, w)dw

]
= R(x, rx), x ∈ X ,

the fact that from (4.2) we have

∂

∂rx

(∑
z∈X

K(z, r)rz

)
= H(x, r), x ∈ X ,

and the definitions of π(r) and U in (6.7) and (6.9), respectively.

We now provide two classes of models that satisfy Condition 6.5. The first class is a
system with only nearest-neighbor jumps.

Example 6.8. Let ai, i = 1, 2, . . . , d− 1, and bi, i = 2, 3, . . . , d, be continuous maps from
S to (0,∞). Suppose that for r ∈ S, Γ(r) is associated with a birth death chain as follows:

Γi,i+1(r) = ai(r), i = 1, 2, . . . , d− 1,

Γi,i−1(r) = bi(r), i = 2, 3, . . . , d,

Γi,j(r) = 0, for all other i 6= j.

As usual, set Γii(r) = −
∑
j,j 6=i Γij(r), so that Γ(r) is a rate matrix.

Denoting by π(r) the stationary distribution associated with Γ(r), the {π(r)i}i=1,...,d

satisfy
π(r)jaj(r) = π(r)j+1bj+1(r), for all j = 1, 2, . . . , d− 1.

The following is a sufficient condition for Condition 6.5. Suppose that there are measur-
able functions ψi : S → (0,∞), i = 0, . . . , d− 1, that are bounded away from 0, and, for
i = 1, . . . , d, continuous functions φi : [0, 1]→ (0,∞), such that

ai(r) = ψi(r)φi(ri), bi(r) = ψi−1(r)φi(ri), i = 1, . . . , d, r ∈ S. (6.10)

Then, for j = 1, . . . , d− 1,

π(r)j
π(r)j+1

=
bj+1(r)

aj(r)
=
ψj(r)φj+1(rj+1)

ψj(r)φj(rj)
=
φj+1(rj+1)

φj(rj)
.
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It follows that {Γ(r)}r∈S satisfies Condition 6.5 with R(i, ·) = log φi(·), i = 1, . . . , d, and
K ≡ 0. By Lemma 6.7, it follows that {Γ(r)}r∈S is locally Gibbs with potential

U(r) =

d∑
j=1

∫ rj

0

log φj(w)dw, u ∈ [0, 1], r ∈ S.

Example 6.9. This example can be viewed as a generalization of the Glauber dynamics
introduced in Section 4, in which the rate at which a particle changes state can depend
both on the state of the particle and on the fraction of particles in that state. Suppose
that we are given R and K as in Definition 6.5, let H be defined as in (4.2), and as in
Section 4, let Ψ : X ×X × S → R be given by Ψ(x, y, r) = Hy(r)−Hx(r), x, y ∈ X , r ∈ S,
and let (α(x, y))x,y∈X be an irreducible and symmetric matrix with diagonal entries equal
to zero and off-diagonal entries equal to either one or zero. Then, for r ∈ S, define

Γxy(r) = exp[−Ψ(x, y, r)−R(x, rx)]α(x, y), x, y ∈ X , x 6= y.

Then the equality in (6.8) clearly holds and thus {Γ(r)}r∈S satisfies Condition 6.5 by
Remark 6.6.

Next recall that Theorem 6.2 shows that J(r) = U(r)+
∑
x∈X rx log rx, with U defined

by (6.9), is a candidate Lyapunov function for the associated ODE (1.1). In the present
example, consider the case when there exists a common R0 : [0, 1] → R such that
R(x, ·) = R0(·) for every x ∈ X and K(x, r) = − log(νxR(x, νx)) for some probability
measure ν ∈ P(X ) (and hence K(x, r) does not depend on r). Setting R̄0(u) = ueR0(u)

for u ∈ [0, 1], we then have (up to a constant),

J(r) =
∑
z∈X

∫ rz

νz

log

(
R̄0(w)

R̄0(νz)

)
dw,

which is non-negative if R̄0 is non-decreasing. An analog of this functional for nonlinear
diffusions living in an open subset Ω of a Riemannian manifold appears in [2], where
it was shown to be equal to the large deviation functional of the so-called zero range
process. Moreover, under the condition that R̄0 is strictly increasing, it was shown in [3]
that this functional (and a slight generalization of it, where the logarithm in the integrand
is replaced by the derivative of a more general C2 function) serves as a Lyapunov function
for the associated nonlinear PDE.

6.3 Some three-dimensional examples

Both classes of locally Gibbs families studied so far had the property that for each
r ∈ S, Γ(r) is associated with a reversible Markov chain for which the detailed balance
condition (6.6) holds. This leads to two natural questions: (a) does every locally Gibbs
family have the property that Γ(r) satisfies detailed balance for each r ∈ S? (b) if
Γ(r) satisfies detailed balance for each r ∈ S, then does it correspond to a locally
Gibbs family? To address these questions, we consider some simple three-dimensional
examples; specifically, Example 6.11 answers questions (a) in the negative while Example
6.10 gives a partial answer to (b) by showing that Γ(r) may satisfy detailed balance for
each r ∈ S, but it may fail to be a locally Gibbs family with any C2-potential.

Example 6.10. Suppose that d = 3, fix ai, bj > 0, i = 1, 2, j = 2, 3, and let B : S → (0,∞)

be some given function. For r ∈ S, consider the matrix −a1 a1 0

b2B(r) −b2B(r)− a2 a2

0 b3 −b3

 , (6.11)
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Note that for any fixed r ∈ S, the matrix (6.11) corresponds to an ergodic transition
matrix with stationary distribution

π(r) =
1

Z(r)
(b2b3B(r), a1b3, a1a2) , (6.12)

where Z(r) is, as usual, the normalization constant. Note also that the detailed balance
condition (6.6) is satisfied for this model. However as see below, in general this is
not locally Gibbs system with a C2-potential. Let Γ be the transition matrix in (6.11)
when B(r) is replaced by 1, and let r∗ be the associated stationary distribution. Fix
c = (c1, c2, c3) ∈ R3 and κ ∈ R. Also, for r ∈ S, let Γ(r) be the matrix in (6.11) with

B(r) = eκ〈r−r
∗,c〉. (6.13)

A simple calculation shows that if κ 6= 0 and c2 6= c3, there is no C2 function U that
satisfies the equality in (6.1) for all x 6= y and r ∈ S. Indeed, such a function should
satisfy for suitable real numbers α, β

〈DU, er2 − er1〉 = κ 〈c, r〉+ α, 〈DU, er2 − er3〉 = β. (6.14)

Taking second derivatives we see that

∂2U

∂r2
2

− ∂2U

∂r2∂r1
= κc2,

∂2U

∂r3∂r2
− ∂2U

∂r3∂r1
= κc3

and
∂2U

∂r2
2

− ∂2U

∂r2∂r3
= 0.

Adding the last two equations and subtracting from the first, we have

∂

∂r1

(
∂U

∂r3
− ∂U

∂r2

)
= κ(c2 − c3).

However, from (6.14) the left side equals 0. Thus we must have c2 = c3 or κ = 0.
Consequently when c2 6= c3 and κ 6= 0 the model is not locally Gibbs. On the other hand,
if c2 = c3, one can check that (6.1) is satisfied with

U(r) = κr1 〈r∗ − r, c〉+ log

(
a1a2

b2b3

)
r1 + log

(
a2

b3

)
r2 +

1

2
κr2

1(c1 − c2). (6.15)

Thus, when c2 = c3, the model is a locally Gibbs system with potential U .

Example 6.11. Let d = 3 and for r ∈ S, define the rate matrix Γ̃(r) by

Γ̃(r) =

 −2r2r3 r2r3 r2r3

2r1r3 −4r1r3 2r1r3

0 3r1r2 −3r1r2

 .

Then clearly rΓ̃(r) = 0.
As in Example 6.10, for r ∈ S let Γ(r) be the matrix defined by (6.11) with B(r)

given by (6.13), and let π(r) be the associated stationary distribution specified in (6.12).
Suppose that c2 = c3 = c. It was noted in Example 6.10 that π(r) satisfies (6.1), with U
as in (6.15). For r ∈ S, define

Γ̄(r) = Γ̃(π(r)),

which takes the explicit form

Γ̄(r) = Z−1(r)

 −2a2
1a2b3 a2

1a2b3 a2
1a2b3

2a1a2b2b3B(r) −4a1a2b2b3B(r) 2a1a2b2b3B(r)

0 3a1b2b
2
3B(r) −3a1b2b

2
3B(r)

 .
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Since rΓ̃(r) = 0, π(r)Γ̄(r) = 0. Thus for each r ∈ S, Γ̄(r) is the rate matrix of an
ergodic Markov chain with stationary distribution π(r). Also, as noted earlier, π(r)

satisfies (6.1). Thus, the family {Γ̄(r)}r∈S satisfies the local Gibbs property. However,
note that the detailed balance condition (6.6), which must hold for every Gibbs model,
fails. Indeed,

Γ̄12(r)

Γ̄21(r)
=

a1

2b2B(r)
6= a1

b2B(r)
=
π(r)2

π(r)1
.

Thus {Γ̄(r)}r∈S is not Gibbs.

6.4 Systems with nearest neighbor jumps

The nearest neighbor model in Example 6.8 imposed certain symmetry conditions
(see (6.10)) on the rate parameters. In the following example we consider a more general
family of near neighbor models with certain monotonicity conditions on the rates.

Example 6.12. Let X = {1, . . . , d} and for r ∈ S, suppose there exist ‘cost’ vectors
ci ∈ Rd, i = 1, . . . , d − 1, and continuous functions ai : R → (0,∞) and bi : R → (0,∞),
i = 1, . . . , d, such that for every r ∈ S, Γ(r) is the rate matrix of a birth-death chain that
satisfies

Γi,i+1(r) = ai(〈r, ci〉), i = 1, 2, . . . , d− 1,

Γi+1,i(r) = bi+1(〈r, ci〉), i = 1, 2, . . . , d− 1,

Γi,j(r) = 0, for all other i 6= j,

and, as usual, set Γii(r) = −
∑
i,j,j 6=i Γij(r), so that Γ(r) is a rate matrix. Let π(r) denote

the stationary distribution of the chain with rate matrix Γ(r). Since π(r)Γ(r) = 0, we
have for i = 1, . . . , d− 1,

π(r)i+1

π(r)i
=
bi+1(〈r, ci〉)
ai(〈r, ci〉)

= ψi(〈r, ci〉), (6.16)

where ψi(u)
.
= bi+1(u)/ai(u), u ∈ R.

Consider the specific case when the cost vectors have the form cj =
∑d
k=j+1 ek,

j = 1, . . . , d− 1. Then for i, j = 1, . . . , d− 1,

cji+1 − c
j
i =

{
1 i = j,
0 otherwise.

(6.17)

Then we claim that {Γ(r)}r∈S is a locally Gibbs family with potential

U(r) = −
d−1∑
j=1

∫ 〈r,cj〉
0

log
(
ψj(w)

)
dw.

Indeed, for every r ∈ S and i = 1, . . . , d− 1, using (6.17)

−Dei+1−eiU(r) =

d−1∑
j=1

log
(
ψj(〈r, cj〉)

)
(cji+1 − c

j
i ) = log

(
ψi(〈r, ci〉)

)
.

Together with (6.16) this shows that condition (6.1) is satisfied, and thus {Γ(r)}r∈S is
locally Gibbs.
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6.5 Models with simultaneous jumps

Weakly interacting particles systems with “simultaneous jumps” are described in
[1, 8]. For our purposes here we need only know that the nonlinear Markov process
associated with such models can also be interpreted as the limit process for an ordinary
single jump process, with an effective rate matrix that is defined in terms of various
rate matrices used in the definition of the original process. We describe one model with
simultaneous jumps that arises naturally in telecommunications and which was studied
in [1], and show that the associated family of effective rate matrices is locally Gibbs.

In this model there are N nodes, each with capacity C ∈ N, and there are M ∈ N
classes, each with parameters λm, µm, γm > 0, and, in addition, a capacity requirement
Am ∈ N. The state of node i is the number of calls of each class present at that node in
an N -node network, and thus the state space takes the form

X =

{
x ∈ ZM+ :

M∑
m=1

xmAm ≤ C

}
.

Let am(r) denote the average number of customers in class m under the distribution r:

am(r)
.
=

(∑
x∈X

rxxm

)
. (6.18)

It was shown in Theorem 1 of [1] that the associated sequence of empirical measures
satisfies µN (·)⇒ p(·), as N →∞, where p(·) satisfies the ODE (1.1), with Γ taking the
following form: for r ∈ S and x, y ∈ X , x 6= y,

Γx,y(r) =


λm + γmam(r) if y = x+ fm ∈ X ,m = 1, . . . ,M,

xm(µm + γm) if y = x− fm ∈ X ,m = 1, . . . ,M,

0 otherwise,
(6.19)

and, as usual, Γxx(r) = −
∑
y∈X ,y 6=x Γyx(r). Moreover, it is easily verified (see Proposition

1 of [1]) that for each r ∈ S, Γ(r) is the rate matrix of an ergodic Markov chain with
stationary distribution π(r) given by

π(r)x =
1

Z(r)

∏M
m=1 (ρm(r))

xm∏M
m=1 xm!

, x = (x1, . . . , xM ) ∈ X ,

where Z(r) is the normalization constant and ρ : S → (0,∞)M is given by

ρm(r) =
λm + γmam(r)

µm + γm
, m = 1, . . . ,M.

It was shown in [1] that when M = 1 there is a unique fixed point for the ODE (1.1), but
when M = 2, A1 = 1 and A2 = C for C sufficiently large, there exist parameters λm, µm
and γm for which (1.1) has multiple fixed points.

Lemma 6.13. The family of rate matrices {Γ(r)}r∈S defined in (6.19) is locally Gibbs
with potential

U(r) =

M∑
m=1

[∑
x∈X

[rx log(xm!)− xmrx log(λm + µm)] +

∫ am(r)

0

log (λm + γmw) dw

]
.

Proof. The function U is clearly C1 on S. For r ∈ S and x = (x1, . . . , xM ), y = (y1, . . . , yM ) ∈
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X , we have

− log

(
π(r)x
π(r)y

)
=

M∑
m=1

[(ym − xm) log (ρm(r)) + log(xm!)− log(ym!)]

=

M∑
m=1

[(ym − xm) log (λm + γmam(r))− (ym − xm) log(µm + γm)

+ log(xm!)− log(ym!)] ,

which is easily seen to coincide with Dey−exU(r), thus establishing that (6.1) is satisfied.

By Theorem 6.2, it then follows under positive definiteness that J(r) = U(r) +∑
x∈X rx log rx is a local Lyapunov function for (1.1). Using the definition am(r) =∑
x∈X xmrx, it is easily seen that J coincides with the Lyapunov function g constructed

in Proposition 4 of [1].

Remark 6.14. Features of the last example are that the state space X ⊂ RM and
the rate matrix depends on r only through the mean values am(r),m = 1, . . . ,M . The
example can be generalized slightly. Indeed, consider a family of ergodic rate matrices
{Γ(r)}r∈S on X ⊂ RM , with the property that for each r ∈ S, Γ(r) has a stationary
distribution π(r) of the form

π(r)x =

M∏
m=1

[
Φ(m)(am(r))

]xm
exp(−H(x, r)), x ∈ X , r ∈ S,

where H is the function defined in (4.2) for some K : X ×Rd → R, am is defined by (6.18)
and for each m = 1, . . . ,M , Φ(m) : R → (0,∞) is continuous. Then, using arguments
exactly analogous to those used previously in this section, one can show that {Γ(r)}r∈S
is locally Gibbs with potential

U(r) =
∑
z∈X

[
M∑
m=1

∫ am(r)

0

log Φ(m)(w) dw +K(z, r)rz

]
.

The last example presented then coincides with the case Φm(w) = λm + γmw, w ∈ R,
and for r ∈ S

K(x, r) = H(x, r) =

M∑
m=1

(xm log(µm + γm) + log(xm!)) .

Remark 6.15. Another example of a model with simultaneous jumps is the model of
alternative routing in loss networks introduced in Gibbens, Hunt and Kelly [9]. It can
be shown that the family of jump matrices {Γ(r)}r∈S associated with this model is not
locally Gibbs with any C2 potential U . This may explain why this problem has withstood
analysis for more than a decade. It is an interesting open problem to see if the PDE
characterization introduced here can be used to construct Lyapunov functions for this
model and related ones.

6.6 A candidate Lyapunov function for a model that is not locally Gibbs

The example in this section demonstrates that the class of models for which explicit
non-zero solutions of (5.7) can be found is larger than that of locally Gibbs models. Let
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d = 3, and for r ∈ S define the rate matrix Γ(r) by

Γ(r) =

 −a1(r) a1(r) 0

b2(r) −(a2(r) + b2(r)) a2(r)

0 b3(r) −b3(r)

 ,

where a1 and a2 are measurable functions from S to (0, 1) and b2, b3 are given as follows.
Let ψ : [0, 1]→ (0, 1) be a continuous function that is bounded away from 0. We set

b2(r) = (1 + (r2 − r3ψ(r3))a2(r)) a1(r), b3(r) = ψ(r3)a2(r) (1 + (r2 − r1)a1(r)) .

Note that for each r ∈ S, Γ(r) is an ergodic rate matrix and the corresponding unique
invariant measure π(r) satisfies

π(r)1

π(r)2
=
b2(r)

a1(r)
= (1 + (r2 − r3ψ(r3))a2(r)) ,

π(r)2

π(r)3
=
b3(r)

a2(r)
= ψ(r3) (1 + (r2 − r1)a1(r)) .

Since a1, a2 are arbitrary functions, there may be no C1 function U for which equation
(6.1) is satisfied, and so the family {Γ(r)}r∈S is not locally Gibbs in general.

Define

U(r)
.
=

∫ r3

0

logψ(x)dx, r ∈ S,

and let J be defined through (6.2). Then, as shown below, J satisfies the PDE (5.7) on S◦
and hence is a candidate Lyapunov function. Indeed, note that

Dey−exJ(r) =



log( r2r1 ) if (y, x) = (2, 1),

log( r3ψ(r3)
r1

) if (y, x) = (3, 1),

log( r3ψ(r3)
r2

) if (y, x) = (3, 2).

Thus,

−H(r,−DJ(r)) = (r2 − r1)a1(r) + (r3ψ(r3)− r2)a2(r) + (r1 − r2)b2(r)

+
(r2 − r3ψ(r3))

ψ(r3)
b3(r)

= (r2 − r1)a1(r) + (r3ψ(r3)− r2)a2(r)

+ (r1 − r2) (1 + (r2 − r3ψ(r3))a2(r)) a1(r)

+
(r2 − r3ψ(r3))

ψ(r3)
ψ(r3)a2(r) (1 + (r2 − r1)a1(r))

= 0.
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