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Abstract

We propose a new version of Stein’s method of exchangeable pairs, which, given a
suitable exchangeable pair (W,W ′) of real-valued random variables, suggests the
approximation of the law of W by a suitable absolutely continuous distribution. This
distribution is characterized by a first order linear differential Stein operator, whose
coefficients γ and η are motivated by two regression properties satisfied by the pair
(W,W ′). Furthermore, the general theory of Stein’s method for such an absolutely
continuous distribution is developed and a general characterization result as well as
general bounds on the solution to the Stein equation are given. This abstract approach
is a certain extension of the theory developed in the papers [5] and [13], which only
consider the framework of the density approach, i.e. η ≡ 1. As an illustration of
our technique we prove a general plug-in result, which bounds a certain distance
of the distribution of a given random variable W to a Beta distribution in terms of
a given exchangeable pair (W,W ′) and provide new bounds on the solution to the
Stein equation for the Beta distribution, which complement the existing bounds from
[18]. The abstract plug-in result is then applied to derive bounds of order n−1 for
the distance between the distribution of the relative number of drawn red balls after
n drawings in a Pólya urn model and the limiting Beta distribution measured by a
certain class of smooth test functions.
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1 Introduction

Since its introduction in [31] in 1972 Stein’s method has become a famous and useful
tool for proving distributional convergence. One of its main advantages over other
techniques is that it automatically yields concrete error bounds on various distributional
distances. Being first only developed for normal approximation it was observed by several
authors that Stein’s idea of linking a characterizing operator for the target distribution
to a differential equation, the Stein equation, carries over to many other absolutely
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Stein’s method for the Beta distribution

continuous and discrete distributions, where, in the discrete case, the differential
equation has to be replaced by a suitable difference equation. Among those other
distributions, to which Stein’s method has been successfully extended, are the Poisson
distribution (see e.g. [6], [1] or [3]), the Gamma distribution (see [22] or [28]), the
exponential distribution (see e.g. [4], [25] and [14]), the Laplace distribution [27] and,
more generally, the class of Variance-Gamma distributions [16]. Stein’s method for the
Beta distribution has been developed independently in the paper [18] as well as in the
preprint [11].

Although in both works [18] and [11] a rate of convergence for the relative number
of drawn red balls in a Pólya urn model was derived using Stein’s method for the Beta
distribution, the actual approaches were quite different. In [18] the authors developed a
useful and widely applicable technique to find a whole class of characterizing operators
for a discrete distribution, whose probability mass function is known explicitly, and
compared one of these operators to the Stein operator of the limiting Beta distribution.
In contrast, the preprint [11] built on a coupling approach by developing a new version of
the exchangeable pairs approach of Stein’s method for a rather large class of absolutely
continuous distributions on the real line. This new version of the exchangeable pairs
approach differs from that in the framework of the density method as developed in [13]
and [5], since it allows for a modification of the Stein equation, which is adapted to a
given exchangeable pair and does not necessarily rely on the characterization by the
density method. Recently, in [21], a nice generalization of the density method, which
does not necessarily assume absolute continuity of the given distribution, was given and,
as an application, it was shown, how the situation of the Pólya urn example from [18]
may be fitted into this framework.

The main purpose of the present paper is to give a more easily readable account of
the method and ideas from [11] by keeping the class of Beta distributions on [0, 1] and the
Pólya urn model as a running example. In addition, we derive new numerical bounds on
the solution to the Stein equation for the Beta distribution and, for smooth test functions,
also on its first order derivative. For Lipschitz-continuous test functions, these bounds
complement those given in [18] in the sense that they are neither uniformly worse nor
uniformly better in the parameters of the Beta distribution. Furthermore, we use a new
iterative procedure to obtain uniform bounds for derivatives of any order of the solution
to the Beta Stein equation with sufficiently smooth right hand side. Incidentally, this
is the first paper to give bounds on higher order derivatives of the solution to the Beta
Stein equation. It should be mentioned that, generally, obtaining bounds on higher order
derivatives of the solution to the Stein equation is quite a difficult problem, because the
explicit representations of those derivatives become more and more complicated. Hence,
to date bounds on higher order derivatives of the solution are still quite rare in Stein’s
method.

For instance, the paper [9] obtains sharp bounds on higher order derivatives in the
context of the normal and exponential distributions by exploiting very peculiar identities
and facts about these distributions, which are not available for more general absolutely
continuous distributions. Also, if one succeeds in deriving a tractable generator repre-
sentation of the solution to the Stein equation as suggested in [2], one can usually use
this form of the solution to obtain bounds on higher order derivatives. This has been
used for the multivariate normal [19] and for the Gamma distribution [22]. However,
in contrast to the bounds from [9], these bounds usually do not exhibit the smoothness
property of the inverse of the corresponding Stein operator. In the case of the multi-
variate normal distribution with non-singular covariance matrix, one can combine the
generator representation with a partial integration to obtain bounds on higher order
derivatives, which demand one fewer order of smoothness from the test function than
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the bounds from [19]. This has been accomplished independently in [15] and [10]. The
recent paper [17] combines bounds obtained from the generator representation with the
iterative method from the present article in order to obtain new bounds on derivatives of
arbitrary order of the solution to the Gamma Stein equation, whose dependence on the
shape parameter of the Gamma distribution is superior to previous bounds.

We also indicate, how our iterative method can be applied to obtain bounds for the
solution to a Stein equation for the exponential distribution, which are better than those
previously obtained. We thus suggest that exploiting this iterative procedure can become
a fruitful technique for a larger class of distributions.

The remainder of this paper is structured as follows: In Section 2 the general
approach is motivated by means of a natural exchangeable pair in the context of the
Pólya urn model and it is stressed by means of this example that the framework of
exchangeable pairs within the density approach as developed in [13] and [5] is not
always suitable and why one might want to use a different Stein characterization.
Furthermore, our main application, Theorem 2.1, a quantitative distributional limit
theorem for the relative number of drawn red balls is stated. Then, motivated by this
example, in Section 3 a general version of Stein’s method for a large class of absolutely
continuous distributions adapted to a given exchangeable pair is developed. In Section 4
the theory from Section 3 is specialized to the class of Beta distributions and Theorem
2.1 is proved. Finally, in Section 5 several proofs for statements from Sections 3 and 4
are given.

Acknowledgments. Most parts of the research which led to this article have been
accomplished during the authors PhD studies and, hence, there is a certain overlap
with the author’s PhD thesis [10], see also the unpublished paper [11]. The author was
supported by the DFG via SFB/TR 12 during this time. We also refer to Appendix A of [10]
for a version of de l’Hôpital’s rule which covers (locally) absolutely continuous functions
and which is general enough to justify all invocations of this famous tool within this
article. Finally, Appendix B of [10] contains some identities about the Gibbs sampling
procedure, which are generally useful in the exchangeable pairs version of Stein’s
method and which will be used in the present paper. I am grateful to an anonymous
referee whose detailed and valuable comments and suggestions helped me improve the
presentation of my results.

2 The Pólya urn model and motivation
of our general approach

The classical Pólya urn model can be described as follows. Fix positive integers r, w
and c. At the beginning an urn contains r red balls and w white balls. At each discrete
time point n ∈ N a ball is drawn from the urn uniformly at random and this ball together
with c other balls of the same colour is returned to the urn. If we denote by Sn the
number of drawn red balls after the first n drawings, n ∈ N, then we can write

Sn =

n∑
j=1

Xj , (2.1)

where Xj denotes the indicator of the event that the j-th drawn ball is red, j ∈ N. It is
known from elementary probability theory that for each n ∈ N and all x1, . . . , xn ∈ {0, 1}
we have

P (X1 = x1, . . . , Xn = xn) =

∏k−1
i=0 (r + ci)

∏n−k−1
j=0 (w + cj)∏n−1

l=0 (s+ w + cl)
, (2.2)
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where k :=
∑n
j=1 xj . In particular, this shows that the sequence (Xj)j∈N is exchangeable.

It now follows from (2.2) that for each k = 0, . . . , n we have

P (Sn = k) =

(
n

k

)∏k−1
i=0 (r + ci)

∏n−k−1
j=0 (w + cj)∏n−1

l=0 (s+ w + cl)
,

or, with a := r
c and b := w

c ,

P (Sn = k) =

(−a
k

)( −b
n−k
)(−a−b

n

) , (2.3)

where, for a real number x and a nonnegative intger m, we define the generalized
binomial coefficient by (

x

m

)
:=

x(x− 1) · . . . · (x−m+ 1)

m!
.

The distribution of Sn given by (2.3) is usually referred to as the Pólya distribution
with parameters n ∈ N and a, b > 0. It is a well-known fact that the distribution of
1
nSn converges weakly as n→∞ to the distribution Beta(a, b) with parameters a and b,
where, for general a, b > 0, the Beta distribution Beta(a, b) with parameters a and b is
defined by the density function p := pa,b with

pa,b(x) :=

{
1

B(a,b)x
a−1(1− x)b−1, 0 < x < 1

0, else.
(2.4)

Here, B(a, b) denotes the Euler Beta function B(a, b) =
∫ 1

0
xa−1(1 − x)b−1dx which is

related to the Gamma function Γ(t) =
∫∞

0
xt−1e−xdx via

B(a, b) =
Γ(a)Γ(b)

Γ(a+ b)
. (2.5)

From now on denote by

W := Wn :=
1

n
Sn =

1

n

n∑
j=1

Xj (2.6)

the relative number of drawn red balls after the first n drawings from the urn. Denote by
C1,1([0, 1];R) the space of all continuously differentiable real-valued functions on [0, 1]

which have a Lipschitz-continuous derivative.

Theorem 2.1. Let Z ∼ Beta(a, b). For each h ∈ C1,1([0, 1];R) we have that∣∣∣E[h(W )]− E[h(Z)]
∣∣∣

≤ C(a, b)

n
‖h′‖∞

(
ab

a+ b
+

(a+ b)C(a+ 1, b+ 1)

6

(
1 +

a+ b− 1

n

))

+
C(a+ 1, b+ 1)

6n
‖h′′‖∞

(
1 +

a+ b− 1

n

)
,

where the constants C(·, ·) are defined in (4.6) and (4.7) below and ‖h′′‖∞ denotes the
minimum Lipschitz constant of h′.

The proof will be given in Section 4. In the paper [18] the authors even proved a con-
crete upper bound of order n−1 for the Wasserstein distance between the distributions
of Z and W from Theorem 2.1 and also showed that the rate n−1 is optimal. Since the
Wasserstein distance is induced by 1-Lipschitz test functions, this implies that their result
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is stronger than Theorem 2.1 as far as the class of test functions is concerned. However,
it should be mentioned that their method of comparing Stein operators can only be
applied in situations, where the distribution of W is explicitly known. Contrarily, the
exchangeable pairs technique which is used here, in general, seems to be more flexible
in this respect. For instance, our plug-in result, Theorem 4.4 below, might be beneficial
for other applications, where the exact distribution of W is not at hand. Moreover, even
in the situation of Theorem 2.1 there exist parameters a, b > 0 and test functions h
such that our bound is smaller than the one obtained in [18]. To see this, fix n and let
a = b tend to zero. Also, let h ∈ C1,1([0, 1];R) be such that ‖h′‖∞ = ‖h′′‖∞ = 1. Then,
as C(a, a) = 4 if a ≤ 1 and by continuity of C(a, a) in a, we see that the bound given in
Theorem 2.1 converges to 2

3n (1− 1/n) ≤ 2
3n , whereas the bound from [18] converges to

the bigger value 9
2n .

Recall that a pair (X,X ′) of random elements on a common probability space is called
exchangeable, if

(X,X ′)
D
= (X ′, X) .

Representation (2.6) for W suggests constructing another random variable W ′ such that
W and W ′ make up an exchangeable pair using a Gibbs sampling procedure. Noticing
that also the random variables X1, . . . , Xn are exchangeable, the construction of W ′ can
be simplified to the following:
Observe X1 = x1, . . . , Xn = xn and construct X ′n according to the distribution L(Xn|X1 =

x1, . . . , Xn−1 = xn−1). Then, letting

W ′ := W − 1

n
Xn +

1

n
X ′n (2.7)

the pair (W,W ′) is exchangeable. Note that |W −W ′| ≤ 1
n is small which suggests that

the exchangeable pair (W,W ′) be beneficial for a Stein’s method approach to the proof
of weak convergence of L(Wn) to Beta(a, b). From the exchangeable pairs approach
within normal approximation (see e.g. [32], [8] or [7]) and for non-normal approximation
(see [13] and [5]) we know that exchangeability of (W,W ′) is not enough to guarantee
distributional closeness of W and of Z ∼ Beta(a, b) but that a further regression property
has to be satisfied.

Proposition 2.2. The exchangeable pair (W,W ′) satisfies the regression property

E
[
W ′ −W |W

]
=

a+ b

n(a+ b+ n− 1)

( a

a+ b
−W

)
= λγa,b(W ) ,

where γa,b(x) = (a+ b)
(

a
a+b − x

)
and λ = λn = 1

n(a+b+n−1) .

Proof. We have W ′−W =
X′

n

n −
Xn

n and by exchangeability of X1, . . . , Xn it clearly holds
that E[Xn|W ] = E[Xn|Sn] = 1

nSn = W . Also, by the definition of X ′n and since X ′n only
assumes the values 0 and 1 we have for any x1, . . . , xn−1 ∈ {0, 1}

E[X ′n|X1 = x1, . . . , Xn = xn] = E[Xn|X1 = x1, . . . , Xn−1 = xn−1]

= P (Xn = 1|X1 = x1, . . . , Xn−1 = xn−1) =
r + c

∑n−1
j=1 xj

r + w + c(n− 1)
,

and hence,

E[X ′n|X1, . . . , Xn] =
r + c

∑n−1
j=1 Xj

r + w + c(n− 1)
=

r + cnW − cXn

r + w + c(n− 1)
.
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Thus, since σ(W ) ⊆ σ(X1, . . . , Xn), we obtain

E[X ′n|W ] = E
[
E
[
X ′n|X1, . . . , Xn

]
|W
]

=
r + cnW − cW
r + w + c(n− 1)

=
r + c(n− 1)W

r + w + c(n− 1)
=
a+ (n− 1)W

a+ b+ n− 1
.

Finally, we have

E[W ′ −W |W ] =
1

n
E[X ′n −Xn|W ] =

1

n

a+ (n− 1)W

a+ b+ n− 1
− 1

n
W

=
a− (a+ b)W

n(a+ b+ n− 1)
=

a+ b

n(a+ b+ n− 1)

( a

a+ b
−W

)
,

as was to be shown.

From the theory developed in [13] and in [5] we know that if a given exchangeable
pair (W,W ′) satisfies a regression property of the form

1

λ
E
[
W ′ −W

∣∣W ] = ψ(W ) +R , (2.8)

where λ > 0 is a typically small constant and R is negligible in size, then L(W ) can be
approximated by the absolutely continuous distribution whose density has logarithmic
derivative ψ, if and only if the following additional condition is satisfied: It must be the
case that

1

2λ
E
[
(W ′ −W )2

∣∣W ]≈ 1 , (2.9)

which is often paraphrased as that the term on the left hand side in (2.9) must satisfy a
law of large numbers in order for the approximation to be accurate. Comparing (2.8) to
the statement of Proposition 2.2 we see that according to the theory from [13] or [5] the
only possibility would be to approximate the distribution of W by a distribution whose
density has logarithmic derivative equal to (a constant multiple) of

a

a+ b
− x ,

for x in the support of this density, which should be equal to [0, 1] in this case. Since the
logarithmic derivative ψa,b of the density pa,b of Beta(a, b) is given by

ψa,b(x) =
d

dx
log pa,b(x) =

p′a,b(x)

pa,b(x)
=
a− 1− (a+ b− 2)x

x(1− x)
, 0 < x < 1 , (2.10)

and we already know that

Wn
D−→ Beta(a, b) as n→∞ ,

we conclude by way of contradiction that the law of large numbers (2.9) cannot hold.
Indeed, we will see in Proposition 2.3 below that that the term on the left hand side of
(2.9) is close to the non-constant random quantity W (1−W ) rather than to the constant
1. From Proposition 2.2 and some experience with the exchangeable pairs approach
within Stein’s method we conclude that it would be desirable to have a Stein operator L
of the form

Lg(x) = ηa,b(x)g′(x) + γa,b(x)g(x) (2.11)
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for the Beta distribution Beta(a, b). Indeed, in Section 4 we will see that a random
variable Z ∼ Beta(a, b) satisfies the Stein identity

E
[
Z(1− Z)g′(Z) + (a+ b)

( a

a+ b
− Z

)
g(Z)

]
= 0 (2.12)

for all g in a suitable class of functions, i.e. we can let ηa,b(x) = η(x) = x(1 − x).
Evidently, the Stein identity (2.12) was first found in [30] and it was also used in [18].
The statement of the following Proposition will make it possible to exploit the above
constructed exchangeable pair (W,W ′) in connection with the Stein identity (2.12) in
Section 4.

Proposition 2.3. For the above constructed exchangeable pair (W,W ′) we have

E
[
(W ′ −W )2|W

]
=

(2n+ b− a)W − 2nW 2 + a

n2(a+ b+ n− 1)

and hence
1

2λ
E
[
(W ′ −W )2|W

]
= W (1−W ) +

b− a
2n

W +
a

2n
.

Proof. From general facts about Gibbs sampling (see e.g. Appendix B in [10]) it is known
that

E
[
(W ′ −W )2|W

]
=

1

n2

(
E[Xn|W ] + E

[
E[X2

n|X1, . . . , Xn−1] |W
]

− 2E
[
XnE[Xn|X1, . . . , Xn−1]|W

])
.

Since X2
n = Xn we have from the proof of Proposition 2.2 that

E[X2
n|X1, . . . , Xn−1] = E[Xn|X1, . . . , Xn−1] =

a+ nW −Xn

a+ b+ n− 1
,

and hence

E
[
E[X2

n|X1, . . . , Xn−1] |W
]

=
a+ (n− 1)W

a+ b+ n− 1
,

where we have used E[Xn|W ] = W again. Finally, we compute

E
[
XnE[Xn|X1, . . . , Xn−1]|W

]
=

1

a+ b+ n− 1
E
[
aXn + nWXn −X2

n

∣∣W ]
=
aW + nW 2 −W
a+ b+ n− 1

=
(a− 1)W + nW 2

a+ b+ n− 1
.

Putting pieces together, we eventually obtain

E
[
(W ′ −W )2|W

]
=

1

n2

(
W +

a+ (n− 1)W

a+ b+ n− 1
− 2

(a− 1)W + nW 2

a+ b+ n− 1

)
=

(2n+ b− a)W − 2nW 2 + a

n2(a+ b+ n− 1)
. (2.13)

The last assertion easily follows from (2.13) and from λ = 1
n(a+b+n−1) .

One main aspect of the theoretical contribution of this article is to emphasize that it
is no coincidence that

1

2λ
E
[
(W ′ −W )2

∣∣W ]≈ η(W ) = W (1−W ) ,
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but that this is a natural replacement of condition (2.9) from the density approach to our
class of Stein operators of the form (2.15) below.
We end this motivational section by an abstraction of the ideas in the context of the
Pólya urn model and the limiting Beta distribution above. Suppose we are given a
sequence of random variables W = Wn of which we know that, as n→∞, it converges in
distribution to a random variable Z with an absolutely continuous distribution and density
p with respect to the Lebesgue measure. We will also assume that p itself is absolutely
continuous (on each compact subinterval of its support (a, b), where −∞ ≤ a < b ≤ ∞
are extended real numbers). Suppose also that we can naturally construct a random
variable W ′, a small random perturbation of W , such that (W,W ′) is an exchangeable
pair, |W −W ′| is small in a certain sense and that a regression property of the form

1

λ
E
[
W ′ −W

∣∣W ] = γ(W ) +R (2.14)

holds, where γ is a certain function on the support of L(Z), λ > 0 is constant and R

is a negligible remainder term. The goal is to compute a rate of convergence for the
distributional convergence W → Z by Stein’s method of exchangeable pairs for L(Z).
By the above reasoning it would be beneficial to have a characterizing Stein operator L
for Z of the form

Lg(x) = η(x)g′(x) + γ(x)g(x) , (2.15)

where η is a function that still has to be found. One might suppose that, in order that
L characterizes L(Z), given the density p of Z and the function γ the function η is
unique but we will see that this is only so up to a constant multiple of p−1. Note that by
exchangeability

0 =
1

λ
E[W ′ −W ] = E[γ(W )] + E[R] ≈ E[γ(W )] ≈ E[γ(Z)] , (2.16)

where the first approximation is by the assumption that R is of negligible order and the
second is by the fact that W converges to Z in distribution. Hence, it is natural to assume
from the outset that E[γ(Z)] = 0. In particular, we should assume that E|γ(Z)| <∞. A
natural question is, given p and γ, if there is a general formula for the function η. In the
preprint [11] the first order linear differential equation

η′(x) = γ(x)− ψ(x)η(x) (2.17)

was found by making, for a given test function h, the ansatz gh(x) = α(x)fh(x) for the
solutions gh of the Stein equation

η(x)g′(x) + γ(x)g(x) = h(x)− E[h(Z)] (2.18)

belonging to the operator (2.15) and fh of the Stein equation

f ′(x) + ψ(x)f(x) = h(x)− E[h(Z)] (2.19)

corresponding to the density approach. Here, again ψ denotes the logarithmic derivative
of p. In this paper we follow a different, more direct reasoning. If η is such that (2.15) is
characterizing L(Z), then, for suitable functions g by partial integration:

E
[
η(Z)g′(Z)

]
=

∫ b

a

η(x)p(x)g′(x)dx = gηp
∣∣b
a
−
∫ b

a

(
η′(x)p(x) + p′(x)η(x)

)
g(x)dx

= gηp
∣∣b
a
−E
[(
η′(Z) + ψ(Z)η(Z)

)
g(Z)

]
. (2.20)
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Thus, if we want this expression to equal

gηp
∣∣b
a
−E
[
γ(Z)g(Z)

]
,

then from (2.20) we conclude that η must satisfy (2.17). Of course, (2.17) can be solved
by the method of variation of the constant and it turns out that

η(x) :=
1

p(x)

∫ x

a

γ(t)p(t)dt , a < x < b , (2.21)

is a particular solution which even satisfies (ηp)(a+) = (ηp)(b−) = 0 whenever E[γ(Z)] =

0 and, hence, the boundary conditions

(gηp)(a+) = lim
x↓a

g(x)η(x)p(x) = 0 = lim
x↑b

g(x)η(x)p(x) = (gηp)(b−) , (2.22)

hold for each regular enough, say e.g. bounded, function g. Also note that every other
solution to (2.17) has the form

ηκ(x) = η(x) +
κ

p(x)

for some constant κ. In principle, the particular choice of κ is arbitrary and the choice
κ 6= 0 sometimes even yields better behaved solutions gh to the Stein equation (2.18).
In fact, it is easy to see from (3.5) below that the choice κ 6= 0 automatically implies
gh(a+) = gh(b−) = 0. Also, sometimes the choice κ 6= 0 is implicit in the density approach.
For instance, if a > −∞, b < ∞ and the density p is such that 0 6= p(a+) = p(b−) ∈ R,
then one can easily see that γ(x) := ψ(x) satisfies

E[γ(Z)] =

∫ b

a

p′(x)dx = p(b−)− p(a+) = 0

but

η(x) =
p(x)− p(a+)

p(x)
6= 1 , a < x < b .

Hence, in all these cases, using the density approach implicitly entails choosing ηκ with
κ = p(a+). When developing the general theory in Section 3 we restrict ourselves to the
solution η given by (2.21), i.e to κ = 0. We thus already mention at this point that the
density approach for p is included in the theory presented in Section 3 if and only if

p(a+) = p(b−) = 0 .

However, at least if γ(x) = c(E[Z] − x), it turns out that in many cases η given by
(2.21) has a neat analytical representation, e.g. it is given by a polynomial of degree
at most 2, whereas the choice κ 6= 0 would introduce a complicated coefficient into
(2.18) originating from the term p(x)−1. For instance, if Z ∼ N(0, 1) is standard normally
distributed and γ(x) = −x, then (2.21) yields η ≡ 1, whereas the general expression
is ηκ(x) = 1 + κex

2/2, which is difficult to handle in practice. Furthermore, if p is not
bounded away from zero, then κ 6= 0 gives an unbounded function ηκ, whereas η given
by (2.21) usually is bounded, at least if a > −∞ and b < ∞ (see, e.g. Proposition 3.5
below).
In the next section we will see that under certain mild conditions on the density p of
Z and on the coefficient γ which, of course, needs not originate from an exchangeable
pair, the operator L given by (2.15) is indeed characterizing L(Z) and prove bounds on
the corresponding Stein equation (2.18) for suitable test functions h. Finally, we want
to propose a strategy of how to proceed, if, contrarily to the above reasoning, we do
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not know the limiting density p from the outset but are only given an exchangeable pair
(W,W ′) such that (2.14) holds and also

1

2λ
E
[
(W ′ −W )2

∣∣W ] = η(W ) + S (2.23)

is satisfied with the same constant λ > 0 and a small remainder term S, where η now
is a certain given function, which is positive on a certain open interval J = (a, b) ⊆ R,
where γ is also defined. Note that from (2.17) we have for the logarithmic derivative ψ
of the sought density p that

ψ =
γ − η′

η

and, hence, for x ∈ J and x0 ∈ J an arbitrary point, we have

p(x) = p(x0) exp
(∫ x

x0

ψ(t)dt
)

=
p(x0)η(x0)

η(x)
exp
(∫ x

x0

γ(t)

η(t)
dt
)

=
K

η(x)
exp
(∫ x

x0

γ(t)

η(t)
dt
)
. (2.24)

Here, of course, K = p(x0)η(x0) is the normalization constant. Formula (2.24) shows
that p is uniquely determined by γ and η. Furthermore, in Theorem 3.22 we will give
precise criteria for γ and p defined by (2.24) to satisfy∫ b

a

γ(t)p(t)dt = 0

and for η to satisfy (2.21) so that the results of the theory developed in Section 3 can
in fact be applied. This, together with Proposition 3.19 and Remark 3.20 (iii), suggests
the approximation of L(W ) by the distribution with density p, if the exchangeable pair
(W,W ′) satisfies (2.14) and (2.23). Note that this idea yields a certain extension of
the methodology proposed in [5], where only Stein characterizations from the density
approach are put to use.

3 The general approach

Motivated by Section 2 in this section we develop a general version of Stein’s method
for a random variable Z with an absolutely continuous distribution with respect to
the Lebesgue measure. This version is useful for those distributions, which allow for
a tractable first order linear Stein operator. This class covers many of the standard
absolutely continuous distributions. However, it should not be left unmentioned that
certain distributions, like the Laplace [27], the Variance-Gamma [16] and the PRR
distribution [26] fall outside the scope of this approach, as they only possess a second
order linear Stein operator with tractable coefficients.

For an interval J ⊆ R, we will call a function defined on R locally absolutely contin-
uous on J , if its restriction to each compact sub-interval of J is absolutely continuous.
Also, we will use the words increasing, decreasing and so on in the weak sense, unless
explicitly otherwise stated. Througout we suppose that Z has a Lebesgue density p on R
satisfying the following condition:

Condition 3.1. For some extended real numbers −∞ ≤ a < b ≤ ∞ the density p is
positive and locally absolutely continuous on the interval (a, b).

By (a, b) we will henceforth denote the closure of the real interval (a, b) with respect
to the usual topology on R. Furthermore, we assume that we are given a function γ

on (a, b) which might be motivated by a given exchangeable pair and which has the
following properties:
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Condition 3.2. The function γ : (a, b)→ R is such that

(i) γ is Borel-measurable and not identically equal to zero,

(ii) γ is decreasing on (a, b),

(iii) E|γ(Z)| =
∫ b
a
|γ(t)|p(t)dt <∞ and in fact E[γ(Z)] =

∫ b
a
γ(t)p(t)dt = 0.

Henceforth, we will always assume that Conditions 3.1 and 3.2 are satisfied. Note
that by Condition 3.2 there exists a point x0 ∈ (a, b) such that

γ(x) ≥ 0 if a < x < x0 and γ(x) ≤ 0 if x0 < x < b , (3.1)

though it might not be unique. For definiteness, we choose

x0 := sup{x ∈ (a, b) : γ(x) > 0} . (3.2)

By item (iii) of Condition 3.2 we can define the function I : (a, b)→ R by

I(x) :=

∫ x

a

γ(t)p(t)dt = −
∫ b

x

γ(t)p(t)dt (3.3)

and by the positivity of p on (a, b) we can define the function η on (a, b) by

η(x) :=
I(x)

p(x)
=

1

p(x)

∫ x

a

γ(t)p(t)dt = − 1

p(x)

∫ b

x

γ(t)p(t)dt . (3.4)

The following proposition lists some properties of the function I.

Proposition 3.3. Under Conditions 3.1 and 3.2 the function I has the following proper-
ties:

(a) I is locally absolutely continuous on (a, b).

(b) I is nonnegative and I(a+) = I(b−) = 0.

(c) I is increasing on (a, x0] and decreasing on [x0, b) and, hence, attains its global
maximum at x0.

Proof. Of course, (a) follows from the fundamental theorem of calculus for Lebesgue
integration and the second part of (b) is immediate from item (iii) of Condition 3.2.
Finally, (c) and the first part of (b) follow from the second part of (b) and (3.1).

If a > −∞ and/or b <∞, then it is of interest to know under what circumstances it
is possible to extend η to a continuous function on (a, b) because we would like to have
η(W ) make sense, even if W assumes one of the boundary values a and b with positive
probability. We will see that in most cases we indeed have η(a+) = 0 or η(b−) = 0 if
a > −∞ or if b < ∞, respectively. The following Mills ratio condition is satisfied by
most absolutely continuous distributions and will in fact turn out to be equivalent to the
asserted boundary behaviour of η. From now on, we will denote by F the distribution
function corresponding to the density p.

Condition 3.4. The density p of Z satisfies all the properties from Condition 3.1 and
also the following:

(i) If a > −∞, then limx↓a
F (x)
p(x) = 0.

(ii) If b <∞, then limx↑b
1−F (x)
p(x) = 0.
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Proposition 3.5. Assume that Conditions 3.1 and 3.2 hold for p and γ, respectively.
Then, the function η vanishes at the finite end points of the support (a, b) of L(Z), i.e.
η(a+) = 0 whenever a > −∞ and η(b−) = 0 whenever b < ∞, if and only if Condition
3.4 is satisfied. Thus, in this case we can extend η to a continuous function on (a, b)

vanishing at the finite end points of this interval.

Not every density p satisfies Condition 3.4 as is clarified by the following example.

Example 3.6. Let δn ∈ (0, 1), n ≥ 1, be such that
∑
n≥1 δn = 1 and define xn :=

1 −
∑n−1
j=1 δj =

∑∞
j=n δj and In := [xn+1, xn], n ≥ 1. Furthermore let q be the unique

continuous function, which is linear on each interval In and such that q(x2n) = δ2
2n and

q(x2n+1) = δ2n for n ≥ 1 and q(1) := δ1. Define p to be the probability density which is a
constant multiple of q. Then, p satisfies Condition 3.1 with a = 0 and b = 1 but Condition
3.4 does not hold: We have limn→∞ x2n = 0 but

F (x2n)

p(x2n)
≥ F (x2n)− F (x2n+1)

p(x2n)
=

1

p(x2n)

∫ x2n

x2n+1

p(t)dt

=
δ2n
(
p(x2n) + p(x2n+1)

)
2p(x2n)

≥ δ2np(x2n+1)

2p(x2n)
=

1

2
.

Note that p satisfies limx→0 p(x) = 0, so that this does not only happen because p(0+)

might not exist.

The counterexample given in Example 3.6 is quite artificial. Indeed, the following
proposition lists mild assumptions on the density p which guarantee that Condition 3.4
is satisfied. In practice, at least one of these assumptions is usually met. In particular,
note that by part (f) of Proposition 3.7 the Mills ratio limits from Condition 3.4 at finite
boundary points a or b are always zero, whenever they exist.

Proposition 3.7. Assume a > −∞. In either of the following cases limx↓a
F (x)
p(x) = 0.

(a) The density p is bounded away from zero in a suitable neighbourhood of a.

(b) We have p(a+) = 0 and there is a δ > 0 such that p is increasing on (a, a+ δ).

(c) We have p(a+) = 0 and there is a δ > 0 such that p is convex on (a, a+ δ).

(d) We have p(a+) = 0 and there is a δ > 0 such that p is concave on (a, a+ δ).

(e) The density p is analytic at a.

(f) The limit limx↓a
F (x)
p(x) exists.

Of course, similar conditions guarantee that limx↑b
1−F (x)
p(x) = 0 if b <∞.

The proof is given in Section 5. Now, for a given Borel-measurable function h on (a, b)

such that E|h(Z)| < ∞ consider the Stein equation (2.18). It is easy to check that the
function
gh : (a, b)→ R given by

gh(x) :=
1

p(x)η(x)

∫ x

a

(
h(t)− E[h(Z)]

)
p(t)dt

= − 1

p(x)η(x)

∫ b

x

(
h(t)− E[h(Z)]

)
p(t)dt (3.5)

is a solution to (2.18) in the sense that gh is locally absolutely continuous on (a, b) and
(2.18) holds for each point x ∈ (a, b) where gh is in fact differentiable. At all other points
x ∈ (a, b), in contrast to the usual convention, we define g′h(x) by (2.18) such that this
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identity holds true on (a, b). The formula for gh might as well be found by the method of
variation of the constant using the fact that log(pη) is a primitive function of γ/η, which
in turn follows from (2.17). In what follows we will always call the solution gh given by
(3.5) the standard solution to equation (2.18). It turns out that this particular solution
has the best properties. For instance, if gh is bounded then it is the only bounded solution
since the solutions of the corresponding homogeneous equation are given by constant
multiples of I−1 = η−1p−1, which is unbounded by Proposition 3.3 (b). Since we do not
exclude cases where the given random variable W assumes the finite value a and/or b
with positive probability, we have to make sure that gh can be extended to a continuous
function on (a, b). Assume that a > −∞. Here, and in what follows we will often write h̃
for h− E[h(Z)]. By de l’Hôpital’s rule we have

lim
x↓a

gh(x) = lim
x↓a

∫ x
a
h̃(t)p(t)dt

I(x)
= lim

x↓a

h̃(x)p(x)

γ(x)p(x)
= lim

x↓a

h̃(x)

γ(x)
=
h(a+)− E[h(Z)]

γ(a+)
, (3.6)

if h has a right limit at a. Note that γ has a right limit at a since it is decreasing. Similarly,

lim
x↑b

gh(x) =
h(b−)− E[h(Z)]

γ(b−)
,

if h has a left limit at b <∞.

Proposition 3.8. Assume Conditions 3.1 and 3.2 and let h : (a, b) → R be a Borel-
measurable function such that E|h(Z)| < ∞. Then, the standard solution gh to (2.18)
given by (3.5) has the following properties:

(a) If a > −∞ and h has a right limit at a, then gh can be extended continuously to a by

letting gh(a) :=
h(a+)− E[h(Z)]

γ(a+)
.

(b) If b < ∞ and h has a left limit at b, then gh can be extended continuously to b by

letting gh(b) :=
h(b−)− E[h(Z)]

γ(b−)
.

The success of Stein’s method within applications considerably depends on good
bounds on the solutions gh and their lower order derivatives, generally uniformly over
some given class of test functions h. The next step will be to prove such bounds. It has to
be mentioned that we cannot expect to derive concrete good bounds in full generality, but
that sometimes further conditions have to be imposed either on the density p or on the
coefficient γ. Nevertheless, we will derive bounds involving functional expressions which
can be simplified, computed or further bounded a posteriori for concrete distributions.
So our abstract viewpoint will pay off. Moreover, some of our general bounds will already
be explicit.
In what follows, we denote by gh the standard solution to Stein’s equation (2.18) on (a, b),
implicitly assuming that h satisfies the assumptions of Proposition 3.8. Furthermore,
for a function f we denote by ‖f‖∞ its essential supremum norm on (a, b). Note that
this implies for f a Lipschitz-continuous function on (a, b) that ‖f ′‖∞ is just its minimum
Lipschitz constant. First we give bounds for bounded and measurable test functions h.

Proposition 3.9. Assume Conditions 3.1 and 3.2 and let m be the median of L(Z). Then,
if h : (a, b)→ R is Borel-measurable and bounded we have

‖gh‖∞ ≤
‖h− E[h(Z)]‖∞

2I(m)
=
‖h− E[h(Z)]‖∞
2
∫m
a
γ(t)p(t)dt

. (3.7)

The proof is deferred to Section 5. The following corollary specializes this result to
the case that γ(x) = −c(x−E[Z]) and that L(Z) is symmetric with respect to its mean

E[Z], i.e. Z − E[Z]
D
= E[Z]− Z. Then, it is also clear that m = E[Z].
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Corollary 3.10. In addition to Conditions 3.1 and 3.2 assume that the distribution L(Z)

is symmetric with respect to m = E[Z] and that γ(x) = −c(x− E[Z]) for some positive
constant c. Then, for each bounded and Borel-measurable test function h : (a, b)→ R we
have

‖gh‖∞ ≤
‖h− E[h(Z)]‖∞
cE[|Z −m|]

. (3.8)

Proof. In this case we clearly have I(m) = c
2E[|Z − m|] which implies the result by

Proposition 3.9.

In the case that Z ∼ N(0, 1) and c = 1 this result specializes to the well known bound
‖gh‖∞ ≤

√
π
2 ‖h− E[h(Z)]‖∞ (see [7] or [8], e.g.).

Remark 3.11. (a) In the statement of Proposition 3.9 it might suprise that there is
no bound mentioned for ‖g′h‖∞. This is because, in general, a bound of the form
‖g′h‖∞ ≤ C‖h− E[h(Z)]‖∞ with a finite constant C does not exist in this setup. For
instance, for z > 0 and Z having the exponential distribution with mean one, consider
the Stein equation

xg′(x) + (1− x)g(x) = 1[0,z](x)− P (Z ≤ z) . (3.9)

Identity (3.3) from [4] shows that for x > z the solution gz to (3.9) satisfies

g′z(x) =
e−z − 1

x2
.

Hence, we have that

sup
x>z
|g′z(x)| = 1− e−z

z2

z↓0−→∞ ,

proving that such a constant C in general cannot exist. Note also that this is contrary
to the density approach, where one usually has such a bound (see [5] or [7]).

(b) The Kolmogorov distance between a given random variable W and Z is induced by
the class of test functions hz := 1(−∞,z], where z ∈ (a, b). In this situation it is easy
to verify that the standard solution gz := ghz to (2.18) is given by

gz(x) =

{
F (x)(1−F (z))

I(x) , a < x ≤ z
F (z)(1−F (x))

I(x) , z < x < b
and ‖gz‖∞ =

F (z)(1− F (z))

I(z)
=: S(z) .

By using de l’Hôpital’s rule it is not hard to check that always supz∈(a,b) S(z) <

∞. Furthermore, gz is Lipschitz-continuous and on (a, b) \ {z} it is infinitely often
continuously differentiable with

g′z(x) =

{
(1−F (z))p(x)H(x)

I(x)2 , a < x < z
−F (z)p(x)G(x)

I(x)2 , z < x < b ,

where the functions H and G are defined in Proposition 3.13. From the negative
example of (a) we already know that, in general, there is no finite constant C such
that

‖g′z‖∞ ≤ C , a < z < b .

Nevertheless, even in such a situation, one may use the uniform bound on S and a
z-dependent bound on ‖g′z‖∞ as well as particular properties of W to prove accurate
bounds on the Kolmogorov distance. This was done in [4] for the exponential
distribution. Incidentally, in the case of the Beta distribution, the function S will be
bounded for a different purpose in the proof of Proposition 4.2.
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Proposition 3.9 is already sufficient to prove that the operator L given by (2.15)
characterizes the distribution of Z. The proof is given in Section 5.

Proposition 3.12. A random variable X with values in (a, b) has the same distribution
as Z if and only if for each continuous function f on (a, b), which is locally absoulutely
continuous on (a, b) and which satisfies

E|η(Z)f ′(Z)| =
∫ b
a
|f ′(x)|I(x)dx <∞ we have

E[η(X)f ′(X)] = −E[γ(X)f(X)] .

In particular, in this case both expected values exist.

Next, we will turn to Lipschitz continuous test functions h. In contrast to bounded
measurable test functions, there we will also be able to prove useful bounds for g′h. In
order that E[h(Z)] exists for Lipschitz continuous test functions h we need to assume
that E|Z| < ∞. The following two result, which are also proved in Section 5, include
optimal bounds for both, gh and g′h, when h is Lipschitz.

Proposition 3.13. Assume that E|Z| < ∞ and Conditions 3.1 and 3.2 hold. Then, we
have for any Lipschitz continuous test function h : (a, b)→ R and any x ∈ (a, b):

(a) |gh(x)| ≤ ‖h′‖∞
F (x)E[Z]−

∫ x
a
yp(y)dy

I(x)
= ‖h′‖∞

∫ x
a

(E[Z]− y)p(t)dt

I(x)
;

(b) |g′h(x)| ≤ ‖h′‖∞
∫ x
a
F (s)dsG(x) +

∫ b
x

(1− F (s))dsH(x)

p(x)η(x)2
.

Here, for x ∈ (a, b), the positive functions H(x) and G(x) are defined by

H(x) := I(x)− γ(x)F (x) = p(x)η(x)− γ(x)F (x) and G(x) := H(x) + γ(x) .

Moreover, these bounds are optimal among all bounds involving the factor ‖h′‖∞.

Remark 3.14. (a) If a > −∞ and b < ∞, then it follows by an application of de

l’Hôpital’s rule that the function S(x) :=
∫ x
a

(E[Z]−y)p(t)dt

I(x) is bounded on (a, b). In-
deed, if a > −∞, for instance, we have that

0 ≤ lim
x↓a

∫ x
a

(E[Z]− y)p(t)dt

I(x)
= lim

x↓a

E[Z]− x
γ(x)

=
E[Z]− a
γ(a)

<∞ .

However, in general S(x) is unbounded, if |γ(x)| does not grow at least linearly with
x. For instance, if Z ∼ N(0, 1) and γ(t) = − sign(t), then we have for positive x that

S(x) =
ϕ(x)

1− Φ(x)
∼ x

by the Gaussian Mills ratio inequality.

(b) The bound for |gh(x)| in part (a) of Proposition 3.13 can be written as

|gh(x)| ≤ ‖h′‖∞
τ(x)

η(x)
,

where τ is the so-called Stein factor or Stein kernel of Z given by

τ(x) =
1

p(x)

∫ x

a

(
E[Z]− t

)
p(t)dt ,

i.e. τ is the function η which belongs to the choice γ(x) = E[Z]− x. The Stein kernel
τ appeared first in Lecture 6 of [32] and it has turned out to be a fundamental object
in Stein’s method for one-dimensional absolutely continuous distributions (see, e.g.
[23], [24] and [21]).
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Corollary 3.15. Assume that E|Z| <∞, Condition 3.1 holds and that γ(x) = c(E[Z]− x)

for some c > 0. Then we have for any Lipschitz continuous test function h : (a, b)→ R

and each x ∈ (a, b) :

(a) ‖gh‖∞ ≤
‖h′‖∞
c

;

(b) |g′h(x)| ≤ 2‖h′‖∞
c

H(x)G(x)

η(x)2p(x)
= 2c‖h′‖∞

∫ x
a
F (s)ds

∫ b
x

(1− F (t))dt

η(x)2p(x)
.

Remark 3.16. (i) In the case of the normal distribution (via its classical Stein equa-
tion) the bound given in Corollary 3.15 (a) reduces to ‖gh‖∞ ≤ ‖h′‖∞. Formally,
this bound is a special instance of a general bound given in Lemma 3.1 of [19] for
the multivariate standard normal distribution (see also Lemma 2.6 in [7]). However,
this lemma is stated under the additional assumption that h has three bounded
derivatives, which is stronger than being Lipschitz-continuous. Yet, as has been
pointed out to me by the referee, one can use the generator representation of the
solution to the Stein equation to obtain the same bound as in Corollary 3.15 (a) for
once differentiable test functions h with bounded first derivative by applying the
well-known consequences of the dominated convergence theorem on differentiating
under the integral sign. Then, using smoothing techniques, this result could be
extended to the class of Lipschitz-continuous test functions, yielding an alternative
proof of this bound. Nevertheless, in the context of Stein’s method for the univariate
normal distribution, the best bound mentioned on gh for a Lipschitz test function h
is ‖gh‖∞ ≤ 2‖h′‖∞ (see, e.g. [7] or [8]). Hence, we believe that Corollary 3.15 (a)
is the first result that rigorously proves the aforementioned bound, although, as
described above, it can also be proved by means of existing techniques from the
generator framework.

(ii) For concrete distributions the ratio appearing in the bounds for g′h(x) may be
bounded uniformly in x by some constant which can sometimes also be computed
explicitely. For instance, this is performed for the Beta distribution in Section
4. Furthermore, for the situation of Corollary 3.15, in [12] the authors give mild
conditions for the existence of a finite constant k such that ‖g′h‖∞ ≤ k‖h′‖∞ for any
Lipschitz-continuous h. In practice, these conditions are usually met. However,
there is no hope of estimating the constant k by their method of proof. Thus, for
concrete distributions and explicit constants it might therefore by useful to work
with our bounds from Corollary 3.15 (b) or from Proposition 3.13.

(iii) For the normal distribution and also for the larger class of distributions discussed in
[13], one also has a bound of the form ‖g′′h‖∞ ≤ C‖h′‖∞ for some finite constant C
holding for each Lipschitz function h. As was shown by a universal counterexample
in [12], if γ(x) = c(E[Z]− x) such a bound cannot be expected unless a = −∞ and
b =∞. If either a > −∞ or b <∞ one will have to assume that h′ is also Lipschitz,
for example by demanding that h has two bounded derivatives, in order to obtain
a finite bound on ‖g′′h‖∞. Within the density approach, however, there are many
examples of distributions, whose support is strictly included in R but for which
such bounds are available (see, e.g., chapter 13 of [7]).

Now, we show how we can use the above results and the density formula (2.24) to
give bounds on higher order derivatives of gh, if h itself is smooth enough. First note
that the constant K from (2.24) is given by

K = η(x0)p(x0) =

∫ x0

a

|γ(t)|p(t)dt =

∫ b

x0

|γ(t)|p(t)dt =
E|γ(Z)|

2
(3.10)
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and, hence, we have the explicit formula

p(x) =
E|γ(Z)|
2η(x)

exp
(∫ x

x0

γ(t)

η(t)
dt
)
. (3.11)

Formula (3.11) is a more general version of formula (3.14) in [24] and is also derived
in [20]. Now, if the coefficient γ is also absolutely continuous, by differentiating Stein’s
equation (2.18), we obtain for h Lipschitz

η(x)g′′h(x) + g′h(x)
(
η′(x) + γ(x)

)
= h′(x)− γ′(x)gh(x) =: h2(x) . (3.12)

This means, that the function g̃ := g′h is a solution of the Stein equation corresponding to
the test function h2 for the distribution of Z̃ which satisfies the Stein identity

E
[
η(Z̃)f ′(Z̃) +

(
η′(Z̃) + γ(Z̃)

)
f(Z̃)

]
= 0 .

From (3.11) we know that a density p̃ of Z̃ is given by

p̃(x) =
K̃

η(x)
exp
(∫ x

x0

η′(t) + γ(t)

η(t)
dt
)

= K exp
(∫ x

x0

γ(t)

η(t)
dt
)

= Cη(x)p(x) , (3.13)

where K̃,K,C > 0 are suitable normalizing constants. Thus, if we have bounds for the
first derivative of the Stein solutions for the distribution of Z̃ and for Lipschitz functions
h, then from this observation we obtain bounds on g′′h for h such that h2 is Lipschitz.
Note that if γ(x) = c(E[Z]− x), this essentially means that h′ must be Lipschitz as well.
Of course, in order to apply this procedure, one has to make sure that E[h2(Z̃)] = 0 and
that g′h is the standard solution to the Stein equation for L(Z̃) and the test function h2.
Remarkably, under mild conditions this turns out to always be the case.

Proposition 3.17. Assume that Conditions 3.1 and 3.2 hold, E|Z| <∞,
E|Zγ(Z)| < ∞ and that γ is locally absolutely continuous on (a, b). Furthermore, let h
be a Lipschitz-continuous function. Then, E[h2(Z̃)] exists and equals 0. Furthermore,
if either the derivative g′h of gh is bounded, a > −∞ or b < ∞, then g′h is the standard
solution to the Stein equation

η(x)f ′(x) +
(
η′(x) + γ(x)

)
f(x) = h2(x) (3.14)

corresponding to the distribution of Z̃ and the test function h2 = h′ − γ′gh.

The proof is given in Section 5.

Remark 3.18. If Z ∼ Beta(a, b), then (3.13) implies that Z̃ ∼ Beta(a + 1, b + 1). This
will be used in Section 4 to provide bounds on higher order derivatives of gh in the
case of the Beta distribution. If, on the other hand, Z ∼ Exp(α) has an exponential
distribution with mean α−1, then Z̃ ∼ Gamma(2, α) has an Erlang distribution. Using
this fact, Proposition 3.17 and the general bounds from Corollary 3.15 applied for both
the exponential and the Gamma(2, α) distribution, one can, with some work, derive the
following bounds on the standard solution gh to the Stein equation

xg′(x) + (1− αx)g(x) = h(x)− Eh(Zα)

for the distribution Exp(α), if h is continuously differentiable on [0,∞) and both h and h′

are Lipschitz:

‖gh‖∞ ≤
1

α
‖h′‖∞, ‖g′h‖∞ ≤ ‖h′‖∞ and ‖g′′h‖∞ ≤

2α

3
‖h′‖∞ +

2

3
‖h′′‖∞

These bounds are better than those derived in [14] and, additionally, since we do not
have to assume that h′(0) = 0 for the bound on ‖g′′h‖∞ to be valid, one term in the bounds
of Theorems 1.1 and 1.2 from [14] would drop off, if instead our bounds were used.
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Next, we introduce the approach of exchangeable pairs satisfying the regression
properties (2.14) and (2.23) in our general framework. As was observed in [29] for the
normal distribution, in case of univariate distributional approximations, one does not
need the full strength of exchangeability, but equality in distribution of the random
variables W and W ′ is sufficient. This may allow for a greater choice of admissible
couplings in several situations, or at least, relaxes the verification of asserted properties.
Thus, let W,W ′ be real-valued random variables defined on the same probability space

such that W
D
= W ′. We will assume, that the random variables W and W ′ only have

values in an interval (a, b) ⊆ J ⊆ (a, b) where both functions η and γ are defined (recall
that it might be the case that η can only be defined on (a, b)). However, from Proposition
3.5 we know that we can let J = (a, b) if Condition 3.4 holds.

Proposition 3.19. Assume that Conditions 3.1 and 3.2 hold and that W is square
integrable with E|γ(W )| <∞. Furthermore, for some constant λ > 0, assume that the
general regression property (2.14) and also the second moment condition (2.23) are
satisfied by the pair (W,W ′). Let f : J → R be a bounded, continuously differentiable
function, which is Lipschitz-continuous and has a Lipschitz-continuous derivative f ′.
Then, ∣∣∣E[η(W )f ′(W ) + γ(W )f(W )

]∣∣∣ ≤ ‖f ′′‖∞
6λ

E
[
|W ′ −W |3

]
+ ‖f‖∞E|R|+ ‖f ′‖∞E|S| , (3.15)

where ‖f ′′‖∞ denotes the minimum Lipschitz constant of f ′.

The proof is given in Section 5.

Remark 3.20. (i) The bound (3.15) can only be small, if S and R are of negligible
order.

(ii) The proof shows, that Proposition 3.19 can easily be generalized to the situation,
where there is a sub-σ-algebra F with σ(W ) ⊆ F and the more general regression
properties

1

λ
E
[
W ′ −W |F

]
= γ(W ) +R and

1

2λ
E
[
(W ′ −W )2|F

]
= η(W ) + S (3.16)

hold for some F -measurable remainder terms R and S.

(iii) If H is some class of test functions, such that there are finite, positive constants c0,
c1 and c2 with ‖gh‖∞ ≤ c0, ‖g′h‖∞ ≤ c1 and ‖g′′h‖∞ ≤ c2 for each h ∈ H, then (3.15)
immediately yields a bound on the distance

dH
(
L(Z),L(W )

)
= sup
h∈H

∣∣∣E[h(W )
]
− E

[
h(Z)

]∣∣∣ .
Finally, in our general framework, we readdress the last issue discussed in Section

2. Namely, we suppose that we are given two functions γ and η, such that for some
−∞ ≤ a < b ≤ ∞ the function γ is defined on (a, b), η is defined at least on (a, b) and the
following properties hold.

Condition 3.21. (a) The function γ is decreasing and such that 0 < γ(a+) ≤ ∞ and
−∞ ≤ γ(b−) < 0. Again, we define x0 ∈ (a, b) by
x0 := sup{x ∈ (a, b) : γ(x) > 0}.

(b) The function η is positive and locally absolutely continuous on (a, b).
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(c) The function γ/η is locally integrable on (a, b) and, if we define

Q(x) :=

∫ x

x0

γ(t)

η(t)
dt , x ∈ (a, b) ,

then we have Q(a+) = Q(b−) = −∞.

Note that by definition we have Q(x) ≤ 0 for all x ∈ (a, b), if Condition 3.21 is satisfied.
Now, we define the density p by relation (2.24) with K being a suitable normalizing
constant. The existence of K follows from the fact that, by Condition 3.21, for each
c ∈ (a, x0) there is a finite constant L > 0 such that Lγ(x) ≥ 1 for each x ∈ (a, c). Thus,∫ c

a

1

η(x)
exp

(∫ x

x0

γ(t)

η(t)
dt

)
dx ≤ L

∫ c

a

γ(x)

η(x)
exp

(∫ x

x0

γ(t)

η(t)
dt

)
dx

= L

∫ c

a

Q′(x) exp(Q(x))dx = L

∫ Q(c)

−∞
eudu

= LeQ(c) <∞ . (3.17)

A similar calculation shows that also∫ b

d

1

η(x)
exp

(∫ x

x0

γ(t)

η(t)
dt

)
dx <∞

for each d ∈ (x0, b). Hence, p can be suitably normalized. Now, let Z be a random
variable with probability density function p. The next result is a generalization of Lemma
3, Lecture 6 in [32].

Theorem 3.22. If Condition 3.21 is satisfied, then the density p defined by (2.24) is
such that

E[γ(Z)] =

∫ b

a

γ(t)p(t)dt = 0 and η(x) =
1

p(x)

∫ x

a

γ(t)p(t)dt , a < x < b .

In particular, the theory developed in this section can be applied in this framework.

Proof. Similarly to (3.17) we obtain∫ x0

a

γ(x)p(x)dx = K

∫ x0

a

γ(x)

η(x)
exp

(∫ x

x0

γ(t)

η(t)
dt

)
dx

= KeQ(x0) = K

and ∫ b

x0

γ(x)p(x)dx = −KeQ(x0) = −K .

Thus, E[γ(Z)] = 0. The second claim follows from

1

p(x)

∫ x

a

γ(t)p(t)dt =
1

p(x)
K

∫ x

a

γ(s)

η(s)
exp

(∫ s

x0

γ(t)

η(t)
dt

)
ds

=
1

p(x)
KeQ(x) = η(x) ,

since

p(x) =
K

η(x)
eQ(x) .
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4 Stein’s method for the Beta distribution

In this section we specialize the theory from Section 3 to the family Beta(a, b),
a, b > 0, of Beta distributions as defined in Section 2. Let us fix a, b > 0 and from now on
assume that Z ∼ Beta(a, b). Motivated by the Pólya urn example, the above constructed
exchangeable pair (W,W ′) and by Proposition 2.2 we define the function γ := γa,b as in
Proposition 2.2 and observe that

E[γ(Z)] = 0 since E[Z] =
a

a+ b
.

It is thus easy to see that γ satisfies all assumptions of Condition 3.2 and also that the
Beta density p := pa,b given by (2.4) satisfies Conditions 3.1 and 3.4, the latter either
directly or by Proposition 3.7. We claim that the function η defined by (2.21) is given by

η(x) = x(1− x) , x ∈ [0, 1] . (4.1)

This is equivalent to proving that

p(x)x(1− x) =

∫ x

0

(
a− (a+ b)t

)
p(t)dt , 0 < x < 1 , (4.2)

which easily follows from differentiating both sides of (4.2) and using (2.10). Thus, from
Proposition 3.12 we immediately obtain the following Stein characterization for the Beta
distribution. This result substantially extends Theorem 1 in [30] in the case of the Beta
distribution, which is weaker as it only characterizes the Beta distribution among the
class of absolutely continuous distributions with finite second moment.

Proposition 4.1. A random variable X with values in [0, 1] has the distribution Beta(a, b)

if and only if for each continuous function f on [0, 1], which is locally absolutely continuous
on (0, 1) such that E|Z(1− Z)f ′(Z)| <∞, we have

E
[
X(1−X)f ′(X)

]
= (a+ b)E

[(
X − a

a+ b

)
f(X)

]
.

For the Beta distribution and a mesaurable function h with E|h(Z)| <∞, the Stein
equation (2.18) is given by

x(1− x)g′(x) + (a+ b)
( a

a+ b
− x
)
g(x) = h(x)− E[h(Z)] , x ∈ [0, 1] (4.3)

and the standard solution (3.5) has the form

gh(x) =
1

x(1− x)p(x)

∫ x

0

h̃(t)p(t)dt =
−1

x(1− x)p(x)

∫ 1

x

h̃(t)p(t)dt , 0 < x < 1 (4.4)

where, again, h̃(t) = h(t)− E[h(Z)] and

gh(0) =
h(0+)− E[h(Z)]

a
and gh(1) =

h(1−)− E[h(Z)]

−b
, (4.5)

if h has a right limit at 0 and a left limit at 1 by Proposition 3.8. We mention that the
same Stein equation (4.3) has already been considered in [30], [18] and in [10].

For a, b > 0 define the constant

C(a, b) = 2(a+ b)


B(a, b), a ≤ 1, b ≤ 1

a−1, a ≤ 1, b > 1

b−1, a > 1, b ≤ 1

a−1b−1B(a, b)−1, a > 1, b > 1

if a 6= b and (4.6)

C(a, a) =

{
4, 0 < a < 1
2a
√
πΓ(a)

Γ(a+1/2) , a ≥ 1.
(4.7)

EJP 20 (2015), paper 109.
Page 20/34

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v20-3933
http://ejp.ejpecp.org/


Stein’s method for the Beta distribution

From Proposition 3.9 and Corollary 3.15 we can derive the following bounds for the
solution (4.4) to (4.3). The proof is given in Section 5.

Proposition 4.2. Let h : [0, 1]→ R be Borel-measurable with E|h(Z)| <∞.

(a) If h is bounded, then ‖gh‖∞ ≤
‖h− E[h(Z)]‖∞
2m(1−m)p(m)

, where m is the median of Beta(a, b).

(b) If h is Lipschitz, then ‖gh‖∞ ≤
‖h′‖∞
a+ b

and ‖g′h‖∞ ≤ C(a, b)‖h′‖∞, where C(a, b) is

given by (4.6) and (4.7).

(c) If h is continuously differentiable with Lipschitz derivative h′, then g′h is Lipschitz
and ‖g′′h‖∞ ≤ C(a+ 1, b+ 1)‖h′′‖∞ + (a+ b)C(a+ 1, b+ 1)C(a, b)‖h′‖∞.

(d) More generally, if m ≥ 1 is an integer and h is at least (m− 1)-times differentiable

such that h(j) is Lipschitz-continuous for j = 0, . . . ,m−1, then ‖g(m−1)
h ‖∞ is Lipschitz

and

‖g(m)
h ‖∞ ≤ C(a+m− 1, b+m− 1)

·
m∑
j=1

(
m−1∏
l=j

(
l(a+ b+ l − 1)C(a+ l − 1, b+ l − 1)

))
‖h(j)‖∞ ,

where we define an empty product to be equal to 1.

Remark 4.3. (i) It is worthwhile to compare our bound for ‖g′h‖∞ from Proposition
4.2 (b) to the bound ‖g′h‖∞ ≤ (b0 + b1)‖h′‖∞ given in [18]. One can show that if
a = b, then our bound is uniformly better than theirs. However, if a 6= b, then there
are regions for (a, b) where our constant C(a, b) is smaller and other ones, where
their b0 + b1 is smaller. For instance, if 0 < a, b ≤ 1, then, again, C(a, b) ≤ b0 + b1.
But, if 1 < b < 2 is fixed and a tends to zero, then C(a, b) goes to infinity while their
b0 + b1 tends to 12. In any case, neither our bound nor the bound from [18] seem to
be optimal for ‖g′h‖∞.

(ii) Form Corollary 3.15 (b) we know that for Lipschitz h and x ∈ (0, 1)

|g′h(x)| ≤ 2‖h′‖∞
a+ b

H(x)G(x)

x2(1− x)2p(x)
=: ‖h′‖∞B(x) .

By an application of de l’Hôpital’s rule, one can show that

B(0+) =
2

a+ 1
and B(1−) =

2

b+ 1
.

We conjecture that if min(a, b) < 1, then

‖B‖∞ =
2

min(a, b) + 1
,

i.e. that B assumes its maximum value at the boundary of (0, 1). However, if
min(a, b) > 1, then we believe that there is always an x1 ∈ (0, 1) such that

2‖h′‖∞
a+ b

H(x1)G(x1)

x2
1(1− x1)2p(x1)

>
2‖h′‖∞

min(a, b) + 1
.
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(iii) If a = b, then the median of Beta(a, a) equals 1/2 and the bound in (a) has the
explicit form ‖gh‖∞ ≤ B(a, a)2a+b−1‖h− E[h(Z)]‖∞. Unfortunately, for a 6= b there
is no closed from expression for the median of Beta(a, b). In such a case one could
use known inequalities about the median m in order to get bounds on ‖gh‖∞. Since
one would have to distinguish several cases according to the values of a and b and,
hence, to the shape of the density p, we omit the details, here.

From Proposition 3.19, Remark 3.20 (ii) and the bounds from Proposition 4.2 we ob-
tain the following plug-in result, which bounds a certain distance to the Beta distribution
by terms related to a given exchangeable pair.

Theorem 4.4. Let W and W ′ be identically distributed random variables on a common
probability space (Ω,A, P ) and let F ⊆ A be a sub-σ-algebra of A such that σ(W ) ⊆ F
and

1

λ
E
[
W ′ −W

∣∣F] = (a+ b)

(
a

a+ b
−W

)
+R and

1

2λ
E
[
(W ′ −W )2

∣∣F] = W (1−W ) + S

hold for a constant λ > 0 and for F -measurable remainder terms R and S. Then, for
each continuously differentiable function h : [0, 1]→ R with a Lipschitz derivative h′ it
holds that∣∣E[h(W )]− E[h(Z)]

∣∣ ≤ ‖h′‖∞( 1

a+ b
E|R|+ C(a, b)E|S|

)
+

(
C(a+ 1, b+ 1)‖h′′‖∞ + (a+ b)C(a+ 1, b+ 1)C(a, b)‖h′‖∞

6λ

)
E|W ′ −W |3 ,

where the constants C(·, ·) are defined by (4.6) and (4.7).

Now we are in a position to prove Theorem 2.1.

Proof of Theorem 2.1. The claim immediately follows from Theorem 4.4, Propositions
2.2, 2.3 and the fact that in this case

R = 0, S =
b− a
2n

W +
a

2n
≥ 0 and |W ′ −W | ≤ 1

n
.

5 Proofs

Proof of Proposition 3.5. Suppose, that a > −∞ and choose y ∈ (a, x0). Then γ(y) > 0

and, by the nonnegativity of I and the monotonicity of γ, for a < x < y we have

0 ≤ γ(y)F (x) = γ(y)

∫ x

a

p(t)dt ≤ I(x) =

∫ x

a

γ(t)p(t)dt

≤ γ(a)

∫ x

a

p(t)dt = γ(a)F (x) . (5.1)

Hence, if Condition 3.4 holds, we have

0 ≤ lim inf
x↓a

η(x) ≤ lim sup
x↓a

η(x) = lim sup
x↓a

I(x)

p(x)
≤ γ(a) lim

x↓a

F (x)

p(x)
= 0 ,
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so that limx↓a η(x) = 0. Conversely, if η(a+) = 0, then, again by (5.1),

0 ≤ lim inf
x↓a

F (x)

p(x)
≤ lim sup

x↓a

F (x)

p(x)
≤ 1

γ(y)
lim sup
x↓a

I(x)

p(x)
=

1

γ(y)
lim sup
x↓a

η(x) = 0 .

The calculation for finite b is similar by using the representation
I(x) = −

∫ b
x
γ(t)p(t)dt and is therefore omitted.

Proof of Proposition 3.7. That item (a) is sufficient is clear. If (b) holds, then the claim
follows from the inequality

F (x) =

∫ x

a

p(t)dt ≤ p(x)(x− a) ,

valid for x ∈ (a, a+ δ). Under Condition (c) we obtain a continuous and convex function
on [a, a+ δ) by letting p(a) := 0. Now, let a < x < y < a+ δ. Then, there exists a λ ∈ (0, 1)

with x = λa+ (1− λ)y and by convexity we have:

p(y)− p(x) = p(y)− p
(
λa+ (1− λ)y

)
≥ p(y)− λp(a)− (1− λ)p(y)

= λp(y) > 0 .

Thus, the assumptions of (b) are satisfied. If (d) holds, then again letting p(a) := 0 we
obtain a continuous and concave function on [a, a+ δ). Thus, there exists a decreasing
function f on [a, a+ δ) such that

p(x) =

∫ x

a

f(t)dt , a ≤ x < a+ δ .

If there was a sequence (xn)n≥1 in [a, a + δ) such that xn ↓ a and f(xn) ≤ 0 for each
n ≥ 1, then for each x ∈ (a, a+ δ) and large enough n we would have

p(x) = p(xn) +

∫ x

xn

f(t)dt ≤ p(xn) + (x− xn)f(xn) ≤ p(xn)
n→∞−→ 0 ,

which would contradict Condition 3.1. Thus, there is an ε < δ such that f(x) ≥ 0 for
all x ∈ (a, a + ε). Hence, p is increasing on (a, a + ε) and (b) is satisfied. If (e) holds,
then there is an r > 0 and a real sequence (ck)k≥0 such that p(x) =

∑∞
k=0 ck(x− a)k for

all x ∈ (a, a + r) and the function f : (a − r, a + r) → R with f(x) :=
∑∞
k=0 ck(x − a)k is

well-defined. Let n0 := min{k ≥ 0 : ck 6= 0}. Then n0 <∞ since p is positive on (a, b). If
n0 = 0 and hence f(a) = c0 = limx↓a p(x) 6= 0, then there is nothing to show. Otherwise,
we have

p(x) = (x− a)n0

∞∑
k=n0

ck(x− a)k−n0 and p′(x) = (x− a)n0−1
∞∑

k=n0

kck(x− a)k−n0

for all x ∈ (a, a+ r) and hence, by de l’Hôpital’s rule,

lim
x↓a

F (x)

p(x)
= lim

x↓a

p(x)

p′(x)
= lim

x↓a
(x− a)

∑∞
k=n0

ck(x− a)k−n0∑∞
k=n0

kck(x− a)k−n0

=
cn0

n0cn0

lim
x↓a

(x− a) = 0 .

In order to prove (f) we show that always

lim inf
x↓a

F (x)

p(x)
= 0, (5.2)
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if p satisfies Condition 3.1. To show this, define the function G(x) := logF (x) for x ∈ (a, b).
Then, G is increasing and continuously differentiable on (a, b) and satisfies G(a+) = −∞
and G(b−) = 0. If (5.2) did not hold, then

c := lim sup
x↓a

G′(x) = lim sup
x↓a

p(x)

F (x)
< +∞ . (5.3)

Hence, choosing δ > 0 such that G′(x) ≤ c+ 1 for all x ∈ (a, a+ δ] we would obtain

G(a+)−G(a+ δ) = − lim
x↓a

∫ a+δ

x

G′(t)dt ≥ − lim
x↓a

(a+ δ − x)(c+ 1) = −δ(c+ 1) ,

which would contradict G(a+) = −∞.

Proof of Proposition 3.9. With h̃ = h− E[h(Z)], since I = η · p, we have for a < x < b

|gh(x)| =
|
∫ x
a
h̃(t)p(t)dt|
|p(x)η(x)|

=
|
∫ x
a
h̃(t)p(t)dt|
I(x)

≤ ‖h̃‖∞
F (x)

I(x)
.

Let M : (a, b)→ R be given by M(x) := F (x)
I(x) . By l’Hôpital’s rule we have

lim
x↘a

M(x) = lim
x↘a

p(x)

γ(x)p(x)
= lim
x↘a

1

γ(x)
=

1

limx↘a γ(x)

which exists in [0,∞) by Condition 3.2. Here, we used the convention 1
∞ = 0. Moreover,

lim
x↗b

M(x) =
1

limx↗b I(x)
= +∞

again by Condition 3.2 and by Proposition 3.3. Furthermore, we have

M ′(x) =
p(x)I(x)− p(x)γ(x)F (x)

I(x)2
=

p(x)

I(x)2

(
I(x)− γ(x)F (x)

)
≥ 0 (5.4)

for each x ∈ (a, b) since by the positivity of p and because γ is decreasing

I(x) =

∫ x

a

γ(t)p(t)dt ≥ γ(x)

∫ x

a

p(t)dt = γ(x)F (x) .

Hence, M is increasing and, thus, for each x ∈ (a,m] we have

|gh(x)| ≤ ‖h̃‖∞
F (m)

I(m)
=
‖h− E[h(Z)]‖∞

2I(m)
.

The same bound can be proved for x ∈ (m, b) by using the representation

gh(x) = − 1

I(x)

∫ b

x

(h(t)− E[h(Z)])p(t)dt

and the fact that also 1− F (m) = 1
2 .

The following two lemmas, which are quite standard in Stein’s method, will be needed
for the proof of Proposition 3.13. For proofs we refer to [11], for instance.

Lemma 5.1. Suppose that p satisfies Condition 3.1 and that
∫ b
a
|x|p(x)dx <∞. Then, for

each x ∈ (a, b) we have:
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(a)
∫ x
a
F (t)dt = xF (x)−

∫ x
a
sp(s)ds ;

(b)
∫ b
x

(1− F (t))dt =
∫∞
x
sp(s)ds− x(1− F (x)).

Lemma 5.2. Suppose that p satisfies Condition 3.1 and that E|Z| =
∫ b
a
|x|p(x)dx < ∞.

Then, for each Lipschitz function h, the following assertions hold true:

(a) For each y ∈ R we have
h(y)− E[h(Z)] =

∫ y
−∞ F (s)h′(s)ds−

∫∞
y

(1− F (s))h′(s)ds.

(b) For each x ∈ (a, b) we have∫ x
a

(h(y)− E[h(Z)])p(y)dy = −(1− F (x))
∫ x
a
F (s)h′(s)ds− F (x)

∫ b
x

(1− F (s))h′(s)ds.

Proof of Proposition 3.13. First, we prove (a). Recall the representation

gh(x) =
1

I(x)

∫ x

a

(h(y)− E[h(Z)])p(y)dy .

By Lemmas 5.2 and 5.1 we thus obtain that

|I(x)gh(x)|

=

∣∣∣∣∣−(1− F (x))

∫ x

a

F (s)h′(s)ds− F (x)

∫ b

x

(1− F (s))h′(s)ds

∣∣∣∣∣
≤ ‖h′‖∞

(
(1− F (x))

∫ x

a

F (s)ds+ F (x)

∫ b

x

(1− F (s))ds

)

= ‖h′‖∞

(
(1− F (x))

(
xF (x)−

∫ x

a

sp(s)ds
)

+ F (x)
(
−x(1− F (x)) +

∫ b

x

sp(s)ds
))

= ‖h′‖∞

(
−
∫ x

a

sp(s)ds+ F (x)
(∫ x

a

sp(s)ds+

∫ b

x

sp(s)ds
))

= ‖h′‖∞

(
F (x)E[Z]−

∫ x

a

yp(y)dy

)
,

implying (a).
Now, we turn to the proof of (b). By Stein’s equation (2.18) we obtain for x ∈ (a, b)

g′h(x) =
1

η(x)

(
h̃(x)− γ(x)gh(x)

)
, (5.5)

where we have again written h̃ = h− E[h(Z)]. Using Lemma 5.2 again, we obtain

g′h(x) =
1

η(x)

(∫ x

a

F (s)h′(s)ds
(

1 +
γ(x)(1− F (x))

η(x)p(x)

)
+

∫ b

x

(1− F (s))h′(s)ds
(
−1 +

γ(x)F (x)

η(x)p(x)

))

=

∫ x

a

F (s)h′(s)ds
(η(x)p(x) + γ(x)(1− F (x))

η(x)2p(x)

)
+

∫ b

x

(1− F (s))h′(s)ds
(−η(x)p(x) + γ(x)F (x)

η(x)2p(x)

)
. (5.6)
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Now, consider the functions H,G : (a, b)→ R with

H(x) = I(x)− γ(x)F (x) = η(x)p(x)− γ(x)F (x) and

G(x) = H(x) + γ(x) = η(x)p(x) + γ(x)(1− F (x)) .

From (5.4) we already know that H is nonnegative on (a, b). Similarly we prove the
nonnegativity of G on (a, b): Since p is positive and γ is decreasing, for x in (a, b) we have

G(x) = I(x) + γ(x)(1− F (x)) = −
∫ b

x

γ(t)p(t)dt+ γ(x)(1− F (x))

≥ −γ(x)(1− F (x)) + γ(x)(1− F (x)) = 0 .

By (5.6) we can thus bound

|g′h(x)| ≤ ‖h′‖∞

(∫ x

a

F (s)ds
G(x)

η(x)2p(x)

+

∫ b

x

(1− F (s))ds
H(x)

η(x)2p(x)

)
, (5.7)

which reduces to the bound asserted in (b). Optimality of the bound in (a) follows from
choosing h(x) = x and observing that the above inequalities are in fact equalities, in this
case. To see that also the bound in (b) is optimal, for given x ∈ (a, b) choose a 1-Lipschitz
function h such that h′(s) = 1 for all s ∈ (a, x) and h′(s) = −1 for all s ∈ (x, b). Then, from
(5.6) and the nonnegativity of H and G, we see that equality holds in (5.7).

Proof of Corollary 3.15. Claim (a) follows from Proposition 3.13 (a) and the observation
that in this case we have

I(x) =

∫ x

a

γ(y)p(y)dy = c

∫ x

a

(
E[Z]− y

)
p(y)dy .

Part (b) follows from Proposition 3.13 (b) and Lemma 5.1 by observing that in this case

H(x) = I(x)− γ(x)F (x) = c

(∫ x

a

(
E[Z]− t

)
p(t)dt−

(
E[Z]− x

)
F (x)

)

= c

(
E[Z]F (x)−

∫ x

a

tp(t)dt− E[Z]F (x) + xF (x)

)

= c

∫ x

a

F (s)ds

and, similarly, G(x) = c
∫ b
x

(1− F (s))ds.

Proof of Proposition 3.12. We first prove necessity. Let f be given as in the proposition.
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First we show that E|γ(Z)f(Z)| <∞. We have

E|γ(Z)f(Z)| =
∫ x0

a

γ(x)|f(x)|p(x)dx−
∫ b

x0

γ(x)|f(x)|p(x)dx

=

∫ x0

a

γ(x)p(x)

∣∣∣∣∫ x0

x

f ′(t)dt− f(x0)

∣∣∣∣ dx− ∫ b

x0

γ(x)p(x)

∣∣∣∣∫ x

x0

f ′(t)dt+ f(x0)

∣∣∣∣ dx
≤ |f(x0)|

(∫ x0

a

γ(x)p(x)dx−
∫ b

x0

γ(x)p(x)dx

)
+

∫ x0

a

γ(x)p(x)

∫ x0

x

|f ′(t)|dt

−
∫ b

x0

γ(x)p(x)

∫ x

x0

|f ′(t)|dt

= |f(x0)|E|γ(Z)|+
∫ x0

a

|f ′(t)|
∫ t

a

γ(x)p(x)dxdt−
∫ b

x0

|f ′(t)|
∫ b

t

γ(x)p(x)dxdt

= |f(x0)|E|γ(Z)|+
∫ b

a

|f ′(t)|I(t)dt <∞ .

Repeating essentially the same calculation without absolute value signs and using
E[γ(Z)] = 0 yields

E[η(Z)f ′(Z)] = −E[γ(Z)f(Z)] .

To prove sufficiency it is clearly enough to show that

E[h(X)] = E[h(Z)]

holds for each bounded and continuous function h. Let gh be the standard solution of
the Stein equation (2.18) corresponding to h. Then, from Proposition 3.9 we know that
‖gh‖∞ < ∞. Also, gh is continuous on (a, b) and continuously differentiable on each
compact subinterval of (a, b). Furthermore, since I(x) = η(x)p(x) and gh solves (2.18)
we have

|g′h(x)|I(x) = p(x)
∣∣h̃(x)− γ(x)gh(x)

∣∣ ≤ p(x)|h̃(x)|+ |γ(x)gh(x)|

and, hence, ∫ b

a

|g′h(x)|I(x)dx ≤ 2‖h‖∞ + ‖gh‖∞E|γ(Z)| <∞ .

By the hypothesis of Proposition 3.12 we can thus conclude that

0 = E
[
η(X)g′h(X) + γ(X)gh(X)

]
= E[h(X)]− E[h(Z)] ,

as desired.

Proof of Proposition 3.17. We first show that E[h2(Z̃)] exists. Since Z̃ has density pro-
portional to ηp by (3.13) and by (3.12), existence follows, if we can show that∫ b

a

|γ′(x)||gh(x)η(x)p(x)|dx <∞ and

∫ b

a

|h′(x)|η(x)p(x)dx <∞ . (5.8)

To show finiteness of the first integral in (5.8) note that since γ is decreasing, by Fubini’s
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theorem∫ x0

a

|γ′(x)||gh(x)η(x)p(x)|dx = −
∫ x0

a

γ′(x)

∣∣∣∣∫ x

a

h̃(t)p(t)dt

∣∣∣∣ dx
≤ −

∫ x0

a

γ′(x)

∫ x

a

|h̃(t)|p(t)dtdx =

∫ x0

a

|h̃(t)|p(t)
∫ x0

t

(
−γ′(x)

)
dxdt

=

∫ x0

a

|h̃(t)|p(t)
(
γ(t)− γ(x0)

)
dt =

∫ x0

a

|h̃(t)|p(t)γ(t)dt

≤ ‖h′‖∞
∫ x0

a

|t− Z|p(t)γ(t)dt ≤ ‖h′‖∞
(
E|Z|E|γ(Z)|+ E|Zγ(Z)|

)
<∞ , (5.9)

since h is Lipschitz. Similarly, one shows that∫ b

x0

|γ′(x)||gh(x)η(x)p(x)|dx <∞ .

Since h′ is bounded, to show that the second integral in (5.8) is finite, it suffices to prove
that ∫ b

a

η(x)p(x)dx <∞ . (5.10)

We have ∫ x0

a

η(x)p(x)dx =

∫ x0

a

∫ x

a

γ(t)p(t)dtdx

=

∫ x0

a

γ(t)p(t)

∫ x0

t

dxdt =

∫ x0

a

(x0 − t)γ(t)p(t)dt <∞ ,

since E|γ(Z)| <∞ and E|Zγ(Z)| <∞ and similarly one shows that∫ b

x0

η(x)p(x)dx <∞ .

Hence, (5.10) holds and E[h2(Z̃)] exists. Now, we prove that E[h2(Z̃)] = 0. From (3.12)
and (3.13) we see that this amounts to proving∫ b

a

h′(x)η(x)p(x)dx =

∫ b

a

γ′(x)gh(x)η(x)p(x)dx . (5.11)

Using ηp = I, I ′ = γp and I(a+) = I(b−) = 0, from Fubini’s theorem we obtain that the
left hand side of (5.11) equals∫ x0

a

h′(x)I(x)dx+

∫ b

x0

h′(x)I(x)dx

=

∫ x0

a

h′(x)

∫ x

a

I ′(t)dtdx−
∫ b

x0

h′(x)

∫ b

x

I ′(t)dtdx

=

∫ x0

a

I ′(t)

∫ x0

t

h′(x)dxdt−
∫ b

x0

I ′(t)

∫ t

x0

h′(x)dxdt

=

∫ x0

a

I ′(t)
(
h(x0)− h(t)

)
dt−

∫ b

x0

I ′(t)
(
h(t)− h(x0)

)
dt

=

∫ b

a

γ(t)p(t)
(
h(x0)− h(t)

)
dt = −

∫ b

a

h(t)γ(t)p(t)dt . (5.12)
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Similarly, using γ(x0) = 0, the definition of gh in (3.5) and Fubini’s theorem again, we
have that the right hand side of (5.11) equals∫ x0

a

γ′(x)gh(x)η(x)p(x)dx+

∫ b

x0

γ′(x)gh(x)η(x)p(x)dx

=

∫ x0

a

γ′(x)

∫ x

a

h̃(t)p(t)dtdx−
∫ b

x0

γ′(x)

∫ b

t

h̃(t)p(t)dtdx

=

∫ x0

a

h̃(t)p(t)

∫ x0

t

γ′(x)dxdt−
∫ b

x0

h̃(t)p(t)

∫ t

x0

γ′(x)dxdt

= −
∫ b

a

h̃(t)p(t)γ(t)dt = −
∫ b

a

h(t)γ(t)p(t)dt , (5.13)

where we have used E[γ(Z)] = 0 for the last equality. Thus, from (5.12) and (5.13) we
conclude that (5.11) holds.
Thus, the standard solution f = fh2

to (3.14) is well-defined and given by

f(x) =
1

η(x)2p(x)

∫ x

a

h2(t)η(t)p(t)dt =
−1

η(x)2p(x)

∫ b

x

h2(t)η(t)p(t)dt , a < x < b . (5.14)

Hence,
lim
x↓a

η(x)2p(x)f(x) = 0 = lim
x↑b

η(x)2p(x)f(x) (5.15)

by dominated convergence. Furthermore, since g′h is also a solution to (3.14) and the
solutions to the corresponding homogeneous equation are exactly the constant multiples
of η−2p−1, there is a constant c ∈ R such that

g′h(x) = f(x) +
c

η(x)2p(x)
, x ∈ (a, b) . (5.16)

Now, first suppose that a > −∞. Since gh solves the Stein equation (2.18) we know that

η(x)2p(x)g′h(x) = I(x)
(
h̃(x)− γ(x)gh(x)

)
. (5.17)

As x ↓ a > −∞, by (3.6), the term in brackets converges to h̃(a) − γ(a+) h̃(a)
γ(a+) = 0 and

since limx→a I(x) = 0 we conclude from (5.17) that also

lim
x↓a

η(x)2p(x)g′h(x) = 0 . (5.18)

Hence, from (5.15), (5.18) and (5.16) we conclude that g′h = f is the standard solution
to (3.14). Similarly, one obtains this result if b <∞. Finally assume that g′h is bounded.
Since limx↓a η(x)2p(x) = 0 we conclude from (5.16) and (5.15) that

0 = lim
x↓a

η(x)2p(x)g′h(x) = lim
x↓a

η(x)2p(x)f(x) + c = c .

Proof of Proposition 3.19. Let x0 be defined as above and define the function G : J → R

by G(x) :=
∫ x
x0
f(y)dy. Then, by Taylor’s formula, for each x, x′ ∈ I we have

G(x′)−G(x) = G′(x)(x′ − x) +

∫ x′

x

(x′ − t)G′′(t)dt

= f(x)(x′ − x) +

∫ x′

x

(x′ − t)f ′(t)dt

= f(x)(x′ − x) + (x′ − x)2

∫ 1

0

(1− s)f ′
(
x+ s(x′ − x)

)
ds .
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Hence, by distributional equality, we obtain

0 = E
[
G(W ′)

]
− E

[
G(W )

]
= E

[
f(W )(W ′ −W )

]
+ E

[
(W ′ −W )2

∫ 1

0

(1− s)f ′
(
(W + s(W ′ −W )

)
ds
]

= E
[
f(W )E

[
W ′ −W |W

]]
+ E

[
(W ′ −W )2

∫ 1

0

(1− s)f ′
(
(W + s(W ′ −W )

)
ds
]

= λE
[
f(W )γ(W )

]
+ λE

[
f(W )R

]
+ E

[
(W ′ −W )2

∫ 1

0

(1− s)f ′
(
(W + s(W ′ −W )

)
ds
]
,

yielding

E
[
f(W )γ(W )

]
= − 1

λ
E
[
(W ′−W )2

∫ 1

0

(1−s)f ′
(
(W+s(W ′−W )

)
ds
]
−E

[
f(W )R

]
. (5.19)

This immediately implies the identity

E
[
η(W )f ′(W ) + γ(W )f(W )

]
= E

[
f ′(W )

(
η(W )− 1

2λ
(W ′ −W )2

)]
+

1

λ
E
[
(W ′ −W )2

∫ 1

0

(1− s)
(
f ′(W )− f ′

(
(W + s(W ′ −W )

))
ds
]

− E
[
f(W )R

]
. (5.20)

Observing that ∣∣∣f ′(W )− f ′
(
(W + s(W ′ −W )

)∣∣∣ ≤ ‖f ′′‖∞ s|W ′ −W |

and
∫ 1

0
s(1− s)ds = 1

6 the bound (3.15) now easily follows from (5.20) and the properties
of f .

Proof of Proposition 4.2. Claim (a) immediately follows from Proposition 3.9. Similarly,
the first part of claim (b) immediately follows from Corollary 3.15 (a). For the second
part of (b) we note that by Corollary 3.15 (b) we have for x ∈ (0, 1):

|g′h(x)| ≤ 2(a+ b)‖h′‖∞
∫ x

0
F (t)dt

∫ 1

x
(1− F (s))ds

x2(1− x)2p(x)
, x ∈ (0, 1). (5.21)

Since F is increasing and 1− F is decreasing, we have∫ x

0

F (t)dt ≤ xF (x) and

∫ 1

x

(1− F (s))ds ≤ (1− F (x))(1− x)

for each x ∈ [0, 1]. Plugging this into (5.21) yields

|g′h(x)| ≤ 2(a+ b)S(x)‖h′‖∞ , (5.22)

where

S(x) =
F (x)(1− F (x))

η(x)p(x)
=

1

B(a, b)

∫ x
0
ta−1(1− t)b−1dt

∫ 1

x
sa−1(1− s)b−1ds

xa(1− x)b
.
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By de l’Hôpital’s rule, one can easily show that S(0+) = a−1 and S(1−) = b−1. Thus, it
suffices to bound ‖S‖∞. For general a, b > 0 we write

S(x) =
1

B(a, b)
f1(x)f2(x) , (5.23)

where

f1(x) := f1(x; a, b) :=

∫ x
0
ta−1(1− t)b−1dt

xa
and

f2(x) := f2(x; a, b) :=

∫ 1

x
ta−1(1− t)b−1dt

(1− x)b
.

For a 6= b we bound the functions f1 and f2 seperately. By de l’Hôpital’s rule we have

lim
x↓0

f1(x) = lim
x↓0

xa−1(1− x)b−1

axa−1
=

1

a
.

Also, note that

f ′1(x) =
xa(1− x)b−1 − a

∫ x
0
ta−1(1− t)b−1dt

xa+1
=:

N1(x)

xa+1
.

We have N1(0+) = 0 and

N ′1(x) = (1− b)xa(1− x)b−2

{
≥ 0 ∀x ∈ (0, 1), b ≤ 1

< 0 ∀x ∈ (0, 1), b > 1 .

This implies that N1 is nonnegative and, hence, f1 is increasing for b ≤ 1 and that N1 is
nonpositive and, hence, f1 is decreasing for b > 1. Thus,

‖f1‖∞ =

{
f1(1−) = B(a, b), b ≤ 1

f1(0+) = a−1, b > 1 .
(5.24)

Since f2(x; a, b) = f1(1− x; b, a) we have

‖f2‖∞ =

{
B(b, a) = B(a, b), a ≤ 1

b−1, a > 1 .
(5.25)

Thus, from (5.22), (5.23), (5.24) and (5.25) we have

‖g′h‖∞ ≤ C(a, b)‖h′‖∞,

where C(a, b) is given by (4.6) and (4.7). In the case a = b we can provide better bounds.
First note that in this case the Beta distribution Beta(a, a) is symmetric with respect to
1/2. This easily implies that

S(1/2− x) = S(1/2 + x)

holds for each 0 ≤ x ≤ 1/2. Thus it suffices to bound S on [1/2, 1). Note that

S(1/2) =
F (1/2)(1− F (1/2))

1/2(1− 1/2)p(1/2)
=

1

p(1/2)
= 22a−2B(a, a)

and

S(1−) = F (1) lim
x↑1

1− F (x)

η(x)p(x)
= lim

x↑1

−p(x)

γ(x)p(x)
=
−1

γ(1)
=

1

b
=

1

a
.
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For x ∈ (0, 1) we have

S′(x) =
T (x)

η(x)2p(x)
, (5.26)

where
T (x) = η(x)p(x)(1− 2F (x))− F (x)(1− F (x))γ(x) . (5.27)

Thus, S is increasing (decreasing) on [1/2, 1), if and only if T is nonnegative (nonpositive)
there. In the case a = b we have γ(x) = a(1− 2x) and, hence, γ(1/2) = F (1/2) = 0. Thus,
recalling that I(1) = (ηp)(1−) = 0 we have

T (1/2) = T (1−) = 0 . (5.28)

By (5.28) the nonnegativity (nonpositivity) of T on [1/2, 1) follows, if T (y) ≥ 0 (≤ 0) for
every locally extremal point y ∈ (1/2, 1). We have

T ′(x) = −2η(x)p(x)2 − γ′(x)F (x)(1− F (x)) (5.29)

and, hence, if y ∈ (1/2, 1) is a locally extremal point of T , we have T ′(y) = 0 and

T (y) = η(y)p(y)
(

1− 2F (y) + 2
γ(y)

γ′(y)
p(y)

)
= η(y)p(y)

(
1− 2F (y) + (2y − 1)p(y)

)
. (5.30)

Now, for x ∈ [1/2, 1), consider the function

U(x) = 1− 2F (x) + (2x− 1)p(x)

and note that U(1/2) = 0. For 1/2 ≤ x < 1 we have

U ′(x) = (2x− 1)p′(x) = p(x)(2x− 1)ψ(x) =
p(x)(1− 2x)2

x(1− x)
(1− a)

and, hence, U is increasing for a ≤ 1 and is decreasing for a ≥ 1. Since U(1/2) = 0 it
thus follows from (5.30) that if y ∈ (1/2, 1) is a locally extremal point of T , then T (y) is
nonnegative for a < 1 and nonpositive for a ≥ 1. From (5.26) and (5.28) it thus follows
that S is decreasing on [1/2, 1) if a ≥ 1 and increasing if a < 1. Hence, we can conclude
that

‖S‖∞ = sup
x∈[1/2,1)

S(x) =

{
S(1−) = a−1, 0 < a < 1

S(1/2) = p(1/2)−1, a ≥ 1 .
(5.31)

Note that by the duplication formula for the Gamma function we have

p(1/2) = B(a, a)−1
(1

2

)2a−2

=
(1

2

)2a−2 Γ(2a)

Γ(a)2

=
22a−1Γ(a+ 1/2)Γ(a)√

πΓ(a)222a−2
=

2Γ(a+ 1/2)√
πΓ(a)

.

Hence, by (5.22) and (5.31) this implies

‖g′h‖∞ ≤ 4a‖S‖∞‖h′‖∞ = ‖h′‖∞

{
4, 0 < a < 1
2a
√
πΓ(a)

Γ(a+1/2) , a ≥ 1.

Now, we turn to the proof of (c). From Proposition 3.17 we know that g′h is the standard
solution to the Stein equation

x(1− x)f ′(x) +
(
a+ 1− (a+ b+ 2)x

)
f(x) = h2(x) = h′(x) + (a+ b)gh(x)

EJP 20 (2015), paper 109.
Page 32/34

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v20-3933
http://ejp.ejpecp.org/


Stein’s method for the Beta distribution

corresponding to the distribution Beta(a+ 1, b+ 1). Thus, since h2 is Lipschitz by part
(b), applying (b) for Beta(a+ 1, b+ 1) and for Beta(a, b) yields

‖g′′h‖∞ ≤ C(a+ 1, b+ 1)‖h′2‖∞ ≤ C(a+ 1, b+ 1)
(
‖h′′‖∞ + (a+ b)‖g′h‖∞

)
≤ C(a+ 1, b+ 1)‖h′′‖∞ + C(a+ 1, b+ 1)C(a, b)‖h′‖∞ , (5.32)

as claimed. The proof of (d) is very similar to the proof of (c) which is why we only give a
sketch. Defining h1 := h̃ and for k = 2, . . . ,m

hk(x) = x(1− x)g
(k)
h (x) +

(
a+ k − 1− (a+ b+ 2k − 2)x

)
g

(k−1)
h (x) ,

one can see by induction that for all k = 2, . . . ,m

hk = h(k−1) + (k − 1)(a+ b+ k − 2)g
(k−2)
h .

Hence, by (b) and from Proposition 3.17 similarly to (5.32) we can prove that

‖g(m)
h ‖∞ ≤ C(a+m− 1, b+m− 1)‖h′m‖∞

= C(a+m− 1, b+m− 1)‖h(m) + (m− 1)(a+ b+m− 2)g
(m−1)
h ‖∞

≤ C(a+m− 1, b+m− 1)
(
‖h(m)‖∞ + (m− 1)(a+ b+m− 2)‖g(m−1)

h ‖∞
)
.

The bound now follows from an easy induction on m.
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