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Abstract

We consider a natural destruction process of an infinite recursive tree by removing
each edge after an independent exponential time. The destruction up to time t is
encoded by a partition Π(t) of N into blocks of connected vertices. Despite the
lack of exchangeability, just like for an exchangeable fragmentation process, the
process Π is Markovian with transitions determined by a splitting rates measure r.
However, somewhat surprisingly, r fails to fulfill the usual integrability condition for
the dislocation measure of exchangeable fragmentations. We further observe that
a time-dependent normalization enables us to define the weights of the blocks of
Π(t). We study the process of these weights and point at connections with Ornstein-
Uhlenbeck type processes.
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1 Introduction

The purpose of this work is to investigate various aspects of a simple and natural
fragmentation process on an infinite tree, which turns out to exhibit nonetheless some
rather unexpected features.

Specifically, we first construct a tree T with set of vertices N = {1, . . .} by incor-
porating vertices one after the other and uniformly at random: That is, 1 is the root,
and for each vertex i ≥ 2, we pick its parent ui according to the uniform distribution
in {1, . . . , i − 1}, independently of the other vertices. We call T an infinite (random)
recursive tree. Recursive trees are especially useful in computer science where they
arise as data structures; see, for example, the survey by Mahmoud and Smythe [16] for
background.
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The fragmentation process of an infinite recursive tree

We next destroy T progressively by removing each edge ei connecting i to its parent
ui at time εi, where the sequence (εi : i ≥ 2) consists of i.i.d. standard exponential
variables, which are further independent of T. Panholzer [19] investigated costs related
to this destruction process, whereas in a different direction, Goldschmidt and Martin [11]
used it to provide a remarkable construction of the Bolthausen-Sznitman coalescent. We
also refer to Kuba and Panholzer [14] for the study of a related algorithm for isolation of
nodes, and to our survey [4] for further applications and many more references.

Roughly speaking, we are interested here in the fragmentation process that results
from the destruction. We represent the destruction of T up to time t by a partition Π(t)

of N into blocks of connected vertices. In other words, if we view the fragmentation of
T up to time t as a Bernoulli bond-percolation with parameter e−t, then the blocks of
Π(t) are the percolation clusters. Clearly Π(t) gets finer as t increases, and it is easily
seen from the so-called fundamental splitting property of random recursive trees that
the process Π = (Π(t) : t ≥ 0) is Markovian (see the explanations given in the proof of
Proposition 2.3). In this context, we recall that Aldous and Pitman [1] have considered a
similar logging of the Continuum Random Tree (CRT) that yields a notable fragmentation
process, dual to the standard additive coalescent. More precisely, they split the skeleton
of the CRT into subtrees according to a Poisson process of cuts with some intensity t ≥ 0

per unit length. By considering the ranked masses of the tree components, Aldous and
Pitman obtain a fragmentation process (as a process in t). Moreover, the time change
t 7→ e−t turns the latter into the standard additive coalescent. In this regard, we also
point at our remark below the proof of Theorem 2.2. We further mention the very recent
work of Kalay and Ben-Naim [12], in which the effects of repeated random removal of
nodes (instead of edges) in a finite random recursive tree are analyzed.

It turns out that Π shares many features with homogeneous fragmentation processes
as defined in [5, 6]. In particular, the transition kernels of Π are very similar to those of a
homogeneous fragmentation; they are entirely determined by the splitting rates r, which
define an infinite measure on the space of partitions of N. However, there are also major
differences: exchangeability, which is a key requirement for homogeneous fragmentation
processes, fails for Π, and perhaps more notably, the splitting rates measure r does not
fulfill the fundamental integral condition (2.4) which the splitting rates of homogeneous
fragmentation processes have to satisfy.

It is known from the work of Kingman [13] that exchangeability plays a fundamental
role in the study of random partitions, and more precisely, it lies at the heart of the con-
nection between exchangeable random partitions (which are discrete random variables),
and random mass-partitions (which are continuous random variables). In particular,
the distribution of an exchangeable random partition is determined by the law of the
asymptotic frequencies of its blocks B,

|B| = lim
n→∞

n−1#{i ≤ n : i ∈ B}. (1.1)

Even though Π(t) is not exchangeable for t > 0, it is elementary to see that every
block of Π(t), say B(t), has an asymptotic frequency. However, this asymptotic frequency
is degenerate, |B(t)| = 0 (note that if Π were exchangeable, this would imply that all the
blocks of Π(t) would be singletons). We shall obtain a finer result and show that the limit

lim
n→∞

n−e−t

#{i ≤ n : i ∈ B(t)} (1.2)

exists in (0,∞) almost surely. We will refer to the latter as the weight of the block B(t)

(we stress that this definition depends on the time t at which the block is taken), and
another natural question about the destruction of T is thus to describe the process X of
the weights of the blocks of the partition-valued process Π.
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The fragmentation process of an infinite recursive tree

In this regard, let us point to related results of Möhle [18], which appeared almost
simultaneously and independently of our work. With Π1(t) denoting the block of Π(t)

containing 1, he interprets the quantity #{j ≤ n : j ∈ Π1(t)} as the number of blocks

N
(n)
t at time t in a Bolthausen-Sznitman coalescent on [n] (see the second proof of

Theorem 3.1(ii) below). Möhle shows that (n−e−t

N
(n)
t : t ≥ 0) converges in distribution

in the Skorohod topology to a limiting process which he terms Mittag-Leffler process. In
particular, his results imply that with probability one, Π1(t) has weights simultaneously
for all t ≥ 0, and that these weights are càdlàg in t. For homogeneous fragmentations, a
general result is known: By [6, Proposition 3.6], each block of a standard homogeneous
fragmentation process possesses asymptotic frequencies simultaneously for all t ≥ 0 a.s.,
and if B denotes such a block, then the process t 7→ |B(t)| is càdlàg.

Because Π resembles homogeneous fragmentations, but with splitting rates measure
r which does not fulfill the integral condition of the former, and because the notion (1.2)
of the weight of a block depends on the time t, one might expect that X should be an
example of a so-called compensated fragmentation which was recently introduced in [7].
Although this is not exactly the case, we shall see that X fulfills closely related properties.
Using well-known connections between random recursive trees, Yule processes, and
Pólya urns, cf. [4], we shall derive a number of explicit results about its distribution.
In particular, we shall show that upon a logarithmic transform, X can be viewed as a
branching Ornstein-Uhlenbeck process. At this point, let us mention that for a homoge-
neous fragmentation, the process of the logarithms of the asymptotic frequencies forms
a branching random walk when evaluated at integer times, say. More on this can be
found in the book [6].

The rest of this paper is organized as follows. In Section 2, we study the structure
of the partition-valued process Π which stems from the destruction of T, stressing the
resemblances and the differences with exchangeable fragmentations. In Section 3, we
observe that after a suitable renormalization that depends on t, the blocks of the partition
Π(t) possess a weight, and we relate the process of these weights to Ornstein-Uhlenbeck
type processes.

2 Destruction of T and fragmentation of partitions

The purpose of this section is to show that, despite the lack of exchangeability, the
partition valued process Π induced by the fragmentation of T can be analyzed much in
the same way as a homogeneous fragmentation. We shall present the main features and
merely sketch proofs, referring to Section 3.1 in [6] for details.

We start by recalling that a partition π of N is a sequence (πi : i ∈ N) of pairwise
disjoint blocks, indexed in the increasing order of their smallest elements, and such that
∪i∈Nπi = N. We write P for the space of partitions of N, which is a compact hypermetric
space when endowed with the distance

d(π, π′) = 1/max{n ∈ N : π|[n] = π′|[n]},

where π|B denotes the restriction of π to a subset B ⊆ N and [n] = {1, . . . , n} is the set
of the n first integers. The space PB of partitions of B is defined similarly.

We next introduce some spaces of functions on P. First, for every n ≥ 1, we write
Dn for the space of functions f : P → R which remain constant on balls with radius 1/n,
that is such that f(π) = f(η) whenever the restrictions π|[n] and η|[n] of the partitions π
and η to [n] coincide. Plainly, Dn ⊂ Dn+1, and we set

D∞ =
⋃
n≥1

Dn.
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The fragmentation process of an infinite recursive tree

Observe that D∞ is a dense subset of the space C(P) of continuous functions on P.
In order to describe a family of transition kernels which appear naturally in this study,

we first need some notation. For every block B ⊆ N, write B(j) for the j-th smallest
element of B (whenever it makes sense), and then, for every partition π ∈ P, B ◦ π for
the partition of B generated by the blocks B(πi) = {B(j) : j ∈ πi} for i ∈ N. In other
words, B ◦π is simply the partition of B induced by π when one enumerates the elements
of B in their natural order. Of course, if the cardinality of B is finite, say equal to k ∈ N,
then B ◦ π does only depend on π through π|[k], so that we may consider B ◦ π also for
π ∈ P[k] (or π ∈ P[`] for any ` ≥ k).

In the same vein, for partitions η ∈ PB and every integer i ≥ 1, we write η ◦
i
π for the

partition of B that results from fragmenting the i-th block of η by π, that is replacing the
block ηi in η by ηi ◦ π. Again, if k = #B <∞, we may also take π ∈ P[`] for ` ≥ k.

Finally, for every k ≥ 2, we consider a random partition of N that arises from the
following Pólya urn. At the initial time, the urn contains k − 1 black balls labeled
1, . . . , k − 1 and a single red ball labeled k. Balls with labels k + 1, k + 2, . . . are colored
black or red and then incorporated to the urn one after the other according to the
following rule: For n ≥ k, the color given to the n + 1-th ball is that of a ball picked
uniformly at random when the urn contains n balls. This yields a random binary partition
of N into black and red balls; we write pk for its law. We set

r =

∞∑
k=2

pk, (2.1)

which is thus an infinite measure on the set of binary partitions of N.

Remark 2.1. Comparing the construction of an infinite random recursive tree T with
the dynamics of the above Pólya urn starting from k − 1 black balls and one red ball,
it should be clear that the set of (labels of) red balls can be identified with the set of
vertices of the subtree of T that stems from the vertex k. This connection will allow us to
express the jump rates of the restrictions Π|[n] in terms of r, see Proposition 2.4 below.

Recall that each edge of T is deleted at an exponentially distributed random time,
independently of the other edges. This induces, for every t ≥ 0, a random partition Π(t)

of N into blocks corresponding to the subsets of vertices which are still connected at
time t. Observe that, by construction and the very definition of the distance on P, the
process Π has càdlàg paths.

We are now able to state the main result of this section.

Theorem 2.2. (i) The process Π = (Π(t) : t ≥ 0) is Markovian and has the Feller property.
We write G for its infinitesimal generator.
(ii) For every n ≥ 1, Dn is invariant and therefore D∞ is a core for G.
(iii) For every f ∈ D∞ and η ∈ P, we have

Gf(η) =

∫
π∈P

r(dπ)
∑
i

(
f(η ◦

i
π)− f(η)

)
.

We stress that this characterization of the law of the process Π is very close to that
of a homogeneous fragmentation. Indeed, one can rephrase well-known results (cf.
Section 3.1.2 in [6]) on the latter as follows. Every homogeneous fragmentation process
Γ = (Γt : t ≥ 0) is a Feller process on P, such that the sub-spaces Dn are invariant (and
hence D∞ is a core). Further, its infinitesimal generator A is given in the form

Af(η) =

∫
π∈P

s(dπ)
∑
i

(
f(η ◦

i
π)− f(η)

)
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for every f ∈ D∞ and η ∈ P, where s is some exchangeable measure on P, that is s

is invariant under permuting finitely many integers. Moreover, s({1N}) = 0, where for
every block B ⊆ N, 1B ∈ PB denotes the neutral partition which has a single non-empty
block B, and

s
({
π ∈ P : π|[n] 6= 1[n]

})
<∞ for all n ≥ 2. (2.2)

Observe that the measure r fails to be exchangeable, but it fulfills (2.2); indeed, one has

r
({
π ∈ P : π|[n] 6= 1[n]

})
=

n∑
k=2

pk(P) = n− 1.

We shall now prepare the proof of Theorem 2.2. For this reason, it is convenient to
introduce some further notation. Consider an arbitrary block B ⊆ N, a partition η ∈ PB
and a sequence π(·) = (π(i) : i ∈ N) in P. We write η ◦ π(·) for the partition of B whose
family of blocks is given by those of η ◦

i
π(i) for i ∈ N. In words, for each i ∈ N, the i-th

block of η is split according to the partition π(i). Next, consider a probability measure q

on P and a sequence (π(i) : i ∈ N) of i.i.d. random partitions with common law q. We
associate to q a probability kernel Fr(·,q) on PB, by denoting the distribution of η ◦ π(·)

by Fr(η,q) for every η ∈ PB. We point out that if q is exchangeable, then η ◦ π(·) has the
same distribution as the random partition whose blocks are given by the restrictions
π

(i)
|ηi of π(i) to ηi for i ∈ N, and Fr(·,q) thus coincides with the fragmentation kernel that

occurs for homogeneous fragmentations, see Definition 3.2 on page 119 in [6]. Of course,
the assumption of exchangeability is crucial for this identification to hold.

Note that the restriction of partitions of N to [n] is compatible with the fragmentation
operator Fr(·, ·), in the sense that(

η ◦ π(·)
)
|[n]

= η|[n] ◦ π(·)
|[n]. (2.3)

Proposition 2.3. For every n ∈ N, the process Π|[n] = (Π|[n](t) : t ≥ 0) obtained by
restricting Π to [n], is a continuous time Markov chain on P[n].

Its semigroup can be described as follows: for every s, t ≥ 0, the conditional distri-
bution of Π|[n](s+ t) given Π|[n](s) = η is Fr(η,qt), where qt denotes the distribution of
Π(t).

Proof. The case n = 1 is clear since Π|[1](t) = ({1}, ∅, . . . ) for all times t ≥ 0. Assume now
n ≥ 2. The proof relies crucially on the splitting property of random recursive trees that
we now recall (see, e.g., Section 2.2 of [4]). Given a subset B ⊆ N, the image of T by the
map j 7→ B(j) which enumerates the elements of B in the increasing order, is called a
random recursive tree on B and denoted by TB. In particular, for B = [n], the restriction
of T to the first n vertices is a random recursive tree on [n]. Imagine now that we remove
k fixed edges (i.e. edges with given indices, say i1, . . . , ik, where 2 ≤ i1 < . . . < ik ≤ n)
from T[n]. Then, conditionally on the induced partition of [n], say η = (η1, . . . , ηk+1), the
resulting k + 1 subtrees are independent random recursive trees on their respective sets
of vertices ηj , j = 1, . . . , k + 1.

It follows easily from the lack of memory of the exponential distribution and the
compatibility property (2.3) that the restricted process Π|[n] =

(
Π|[n](t) : t ≥ 0

)
is a

continuous time Markov chain. More precisely, we deduce from the argument given in
the preceding paragraph that the conditional distribution of Π|[n](s+ t) given Π|[n](s) = π

is Fr(π,qt), where Fr(·,qt) is here viewed as a probability kernel on P[n].

In order to describe the infinitesimal generator of the restricted processes Π|[n] for
n ∈ N, we consider its rates of jumps, which are defined by

rπ = lim
t→0+

t−1P(Π|[n](t) = π),

EJP 20 (2015), paper 98.
Page 5/20

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v20-3866
http://ejp.ejpecp.org/
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where now π denotes a generic partition of [n] which has at least two (non-empty) blocks.
The rates of jumps rπ determine the infinitesimal generator Gn of the restricted chain
Π|[n], specifically we have for f : P[n] → R and η ∈ P[n]

Gnf(η) =
∑
π∈P[n]

∑
i

(
f(η ◦

i
π)− f(η)

)
rπ

(recall that η ◦
i
π denotes the partition that results from fragmenting the i-th block of η

according to π). This determines the distribution of the restricted chain Π|[n], and hence,
letting n vary in N, also characterizes the law of Π. Recall also that the measure r on P
has been defined by (2.1).

Proposition 2.4. For every n ≥ 2 and every partition π of [n] with at least two (non-
empty) blocks, there is the identity

rπ = r(Pπ),

where Pπ = {η ∈ P : η|[n] = π}.

Proof. This should be intuitively straightforward from the connection between the
construction of random recursive trees and the dynamics of Pólya urns. Specifically, fix
n ≥ 2 and consider a partition π ∈ P[n]. If π consists in three or more non-empty blocks,
then we clearly have

lim
t→0+

t−1P(Π|[n](t) = π) = 0,

since at least two edges have to be removed from T|[n] in order to yield a partition with
three or more blocks. Assume now that π is binary with non-empty blocks π1 and π2, and
let k = minπ2. Then only the removal of the edge ek may possibly induce the partition
π, and more precisely, if we write η for the random partition of [n] resulting from the
removal of ek, then the probability that η = π is precisely the probability that in a Pólya
urn containing initially k − 1 black balls labeled 1, . . . , k − 1 and a single red ball labeled
k, after n− k steps, the red balls are exactly those with labels in π2. Since the edge ek is
removed at unit rate, this gives

lim
t→0+

t−1P(Π|[n](t) = π) = rπ = pk(Pπ)

in the notation of the statement. Note that the right-hand side can be also written as
r(Pπ), since p`(Pπ) = 0 for all ` 6= k.

Proposition 2.4 should be compared with Proposition 3.2 in [6]; we refer henceforth
to r as the splitting rate of Π. We have now all the ingredients necessary to establish
Theorem 2.2.

Proof of Theorem 2.2. From Proposition 2.3, we see that the transition semigroup of
Π is given by (Fr(·,qt) : t ≥ 0), and it is easily checked that the latter fulfills the Feller
property; cf. Proposition 3.1(i) in [6]. Point (ii) is immediate from the compatibility
of restriction with the fragmentation operator, see (2.3). Concerning (iii), let f ∈ Dn.
Since f is constant on {η ∈ P : η|[n] = π}, it can naturally be restricted to a function
f : P[n] → R. By the compatibility property (2.3), with rπ′ = r(Pπ′) for a partition π′ of
[n] defined as in Proposition 2.4, we obtain∫

π∈P
r(dπ)

∑
i

(
f(η ◦

i
π)− f(η)

)
=

∑
π′∈P[n]

∑
i

(
f(η|[n] ◦

i
π′)− f(η|[n])

)
rπ′ = Gnf(η|[n]),

where Gn is the infinitesimal generator of the restricted chain Π|[n] found above. This
readily yields (iii).
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Remark 2.5. It may be interesting to recall that the standard exponential law is invariant
under the map t 7→ − ln(1− e−t), and thus, if we set ε̂i = − ln(1− exp(−εi)) (recall that εi
is the instant at which the edge connecting the vertex i to its parent is removed), then
(ε̂i)i≥2 is a sequence of i.i.d. exponential variables. The time-reversal t 7→ − ln(1− e−t)

transforms the destruction process of T into a construction process of T defined as
follows. At each time ε̂i, we create an edge between i ≥ 2 and its parent which is
chosen uniformly at random in {1, . . . , i− 1}. It follows that the time-reversed process
Π̂(t) = Π(− ln(1−e−t)−), t ≥ 0, is a binary coalescent process such that the rate at which
two blocks, say B and B′ with minB < minB′, merge, is given by #{j ∈ B : j < minB′}.
This can be viewed as a duality relation between fragmentation and coalescent processes;
see Dong, Goldschmidt and Martin [10] and references therein.

The next proposition underlines the fact that r is not the splitting rates measure of a
homogeneous fragmentation.

Proposition 2.6. For r-almost all binary partitions (B1, B2, ∅, . . .) ∈ P, the blocks B1 and
B2 have asymptotic frequencies, and more precisely, we have∫

P
f(|B1|, |B2|)dr =

∫ 1

0

f(1− x, x)x−2dx,

where f : [0, 1]2 → R+ denotes a generic measurable function. In particular,∫
P

(1−max{|B1|, |B2|})dr =∞.

Proof. Indeed, it is a well-known fact of Pólya urns that for each k ≥ 2, pk-almost every
partition (B1, B2) has asymptotic frequencies with |B1|+ |B2| = 1, and |B2| has the beta
distribution with parameters (1, k − 1), i.e. with density (k − 1)(1− x)k−2 on (0, 1) (see
e.g. [15, Theorem 3.2]). Our claims follow immediately since

∞∑
k=2

(k − 1)(1− x)k−2 = x−2, x ∈ (0, 1).

Recall that the splitting rates s of a homogeneous fragmentation must fulfill the
integrability condition ∫

P
(1−max{|B1|, |B2|})ds <∞, (2.4)

which thus fails for r !
We next turn our attention to the Poissonian structure of the process Π, which can be

rephrased in terms similar to those in Section 3.1 of [6]. For this reason, we introduce a
random point measure

M =

∞∑
i=2

δ(εi,∆i,ki)

on R+ × P × N as follows. Recall that εi is the time at which the edge ei connecting
the vertex i ∈ N to its parent in T is removed. Immediately before time εi, the vertex
i belongs to some block of the partition Π(εi−), we denote the label of this block by
ki (recall that Π is càdlàg and that blocks of a partition are labeled in the increasing
order of their smallest element). Removing the edge ei yields a partition of that block
B = Πki(εi−) into two sub-blocks, which can be expressed (uniquely) in the form B ◦∆i.
Note that the size of the block B is almost surely infinite, so that the binary partition
∆i and hence the point measure M is indeed defined unambiguously. The process Π
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can be recovered from M , in a way similar to that explained on pages 117-118 in [6].
Roughly speaking, for every atom of M , say (t,∆, k), Π(t) results from partitioning the
k-th block of Π(t−) using ∆, that is by replacing Πk(t−) by Πk(t−) ◦∆. For M , we have
the following characterization.

Proposition 2.7. The random measure M is Poisson with intensity λ⊗ r⊗#, where λ
denotes Lebesgue measure on R+ and # the counting measure on N.

Proof. Recall that we write 1[n] = ([n], ∅, . . .) for the partition of [n] which consists
of a single non-empty block. Consider a Poisson random measure M ′ with intensity
λ⊗ r⊗# as in the statement. Since the intensity measure is σ-finite and λ is diffuse, the
superposition property of Poisson random measures implies that M has almost surely at
most one atom in each fiber {t} × P ×N. Furthermore, the discussion below (2.2) shows
that for each t′ ≥ 0 and every n ∈ N, the number of atoms (t, π, k) of M ′ with t ≤ t′,
π|[n] 6= 1[n] and k ≤ n is finite. We may therefore define for fixed n ∈ N a P[n]-valued
continuous time Markov chain (Π′[n](t) : t ≥ 0) starting from Π′[n](0) = 1[n] as follows: If t
is a time at which the fiber {t}×P×N carries an atom (t, π, k) of M ′ such that π|[n] 6= 1[n]

and k ≤ n, then Π′[n](t) results from Π′[n](t−) by replacing its k-th block Π
′[n]
k (t−) by

Π
′[n]
k (t−) ◦ π|[n].

The sequence (Π′[n](t) : n ∈ N) is clearly compatible for every t ≥ 0, in the sense
that Π′[n]

|[m](t) = Π′[m](t) for all integers n ≥ m. We deduce as in the proof of Lemma
3.3 in [6] that there exists a unique P-valued càdlàg function (Π′(t) : t ≥ 0) such that
Π′|[n](t) = Π′[n](t). Moreover, the i-th block Π′i(t) of Π′(t) is given by the increasing union

Π′i(t) = ∪n∈NΠ
′[n]
i (t), and it follows from the very construction of Π′[n](t) that the process

Π′ can be recovered from M ′ similarly to the description above the statement of the
proposition. It remains to check that Π′ and Π have the same law, which follows if we
show that the restricted processes Π′|[n] = Π′[n] and Π|[n] have the same law for each
n ∈ N. Fix n ≥ 2, and denote by π a partition of [n] with at least two non-empty blocks.
From the Poissonian construction of Π′[n], with Pπ as in the statement of Proposition 2.4,
we first see that

lim
t→0+

t−1P
(

Π′[n](t) = π
)

= r(Pπ).

Next, if π′ 6= π′′ ∈ P[n], the jump rate of Π′[n] from π′ to π′′ is non-zero only if π′′ can be
obtained from π′ by replacing one single block of π′, say the k-th block π′k, by π′k ◦ π,
where π is some binary partition of [n]. This observation and the last display readily
show that Π′[n] and Π|[n] have the same generator, and hence their laws agree.

3 The process of the weights

Even though the splitting rates measure r of the fragmentation process Π fails to
fulfill the integral condition (2.4), we shall see that we can nonetheless define the weights
of its blocks. The purpose of this section is to investigate the process of the weights as
time passes.

3.1 The weight of the first block as an O.U. type process

In this section, we focus on the first block Π1(t), that is the cluster at time t which
contains the root 1 of T. The next statement gathers its key properties, and in particular
stresses the connection with an Ornstein-Uhlenbeck type process.

Theorem 3.1. (i) For every t ≥ 0, the following limit

lim
n→∞

n−e−t

#{j ≤ n : j ∈ Π1(t)} = X1(t)
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exists in (0,∞) a.s. The variable X1(t) has the Mittag-Leffler distribution with parameter
e−t,

P(X1(t) ∈ dx)/dx =
et

π

∞∑
k=0

(−1)k+1

k!
Γ(ke−t + 1)xk−1 sin(πke−t);

equivalently, its Mellin transform is given by

E(Xq
1 (t)) =

Γ(q + 1)

Γ(e−tq + 1)
, q ≥ 0.

(ii) The process (X1(t) : t ≥ 0) is Markovian and has the Feller property. Its semigroup
Pt(x, ·) is given by

Pt(x, ·) = P(xe−t

X1(t) ∈ ·).

(iii) The process Y (t) = lnX1(t), t ≥ 0, is of Ornstein-Uhlenbeck type. More precisely,

L(t) = Y (t) +

∫ t

0

Y (s)ds, t ≥ 0,

is a spectrally negative Lévy process with cumulant-generating function

κ(q) = lnE(exp(qL(1))), q ≥ 0,

given by

κ(q) = qψ(q + 1),

where ψ denotes the digamma function, that is the logarithmic derivative of the gamma
function.

Remark 3.2. We recall that Möhle obtained in [18] independently of our work and
almost at the same time distributional convergence of the full process (n−e−t

#{j ≤ n :

j ∈ Π1(t)} : t ≥ 0) in the space of càdlàg paths equipped with the Skorohod topology.

In the following, we shall refer to X1(t) as the weight of the first block (or the root
cluster) at time t. Before tackling the proof of Theorem 3.1, we make a couple of
comments.

Firstly, observe from (i) that limt→∞E(X1(t)q) = Γ(q + 1), so that as t → ∞, Y (t)

converges in distribution to the logarithm of a standard exponential variable. On the
other hand, it is well known that the weak limit at ∞ of an Ornstein-Uhlenbeck type
process is self-decomposable; cf. Section 17 in Sato [21]. So (iii) enables us to recover
the fact that the log-exponential distribution is self-decomposable; see Shanbhag and
Sreehari [22].

Secondly, note that the Lévy-Khintchin formula for κ reads

κ(q) = −γq +

∫ 0

−∞
(eqx − 1− qx)

ex

(1− ex)2
dx,

where γ = 0.57721 . . . is the Euler-Mascheroni constant. Indeed, using a classical identity
for the digamma function for the second equality and Tonelli’s theorem in the third line,
we have
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κ(q) + γq = qψ(q + 1) + γq = q

∫ 1

0

1− xq

1− x
dx = q

∫ 0

−∞

1− eqy

1− ey
eydy

= q

∫ 0

−∞
(1− eqy)

(∫ y

−∞

ex

(1− ex)2
dx

)
dy

= q

∫ 0

−∞

(∫ 0

−∞
(1− eqy)11{y>x}dy

)
ex

(1− ex)2
dx

=

∫ 0

−∞
(eqx − 1− qx)

ex

(1− ex)2
dx.

In turn, this enables us to identify the Lévy measure of L as

Λ(dx) = ex(1− ex)−2dx, x ∈ (−∞, 0).

Since the jumps of L and of Y coincide, the Lévy-Itô decomposition entails that the jump
process of Y = lnX1 is a Poisson point process with characteristic measure Λ. In this
context, recall from Proposition 2.6 that the distribution of the asymptotic frequency of
the first block under the measure r of the splitting rates of Π is (1− y)−2dy, y ∈ (0, 1),
and observe that the image of the latter by the map y 7→ ln y is precisely Λ. This should
of course not come as a surprise.

We shall present two proofs of Theorem 3.1(i); the first relies on the well-known con-
nection between random recursive trees and Yule processes and is based on arguments
due to Pitman. Indeed, #{j ≤ n : j ∈ Π1(t)} can be interpreted in terms of the two-type
population system considered in Section 3.4 of [20], as the number of novel individuals
at time t when the birth rate of novel offspring per novel individual is given by α = e−t,
and conditioned that there are n individuals in total in the population system at time
t. Part (i) of the theorem then readily follows from Proposition 3.14 in connection with
Corollary 3.15 and Theorem 3.8 in [20]. For the reader’s convenience, let us nonetheless
give a self-contained proof which is specialized to our situation. We further stress that
variations of this argument will be used in the proofs of Proposition 3.7 and Corollary 3.9.

First proof of Theorem 3.1(i). Consider a population model started from a single ances-
tor, in which each individual gives birth to a new child at rate one (in continuous time).
If the ancestor receives the label 1 and the next individuals are labeled 2, 3, . . . according
to the order of their birth times, then the genealogical tree of the entire population is a
version of T. Further, if we write Z(s) for the number of individuals in the population at
time s, then the process (Z(s) : s ≥ 0) is a Yule process, that is a pure birth process with
birth rate n when the population has size n. Moreover, it is readily seen that the Yule
process Z and the genealogical tree T are independent.

It is well known (see Remark 5 on page 130 of Athreya and Ney [2]) that

lim
s→∞

e−sZ(s) = W almost surely,

where W has the standard exponential distribution. As a consequence, if we write
τn = inf{s ≥ 0 : Z(s) = n} for the birth-time of the individual with label n, then

lim
n→∞

ne−τn = W almost surely. (3.1)

Now we incorporate destruction of edges to this population model by killing each
new-born child with probability 1− p ∈ (0, 1), independently of the other children. The
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resulting population model is again a Yule process, say Z(p) = (Z(p)(s) : s ≥ 0), but now
the rate of birth per individual is p. Therefore, we have also

lim
s→∞

e−psZ(p)(s) = W (p) almost surely,

where W (p) is another standard exponential variable. We stress that W (p) is of course
correlated to W and not independent of T, in contrast to W .

In this framework, we identify for p = e−t

#{j ≤ n : j ∈ Π1(t)} = Z(p)(τn)

and therefore

lim
n→∞

e−pτn#{j ≤ n : j ∈ Π1(t)} = W (p) almost surely.

Combining with (3.1), we arrive at

lim
n→∞

n−p#{j ≤ n : j ∈ Π1(t)} =
W (p)

W p
almost surely,

which proves the first part of (i).
Since the left-hand side in the last display only depends on the genealogical tree T

and on the exponential random variables εi attached to its edges, it is independent of the
Yule process Z and a fortiori of W . Since both W and W (p) are standard exponentials,
the second part of (i) now follows from the moments of exponential random variables.

The second proof of Theorem 3.1(i) relies on more advanced features on the destruc-
tion of random recursive trees and Poisson-Dirichlet partitions.

Second proof of Theorem 3.1(i). It is known from the work of Goldschmidt and Mar-
tin [11] that the destruction of T bears deep connections to the Bolthausen-Sznitman
coalescent. In this setting, the quantity

#{j ≤ n : j ∈ Π1(t)}

can be viewed as the number of blocks at time t in a Bolthausen-Sznitman coalescent
on [n] = {1, . . . , n} started from the partition into singletons. On the other hand, it is
known that the latter is a so-called (e−t, 0) partition; see Section 3.2 and Theorem 5.19
in Pitman [20]. Our claims now follow from Theorem 3.8 in [20].

Proof of Theorem 3.1(ii). Let Π′1 be an independent copy of the process Π1. Fix s, t ≥ 0

and put B = Π1(s), C = Π′1(t). Recall that B(j) denotes the j-th smallest element of B,
and B(C) stands for the subset {B(j) : j ∈ C}. By Proposition 2.3, there is the equality
in distribution Π1(s+ t) = B(C). From (i) we deduce that (with B(n) playing the role of
n in (i))

B(n) ∼ (n/X1(s))
es almost surely as n→∞,

and similarly C(n) ∼ (n/X ′1(t))
et as n→∞, where X ′1(t) has the same law as X1(t) and

is further independent of (X1(r) : r ≥ 0). It follows that there are the identities

X1(s+ t) = lim
m→∞

m−e−(s+t)

#{j ≤ m : j ∈ Π1(s+ t)}

= lim
n→∞

(
(B(C)(n))−e−(s+t)

n
)

= lim
n→∞

(
(B(C(n)))−e−(s+t)

n
)

= Xe−t

1 (s)X ′1(t).
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Here, in the next to last equality we have used the fact that the n-th smallest element of
B(C) is given by the C(n)-th smallest element of B, and for the last equality we have
plugged in the asymptotic expressions for B(n) and C(n) that we found above. The
Markov property now follows easily. For the Feller property, remark that from part (i)
and Chebycheff’s inequality, we obtain

lim
t→0+

X1(t) = 1 in probability. (3.2)

The theorem of dominated convergence then shows that Pt maps the space C0 of contin-
uous functions vanishing at infinity to itself. Similarly, using again (3.2), one deduces
that limt→0 Ptf(x) = f(x) uniformly in x ≥ 0, for f ∈ C0.

We point out that, alternatively, the Markov property of X1 can also be derived
from the interpretation of #{j ≤ n : j ∈ Π1(t)} as the number of blocks at time t in a
Bolthausen-Sznitman coalescent on [n]; see the second proof of Theorem 3.1(i) above.

Proof of Theorem 3.1(iii). We first observe from (ii) that the process Y is Markovian with
semigroup Qt(y, ·) given by

Qt(y, ·) = P(e−ty + Y (t) ∈ ·). (3.3)

Next, recall from the last remark made after Theorem 3.1 that the function q 7→ κ(q) =

qψ(q + 1) is the cumulant-generating function of a spectrally negative Lévy process, say
L = (L(t) : t ≥ 0). Consider then the Ornstein-Uhlenbeck type process U = (U(t) : t ≥ 0)

that solves the stochastic differential equation

U(t) = L(t)−
∫ t

0

U(s)ds,

that is, equivalently, U(t) = e−t
∫ t

0
esdL(s). Then U is also Markovian with semigroup

Rt(u, ·) given by

Rt(u, ·) = P(e−tu+ U(t) ∈ ·).

So to check that the processes Y and U have the same finite-dimensional laws, it suffices
to verify that they have the same one-dimensional distribution.

The calculations of Section 17 in Sato [21] (see Equation (17.4) and Lemma 17.1
there) show that for every q ≥ 0,

E (exp(qU(t))) = exp

(∫ t

0

κ(e−sq)ds

)
.

Now observe that∫ t

0

κ(e−sq)ds =

∫ t

0

e−sqψ(e−sq + 1)ds =

∫ q+1

e−tq+1

ψ(x)dx = ln Γ(q + 1)− ln Γ(e−tq + 1),

where for the last equality we used that ψ(x) = d
dx ln Γ(x). We obtain

E (exp(qU(t))) =
Γ(q + 1)

Γ(e−tq + 1)
= E (exp(qY (t))) ,

where the second identity stems from Theorem 3.1(i). We conclude that the finite-
dimensional laws of Y and U agree, and since we know from [18] that Y has càdlàg
paths, the law of Y is determined.
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3.2 Fragmentation of weights as a branching O.U. process

We next turn our interest to the other blocks of the partition Π(t); we shall see that
they also have a weight, in the same sense as for the first block. It is convenient to write
first Ti for the subtree of T rooted at i ≥ 1; in particular T1 = T. Then for t ≥ 0, we
write Ti(t) the subtree of Ti consisting of vertices j ∈ Ti which are still connected to i
after the edges ek with εk ≤ t have been removed. Note that for i ≥ 2, the vertex set of
Ti(t) forms a block of the partition Π(t) if and only if εi ≤ t, an event which has always
probability 1− e−t and is further independent of Ti(t). All the blocks of Π(t) arise in this
form.

Lemma 3.3. For every t ≥ 0 and i ∈ N, the following limit

lim
n→∞

n−e−t

#{j ≤ n : j ∈ Ti(t)} = ρi(t)

exists in (0,∞) a.s. Moreover, the process

ρi = (ρi(t) : t ≥ 0)

has the same law as

(βe−t

i X1(t) : t ≥ 0),

where βi denotes a beta variable with parameter (1, i− 1) and is further independent of
X1(t). In particular, the positive moments of ρi(t) are given by

E(ρqi (t)) =
Γ(q + 1)Γ(i)

Γ(e−tq + i)
, q ≥ 0.

Proof. The recursive construction of T and Ti has the same dynamics as a Pólya urn,
and basic properties of the latter entail that the proportion βi of vertices in Ti has the
beta distribution with parameter (1, i− 1), see [15, Theorem 3.2]. Further, enumerating
the vertices of Ti turns the latter into a random recursive tree. Our claim then follows
readily from Theorem 3.1.

Lemma 3.3 entails that for every i ∈ N, the i-th block Πi(t) of Π(t) has a weight in
the sense of (1.2), a.s. We write Xi(t) for the latter and set X(t) = (X1(t), X2(t), . . .). We
now investigate the process X = (X(t) : t ≥ 0).

We first draw our attention to the logarithms of the weights. Recall that for a
homogeneous fragmentation, the process of the asymptotic frequencies of the blocks
bears close connections with branching random walks. More precisely, the random point
process with atoms at the logarithm of the asymptotic frequencies and observed, say at
integer times, is a branching random walk; see [9] and references therein. This means
that at each step, each atom, say y, is replaced by a random cloud of atoms located at
y + z for z ∈ Z, independently of the other atoms, and where the random point process
Z has a fixed distribution which does not depend on y nor on the step. In the same vein,
we also point out that recently, a natural extension of homogeneous fragmentations,
called compensated fragmentations, has been constructed in [8], and bears a similar
connection with branching Lévy processes.

Our observations incite us to introduce

Yt =

∞∑
i=1

δlnXi(t), t ≥ 0.

Recall the characterization of Y (t) = lnX1(t) given in Theorem 3.1(iii).
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Theorem 3.4. The process with values in the space of point measure Y = (Yt : t ≥ 0)

is a branching Ornstein-Uhlenbeck process started from Y0 = δ0, in the sense that it is
Markovian and its transition probabilities can be described as follows: For every s, t ≥ 0,
the conditional law of Ys+t given Ys =

∑∞
i=1 δyi is given by the distribution of

∞∑
i=1

∞∑
j=1

δ
e−tyi+ζ

(i)
j

where the point measures

Z(i) =

∞∑
j=1

δ
ζ
(i)
j

are independent and each has the same law as Yt.
Furthermore, the mean intensity of Yt is determined by

E

(∫
eqyYt(dy)

)
=

(q − 1)

(e−tq − 1)

Γ(q)

Γ(e−tq)
, q > et.

Proof. Recall the proof of Theorem 3.1(ii) leading to the specific form of the semi-
group (3.3). The first claim then follows from the splitting property and Proposition 2.3.
Next, we deduce from Theorem 3.1(i) and Lemma 3.3 that

E

( ∞∑
i=1

Xq
i (t)

)
= E(X1(t)q) + E

( ∞∑
i=2

11{εi≤t}ρ
q
i (t)

)

=
Γ(q + 1)

Γ(e−tq + 1)
+ (1− e−t)Γ(q + 1)

∞∑
i=2

Γ(i)

Γ(e−tq + i)

= e−t
Γ(q + 1)

Γ(e−tq + 1)
+ (1− e−t)

Γ(q + 1)

Γ(e−tq)

∞∑
i=1

Γ(e−tq)Γ(i)

Γ(e−tq + i)
.

Using the functional equation of the gamma function for the first term, and the integral
representation of the beta function and Tonelli’s theorem for the second, we rewrite the
former quantity as

Γ(q)

Γ(e−tq)
+ (1− e−t)

Γ(q + 1)

Γ(e−tq)

∫ 1

0

xe−tq−1

( ∞∑
i=1

(1− x)i−1

)
dx

=
Γ(q)

Γ(e−tq)
+ (1− e−t)

qΓ(q)

Γ(e−tq)

∫ 1

0

xe−tq−2dx.

Provided that q > e−t, we finally obtain

E

(∫
eqyYt(dy)

)
= E

( ∞∑
i=1

Xq
i (t)

)
=

Γ(q)

Γ(e−tq)
+

q(1− e−t)Γ(q)

(e−tq − 1)Γ(e−tq)
, (3.4)

which yields our last statement.

The last display (3.4) entails that we can sort the weights Xi(t) in the decreasing
order, for every t ≥ 0. We write X↓(t) for the sequence obtained from X(t) by ranking
the weights Xi(t) decreasingly, where as usual elements are repeated according to their
multiplicity. For q > 0, let

`q↓ =

{
x = (x1, . . . ) : x1 ≥ x2 ≥ · · · ≥ 0, and

∞∑
i=1

xqi <∞

}
,
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endowed with the `q-distance. Similarly, denote by `∞↓ the space of ordered sequences
of positive reals, endowed with the `∞-distance. For the process X↓, we obtain the
following characterization.

Corollary 3.5. Let T ∈ (0,∞], and set q = eT (with the convention e∞ = ∞). Then
the process X↓ = (X↓(t) : t < T ) takes its values in `q↓ and is Markovian. More
specifically, its semigroup can be described as follows. For s, t ≥ 0 with s + t < T ,
the law of X↓(s+ t) conditioned on X↓(s) = (x1, . . . ) is given by the distribution of the

decreasing rearrangement of the collection of real numbers (xe−t

i x
(i)
j : i, j ∈ N), where

((x
(i)
1 , . . . ) : i ∈ N) is a sequence of independent random elements in `q↓, each of them

distributed as X↓(t).

Proof. The fact that X↓(t) ∈ `q↓ for t < T follows from (3.4). The specific form of the
semigroup follows again from Proposition 2.3 and from the arguments given in the proof
of Theorem 3.1(ii). See [6, Proposition 3.7] for a similar statement in the context of
self-similar fragmentations.

Next we give a description of the finite dimensional laws of X(t) = (X1(t), X2(t), . . .)

for t > 0 fixed. In this context, it is convenient to define two families of probability
distributions.

The first family is indexed by j ∈ N and t > 0, and is defined as

µj,t(k) =

(
k − 2

k − j − 1

)
(e−t)k−j−1(1− e−t)j , k ≥ j + 1.

Note that the shifted distribution µ̃j,t(k) = µj,t(k + 1), k ≥ j, is sometimes called the
negative binomial distribution with parameters j and 1 − e−t, that is the law of the
number of independent trials for j successes when the success probability is given by
1− e−t.

The second family is indexed by j ∈ N and k ≥ j, and can be described as follows. We
denote by θj,k the probability measure on the discrete simplex ∆k,j = {(k1, . . . , kj) ∈ Nj :

k1 + · · ·+ kj = k}, such that θj,k (k1, . . . , kj) is the probability that on a random recursive
tree of size k (that is on a random tree distributed as T|[k]), after j−1 of its edges chosen
uniformly at random have been removed, the sequence of the sizes of the j subtrees,
ordered according to the label of their root vertex, is given by (k1, . . . , kj).

Remark 3.6. The distribution θj,k is equal to δk for j = 1. For j = 2, Meir and Moon [17]
found the expression

θ2,k(k1, k2) =
k

k2(k2 + 1)(k − 1)
, k1, k2 ∈ N with k1 + k2 = k,

with θ2,k(k1, k2) = 0 for all other pairs (k1, k2). Generalizing the proof of this formula
given in [17] to higher j, we find (k ≥ j ≥ 3 and k1 + · · ·+ kj = k)

θj,k(k1, k2, . . . , kj) =
(k1 − 1)!(k2 − 1)! · · · (kj − 1)!

(k − 1)!(k − 1) · · · (k − (j − 1))

k−kj∑
`j=j−1

(
k − `j
kj

)

×
(k−kj−kj−1)∧(`j−1)∑

`j−1=j−2

(
k − kj − `j−1

kj−1

)
× · · · ×

(k−
∑j

i=2 ki)∧(`3−1)∑
`2=1

(
k −

∑j
i=3 ki − `2
k2

)
.

Proposition 3.7. Let j ∈ N, q1, . . . , qj+1 ≥ 0, and set q = q1 + · · · + qj+1, kj+1 = 1. The
Mellin transform of the vector (X1(t), . . . , Xj+1(t)) for fixed t > 0 is given by

E
(
Xq1

1 (t) · · ·Xqj+1

j+1 (t)
)

=

∞∑
k=j+1

µj,t(k)
∑

k1,...,kj≥1,

k1+···+kj=k−1

θj,k−1 (k1, . . . , kj)
Γ(k)

Γ(qe−t + k)

j+1∏
i=1

Γ(qi + ki)

Γ(ki)
.
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Remark 3.8. By plugging in the definition of µj,t(k), one checks that the right hand side
is finite.

Proof. Fix t > 0, and set p = e−t. For ease of notation, we write Πi and Xi instead of
Πi(t) and Xi(t). Furthermore, fix an integer j ∈ N and numbers k1, . . . , kj ∈ N. For
convenience, set k = k1 + · · ·+ kj + kj+1, with kj+1 = 1. We first work conditionally on
the event

Ak1,...,kj =
{

min Πj+1 = k, #(Π1 ∩ [k]) = k1, . . . ,#(Πj ∩ [k]) = kj
}
.

We shall adapt the first proof of Theorem 3.1(i). Here, we consider a multi-type Yule
process starting from k individuals in total such that ki of them are of type i, for each
i = 1, . . . , j + 1. The individuals reproduce independently of each other at unit rate,
and each child individual adopts the type of its parent. Then, if Z(s) stands for the
total number of individuals at time s, we have that lims→∞ e−sZ(s) = γ(k) almost surely,
where γ(k) is distributed as the sum of k standard exponentials, i.e. follows the gamma
law with parameters (k, 1). Now assume again that each new-born child is killed with
probability 1− p ∈ (0, 1), independently of each other. Writing Z(i,p)(s) for the size of the
population of type i at time s (with killing), we obtain

lim
s→∞

e−psZ(i,p)(s) = γ(i,p)(ki), i = 1, . . . , j + 1,

where the γ(i,p)(ki) are independent gamma(ki, 1) random variables (they are however
clearly correlated to the asymptotic total population size γ(k)). From the arguments
given in the first proof of Theorem 3.1(i) it should be plain that conditionally on the event
Ak1,...,kj , we have for the weights Xi the representation

Xi =
γ(i,p)(ki)

γ(k)p
, i = 1, . . . , j + 1,

and the Xi are independent of γ(k). Now let q1, . . . , qj+1 ≥ 0 and put q = q1 + · · ·+ qj+1.
Using the expression for the Xi and independence, we calculate

E (γ(k)qp)E
(
Xq1

1 · · ·X
qj+1

j+1 | Ak1,...,kj
)

=

j+1∏
i=1

Γ(qi + ki)

Γ(ki)
. (3.5)

Therefore, again with kj+1 = 1,

E
(
Xq1

1 · · ·X
qj+1

j+1

)
=

∞∑
k=j+1

Γ(k)

Γ(qp+ k)

∑
k1,...,kj≥1,

k1+···+kj=k−1

j+1∏
i=1

Γ(qi + ki)

Γ(ki)
P
(
Ak1,...,kj

)
.

With k = k1 + · · ·+ kj+1 as above, we express the probability of Ak1,...,kj as

P
(
Ak1,...,kj

)
= P (#(Π1 ∩ [k]) = k1, . . . ,#(Πj ∩ [k]) = kj | min Πj+1 = k)P (min Πj+1 = k) .

By induction on j we easily deduce that min Πj+1 − 1 is distributed as the sum of j
independent geometric random variables with success probability 1− p, i.e. min Πj+1 − 1

counts the number of trials for j successes, so that P (min Πj+1 = k) = µj,t(k). Moreover,
it follows from the very definition of the blocks Πi and the fact that the exponentials
attached to the edges of T|[k] are i.i.d. that

P (#(Π1 ∩ [k]) = k1, . . . ,#(Πj ∩ [k]) = kj | min Πj+1 = k) = θj,k−1(k1, . . . , kj).

This proves the proposition.
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We finally look closer at the joint moments of X1(t) and X2(t) when t tends to zero.
We observe θ1,k = δk and µ1,t(k) = (e−t)k−2(1− e−t), so that

E (Xq1
1 (t)Xq2

2 (t)) = (1− e−t)Γ(q2 + 1)

∞∑
k=2

(k − 1)(e−t)k−2 Γ(q1 + k − 1)

Γ((q1 + q2)e−t + k)
.

Now assume q2 > 1. From the last display we get

lim
t→0+

1

t
E (Xq1

1 (t)Xq2
2 (t)) =

∞∑
k=1

k
Γ(q1 + k)Γ(q2 + 1)

Γ(q1 + q2 + k + 1)

=

∞∑
k=1

k

∫ 1

0

(1− x)q1+k−1xq2dx =

∫ 1

0

(1− x)q1xq2−2dx,

which one could have already guessed from Proposition 2.6 (choose f(1− x, x) = xq1xq2

there).

3.3 Asymptotic behaviors

We shall finally present some asymptotic properties of the process X of the weights.
To start with, we consider the large time behavior.

Corollary 3.9. As t→∞, there is the weak convergence

(Xi(t) : i ∈ N) =⇒ (Wi : i ∈ N),

where on the right-hand side, the Wi are i.i.d. standard exponential variables.

Remark 3.10. This result is a little bit surprising, as obviously Π(∞) is the partition
into singletons. That is, Πi(∞) is reduced to {i} and hence has weight 1 if we apply (1.2)
for t =∞. In other words, the limits n→∞ and t→∞ may not be interchanged.

Proof. Fix j ∈ N arbitrarily and consider the event A(t) = {min Πj+1(t) = j + 1}. Recall
from the proof of Proposition 3.7 that P(A(t)) = µj,t(j + 1). Further, on the event A(t),
we have also Πi(t) ∩ [j + 1] = {i} for all 1 ≤ i ≤ j + 1, that is A(t) = A1,...,1, again in the
notation of the proof of Proposition 3.7. Now take q1, . . . , qj+1 ≥ 0. Applying (3.5), we get

lim
t→∞

E
(
Xq1

1 (t) · · ·Xqj+1

j+1 (t) | A(t)
)

=

j+1∏
i=1

Γ(qi + 1),

noting that the additional factor in (3.5) converges to 1 as t → ∞. Using additionally
that P(A(t))→ 1 as t→∞, the last display entails that (X1(t), . . . , Xj+1(t)) converge in
distribution as t→∞ towards a sequence of j + 1 independent exponentially distributed
random variables.

We next consider for t > 0 fixed the behavior of Xn(t) as n→∞.

Corollary 3.11. Let t > 0. As n→∞, there is the weak convergence

ne−t

Xn(t) =⇒ V e−t

X1(t),

where V denotes an exponential random variable of parameter (1 − e−t)−1 which is
independent of X1(t).

Proof. In the notation of Lemma 3.3, we have Xn(t) = ρi(n,t)(t), where (again with the
convention ε1 = 0)

i(n, t) = min

{
j ≥ 1 :

j∑
i=1

11{εi≤t} = n

}
.
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From Lemma 3.3 we know that Xn(t) = βe−t

i(n,t)X1(t) in distribution, where i(n, t) and

βi(n,t) are both independent of X1(t). By the law of large numbers, i(n, t) ∼ n(1− e−t)−1

almost surely. Writing
βi(n,t) =

(
i(n, t)βi(n,t)

)
i(n, t)−1

and using the fact that kβk converges in distribution to a standard exponential random
variable as k →∞, the claim follows.

Let us now look at the behavior of X(t) when t→ 0+. From (3.2) we already know
that X1(t)→ 1 in probability as t→ 0+. The weights Xi(t) with i ≥ 2 converge uniformly
to zero:

Corollary 3.12. As t→ 0+, there is the convergence in probability

sup
i≥2

Xi(t) −→ 0.

Proof. Let 0 < ε < 1. By Lemma 3.3, with βi denoting a beta(1, i− 1) random variable,

P (Xi(t) ≥ ε for some i ≥ 2) ≤ (1− e−t)

∞∑
i=2

P
(
βiX

et

1 (t) ≥ εet
)
,

where 1 − e−t is the probability of the event {εi ≤ t}. Using independence and the
expression for the moments of X1(t) from Theorem 2.2, we obtain for t ≥ 0 such that
et ≤ 2, E(βiX

et

1 (t)) ≤ 2/i and Var(βiX
et

1 (t)) ≤ 24/i2. Therefore, for such t and all i ≥ 2,
we obtain by Chebycheff’s inequality

P
(∣∣βiXet

1 (t)− E(βiX
et

1 (t))
∣∣ ≥ εet − 2/i

)
≤ C

i2

for some constant C depending only on ε. This shows

P (Xi(t) ≥ ε for some i ≥ 2) ≤ C(1− e−t)

∞∑
i=2

1

i2
≤ C ′t

for some C ′ > 0 independent of t.

3.4 Application to cluster sizes of percolation

As it should be plain from the introduction, the sets of vertices

C
(n)
i (t) = {j ≤ n : j ∈ Πi(t)}

form the percolation clusters of a Bernoulli bond percolation with parameter p = e−t

on a random recursive tree on the vertexx set {1, . . . , n}. Our results of Section 3 can
therefore be understood as results on the asymptotic sizes of these clusters when n

tends to infinity. For example, Theorem 3.1(i) determines the asymptotic size of the root
cluster.

Cluster sizes of random recursive trees were already studied in [7] when the percola-
tion parameter p satisfies p = p(n) = 1− s/ lnn+ o(1/ lnn) for s > 0 fixed. The analysis
was extended in [3] to all regimes p(n) → 1. It shows that in these regimes, the root
cluster containing 1 has always the asymptotic size ∼ np(n), while the next largest cluster
sizes, normalized by a factor (1 − p(n))−1n−p(n), are in the limit given by the (ranked)
atoms of a Poisson random measure on (0,∞) with intensity a−2da.

The regime of constant parameter p = e−t considered here deserves the name
“critical”, since in this regime, the root cluster and the next largest clusters have the
same order of magnitude, namely np. This is already apparent from Lemma 3.3. We can
say more:
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Corollary 3.13.

lim
t↑∞

lim inf
n→∞

P
(

#C
(n)
i (t) > #C

(n)
1 (t) for some i ≥ 2

)
= 1.

Proof. Given ε > 0 and a sequence (Wi : i ∈ N) of i.i.d. standard exponentials, we can
find k ≥ 2 such that

P (Wi > W1 for some i = 2, . . . , k) ≥ 1− ε/2.

Also, since n−e
−t

#C
(n)
i (t)→ Xi(t) almost surely as n tends to infinity by Lemma 3.3,

lim inf
n→∞

P
(

#C
(n)
i (t) > #C

(n)
1 (t) for some i ≥ 2

)
≥ P (Xi(t) > X1(t) for some i = 2, . . . , k) .

Together with the next to last display, Corollary 3.9 then shows that for t sufficiently
large,

lim inf
n→∞

P
(

#C
(n)
i (t) > #C

(n)
1 (t) for some i ≥ 2

)
≥ 1− ε.
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