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with infinite variance degrees: unequal speeds
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Abstract

We study competition of two spreading colors starting from single sources on the con-
figuration model with i.i.d. degrees following a power-law distribution with exponent
τ ∈ (2, 3). In this model two colors spread with a fixed but not necessarily equal speed
on the unweighted random graph. We show that if the speeds are not equal, then the
faster color paints almost all vertices, while the slower color can paint only a random
subpolynomial fraction of the vertices. We investigate the case when the speeds are
equal and typical distances in a follow-up paper.
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1 Introduction and results

1.1 The model and the main result

Let us consider the configuration model CMn(d) on n vertices, where the degrees
Dv, v ∈ {1, 2, . . . , n} := [n] are i.i.d. with a power-law tail distribution. That is, given the
number of vertices n, to each vertex we assign a random number of half-edges drawn
independently from a distribution F and the half-edges are then paired randomly to form
edges. In case the total number of half-edges Ln :=

∑
v∈[n]Dv is odd, then we drop one

half-edge from Dn (see below for more details). We assume that

c1
xτ−1

≤ 1− F (x) = P(D > x) ≤ C1

xτ−1
, (1.1)

with τ ∈ (2, 3), and all edges have weight 1. We assume P(D ≥ 2) = 1 guaranteeing that
the graph has almost surely a unique connected component of size n(1− o(1)) see e.g.
[27, Theorem 10.1] or [35, 36].
We further denote the mass function of −1 plus the size-biased version of D by

f∗j :=
(j + 1)P(D = j + 1)

E[D]
, j ≥ 0. (1.2)
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Competition on Configuration model for τ ∈ (2, 3)

We write F ∗(x) for the distribution function F ∗(x) =
∑

0<j≤x f
∗
j .

Pick two vertices R0 (red source) and B0 (blue source) uniformly at random in [n],
and consider these as two sources of spreading infections. Each infection spreads
deterministically on the graph: for color blue it takes λ time units to pass through an
edge, while color red needs 1 unit of time for that. Without loss of generality we can
assume that λ > 1. Each vertex is painted the color of the infection that reaches it
first, keeps its color forever, and starts coloring the outgoing edges at the speed of its
color. When the two colors reach a vertex at the same time, the vertex gets color red
or blue with an arbitrary adapted rule, i.e. a rule that does not depend on the future.
An example of such a rule is when the vertex is painted red or blue with probability 1/2

each, independently of everything else. Another natural adapted rule is that a vertex,
when the two colours arrive at it at the same time, is painted red or blue with probability
proportional to the number of previously red and blue-colored neighbors of the vertex.
Let Rt := Rt(n) and Bt := Bt(n) denote the set of red and blue vertices occupied up
to time t, respectively and let Rt, Bt denote the sizes of these sets. In particular, let
us denote by R∞ := R∞(n), B∞ := B∞(n) the number of vertices eventually occupied
by red and blue, respectively. We emphasise that the randomness in this model is
only arising from the structure or topology of the graph and the uniform choice of the
source vertices for the two colors; once these are settled, the dynamics is completely
deterministic.

Roughly speaking, the first result of this paper, Theorem 1.2 below, tells us that
in the quenched setting, i.e., for almost all realizations of the graph CMn(d) and for
almost all initial vertices R0,B0, the faster color wins, that is, it gets n − o(n) many
vertices. Furthermore, the number of vertices the slower color paints is subpolynomial in
n. More precisely, blue paints whp exp{(log n)2/(λ+1)Gn(Y (n)

r , Y (n)

b )} many vertices, i.e.,
a stretched exponential in log n with exponent 2/(λ+ 1) < 1, and where the coefficient
Gn(Y (n)

r , Y (n)

b ) is a random function that depends on n, λ, τ , and two random variables
Y (n)
r and Y (n)

b , that can intuitively be interpreted as some measure of ‘how good’ the
neighbourhoods of the source vertices are: the faster the local neighbourhoods grow,
the larger these variables are.1 Moreover, Gn(Y (n)

r , Y (n)

b ) does not converge: it has an
oscillatory part that exhibits ‘log log-periodicity’. We can ‘filter out’ these oscillations
by introducing another function Hn(Y (n)

r , Y (n)

b ) that oscillates and is tight, and then
Gn(Y (n)

r , Y (n)

b )/Hn(Y (n)
r , Y (n)

b ) is a deterministic function of Y (n)
r , Y (n)

b that converges, see
the statement of Theorem 1.2 below.

The other result, Theorem 1.4, shows that the degree of the maximal-degree vertex
that blue ever occupies obeys asymptotic behaviour similar to blue’s total number, with
a strictly smaller coefficient in the exponent, and the same log log-periodicity. This
phenomenon is due to integer part issues coming from the fact that the edge weights
are concentrated on a lattice.

Notation

We write [n] for the set of integers {1, 2, . . . , n}. We use the same notation and add a
superscript (r), (b) to corresponding random variables, sets or other quantities belonging
to the red and blue processes, respectively. We write E(CMn(d)) for the set of edges.
For any set of vertices S ⊂ [n], we write N(S) for the set of their neighbors, i.e.,

N(S) = {y ∈ [n] : ∃x ∈ S, (x, y) ∈ E(CMn(d))}. (1.3)

1More precisely, these variables appear as the double exponential growth rate function of the local neigh-
borhood of the two starting vertices.
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Competition on Configuration model for τ ∈ (2, 3)

For any event A, Pn(A) := P(A|D1, D2, . . . , Dn). As usual, we write i.i.d. for independent
and identically distributed, lhs and rhs for left-hand side and right-hand side. We write
bxc, dxe for the lower and upper integer part of x ∈ R, and {x} for the fractional part
of x ∈ R. Slightly misusing the notation, we use curly brackets around set elements,
events and exponents as well. We say that a sequence of events En occurs with high
probability (whp) when limn→∞P(En) = 1. In this paper, constants are typically denoted
by c in lower and C in upper bounds (with possible indices), and their precise values
might change even along lines. Typically, all the whp-events hold whp under the event
{Ln ∈ [1/2E[D]n, 2E[D]n]}.

Results

To be able to state the main theorem precisely, let us define the following random
variables:

Definition 1.1. Let Z(r)

k , Z(b)

k denote the number of individuals in the kth generation of
two independent copies of a Galton-Watson process described as follows: the size of the
first generation has distribution F satisfying (1.1), and all the further generations have
offspring distribution F ∗ from (1.2). Then, for a fixed but small ρ > 0 let us define

Y (n)

r := (τ − 2)t(n
ρ) log(Z(r)

t(nρ)), Y (n)

b := (τ − 2)bt(n
ρ)/λc log(Z(b)

bt(nρ)/λc), (1.4)

where t(nρ) = infk{Z(r)

k ≥ nρ}. Let us further introduce

Yr := lim
k→∞

(τ − 2)k log(Z(r)

k ), Yb := lim
k→∞

(τ − 2)k log(Z(b)

k ). (1.5)

In Section 2 below we will see that these quantities are well defined and that

(Y (n)
r , Y (n)

b )
d−→ (Yr, Yb) from (1.5) as n → ∞. With this notation in mind, we have

the following theorem:

Theorem 1.2. Fix λ > 1. Then, limn→∞R∞/n = 1 whp. Further, there exists a bounded
and strictly positive random function Hn(Y (n)

r , Y (n)

b ) such that as n→∞

log(B∞)

(log n)
2

λ+1Hn(Y (n)
r , Y (n)

b )

d−→
(
Y λb
Yr

) 1
λ+1

. (1.6)

We identify Hn(Y (n)
r , Y (n)

b ) in (7.17) as a deterministic, oscillating (non-convergent)
function of τ, λ, n, Y (n)

r , Y (n)

b . Hn(Y (n)
r , Y (n)

b ) has the uniform (non-tight) bounds

(
(τ − 2)

(τ − 1)2

(3− τ)

1− (τ − 2)λ

) 1
λ+1

< Hn(Y (n)

r , Y (n)

b ) < (τ − 2)−2 · 4− τ
1− (τ − 2)λ

.

Remark 1.3. We also give accompanying tight bounds on Hn(Y (n)
r , Y (n)

b ), see (7.18).

Let us denote the degree of the maximal degree vertex eventually occupied by blue

D(b,n)

max (∞) := max
i∈B∞

Di. (1.7)

As a side result of the proof of Theorem 1.2, we get the following theorem:

Theorem 1.4. Fix λ > 1. There exists a bounded and strictly positive random function
Hmax
n (Y (n)

r , Y (n)

b ) defined below in (6.10), such that as n→∞

logD(b,n)
max (∞)

(log n)
2

λ+1 Hmax
n (Y (n)

r , Y (n)

b )

d−→
(
Y λb
Yr

) 1
λ+1

(1.8)
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Competition on Configuration model for τ ∈ (2, 3)

Further, Hmax
n (Y (n)

r , Y (n)

b ) is stochastically dominated by Hn(Y (n)
r , Y (n)

b ) whp, and

(
(τ − 2)2+λ

(τ − 1)2

) 1
λ+1

≤ Hmax
n (Y (n)

r , Y (n)

b ) ≤
(
τ − 2

4

) 1
λ+1

. (1.9)

Remark 1.5. We emphasise that these results are valid for any adapted decision rule
when the two colors jump at the same time to a vertex. In case λ is irrational, clearly,
this rule will never be used. If λ is rational, then the normalisation random variables
Hn(Y (n)

r , Y (n)

b ), Hmax
n (Y (n)

r , Y (n)

b ) depend on the rule – they are slightly different if the
rule is so that these vertices are always painted red, from the case when there is a
positive chance that these vertices are painted blue, but the upper and lower bounds on
Hn(Y (n)

r , Y (n)

b ), Hmax
n (Y (n)

r , Y (n)

b ) remain the same. On the other hand, when λ = 1, this
rule will play an important role in the outcome. This case is more complex and can be
found in the follow-up paper [29].

Remark 1.6 (More than two colors). If there are a finite number of colors with edge
passage-times 1=λ1 < λ2 ≤ · · · ≤ λk, then the statements of Theorems 1.2 and 1.4 stay
valid for each λi, 2 ≤ i ≤ k, with limit variables (Y λii /Y1)1/(λi+1) on the right hand side
of (1.6), where Yi are i.i.d. copies of Y . The reason for this is that with high probability
each slower color only meets the fastest color and never meets the other slow ones.
That is, the clusters of slower colors are separated from each other by the cluster of the
fastest color.

1.2 Related work and discussion

First we give a (non-complete) overview of the literature on competition on different
graph models. Then we mention some more applied results.

In a seminal paper [24] Häggström and Pemantle introduced competition on the grid
Zd. The model is called the two-type Richardson’s model, and it describes the dynamics
of two (red and blue) infections with single source vertices v0, v1 ∈ Zd that compete to
conquer the grid Zd. In this continuous-time model, a vertex of Zd gets a given color
with rate proportional to the number of infected neighbours of that color; then, once
a vertex is infected, it keeps its color forever. Note that the evolution of a single color
without the presence of the other color has independent exponential passage times
across edges, and a vertex gets infected at the time that equals the minimal length
path from the source to the vertex. Hence, a single color process is often called first
passage percolation in the literature. Multiple colours then lead competing first passage
percolation.

For two colors, we have two possible evolution scenarios: in the first, one of the
growing clusters completely blocks the growth of the other color – by surrounding it –
and then it infects all the remaining healthy vertices. In the second scenario the two
clusters continue to grow unboundedly forever: this is called coexistence. The important
question is: does coexistence occur with positive probability? Häggström and Pemantle
[24] proved that this is the case for the Z2 grid with i.i.d. exponential passage times.
Later this result was extended by Garet and Marchand [21] for Zd, d ≥ 2 for a vast
class of passage time distributions under mild hypothesis. For further literature on the
Richardson model see [14, 15, 22, 25, 26].

Recently, a noticeable scientific interest arose in understanding the structure of
large but finite networks and the behaviour of spreading processes on these networks.
Typically, results on these topics are called first passage percolation, see e.g. [6, 7, 8].
It is then natural to ask what happens when one considers competition of multiple
spreading processes on these networks. When studying competitive spreading, one
might also gain a more detailed understanding of the structure of these graphs.
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Competition on Configuration model for τ ∈ (2, 3)

The idea of competitive spreading on finite random graph sequences raises several
questions. First and foremost, due to the finite size of the graphs the main questions
about these models must be rephrased, since infinite growth can never happen. Thus,
the definition of coexistence had to be modified in this setting. Consider two competing
colors on a sequence of random graphs: is there an asymptotic coexistence of the two
colors? That is, is it possible that both colors paint a positive proportion of vertices with
positive probability, as the size of the graph tends to infinity? If this is not the case then
can we determine the number of eventually occupied vertices for both colors in terms
of the size of the graphs? What happens if we modify the passage dynamics so that the
two infections have different rates of growth λ1 and λ2? Here we give a (non-complete)
overview of the existing literature on these topics for different random graph models.

Antunovic, Dekel, Mossel and Peres [2] give a detailed analysis of competition on
random regular graphs (degree at least 3) on n vertices with i.i.d. exponential edge
weights. They analyse the number of eventually occupied vertices by both colors as a
function of the speeds λ1, λ2 and of the initial number of infected vertices, that might
even grow with n. They show that asymptotically almost surely the color with higher
rate occupies n− o(n) vertices and the slower color paints approximately nβ vertices for
some deterministic function β(λ1, λ2). Their result include asymptotic coexistence for
equal speeds λ1 = λ2 for infections starting from single sources.

Next, van der Hofstad and Deijfen [16] investigate competition with exponential
spreading times on the configuration model with i.i.d. degrees arising from a power-
law distribution with exponent τ ∈ (2, 3). They prove that even if the speeds are not
equal, the ‘winner’ color is random, i.e. the color with slower rate can still take most
of the graph. Moreover, the winning color paints all but a finite number of vertices.
The randomness of the ‘winner’ color comes from the fact that the underlying Markov
branching process explodes in finite time, and the slower color has a positive chance to
explode earlier than the faster color.

A slightly different, discrete time competition model is analysed by Antunović, Mossel
and Rácz in [3]. There, the underlying random graph is the growing linear preferential
attachment model, and vertices pick their color upon entering the network randomly
from the colors of the vertices they attach to. The probability of picking a color is a
(possibly linear) function of the number of neighbors with the given color, called the
coloring function. The authors analyse coexistence of colors in terms of the properties of
the coloring function. Note that in this case the graph has power law τ = 3. The proofs
are based on a comparison to Pólya urns.

Finally, this paper considers competition on the configuration model with i.i.d. power-
law degrees with exponent τ ∈ (2, 3), but with deterministic unit edge-weights. Theorem
1.2 shows that the fact that the edge weights have a support separated from zero entirely
changes the picture observed in [16]: when the speeds are unequal, the faster color
always paints n− o(n) vertices, and the slower color can paint only subpolynomial many
vertices.

If the speeds are equal, then the phenomena is richer ([29]): as a side result of the
analysis of the λ = 1 case, we obtain precise distributional limits of the second order
terms in typical distances in the graph, as in [28]. Further, for the adapted tie-breaking
rule of flipping an independent coin every time with some fixed positive probability, we
show there that the following phenomena occurs: when the random variables Y (n)

r , Y (n)

b

are far enough from each other, i.e., one of the source vertices has a much faster growing
local neighborhood than the other, then, the one with the better neighborhood occupies
almost every vertex in the graph, while the loser color can paint polynomially many
vertices with a random exponent that is less than 1. However, when the two variables
are close to each other (within a factor of τ − 2 of each other), then there is coexistence
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Competition on Configuration model for τ ∈ (2, 3)

and both colors can occupy asymptotically linearly many vertices. Due to the length of
the analysis of this case and to highlight the richer phenomena that comes with it, we
decided to put the equal-speed case in a subsequent paper, see [29].

From the more applied perspective, competition on networks is present in many
aspects of our life. To start with an example, in marketing, companies compete for
customers who are connected via their acquaintance network, and they provide word-
of-mouth recommendations and opinions about the services of the different companies,
see [19, 20]. For economic studies on the importance of word-of-mouth, see e.g. [4,
11, 18]. Recently, ‘word-of-mouth’ recommendations happen also on large scale in
different social online media such as Facebook and Twitter. For a survey on how online
feedback mechanisms differ from original word-of-mouth recommendations and what
challenges they pose, see [17]. The paper [33] analyses recommendation-based viral
marketing on social media, where they use viral marketing also to identify communities
of online networks. For recent economic studies of the importance of word-of-mouth
recommendations, see e.g. [12, 32].

In epidemiology, viruses and bacterial infections spread through populations. In this
setting, competition can happen among different strains of a pathogen, see e.g. [34] for a
study under what conditions coexistence can occur. In the physics community, [1, 31, 37]
study the effect of the underlying network on co-existence of competing viruses.

The epidemiological analogies have been further exploited by [38], where they study
a variation of susceptible-infectious-susceptible epidemic spread, in which two epidemics
are immune to each other, and the authors show that one of them completely takes over
(similarly as in [16]). Then, [5] studies how partial immunity can cause coexistence in
the previous model.

Discussion and open problems

The analysis of competition on the configuration model is far from complete. One
can for instance ask about different spreading dynamics (edge lengths) and different
power-law exponents. Further, one can ask what happens if the colors have entirely
different passage time distributions (e.g. one is explosive and the other is not), or what
happens if one of the colours have a main advantage by starting from one or many initial
vertices of very high degree. These can correspond to e.g. competition advantage (early
birds) of different products on the network or to different marketing strategies. Here we
list some conjectures for uniformly picked single vertex sources of infections on CMn(d)

with i.i.d. power law degrees of distribution D with exponent τ . We further assume
that the passage times through edges can be represented as i.i.d. random variables,
from distribution Ir, Ib for red and blue, respectively. For a more thorough list of open
problems, see [29].

Competition problems for infinite variance degree graphs, τ ∈ (2, 3):
A. If the spreading dynamics are so that the underlying branching processes defined

by D, Ir and D, Ib are both explosive, then we conjecture that there is never coexistence
and either of the two colors can win. This is one of our ongoing research projects.

B. If the underlying branching process for one color has explosive spreading while
the other one has not, than we conjecture that the explosive one always wins. This case
could be even relaxed to show that this is still true whenever the non-explosive color
starts from some function f(n) = o(nε) many half-edges in total, for any ε > 0.

C. If both underlying branching processes are non-explosive, and further assume

Ir
d
= λIb, then we guess that there is no coexistence if λ 6= 1 (the fastest color wins). We

suspect that the number of vertices the ‘loser’ color paints depends sensitively on the
weight distribution. The outcome in the λ = 1 case might sensitively depend on the
weight distribution.
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Competition problems for finite variance degree graphs, τ > 3:
D. We suspect that if the transmission times Ir, Ib both have continuous distribution,

and the branching process approximations of them have different Malthusian parameters,
then there is no coexistence, and the number of vertices painted by the slower color is
nβ for some β ∈ (0, 1). When the Malthusian parameters agree, we suspect that there is
asymptotic co-existence.

Competition problems for the critical power-law exponent, τ = 3:
E. In this case P(D > x) = L(x)/x2, with L(x) a slowly varying function at infinity. We

suspect that L(x) and the transmission distributions Ir, Ib jointly determine into which
category among A, C, D above the spreading of the colours belongs to.

1.3 Overview of the proof and structure of the paper

The heuristic idea of the proof is as follows: we can start growing the two clusters
simultaneously. The growth has six phases, each corresponding to a section below,
described as follows:

(i) Branching process phase.
At first, whp, the two colored clusters do not meet and the growth of both clusters
is characterised by the growth rate of the branching process (BP) to which they can
be coupled. This we call the branching process phase. The length of this phase is
of order log log n/| log(τ − 2)|+O(1). Then, the faster color (red) reaches the area
where the coupling fails to remain valid: Rt reaches size n% for some % > 0.

(ii) Mountain climbing phase.
At this point, we start making use of the structure of high-degree vertices in the
graph: due to high connectivity, the subgraph formed by high-degree vertices
can be represented as a ‘mountain’ where the height function is linear in the
log log-degree. Level sets of this mountain represent vertices with degree of the
same order of magnitude, with the maximal degree in the graph at the top of the
mountain. We partition this mountain into layers – that is, constant length intervals
on a log log-scale – and we show that every vertex in a given layer has at least one
neighbour in one layer higher. As a result, we show the existence of a path for red
through these layers of vertices of higher and higher degree such that the path
reaches some vertex with degree larger than n(τ−2)/(τ−1) at the end. This we call
the mountain climbing phase. The climbing phase lasts only finitely many steps,
but the constants turns out to be important, so we perform a rather careful analysis.
We denote the total time of the branching process phase and the climbing phase for
red by Tr.

(iii) Crossing the peak of the mountain.
We handle how the color red goes through the peak of the ‘degree-mountain’
very carefully. Vertices of degree much larger than

√
n form a subgraph that is

a complete graph, hence it takes only one step to paint all the very high degree
vertices, but the degree of vertices to which the faster color arrives at the end of
this single step is delicately depending on the initial random growth rates of the
branching processes and their integer and fractional parts.

(iv) Red avalanche from the peak.
After crossing the mountain, red starts sloping down to layers of vertices of smaller
and smaller degree. Since it is still true that each vertex in a layer is connected to
at least one vertex in one layer higher, this means that in each additional step, red
paints all the vertices in one layer lower. We call this the avalanche-phase of red.
(One can imagine this as red being a very careless climber who – after crossing the
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Competition on Configuration model for τ ∈ (2, 3)

peak of a mountain – steps in the snow with a bucket of red paint and starts a huge
painted avalanche.)

(v) At the collision time.
Now we turn our attention to the blue climber who does essentially the same as red
except that it is slower: after getting out of its local neighbourhood corresponding
to the branching process, blue starts its mountain climbing phase as well. Since it
is slower, whp it will only reach some low layer of the degree-mountain when red
starts its avalanche. With this picture in hand, we can identify the maximal degree
vertex eventually painted blue - this is the vertex in the highest layer blue can still
reach. The idea of the proof is to determine the value ` such that during the total
time Tr + `, blue has climbed up to the same layer as the red avalanche has sloped
down to. Since red occupies every vertex in a layer it reaches, it will necessarily
bump into blue, who whp reaches only some vertices in that layer. This determines
the time when red starts successfully blocking blue.

(vi) Competing with the avalanche.
After the meeting time Tr + `, blue cannot go higher up on the mountain since red
already occupies every vertex having degree higher than the maximal degree of
blue. Note that at this time most of the graph is still not reached by any color: we
need to estimate the number of vertices that blue can still reach before the red
avalanche closes up around the blue cluster. This is done in two steps: heuristically,
every vertex that is close enough to a blue half-edge occupied at or before Tr + `

has a high chance to become blue later. Hence, first we calculate the size of the
‘optional cluster of blue’, i.e., we calculate the size of the k-neighborhood of blue
half-edges via path counting methods. The size of the optional cluster is convergent
if k →∞: due to the presence of the red avalanche, the degrees in the blue paths
get more and more restricted and finally the red avalanche reaches constant order
vertices and then the procedure stops.

It can still happen that some vertices in the optional cluster of blue are occupied
by red simply because they are ‘accidentally’ also close to some red vertex. Thus,
in the second step we estimate the size of the intersection between the optional
cluster of blue and the red cluster. The two steps together provide a matching
upper and lower bound for the number of vertices that blue occupies after the
intersection. This phase has a non-negligible impact on the order of magnitude of
vertices painted blue since the constant Hn in the denominator of (1.6) is influenced
by this last phase.

2 The branching process phase

First we describe the exploration process of the local neighbourhood of a given vertex
in order to relate it to a branching process.

The configuration model CMn(d) (introduced in [10], for more see [9, 27]) on n

vertices with i.i.d. degree distribution D can be briefly described as follows: for each
vertex i ∈ [n] we assign an i.i.d. random variable Di ∼ D, and attach Di half-edges to
that vertex. If the total degree Ln =

∑n
i=1Di is odd, then we add an extra half-edge to

the vertex n. Then we number the half-edges in an arbitrary way from 1 to Ln, and start
pairing them uniformly at random, i.e. we pick an arbitrary unpaired half-edge and pair it
to a uniformly chosen other unpaired half-edge to form an edge. Once paired, we remove
them from the set of unpaired half-edges and continue the procedure until all half-edges
are paired. We call the resulting multi-graph CMn(d). Since the choice of the half-edge
to be paired is arbitrary, we can start from any set of vertices, and explore their cluster
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simultaneously with the construction of the graph. We call this procedure the exploration
process, which is a version of a Breadth First Search Algorithm on the random graph
CMn(d). We describe the exploration process in more detail for the case when the initial
set is a single uniformly chosen vertex v ∈ [n], and relate it to a corresponding branching
process as follows.

In each step of the exploration process, each vertex belongs to exactly one of three
sets: it can be active (A), explored (E) or unexplored (U). Initially E0 = ∅ and all vertices
except v are in U0. We start setting the status of the initial vertex v to active: A0 = {v},
and we write Ai for the set of active vertices after the ith step of the exploration. In
each step we pick a vertex vi+1 from Ai (we do this first-in-first-out way, i.e., we keep
track of when a vertex enters the set A) and do three things: remove vi+1 from Ai; add
it to the explored vertices Ei; and put all its unexplored neighbors in the active set of
vertices, i.e.,

Ai+1 := Ai \ {vi+1} ∪ {N(vi+1) ∩ Ui},
Ui+1 := Ui \N(vi+1),

where N(vi+1) denotes the neighbors of vi+1 in CMn(d). The explored vertices form the
sequence Ei = {v = v1, v2, . . . , vi}.

Let Df
i stand for the forward-degree of the vertex vi in the exploration process,

so that Df
i = |N(vi) ∩ Ui|. We aim to determine the distribution of Df

i . For this we
note that in the construction of the random graph CMn(d), an arbitrary half-edge is
chosen and paired to a uniformly chosen unpaired half-edge. Hence, we can do the
construction of the graph together with the exploration process. Further, the probability
of picking a half-edge which is belonging to a vertex with degree j + 1 is proportional to
(j + 1)P(D = j + 1), and as long as the size of the neighbourhood is small the probability
that a vertex is connected to some vertex explored earlier vanishes. Hence, we get
the size-biased distribution (1.2) as a natural candidate for the forward degrees of the
vertices vi in the exploration process. More precisely, we have the following result:

Proposition 2.1. [6, Proposition 4.7] There exists 0 < ρ < 1 such that the random vector(
Df
i

)nρ
i=2

of forward degrees can be coupled to an independent sequence of random

variables
(
D?
i

)nρ
i=2

with probability mass function given in (1.2) and
(
Df
i

)nρ
i=2

=
(
D?
i

)nρ
i=2

whp.

Proof. See [6, Proposition 4.5] and the proof of Proposition 4.7 in [6, Appendix A.2].

In our case, we have two source vertices red and blue with different spreading speed,
thus, we need a slight modification of this proposition. Namely, we need that a similar
coupling remains valid for two exploration processes from two uniformly chosen vertices
up to the time when the red (first) color reaches size nρ. Let us temporarily denote
the number of vertices occupied by blue (the other) color by this time by h(n, ρ). This
coupling is similar to [6, Proposition 4.8], but we state it for the reader’s convenience:

Lemma 2.2. Fix λ ≥ 1. Let t(nρ) := inf{t : Rt ≥ nρ or Bt ≥ nρ}. Then there exists a
ρ > 0 such that Rt(nρ) ∩ Bt(nρ) = ∅ whp, and the forward degrees in both the red and

the blue process can be coupled to i.i.d. sequences
(
D?(r)
i

)nρ
i=2

and
(
D?(b)
j

)h(n,ρ)

j=2
from

distribution F ?, where h(n, ρ) is the random number of vertices reached by blue up to
time t(nρ). (The same statement holds true for λ = 1, but in this case the color to reach
nρ vertices first is random.)

Proof of Lemma 2.2. Consider the following version of the exploration process: start
with the red source and do breath-first exploration, but one vertex at a time within
the generation, giving the indices of Df(r)

i of the forward degrees. Once we finish a
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generation, we move on the the next one. It is only important that in total we discover
no more than nρ vertices when we stop the exploration. The last generation completely
explored this way is random. First assume that λ > 1: consider the coupling given by

Proposition 2.1 with forward degrees
(
D?(r)
i

)nρ
i=2

for the red cluster. After this, drop all
the other active vertices from At(nρ) and re-start the exploration process with only vertex
B0 being active. Since it takes time λ to cover an edge for blue, up to time t(nρ) blue
reaches all the vertices which have graph distance at most bt(nρ)/λc from the source
vertex B0. Thus, continue the exploration process from the blue source up to finishing
generation bt(nρ)/λc. Since λ > 1, the total number of vertices found by this second
phase has smaller order than nρ, so that the coupling still remains valid. Moreover, since
each of the clusters have only at most nρ many vertices, with high probability they do not
meet each other. Further, when λ = 1, the proof is the same, the first cluster to reach nρ

vertices takes the role of red, and the other one takes the role of blue.

An immediate consequence of Proposition 2.1 and Lemma 2.2 is that locally we can
consider the growth of Rt and Bt as independent branching processes (Zk)k>0 with
offspring distribution F ∗ for the second and further generations, and with offspring
distribution given by F for the first generation.

Let us now investigate the growth of these branching processes. Since τ ∈ (2, 3), the
offspring distribution of this branching process has infinite mean for every individual in
the second and later generations. To understand the behavior of this BP, we first look at
what happens in a BP where all the degrees are distributed as F ∗, including the first
generation.

The following theorem by Davies [13] describes the growth rate of such a branching
process:

Theorem 2.3 (Branching process with infinite mean [13]). Let Z̃k denote the k-th genera-
tion of a branching process with offspring distribution given by the distribution function
F ∗. Suppose there exists an x0 > 0 and a function x 7→ κ(x) on R+ that satisfies the
following conditions:

(i) κ(x) is non-negative and non-increasing,

(ii) xκ(x) is non decreasing,

(iii)
∞∫
0

κ
(
eex
)

dx <∞.

Let us assume that for some τ ∈ (2, 3), the tail of the offspring distribution satisfies that,
for all x ≥ x0,

x−(τ−2)−κ(x) ≤ 1− F ∗(x) ≤ x−(τ−2)+κ(x). (2.1)

Then (τ − 2)k log(Z̃k ∨ 1) converges almost surely to a random variable Ỹ . Further, the
variable Ỹ has exponential tails.

To be able to apply this theorem to our setting, we need to show that the distribu-
tion function F ∗ satisfies the condition (2.1). This is clearly the case since using the
elementary re-arrangement of weights

1− F ∗(x) =

∞∑

j=x+1

(j + 1)P(D=j)

E[D]
=

1

E[D]

(
(x+ 2)[1− F (x+ 1)] +

∞∑

j=x+2

[1− F (j)]
)
,

combined with the bounds in (1.1) and elementary estimates immediately yields that
there exist constants 0 < c∗1 ≤ C∗1 <∞, such that for x large enough

x−(τ−2)c∗1 ≤ 1− F ∗(x) ≤ x−(τ−2)C∗1 . (2.2)
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Since P(D ≥ 2) = P(B ≥ 1), these branching processes cannot die out, i.e., we can write
log Z̃k instead of log(Z̃k ∨ 1) and apply Davies’ theorem to obtain the a.s. convergence
of Ỹk = (τ − 2)k log(Z̃k) to a random variable Ỹ . Recall that the degree of the first
vertex in the exploration process is distributed as F not F ∗, hence we denote by Zk the
corresponding BP and call it the delayed branching process. The next lemma identifies
the distribution of the limit of the properly scaled delayed branching process. We also
identify the limit random variable Y in terms of Ỹ .

Lemma 2.4. Let Y be the limiting random variable lim
k→∞

(τ − 2)k logZk of the delayed BP.

Then Y satisfies the distributional identity

Y
d≡ (τ − 2) max

1≤i≤D
Ỹ (i), (2.3)

where Ỹ (i) are i.i.d. copies of the limiting random variable of the original non-delayed
BP. Further,

Ỹ
d≡(τ − 2) max

1≤i<D∗
Ỹ (i).

Remark 2.5. An elementary calculation using (2.3) shows that Y also has exponential
tails: we know from [13] that Ỹ satisfies limx→∞ log(P(Ỹ > x))/x = 1. Then

P(Y > x) = 1− P( max
1≤i≤D

Ỹi < x/(τ − 2)) = 1− E
[(

1− P(Ỹi > x/(τ − 2))
)D]

.

Using that D ≥ 1 and that (1− x)D ≥ 1−Dx, we obtain the following lower and upper
bounds:

P(Ỹi > x/(τ − 2)) ≤ P(Y > x) ≤ E[D]P(Ỹi > x/(τ − 2)).

Taking logarithm an dividing by x on both sides yields that limx→∞ log(P(Y > x))/x =

1/(τ − 2).

Proof of Lemma 2.4. Since the number of offsprings in the first generation is distributed
as D, by the branching property the subtrees starting from the first generation up to
level k are distributed as Z̃k−1 and are independent of each other. Thus, for every k ≥ 1,

Zk
d≡

D∑

i=1

Z̃
(i)
k−1, (2.4)

where Z̃(i)
k−1 are i.i.d. copies of Z̃k−1. Hence

Y = lim
k→∞

(τ − 2)k log(Zk) = lim
k→∞

(τ − 2)k log

(
D∑

i=1

Z̃
(i)
k−1

)
. (2.5)

We can bound the right hand side from both sides:

(τ − 2)k log

(
max

i=1,...,D
Z̃

(i)
k−1

)
≤ (τ − 2)k log

(
D∑

i=1

Z
(i)
k−1

)
≤ (τ − 2)k log

(
D· max

i=1,...,D
Z̃

(i)
k−1

)
.

(2.6)

Clearly (τ − 2)k logD
P→ 0, and by monotonicity we can exchange log and max and use

Theorem 2.3 for the convergence of (τ − 2)k−1 log(Z̃
(i)
k−1). Thus combining (2.5) with (2.6)

yields
Y = lim

k→∞
max

i=1,...,D
(τ − 2)Ỹ

(i)
k−1. (2.7)

Exchanging the limit with the maximum finishes the proof. The second statement of the
lemma can be proved analogously.

EJP 20 (2015), paper 116.
Page 11/48

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v20-3749
http://ejp.ejpecp.org/


Competition on Configuration model for τ ∈ (2, 3)

3 Mountain-climbing phase

In this section we describe the mountain-climbing phase. From now on we will
concentrate on the growth of the red (the faster) cluster, but the very same methods
will later be used for blue as well. Thus, in this section we neglect the superscript (r),
and temporarily every quantity is belonging to the red cluster. We denote the set of red
vertices at time t by Rt and its size by Rt. Since Proposition 2.1 only guarantees the
coupling as long as the total number of explored vertices by red is at most n% for some
% > 0, let us first set some %′ < %(τ − 2)2 and define

t(n%
′
) = inf{k : Zk ≥ n%

′}.

Note that by Lemma 2.2, and the fact that the total size of earlier generations are whp
negligible compared to the last generation, t(nρ) = T (n%

′
) whp. Recall Definition 1.1,

i.e.,

Y (n)

r := (τ − 2)t(n
%′ ) logZt(n%′ ). (3.1)

Note that t(n%
′
) and thus Y (n)

r depends on n. Then, an easy calculation yields that with
{x} = x− bxc,

t(n%
′
) =

log(%′/Y (n)
r ) + log log n

| log(τ − 2)| + 1− an, (3.2)

where

an =

{
log(%′/Y (n)

r ) + log log n

| log(τ − 2)|

}
. (3.3)

Note that 1− an is there to make the expression on the rhs of t(n%
′
) equal to its upper

integer part. Due to this effect, the last generation has a bit more vertices than n%
′
, so

let us introduce the notation %′′ for the random exponent of the overshoot

Zt(n%′ ) = n%
′(τ−2)an−1

:= n%
′′
, (3.4)

We get this expression by rearranging (3.1) and using the value t(nρ
′
) from (3.2). The

property %′ < %(τ − 2)2 guarantees that the coupling is still valid, i.e. we can also couple
the degrees of vertices in the t(n%

′
)th generation of the branching process to i.i.d. size

biased degrees.
After time t(n%

′
), we stop the coupling and focus on the graph: we start decomposing

the graph to the following nested sets of vertices, that we call layers:

Γi := {v : Dv > ui}, (3.5)

where ui is defined recursively by

ui+1 =

(
ui

C log n

)1/(τ−2)

, u0 :=

(
n%
′′

C log n

)1/(τ−2)

(3.6)

for a large enough constant C > 0. We will see below that e.g. C = 8/c1 is sufficient,
where c1 is from (1.1). It is not hard to see that

ui = n%
′′(τ−2)−(i+1)

(C log n)−ei with ei =
1

3− τ

(( 1

τ − 2

)i+1

− 1

)
. (3.7)

Note that since (τ − 2)−1 > 1, ui is growing, hence Γ0 ⊃ Γ1 ⊃ Γ2 ⊃ . . . . First we need
to show that Zt(n%′ ) has a nonempty intersection with the initial layer Γ0, and then we
will build a path through the layers. The following lemma is a general lemma about the
maximum of i.i.d. power-law random variables. It guarantees that Rt(n%′ ) ∩ Γ0 6= ∅, and
will also be repeatedly used to determine the maximum degree in a set of vertices:
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Lemma 3.1. Let Xi, i = 1, . . . ,m be i.i.d. random variables with power-law tail exponent
α, i.e. the distribution function of Xi satisfies (1.1) with τ − 1 replaced by any α > 0.
Then for K > 0 and any n > 1,

P

(
max

i=1,...,m
Xi <

( m

K log n

)1/α
)
≤ 1

nc1K
, (3.8)

where c1 arises from (1.1).

Proof. For the second statement, due to the independence the left hand side can be
rewritten as follows:

P

(
X1 <

( m

K log n

)1/α
)m
≤
(

1− c1K log n

m

)m
≤ exp{−c1K log n},

where we used that P(X1 < x) ≤ 1− c1/xα.

Note that the distribution F ∗ satisfies the condition of the lemma with α = τ − 2, see
(2.2). So, we can apply this lemma (specially (3.8)) in the following setting: the i.i.d.
variables Xi are the forward degrees (Bi)i=1,...,Z

t(n%
′
)
∼ F ∗ in the last generation of the

branching process, thus m := Zt(n%′ ) = n%
′′

and α = τ − 2. Note that the bound we get
when applying (3.8) states that whp there is at least one vertex with degree at least u0

(defined in (3.6)). Hence, we get that Γ0 ∩Rt(n%′ ) 6= ∅ whp.
We will repeatedly use concentration of binomial random variables of the following

form

Lemma 3.2 (Concentration of binomial random variable). Let X be a binomial random
variable with parameters n, pn. Then

P(X ≥ 2E[X]) ≤ exp{−E[X]/8},
P(X ≤ E[X]/2) ≤ exp{−E[X]/8}.

(3.9)

Proof. Follows from standard estimates, see e.g. [27, Theorem 2.19] or [23].

In what follows, we will build a path from Γ0 ∩Rt(n%′ ) to the highest-degree vertices
through successive layers Γi. The following lemma guarantees the existence of such a
path. Recall that N(S) stands for the neighbors of the set S in CMn(d).

Lemma 3.3. With ui and Γi defined as in (3.7) and (3.5), for every v ∈ Γi, whp there is
a vertex w ∈ Γi+1, such that (v, w) ∈ E(CMn(d)). Equivalently,

Γi ⊂ N(Γi+1) whp. (3.10)

Furthermore, the previous statement can be applied repeatedly to build a path from Γ0

to Γi as long as ui = o(n1/(τ−1)), which is

i < − log((τ − 1)%′′)

| log(τ − 2)| . (3.11)

Proof. Let us denote the total number of half-edges in Γi by Si. Then, since the degrees
are i.i.d., we have |Γi+1| ∼ Bin(n, 1− F (ui+1)), and each vertex w ∈ Γi+1 has degree at
least ui+1. Thus by Lemma 3.2,

P

(
Si+1 <

ui+1n [1− F (ui+1)]

2

)
≤ exp

{
−n [1− F (ui+1)]

8

}
, (3.12)
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t = t(n%
′
) + 3

j j

n1/(τ−1)

u0

u1

u2

u3

u4

u5

n
τ−2
τ−1

Figure 1: An illustration of the layers and the mountain climbing phase at time t(n%
′
) + 3.

Disclaimer: the degrees on the picture are only an illustration.

Recall that Ln denotes the total number of half-edges in the graph. On the event
{Si+1 > ui+1n [1− F (ui+1)] /2} ∩ {Ln < 2E[D]n}, the probability that there is a vertex
v ∈ Γi not connected to Γi+1 can be bounded from above by

Pn (∃v ∈ Γi, v = Γi+1) ≤ |Γi|
(

1− Si+1

Ln

)ui/2

≤ n exp
{
− uiui+1n [1− F (ui+1)]

8nE[D]

}
,

(3.13)

where we recall that Pn(·) := P(·|D1, . . . , Dn). We have used that |Γi| < n, and the
estimate Si+1 in (3.12). The factor 1/2 in the exponent ui/2 comes from the worst-case
scenario estimate when we connect all the first ui/2 half-edges back to v. Similar
calculations (with indices of ui and ui+1 exchanged) are worked out in more detail in [27,
Volume II., Chapter 5]. Then, using the defining recursion (3.6), it is easy to see that

uiui+1 [1− F (ui+1)] = C log n(ui+1)τ−1 [1− F (ui+1)] ≥ Cc1 log n,

that is, the error term in (3.13) is bounded by

εi := exp

{(
1− Cc1

8E[D]

)
log n

}
+ exp{−n [1− F (ui+1)] /8}.

The first assertion of the lemma follows if εi small: the first term is small when picking
C large enough. For the second term we need n [1− F (ui+1)] > O(1), which exactly
translates to the condition ui = o(n1/(τ−1)) and to (3.11) using (3.7). Note that as
long as (3.11) is satisfied, even

∑i
j=1 εi = o(n−1). This means that we can apply the

lemma consecutively for the layers (Γi)s and build a path (v0, v1, . . . , vi) such that for all
0 ≤ j ≤ i we have vj ∈ Γj and (vj , vj+1) ∈ E(CMn(d)) whp, as long as i satisfies (3.11).
This finishes the proof of the second statement of the lemma.

With Lemma 3.3 in hand we can determine how long it takes to climb up through the
layers Γi to the highest-degree vertices. Lemma 3.1 with Xi = Di ∼ F , α = τ − 1 shows
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that the maximal degree in CMn(d) is of order n1/(τ−1). We write i∗ for the last index
when Γi is whp nonempty, i.e.,

i∗ := inf{i : ui ≤ n1/(τ−1) < ui+1}. (3.14)

An easy calculation using (3.7) shows that

i∗ = −1 +
− log((τ − 1)%′′)

| log(τ − 2)| − bn, with bn =

{− log((τ − 1)%′′)

| log(τ − 2)|

}
. (3.15)

Note that i∗ satisfies (3.11), thus all the error terms up to this point stay small. Using
the value of the overshoot exponent %′′ in (3.4) and then the value an in (3.3), plus the
fact that {x− 1 + {y}} = {x+ y}, we get that

bn =

{− log((τ − 1)%′)

| log(τ − 2)| + an − 1

}
=

{− log((τ − 1)Y (n)
r ) + log log n

| log(τ − 2)|

}
. (3.16)

From (3.7) one can easily calculate that

ui∗ = n
(τ−2)bn

τ−1 (C log n)−ei∗ , with

ei∗ =
1

3− τ

(
(τ − 2)bn

(τ − 1)%′′
− 1

)
≤ 1

(3− τ)

(
1

(τ − 1)%′′
− 1

)
.

(3.17)

We will repeatedly need the total time to reach the top, so let us introduce the notation

Tr := t(n%
′
) + i∗ =

log log n− log ((τ − 1)Y (n)
r )

| log(τ − 2)| − 1− bn, (3.18)

which only depends on %′ via the approximating Y (n)
r , and bn is exactly the fractional part

of the expression on the rhs of Tr. Since also Y (n)
r → Yr irrespective of the choice of %′,

this establishes that the choice of %′ is not relevant in the proof.

4 Crossing the peak of the mountain

Next we investigate what happens when the path through the layers reaches the

highest degree vertices. We have just seen that the exponent of n in ui∗ is (τ−2)bn

τ−1 ∈(
τ−2
τ−1 ,

1
τ−1

)
. Recall that the maximum degree in the graph has exponent 1

τ−1 whp, i.e.

Γi∗+1 = ∅ whp, meaning the path can not jump ‘up’ one more step. On the other hand,
we can make use of the following lemma from [27, Volume II., Chapter 5]:

Lemma 4.1. Consider two sets of vertices A and B. If for the number of half-edges
SA = o(n) and SB satisfy

SASB
n

> h(n),

for some function h(n), then conditioned on the degree sequence with Ln ≤ 2E[D]n, the
probability that the two sets are not directly connected can be bounded from above by

Pn(A= B) < e
−
h(n)

4E[D] .

Proof. When pairing the half-edges coming out from A, the probability that the i-th one
paired is not directly connected to a half-edge in B is (1− SB/(Ln − 2i− 1)). Thus,

Pn(A= B) =

dSA/2e∏

i=0

(
1− SB
Ln − 2i− 1

)
≤ exp

{
− SASB

2(Ln − 2SA)

}

≤ exp

{
− h(n)

4E[D]

}
.
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The product only goes until SA/2− 1, since in the worst case scenario the first bSA/2c
half-edges are all paired back to another half-edge in A, thus the last bSA/2c half-edges
are not used anymore. In both cases, we can pair at least dSA/2e many half-edges.

Let us introduce

α := 1− (τ − 2)bn

τ − 1
, β := 1 +

1

(3− τ)

(
1

(τ − 1)%′′
− 1

)
, (4.1)

and
ũ1 := (C log n)n/ui∗ = nα(C log n)β , (4.2)

and the following layer:
Γ̃1 := {v ∈ CMn(d), Dv > ũ1}. (4.3)

Recall the definition of the Tr from (3.18), that denotes the total time for the red color to
reach the last layer Γi? . The next lemma helps us describe how the process goes through
the highest-degree vertices:

Lemma 4.2. All the vertices in Γ̃1 are occupied by red at time Tr + 1, i.e.,

Γ̃1 ⊂ RTr+1 whp. (4.4)

Proof. By Lemma 3.3, there is a red path up to Γi∗ , and hence, red occupies some
vertices in layer Γi∗ at time Tr. Hence, RTr

∩ Γi∗ 6= ∅, and we have at least one vertex
vi∗ in RTr

for which the degree is at least ui∗ , see (3.17). We claim that this vertex is
whp connected to every vertex in Γ̃1. To see this, let us set A := {vi∗} and B := {w}
with any w ∈ Γ̃1, that is, any single vertex in Γ̃1 with degree at least (C log n)n/ui∗ . Then
apply Lemma 4.1 with this setting to see that vi∗ is whp connected to w. Further, note
that SASB/n = C log n by the definition of ũ1. Hence, using the error bound in Lemma
4.1 and a union bound,

Pn(∃w ∈ Γ̃1, (vi∗ , w) /∈ E(CMn(d))|Γ̃1) ≤ |Γ̃1|
1

nC/4E[D]
. (4.5)

Clearly |Γ̃1| < n: picking a large enough C, we see that the error probability tends to
zero. Calculating C log n · n/ui∗ yields the formula for ũ1.

It is important to note that vertices with degree larger than ũ1 do whp exist in CMn(d)

by Lemma 3.1. Moreover, i∗ is the first index when we can apply Lemma 4.1, since for all
smaller values i < i∗, there are whp no vertices with degree at least n/ui by Lemma 3.1.

This completes the crossing the peak of the mountain phase.

5 Red avalanche from the peak and the blue climber

Using the value ũ1 in (4.2), let us again recursively define

ũ`+1 = C log n·(ũ`)τ−2. (5.1)

and also the increasing sequence of sets

Γ̃` := {v : Dv > ũ`},

i.e., now Γ̃1 ⊂ Γ̃2 ⊂ . . . holds. Since (5.1) is the very same as the recursion in (3.6) with
indices exchanged, we can apply Lemma 3.3 to

(
Γ̃`
)
`≥1

, now yielding that for any ε > 0,

for all ` < (1− ε) log log n/| log(τ − 2)|

Γ̃`+1 ⊂ N(Γ̃`) and Γ̃` ⊂ RTr+`
whp. (5.2)
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This means that in the ‘sloping down’ phase, whp red occupies all vertices in Γ̃` at time
Tr + `. Solving the recursion (5.1) yields that

ũ` = nα(τ−2)`−1

(C log n)β(τ−2)`−1+ 1
3−τ (1−(τ−2)`−1), (5.3)

where α and β were defined in (4.1). Note that the exponent of C log n stays bounded
even when `→∞. Hence this procedure can be continued even to reach lower degree
vertices, for every fixed ε > 0 up until ` < (1− ε) log log n/| log(τ − 2)|.

In what follows, we determine the point where red and blue meet. More precisely,
we calculate the value ` such that during the time Tr + `, the maximum degree vertex
in the cluster of blue is of the same order as ũ`. Since at time Tr + `, red occupies whp
almost every vertex with degree at least ũ`, the growing cluster of blue bumps into the
occupied vertices and cannot spread to higher-degree vertices anymore.

The following proposition about the maximal degree of blue is our main building
block for the proof of Theorem 1.4:

Proposition 5.1. Let us denote byD(b,n)
max (t) the forward degree in CMn(d) of the maximal

degree vertex in the blue cluster at time t. Then, whp at time Tr + t and for any real
1 ≤ t ≤ O�(1),

D(b,n)

max (Tr + t) = exp

{
Y (n)

b

(
1

τ − 2

)
⌊
Tr+t
λ

⌋
+1

(1 + oP(1))

}
, (5.4)

as long as t is so that the quantity on the rhs is less than ũ[t], and where Y (n)

b is defined
in Definition 1.5.

Before the proof we need some important definitions that will be used also outside the
proof. Similarly as in (3.5), let us define:

û(b)

0 := (Z(b)

bt(n%′ )/λc · C log n)1/(τ−2), u(b)

0 := (Z(b)

bt(n%′ )/λc/C log n)1/(τ−2)

û(b)

i+1 := (û(b)

i · C log n)1/(τ−2), u(b)

i+1 :=
(
u(b)

i /C log n
)1/(τ−2)

Γ̂(b)

i := {v ∈ CMn(d) : dv ≥ û(b)

i }, Γ(b)

i := {v ∈ CMn(d) : dv ≥ u(b)

i }.
(5.5)

Note that Γ(b)

i grows exactly as Γi while Γ̂(b)

i grows faster: there is always an extra

(C log n)2 factor causing an initial ‘gap’ of order (log n)2 between u(b)
0 , û

(b)
0 and ‘opening

up’ as i gets larger.
Further, let us say that a quantity Q � O�(x) for x ∈ R+, if Q satisfies

Q = x
log log n

| log(τ − 2)| +OP(1). (5.6)

We will see below in (6.5) that blue cannot make more jumps than O�
(

λ−1
λ(λ+1)

)
in its

climbing phase. In order to show Proposition 5.1, we need a lower and an upper bound
on the maximal degree in each step. The next lemma handles the upper bound, but first
some definitions.

We say that a sequence of vertices and half-edges (π0, s0, t1, π1, s1, t2, . . . , tk, πk) forms
a path in CMn(d), if for all 0 < i ≤ k, the half edges si−1, ti form an edge between πi−1, πi.
Let us denote the vertices in a path starting from a half-edge in Z(b)

bt(n%′ )/λc by π0, π1, . . . .

We say that a path is good if deg(πi) ≤ û(b)

i holds for every i. Otherwise we call it bad.
We decompose the set of bad paths in terms of where they turn bad, i.e. we say that a
bad path is belonging to BadPk if it turns bad at the kth step:

BadPk :={(π0, s0, t1, π1, s1 . . . , tk, πk) is a path,

π0∈Bt(n%′ ), deg(πi)≤ û(b)

i ∀i ≤ k − 1, deg(πk)≥ û(b)

k }.
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Let us write Ft(n%′ ) for the σ-algebra generated by constructing the configuration model

using the exploration process as described before, until time t(n%
′
), i.e., reaching the

vertices in the last (bt(n%′)/λc)th generation of the blue BP, (but not their degrees). The
following lemma tells us that the probability of having a bad path is tending to zero,
conditioned on Ft(n%′ ).
Lemma 5.2. Fix 0 < x ≤ (λ− 1)/λ(λ+ 1). Then for any k0 ≤ O�(x), the following bound
on the probability of having any bad paths holds:

P(∃k ≤ k0 : BadPk 6= ∅|Ft(n%′ )) ≤
2 log log n

C log n
. (5.7)

Proof. The proof uses path counting methods that we describe in the appendix. Hence
we put the proof there.

Proof of Proposition 5.1. Since the method for the lower bound is very much the same
as for red, plus we will need a more detailed analysis of this process below in Lemma
5.4, we just sketch the proof (read further to the proof of Lemma 5.4 for more details).
First, Lemma 2.1 ensures that we can couple both the blue and the red cluster to their
BP approximation until time t(n%

′
) given in (3.3). Since it takes λ > 1 unit of time to

cover an edge for blue, the number of generations covered by the branching process
approximation Z(b) of blue is bt(n%′)/λc. The size of the last generation in the blue BP is
thus

Z(b)

bt(n%′ )/λc = exp

{
Y (n)

b

(
1

τ − 2

)bt(n%′ )/λc}
. (5.8)

We start applying the method in the Mountain climbing phase for blue from this point
on. With the same technique as we used to show that Rt(n%) ∩ Γ0 6= ∅ using Lemma 3.1,
we define u(b)

0 and a corresponding layer Γ(b)

0 in (5.5) and can show that Bt(n%′ ) ∩ Γ(b)

0 6= ∅.

Then, we define the nested sequence of layers
(
Γ(b)

i

)
i≥0

with u(b)

i -s such that at time

λ(bt(n%′)/λc + i), blue occupies at least 1 vertex in Γ(b)

i by Lemma 3.3. Note that from
Γ(b)

i to Γ(b)

i+1, the exponent of 1/(τ − 2) on the right hand side of (5.8) is increased by one.
Further, there is an extra +1 in the exponent for the initial maximization of the degrees
in u(b)

0 similarly as in (3.6).
The total number of layers Γ(b)

i jumped by blue at time Tr + t is then b(Tr + t)/λc −
bt(n%′)/λc, that, combined with (5.8), yields formula (5.4).

We still need to check that the term arising from C log n in the definition of u(b)

i ’s can
be put in a (1 + oP(1)) factor in the exponent. For this, write Z(b)

bt(n%′ )/λc := m, then

u(b)

i = m(τ−2)−(i+1)

(C log n)(1−(τ−2)−(i+1))/(3−τ) (5.9)

and the last layer before time Tr + t is reached after climbing i = b(Tr + t)/λc−bt(n%′)/λc
many Γ(b)

i layers, so by (3.2) and (3.18) we calculate

b(Tr + t)/λc − bt(n%′)/λc = (i∗ + t)/λ(1 + o(1)) (5.10)

Thus, if t ≤ O�(1), when taking the logarithm, then the term corresponding to (C log n)(τ−2)−i/(3−τ)

in log(u(b)

i ) at time Tr + t is of order (τ − 2)−t/λ = o((τ − 2)−(Tr+t)/λ) Hence, these terms
vanish when taking out (τ − 2)−b(Tr+t)/λc in the statement of the lemma. We will see
below in (6.5) that in fact the procedure stops at t = O�( λ−1

λ(λ+1) ) since after that red will
block the growth of blue entirely.

For the upper bound, according to Lemma 5.2, whp {BadPk = ∅ ∀k ≤ k0}, and on
this event the maximal degree of blue at time λbt(nρ′)/λc + λi is at most û(b)

i . Since
the exponent of C log n in û(b)

i is exactly (−1) times the exponent of C log n in u(b)

i , these
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terms can also be put in the (1 + oP(1)) factor by the same argument as for the lower
bound.

We will later need more information than the maximal degree of blue, namely, we
also need an upper bound on how many vertices blue occupies in each layer. For this,
first we show that the probability that blue goes above û(b)

i at time λbt(n%′)/λc + λi is
small, then we estimate the number of vertices blue paints in each layer based on this
bound. We carry these out in a claim and a lemma.

Let us denote the total number of half-edges attached to vertices with degree larger
than yn by E≥yn . Then, we have the following tail bound for E≥yn :

Claim 5.3. Let E≥yn denote the total number of half-edges incident to vertices with
degree at least yn, and V≥yn the total number of vertices of degree at least yn, for a
sequence y = yn. Then, for any ω(n)→∞, and a large enough constant C <∞, a small
enough constant 0 < c and for some constant 0 < c2 <∞,

P(E≥yn ≥ Cω(n)·n·y2−τ
n ) ≤ c2/ω(n),

P(V≥yn ≥ C ·n·y1−τ
n ) ≤ exp{−c2 · ny1−τ

n },
P(V≥yn ≤ c·n·y1−τ

n ) ≤ exp{−c2 · ny1−τ
n }

(5.11)

Proof. Note that

E≥yn =

n∑

i=1

Di1{Di≥yn} ≤
n∑

i=1

∞∑

k=1

yn2k1{2k−1yn<Di≤2kyn}.

Exchanging sums we can write

E≥yn ≤
∞∑

k=1

yn2kX
(n)
k ,

where the marginals of the random variables on the rhs are X(n)
k

d
≤ Bin(n,C1(yn2k−1)1−τ ),

where C1 is from (1.1). Calculating the expected value and using Markov’s inequality
yields (5.11). The proof for V≥yn is easier and directly follows from the fact that V≥yn ∼
Bin(n, 1 − F (yn)) and usual concentration of Binomial random variables, see Lemma
3.2.

Let us denote the set and number of blue vertices in the ith layer Γ(b)

i right at the
time when blue reaches it by

Ai := Bλbt(n%′ )/λc+λi ∩ Γ(b)

i , Ai := |Ai|. (5.12)

Lemma 5.4. Let k0 ≤ O�((λ− 1)/λ(λ+ 1)). On the event {BadPk = ∅ ∀k ≤ k0}, whp for
all i ≤ O�( λ−1

λ(λ+1) ),

Ai ≤ exp

{
log(C log n) · 2(τ − 2)−i

(3− τ)2

}
. (5.13)

Hence, for x ≤ (λ− 1)/λ(λ+ 1), for some constant K2, whp

logAO�(x) ≤ K2(log n)x log log n · (1 + o(1)). (5.14)

Proof. First, Lemma 5.2 guarantees that {BadPk = ∅ ∀k ≤ k0} holds whp, and on this
event û(b)

i serves as an upper bound on the maximal degree of blue at time λbt(nρ′)/λc+λi.
So, we can give a recursive upper bound on the number of vertices reached by blue in a
given layer Γ(b)

i by using u(b)

i as a lower and û(b)

i as an upper bound on the degrees.
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Let us condition on the number of blue vertices Ai in layer Γ(b)

i . Then, we have at
most Ai half-edges in Γ(b)

i ∩ Bλbt(n%′ )/λc+λi, with degree at most û(b)

i , hence we get the
stochastic domination

Ai+1 = |N(Ai) ∩ Γ(b)

i+1|
d
≤ Bin

(
Aiû

(b)

i ,
E≥u(b)

i+1

Ln(1 + o(1))

)
. (5.15)

Then, we can use Claim 5.3 with yn = u(b)

i+1 to bound E≥u(b)
i+1

. Hence, on the event that

E[D]n/2 < Ln < 2E[D]n holds, by Lemma 3.2 applied on the binomial variable in (5.15),

P

(
Ai+1 >

8C1

E[D](2− τ)
Aiû

(b)

i (u(b)

i+1)2−τ
∣∣∣Ai
)
≤ exp

{
−Aiu(b)

i (u(b)

i+1)2−τ C1

4c1E[D]

}
. (5.16)

Thus, with the error probability in the previous display, whp

Ai+1 ≤ Aiû(b)

i (u(b)

i+1)2−τ 8C1

E[D](2− τ)
< Ai

û(b)

i

u(b)

i

C ′ log n (5.17)

with C ′ := 8C1C/(E[D](2− τ)), where the last inequality follows from using (5.5). As a
result, we get the recursion Ai+1 ≤ AiC ′ log n · û(b)

i /u
(b)

i . The bound in (5.13) is nothing
but

Ai ≤ A0

i−1∏

j=0

(
C ′ log n · û(b)

j /u
(b)

j

)
. (5.18)

Solving the recursions for u(b)

i and û(b)

i in (5.5) (or, see (5.9)) we get that

û(b)

i /u
(b)

i = (C log n)2((τ−2)−(i+1)−1)/(3−τ). (5.19)

Initially A0 ≤ 2C log n whp. This can be seen as follows: by the coupling of the exploration
process to the branching process in Section 2, the last generation has size Z(b)

bt(n%′ )/λc,

and the degrees are i.i.d. of distribution D?. Hence, the number of vertices in this last
generation that have degree at least u(b)

0 has distribution A0 ∼ Bin(Z(b)

t(n%′ )
,P(D? > u(b)

0 )).

Note that by the choice of u(b)

0 , E[A0] ≤ CC1 log n, and the Lemma 3.2 implies that
A0 < 2CC1 log n holds with probability at least exp{CC1 log n/8}, which is small when C
is large enough.

Using (5.19) and evaluating (5.18) finishes the proof of (5.13). We dropped some
negative terms in the exponent in (5.13). If we set i ≤ O�(x) = x log log n/| log(τ − 2)|+
OP(1), then by picking a large enough C, the error terms are o(n−Ai) in (5.16). Thus we
can also iterate the argument up to time O�(x) to see that at time λbt(n%′)/λc+ λO�(x),
in Γ(b)

O�(x), the number of vertices blue occupies is bounded by the right hand side of
(5.13).

6 At the collision time - the maximal degree of blue

6.1 The maximum degree of blue

In this section we analyse how red and blue collide and prove Theorem 1.4, i.e., we
determine the degree of the maximum degree vertex that blue ever occupies. There are
two different processes running at time Tr + `: the red process is in its avalanche phase
and occupies every vertex that has degree higher than ũ`, while the slower blue process
is still in its mountain-climbing phase and keeps increasing its maximal degree (but
does not occupy all vertices of this degree). To obtain a good approximation when the
two processes meet let us first neglect integer part issues and determine the collision
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time of the two processes (the red avalanche and the blue climber) in continuous time.2

Neglecting the terms containing C log n, we can compare the maximal degree (5.4) to ũ`
in (5.3) and define tc as the solution of the equation

exp
{
Y (n)

b (τ − 2)−
Tr+tc
λ −1

}
= exp

{
log n · α · (τ − 2)tc−1

}
. (6.1)

Note that the left-hand side is approximately equal to the maximum degree D(b,n)
max (Tr + `)

of blue, while the right-hand side is the approximate value of ũ`. Thus tc is the (non-
integer valued) time left till the intersection of these two functions after time Tr.

We will soon see that neglecting the integer part does have an influence on the highest
degree vertex blue can occupy. To get a more precise picture, we should compare which
color is first and second to jump after Tr + tc, since if it is blue, it can still increase its
exponent. So, let us introduce the time of the last jump of red and blue before time
Tr + tc:

r∗− := btcc, b∗− := λ ·
⌊
Tr + tc
λ

⌋
. (6.2)

In words, red jumps at times Tr+r∗−, Tr+r
∗
−+1, . . . while blue jumps at times b∗−, b

∗
−+λ, . . .

and tc satisfies Tr + r∗− ≤ tc < Tr + r∗− + 1 and b∗− ≤ tc < b∗− + λ. We need to determine
who jumps first after time Tr + tc, (that is, Tr + r∗− + 1 < b∗− + λ or the other way round),
so let us also introduce the remaining times till the next jump after the intersection for
both colors:

Jr := r∗−+1− tc = 1− {tc}, Jb := b∗−+λ− (Tr + tc) = λ

(
1−

{
Tr + tc
λ

})
. (6.3)

Jr and Jb stands for the additional time needed for red and blue till their next jump after
time Tr + tc.

Remark 6.1. Note that given the values Y (n)

b , Tr and α, with each additional jump, red
decreases the exponent of 1/(τ − 2) by 1 and blue increases its exponent by 1. (Here we
again neglect the terms including C log n.) Thus, for red, when plotting the exponents of
1/(τ − 2) of log ũ`/ log n one gets a line of slope −1, starting from time Tr + 1 from the

value α. The exponent of 1/(τ − 2) in log u
(b)
i / log n in the cluster of blue is a line of slope

1/λ, since it increases by one with every additional λ time units, see (5.4). These lines
can be seen in Fig. 2, 3, 4, 5 and Fig. 6. The definition of tc is the intersection time of
these two lines.

Intuitively, the final exponent of the maximal degree of blue depends on two things:
which color jumps first after the intersection time Tr + tc and how large the difference
d(tc) is between the exponents of 1/(τ−2) in the log(degree)/ log n of red and blue before
time Tr + tc. Since with each jump the exponent of 1/(τ − 2) of the jumping color is
changed by one, it is crucial whether this difference is less than or larger than 1. Let us
temporarily postpone the calculations and believe that this difference is

d(tc) := {tc}+

{
Tr + tc
λ

}
. (6.4)

2The simplified picture is this: red occupies smaller and smaller degree vertices (jumps down), blue occupies
some higher and higher degree vertices (jumps upwards), the question is, when do they meet? The problem is,
that red jumps at unit time intervals while blue jumps at times that are multiples of λ. Further, the layers of

red Γ̃`-s are not the same as the layers of blue, the Γ
(b)
i -s, that is, these layers might and will be shifted from

each other. We still would like to determine the last possible up-jump of blue and the degrees that it reaches.
It turned out that (probably) the easiest way to do this is to first solve where the two processes would meet if
their jumps would be ‘continuous’, i.e., they would increase their degrees in a continuous fashion, (forgetting
about the unit/multiple of λ issue and setting time to be continuous). This continuous ‘intersection time’ is
denoted by tc. Of course, this ‘intersection’ is never realised on the graph itself, where we do have to take into
account that vertices are occupied only at times that are multiples of 1 or λ.
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time

exp. of 1/(τ − 2)

tcr?− r?− + 1

b?− b?− + λ

Jb

Jr

Dmax(b?−)

ũTr+r?−

d(tc) < 1 Jb < Jr

Figure 2: In this picture, the horizontal axes corresponds to time, the vertical axes
to the exponent of 1/(τ − 2) for log(degree)/log n. The red and blue right-continuous
stepfunctions indicate the exponent of 1/(τ − 2) of the degrees red and blue occupies:
red decreases this exponent by 1 at every unit time interval while blue increases it
at every λ-interval. The two slanted lines are the continuous approximations of these
stepfunctions as in (6.1), and their intersection gives tc. In this particular picture, d(tc) is
smaller than 1 and Jb < Jr. Thus, blue jumps first after the intersection and can occupy
higher degree vertices up to ũTr+r∗ . After that, red jumps and closes the gap, so the
maximal degree of blue in this case is ũTr+r∗ .

We will later analyse this difference in detail around equation (6.8). Since d(tc) is the
sum of two fractional parts, it is at most 2. Recall also that Jr, Jb stands for the time
till the next jump of red and blue after time Tr + tc, respectively (see (6.3)). With these
notations in mind, there are five cases:

(B1) Jb < Jr and d(tc) < 1. Blue jumps first after the intersection and occupies some
vertices up to Γ̃r∗− , i.e. blue can increase the exponent by a factor (τ − 2)−d(tc).
(Vertices with higher degree than that are already red). See Fig 2.

(B2) Jb < Jr and d(tc) > 1. Blue jumps first after the intersection and occupies some
vertices one layer higher, namely the total exponent of 1/(τ − 2) in (5.4) reached by
blue is

⌊
Tr+tc
λ

⌋
+ 1. However, since 1 < λ, the next jump after this must be a red

jump, hence red occupies every vertex with higher degree than this value. See Fig.
4.

(R1) Jr < Jb and d(tc) < 1. Red jumps first after the intersection, and occupies every
not-yet blue vertex down to Γ̃r∗−+1, which means that blue cannot increase its
exponent anymore. Thus the exponent of 1/(τ − 2) in (5.4) of the maximal degree
reached by blue is

⌊
Tr+tc
λ

⌋
. See Fig. 3.
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time

exp. of 1/(τ − 2)

tcr?− r?− + 1

b?− b?− + λ

Jb

Jr

Dmax(b?−)

ũTr+r?−

ũTr+r?−+1

d(tc) < 1

Jr < Jb

Figure 3: In this picture, the distance between the two exponents, d(tc) is smaller than 1

and Jr < Jb. Thus, red jumps first after the intersection and occupies every vertex of
degree at least ũTr+r?+1 that is already less than Dmax(b?−). So the maximal degree of
blue is Dmax(b?−).

(R2) Jr < Jb < Jr + 1 and d(tc) > 1. Red can make only one jump after the intersection
and occupies every vertex in Γ̃r∗−+1, while blue jumps after this and can reach some

vertices with degree up to Γ̃r∗−+1 with its next jump. Thus the maximal degree of

blue in this case is determined by Γ̃r∗−+1, see Fig. 5.

(R3) Jr + 1 < Jb and d(tc) > 1. Red can make at least two consecutive jumps after the
intersection and occupies every not-yet occupied vertex in Γ̃r∗−+2, which means
that blue can not increase its exponent. The exponent of 1/(τ − 2) in (5.4) of the
maximal degree reached by blue is again

⌊
Tr+tc
λ

⌋
, see Fig. 6.

Note that above we only handle the cases when Jb 6= Jr: this can be ensured by
restricting λ to be irrational. If λ = p/q, p, q ∈ N is rational with p and q co-primes, then
every vertex that is qt away from the blue source and pt away from the red source for
arbitrary t ∈ N might be occupied at the same (i.e, at time pt). In this case, the color
of such a vertex is chosen with probability 1/2 independently of everything else. For
the meeting time of the red avalanche and blue climber, a rational λ implies cases when
Jb = Jr or Jb = Jr + 1, i.e. the two processes jump at the same time after tc. Here we list
what happens in these cases, to be able to merge them in the cases above. We assume
here that the adapted rule is so that there is a strictly positive probability (i.e. bounded
away from 0 for all times) that a vertex becomes blue upon co-occupation.

(BR1) Jb = Jr and d(tc) < 1. Since there are lots of vertices just slightly smaller than
ũr∗− , blue whp occupies some vertices up to that point, i.e. blue can increase the

exponent by a factor (τ − 2)−d(tc) again. This case can be merged into Case B1.
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time

exp. of 1/(τ − 2)

tcr?− r?− + 1 r?− + 2

b?− b?− + λ

Jb

Jr

Dmax(b?−)

Dmax(b?− + λ)

ũTr+r?−

ũTr+r?−+1
d(tc) > 1

Jb < Jr

Figure 4: In this picture, the distance between the two exponents, d(tc) is larger than 1

and Jb < Jr. Thus, blue jumps first after the intersection and can occupy higher degree
vertices up to Dmax(b? + λ). After that, red jumps and closes the gap so the maximal
degree vertex that blue can occupy has degree Dmax(b? + λ).

(BR2) Jb = Jr and d(tc) > 1. In this case, blue can occupy some of the vertices up to one
Γ(b)

i higher. This case can be merged into Case B2.

(BR3) Jb = Jr + 1 and d(tc) > 1. In this case, red jumps first and occupies all the vertices
down to Γr∗−+1, and then the two processes jump together, so blue can occupy
some vertices right below that. This case can be merged into Case R2.

Remark 6.2. If the adapted rule is so that the probability that a vertex is going to be
red with probability one upon co-occupation, then Case BR1 merges into Case R1, case
BR2 merges into Case B2, and Case BR3 merges into Case R3. We see that the adapted
rule only influences the place where the strict and non-strict inequality signs appear
inside the indicators in f(d(tc), Jr, Jb) in (6.9) below. Hence, the main result still holds
true with a slightly different f(d(tc), Jr, Jb). For other adapted rules, the function f can
be determined similarly.

Now we formalize these heuristics by finishing the proof of Theorem 1.4. An elemen-
tary calculation is to solve (6.1) yielding

tc =
λ

λ+ 1

log log n+ log(α/Y (n)

b )

| log(τ − 2)| − Tr
λ+ 1

=
λ− 1

λ+ 1

log log n

| log(τ − 2)| +
log(αλ(τ − 1)Y (n)

r /
(
Y (n)

b

)λ
)

(λ+ 1)| log(τ − 2)| +
1 + b

(r)
n

λ+ 1
;

Tr + tc
λ

=
1

λ+ 1

2 log log n− log(Y (n)
r Y (n)

b (τ − 1)/α)

| log(τ − 2)| − 1 + b
(r)
n

λ+ 1
.

(6.5)

Hence, the red avalanche right before the intersection occupies every vertex with degree
larger than ũr∗− , where r∗− = [tc] = tc − {tc}. Combining the formula of tc with ũ` in (5.3),
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time

exp. of 1/(τ − 2)

tcr?− r?− + 1

b?− b?− + λ

Jb
Jr

Dmax(b?−)

ũTr+r?−

ũTr+r?−+1

d(tc) > 1 Jr < Jb < Jr + 1

Figure 5: In this picture, the distance between the two exponents, d(tc) is larger than 1

and Jr < Jb < Jr + 1. Thus, red jumps first after tc, occupies every vertex of degree at
least ũTr+r?+1. Then, blue jumps and can occupy higher degree vertices up to ũTr+r?+1.
After that, red jumps and closes the gap so the maximal degree vertex that blue can
occupy has degree ũTr+r?+1.

we get

log
(
ũr∗−

)
= (log n)

2
λ+1

((
Y (n)

b

)λ

Y (n)
r

α

τ − 1

) 1
λ+1

(τ − 2)
1+b

(r)
n

λ+1 −1−{tc}(1 + o(1)). (6.6)

On the other hand, since the last jump of blue before time Tr + tc is at time λ[(Tr + tc)/λ],
blue could do (Tr+tc)/λ−{(Tr+tc)/λ}many up-jumps, hence right before the intersection,
blue occupies some vertices that satisfy

log (D(b,n)

max (Tr + tc)) =(log n)
2

λ+1

((
Y (n)

b

)λ

Y (n)
r

α

τ − 1

) 1
λ+1

(τ − 2)
1+b

(r)
n

λ+1 −1+{Tr+tcλ }(1 + o(1)),

(6.7)
where we have used (6.5) for (Tr + tc)/λ combined with (5.4) at time b(Tr + tc)/λc.

Note that the formulas (6.6) and (6.7) only differ in the exponents of 1/(τ − 2), and
this difference is exactly d(tc), introduces in defined in (6.4). More precisely,

log

(
log
(
ũr∗−

)

log
(
D

(b,n)
max (Tr+tc)

)
)

| log(τ − 2)| = {tc}+

{
Tr + tc
λ

}
+ o(1) := d(tc) + o(1). (6.8)

Recall from (6.3) that the remaining time to the next jump for red and blue after the
intersection at time Tr + tc is denoted by Jr and Jb, respectively.
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time

exp. of 1/(τ − 2)

tcr?− r?− + 1 r?− + 2

b?− b?− + λ

Jb

Jr + 1

Dmax(b?−)

ũTr+r?−

ũTr+r?−+1
d(tc) > 1

Jr + 1 < Jb

Figure 6: In this picture, the distance between the two exponents, d(tc) is larger than 1

and Jr + 1 < Jb. Thus, red jumps twice after the intersection and occupies every vertex
of degree at least ũTr+r?+2 that is already less than Dmax(b?−). So the maximal degree of
blue is Dmax(b?−).

Since (6.7) is the exponent of the maximal degree vertex that blue occupies before the
intersection, to determine the maximal degree of blue, we need to investigate whether
blue can jump once more before the red avalanche reaches lower degrees than (6.7). If
yes, then blue can gain an additional factor to the rhs of (6.7).

Obviously, if d(tc) < 1, then even though blue jumps first, it cannot increase its
exponent by a whole factor (τ − 2)−1, since vertices with degree larger than (D(b,n)

max (Tr +

tc))
(τ−2)−1

are already all red. It is not hard to see that blue in this case will occupy
some vertices ‘right below’ u[tc] (that is, say, higher than ũ[tc]/(C log n)), hence blue in
this case can increase its exponent by a factor of (τ − 2)−d(tc).

This case illustrates that the additional factor that we need to add to the rhs of
(6.7) depends on two things: (1) which color jumps first (and possibly second) after the
intersection and (2) whether d(tc) > 1 or not. There are five cases, described above
(after formula (6.4)). As a result, the gain in the exponent for blue can be summarized by
multiplying (6.7) by the following function containing indicators for these five cases (the
order is Case B1, R1, B2, R2, R3 here, and the cases where λ rational are also included):

f (d(tc), Jr, Jb) := 1{d(tc)<1}

(
1{Jb≤Jr}(τ − 2)−d(tc) + 1{Jr<Jb}

)

+1{d(tc)>1}

(
1{Jb≤Jr}(τ − 2)−1+ 1{Jr<Jb≤Jr+1}(τ − 2)1−d(tc) + 1{Jr+1<Jb}

)
.

(6.9)

Note that every expression in this formula, i.e., d(tc), Jr, Jb are simple functions of the

(random) fractional parts {tc},
{
Tc+tc
λ

}
and b

(r)
n . Further, {tc},

{
Tc+tc
λ

}
and b

(r)
n depend

only on n and also on Y (n)
r , Y (n)

b . Hence knowing these values determines f uniquely.
Recall the value α from (4.1), combine (6.7) with the additional factor f (d(tc), Jr, Jb),
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so that we can introduce the ‘oscillation-filtering’ random variable

Hmax
n (Y (n)

r , Y (n)

b ) :=

(
(τ − 1)− (τ − 2)b

(r)
n

(τ − 1)2

) 1
λ+1

(τ − 2)
−λ+b(r)n
λ+1 +{Tr+tcλ }f (d(tc), Jr, Jb) , (6.10)

which oscillates with n and is random, but depends on the same randomness as Y (n)
r , Y (n)

b ,
i.e., they are defined on the same probability space.

At this point we have shown that

logD(b,n)

max (∞) =(log n)
2

λ+1

(
Y (n)

b

)λ

Y (n)
r

Hmax
n (Y (n)

r , Y (n)

b )(1 + oP(1)). (6.11)

To obtain the statement of Theorem 1.4, we have to check the conditions of Lemma 5.1.
For this, note that the last layer of blue is reached after climbing imax = b(Tr + tc)/λc −
bt(n%′)/λc+ 1{Case B2} many Γ(b)

i layers, and by (6.5) and (3.3) we can calculate

imax := b(Tr + tc)/λc − bt(n%
′
)/λc+ 1{Case B2} =

λ− 1

λ(λ+ 1)

log log n

| log(τ − 2)| +OP(1). (6.12)

Thus, imax = O�( λ−1
λ(λ+1) ), hence the conditions of the lemma hold. Thus, we get the first

statement of Theorem 1.4 by noting that (Y (n)
r , Y (n)

b )
d−→ (Yr, Yb).

By maximizing and minimizing the constants and the fractional parts in (6.10) and
in the indicators in f(d(tc), Jr, Jc) we get the bounds in (1.9). This finishes the proof of
Theorem 1.4.

6.2 Number of maximum degree vertices

With the last up-jump of blue, blue occupies some vertices of degree of orderD(b,n)
max (∞).

In this section we investigate how many maximum degree vertices are reached by blue.
We show that in some cases (namely, Cases B1, R2) the number of these vertices is so
large that it corresponds to an additional factor for the total number of half-edges in
maximum degree vertices of blue.

More precisely, let us denote the set of outgoing half-edges from these maximal
degree vertices byM(b)

n , and its size by M (b)
n . Later we will determine how many vertices

blue can occupy after this phase, and to be able to count that we need to know how
many half-edges are in the highest layer of blue.

Lemma 6.3. For M (b)
n , the number of outgoing half-edges from the set of maximal degree

vertices, i.e. the sum of the forward degrees reached by blue for which (1.8) holds, we
have

logM (b)
n

(log n)
2

λ+1Hhalf−edge
n (Y (n)

r , Y (n)

b )

P−→
(
Y λb
Yr

)1/(λ+1)

,

where Hhalf−edge
n (Y (n)

r , Y (n)

b ) ≥ Hmax
n (Y (n)

r , Y (n)

b ) is a bounded random variable given
below in formula (6.17).

Proof. Recall that Ai denotes the number of vertices blue occupies in layer Γ(b)

i upon
reaching it, see (5.12). In the cases where blue finishes its last jump at a certain layer Γ(b)

i ,
that is, in Case R1 (Fig ?? and Case R3 (Fig ??) and also in Case B2 (Fig ??) the statement
is a direct consequence of Lemma 5.4, since blue is stuck with its maximal degree at a
given layer Γ(b)

imax
, and hence M (b)

n = Aimax
D(b,n)

max (∞)(1 + o(1)). Taking logarithm we get

logM (b)

n ≤ logD(b,n)

max (∞)(1 + o(1)) + logAimax
. (6.13)
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By (6.12), imax = O�( λ−1
λ(λ+1) ) in Lemma 5.4, so we can use the bound in (5.13) with

x = (λ − 1)/λ(λ + 1). Hence, the last term in (6.13) disappears when we divide by
(log n)2/(λ+1).

We are left with handling the cases where the last jump of blue is not a full layer, i.e.,
Cases B1 and R2. In these cases, after reaching layer Γ(b)

imax
, blue still jumps up, but not

a full layer: due to the presence of red the forward degrees are truncated at ũr∗− in Case
B1 and at ũr∗−+1 in Case R2.

First, we apply Lemma 5.4 to see that logAimax
in the last ‘full’ layer Γ(b)

imax
is small.

Let us recall the notation u(b)

imax
= D(b,n)

max (Tr + tc), and introduce the extra factor of the
log(degrees) reached at the last up-jump of blue by

κ := (τ − 2)−d(tc)1{B1}+(1−d(tc))1{R2}.

Then we introduce a new layer

Γ� :=

{
v ∈ CMn(d) : dv ≥

(u(b)

imax
)κ

(log n)1/(τ−2)

}
,

and we denote the number of half-edges in this set by Eκ.
By Lemma 5.4, whp blue does not reach higher degrees than û(b)

imax
at time imax. Recall

that there are Aimax many blue vertices in layer Γ(b)

imax
. Hence, the total number of blue

half-edges in this layer is at most Aimax û
(b)

imax
. Thus, the number of vertices in Γ� to which

blue is connected is dominated by

B ∩ Γ�
d
≤ Bin

(
Aimax

û(b)

imax
,

Eκ
Ln(1 + o(1))

)
. (6.14)

Using Claim 5.3, Eκ ≤ (u(b)

imax
)−κ(τ−2) whp. Thus, conditioned on Aimax

, the expected
value of the Binomial variable in (6.14) is bounded above by

2C2
1

c1
Aimax

û(b)

imax
(u(b)

imax
)−κ(τ−2) =

2C2
1

c1
Aimax

û(b)

imax

u(b)

imax

(u(b)

imax
)1−κ(τ−2).

Since red occupies every vertex with degree larger than (u(b)

imax
)κ, the previous formula

bounds the number of vertices with degree in the interval [(u(b)

imax
)κ/C log n, (u(b)

imax
)κ).

Thus, the total number of half-edges going out from maximal degree vertices can be
bounded by

2C2
1

c1
Aimax

û(b)

imax

u(b)

imax

(u(b)

imax
)1+κ(3−τ). (6.15)

Since imax = O�( λ−1
λ(λ+1) ), we can use (5.13) and the calculations in the proof of Lemma

5.4 to see that

Aimax

û(b)

imax

u(b)

imax

≤ (AO�( λ−1
λ(λ+1)

))
2

is still small, i.e., it disappears when taking logarithm and dividing by (log n)2/(λ+1).
Hence, the main contribution comes from (u(b)

imax
)1+κ(3−τ) = (D(b,n)

max (Tr + tc))
1+κ(3−τ).

Hence, in Cases B1 and R2, blue can get more half-edges than of order D(b,n)
max (∞).

To get the total number of half-edges at the last up-jump, we need to modify the func-
tion f(d(tc), Jr, Jb). An elementary rearranging of the indicators of the cases and the
constants shows that the extra factor needed for (6.7) to get M (b)

n is

g(d(tc), Jr, Jb) := 1{d(tc)<1}

(
1{Jb≤Jr}(1 + (3− τ)(τ − 2)−d(tc) + 1{Jr<Jb}

)

+ 1{d(tc)>1}

(
1{Jb≤Jr}(τ − 2)−1 + 1{Jr<Jb≤Jr+1}(1 + (3− τ)(τ − 2)1−d(tc))

)

+ 1{d(tc)>1}1{Jr+1<Jb}.

(6.16)
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Then the normalizing constant for M (b)
n is given by

Hhalf-edge
n (Y (n)

r , Y (n)

b ) :=

(
(τ − 1)− (τ − 2)b

(r)
n

(τ − 1)2

) 1
λ+1

(τ − 2)
−λ+b(r)n
λ+1 +{Tr+tcλ } g (d(tc), Jr, Jb) .

(6.17)
This finishes the proof of Lemma 6.3.

Before moving on to the next section, let us introduce the time when the maximal
degree is reached, which is nothing else but the time of the last possible up-jump of blue,
i.e.,

tb := λ

(⌊
Tr + tc
λ

⌋
+ 1{Jb<Jr} + 1{Jr<Jb<Jr+1}1{d(tc)>1}

)

= Tr + tc + λ

(
1E −

{
Tr + tc
λ

})

=
λ

λ+ 1

2 log log n− log(Y (n)
r Y (n)

b (τ − 1)/α)

| log(τ − 2)| − 1 + b
(r)
n

λ+ 1
+ λ

(
1E −

{
Tr + tc
λ

})
,

(6.18)

where E stands for the event that blue has an additional up-jump after time tc, i.e. Case
B1, B2 or R2 happens.

7 Path counting methods for blue

By time tb, only o(n) vertices are reached by red and blue together – most of the
vertices are still not colored. Thus, it still remains to determine how many vertices blue
can reach after time tb. We do this via giving matching upper and lower bounds on how
many vertices blue occupies in this last phase.

For the upper bound, the idea is that we count the size of the local neighborhood of
the half edges that are just occupied at time tb. Since the red avalanche continues to be
in its avalanche phase and occupies all vertices of smaller and smaller degrees as time
passes, the spreading of blue is more and more restricted, so this local neighborhood is
quite small. We call this the optional cluster of blue. Since its size is random, we give a
concentration result on its size, i.e., we give a concentrated upper bound on what blue
can get.

For the lower bound, we estimate how much the red color might ‘bite out’ of this
optional cluster. This can happen since even a constant degree vertex might by chance
be close to both colors. We show that this intersection of the clusters is negligible
compared to the size of the optional cluster.

We start describing the first step – the optional cluster of blue – in more detail. At time
tb, the half-edges in the setM(b)

n start their own exploration clusters, i.e., an exploration
process from the half-edge to not-yet occupied vertices. At time tb + λj, we color every
vertex v, whose distance is exactly j from some half-edge h inM(b)

n , and the degrees of
vertices on the path from h to v are less than what red occupies at that moment, blue.
That is, the degree of the jth vertex on the path must be less than ũbtb−λi+λj−Trc. We do
this via estimating the number of paths with degree restrictions fromM(b)

n and call this
the optional cluster of blue, denote the set by Omax and its size by Omax. Corollary 7.2
below determines its asymptotic behavior.

On the other hand, not just the half-edges inM(b)
n can gain extra blue vertices: from

half-edges in Aimax−z, z = 0, 1, 2 . . . the explorations start a bit earlier (at time tb − λz)
towards small degree vertices. Let us denote the vertices reached via half-edges from
layer Aimax−z \ Aimax−z+1 by O−z, z ≥ 0. At time tb − λz + λj, we color a vertex v blue if
its distance is exactly j from a half-edge h in Aimax−z, and the degrees of vertices on the
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path from h to v are less than u(b)
imax−z+j and also what red occupies at that moment, i.e.,

the degree of the jth vertex on the path must be less than min{u(b)
imax−z+j , ũbtb−λz+λj−Trc}.

This extra truncation is needed since we want to avoid double counting, that is, we do not
want to count vertices explored from Aimax−z towards Aimax−z+1, hence the additional
restriction. We show that the total number of optional blue vertices in lower layers,∑
z≥0 O−z with these additional explorations is at most the same order as Omax in Lemma

7.3.
For the lower bound of what blue can occupy after time tb, note that not every vertex

in Omax will be occupied by blue: red can still bite out some parts of these vertices by
simply randomly being close to some parts of the blue cluster. We estimate the number
of vertices in the intersection of Omax and red, and then subtracting the gained estimate
from the lower bound on Omax gives a lower bound on what blue occupies from the
graph after tb, see Lemma 7.4. Now we turn to the calculations.

We introduce the expected truncated degree of a vertex that is distance j away from
the setM(b)

n

νj := E
[
D?

1{D?<ũbtb+λj−Trc}
]

=
1

E[D]

∫ ũbtb+λj−Trc

0

[1− F ∗(x)]dx. (7.1)

Then, by (1.1),

c1
E[D]

(
ũbtb+λj−Trc

)3−τ ≤ νj ≤
C1

E[D]

(
ũbtb+λj−Trc

)3−τ
. (7.2)

Let us also define

κj :=
1

E[D]
E[D(D − 1)(D − 2)1{D<ũbtb+λj−Trc}]

Then again by (1.1),

c1
E[D]

(
ũbtb+λj−Trc

)4−τ ≤ κj ≤
C1

E[D]

(
ũbtb+λj−Trc

)4−τ
.

Let us call a path of length k fromM(b)
n with vertices (πj)j≤k good if πj ≤ ũbtb+λj−Trc,

and good-directed if ubtb+λj+1−Trc ≤ πj ≤ ũbtb+λj−Trc. Similarly as before Lemma 5.2,
let us introduce the σ-algebra Ftb , generated by the construction of the configuration
model - i.e., the red and blue cluster - until time tb, the last possible up-jump of blue,
including now the half-edges inM(b)

n (but not their pairs).

Lemma 7.1. For k ≥ 0, denote by Omax(k),Od
max(k) the number of vertices that are on

good and good-directed paths of distance k away fromM(b)
n , respectively. Then for every

ε > 0, whp

M (b)

n ·
k∏

j=1

νj(
1
2 − ε)2k ≤ E[Omax(k) | Ftb ] ≤M (b)

n ·
k∏

j=1

νj · (1 + ε)2k

(
1 +O

(
k2

n

))
, (7.3)

and

M (b)

n ·
k∏

j=1

(νj−νj+1)(1−ε)2k ≤ E[Od
max(k) | Ftb ] ≤M (b)

n ·
k∏

j=1

(νj−νj+1)(1+ε)2k·
(

1 +O

(
k2

n

))
,

(7.4)
while for the variance of the latter:

Var[Od
max(k)|Ftb ] ≤ E[Od

max(k)|Ftb ]

+ E[Omax(k)|Ftb ]
2 ·
(

νk−1

(νk−1 − 1)

κ1

ν2
1

(
1

M (b)
n

+
2

Ln

)
+

ν2
k−1

(ν2
k−1 − 1)2

κ2
1

ν4
1

2

M (b)
n Ln

+ ek,n

)
,

(7.5)
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where E[Od
max(k)|Ftb ] means the upper bound on E[Od

max(k)|Ftb ] in (7.4), and the error
term ek,n is

ek,n =

(
k∏

i=1

Ln − 2i+ 1

Ln − 2i− 2k + 1
− 1

)

+

(
1 +

κ1νk−1

ν2
1

1

M (b)
n

)(
1 +

κ1νk−1

ν2
1

1

cLn

)
k

νk−1 − 1

(
ek

2κ2
1νk−1/(ν

4
1Ln) − 1

)
.

(7.6)

The proof of this lemma uses path counting methods and is similar to that of [30,
Lemma 5.1]. Similar techniques can also be found in [27, Section 10.4.2]. Since our case
is slightly different than the cases handled there, we work out the details in Appendix A.

Now we state the immediate corollary of Lemma 7.1. Recall the definition of tb from
(6.18).

Corollary 7.2 (Chebyshev’s inequality for blue vertices). Take c3 ≤ 2−ε
λ+1 | log(τ − 2)|−1

and any k ≤ c3 log log n. Then, conditioned on the number of blue half-edges M (b)
n at time

tb, the number of vertices optionally occupied by blue up to time tb + λk satisfies that,
conditionally on M (b)

n ,
log(Omax(k))

logM (b)
n +

∑k−1
i=1 log νi

P−→ 1.

Proof. Let us write Onon-d
max (k) for paths that are good but not good-directed. We show

that they have a negligible contribution, while Od
max(k) is well-concentrated. Let us write

J := P

(∣∣Omax(k)− E[Omax(k)|Ftb ]
∣∣ ≥ 1

2
E[Omax(k)|Ftb ]

)

≤ P
(∣∣Od

max(k)− E[Omax(k)|Ftb ]
∣∣ ≥ 1

3
E[Omax(k)|Ftb ]

)
+ P

(
Onon-d

max (k) ≥ 1

6
E[Omax(k)|Ftb ]

)
.

Now we can apply Chebyshev’s inequality on the first term while Markov’s inequality on
the second term (both conditioned on Ftb), using Lemma 7.1:

J ≤ 9Var[Od
max(k)|Ftb ]

E[Omax(k)|Ftb ]2
+
E[Omax(k)|Ftb ]− E[Od

max(k)|Ftb ]
6−1E[Omax(k)|Ftb ]

≤
(

1 +O(k
2

n )
)( 1

M (b)
n

κ1

ν2
1

νk−1

(νk−1 − 1)
+

2k4νk−1

νk−1 − 1

κ2
1

ν4
1Ln

(
1 +O

( 1

M (b)
n

κ1

ν2
1

)))

+ 6


1−

k∏

j=1

(
1− νj+1

νj

)


(7.7)

The term containing κ2
1/ν

4
1Ln is coming from the Taylor expansion of the exponential

factor in the formula for ek,n. We only have to verify that the rhs of the previous display is
tends to 0. For this we need κ1/(ν

2
1M

(b)
n )→ 0 and also κ2

1/(ν
4
1Ln)→ 0. For the first term,

note that M (b)
n ≥ D(b,n)

max (∞), since it counts the number of half-edges with maximal degree
D(b,n)

max (∞). Further, κ1/ν
2
1 = ũbtb+λ−Trc = o(D(b,n)

max (∞)), since it is not hard to see that at
time tb + λ, the degree above which red occupies everything (i.e., ũbtb+λ−Trc) is already
less than D(b,n)

max (∞), otherwise blue could have still increased its maximal degree at tb+λ

by an extra jump. (Technically, this was the definition of tb. Alternatively, compare the
exact values of D(b,n)

max (∞) in (1.8) and (6.10), and compare it to that of ũbtb+λ−Trc, which
can be derived from (6.6) by adding the appropriate number of (τ − 2) factors in the
exponent corresponding to the five different cases. This calculation is left to the reader.)

Similarly, the second term, κ2
1/(ν

4
1Ln) = ũ

2(τ−2)
btb+λ−Trc/Ln = ũ2

btb+λ−Trc+1 is less than of

order D(b,n)
max (∞)2/n and hence is small as long as D(b,n)

max (∞) = o(
√
n). Note that this is the

case by Theorem 1.4 since λ > 1.
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Finally, we show that the last term in (7.7) is also small. Since λ > 1, [tb + λ(j + 1)−
Tr] ≥ [tb + λj − Tr] + 1, and νi ∈ (c1, C1)× ũ3−τ

[tb+λi−Tr] hence the last term is less than 6
times

k∑

j=1

νj+1

νj
≤

[tb+λk−Tr]∑

`=[tb+λ−Tr]

C1

c1

(
ũ`+1

ũ`

)3−τ

≤
[tb+λk−Tr]∑

`=[tb+λ−Tr]

C1(C log n)3−τ

c1ũ`
,

where we have used the recursion ũ`+1 = C log n ũ2−τ
` in (5.1). Again, by the same

recursion, for some large enough constant C ′, the sum on the rhs is at most

C1(C log n)3−τ

c1

C ′

ũ[tb+λk−Tr]
,

which is small as long as log ũ[tb+λk−Tr] is of larger order than log((C log n)3−τ ). Note
that this holds for an appropriate choice of k, since using (6.6) and the recursion for ũ`
again, log ũ[tb+λk−Tr] is of order

log ũ[tb+λk−Tr] = O((log n)2/(1+λ)(τ − 2)k).

Note that if we now pick k = o(log log n), then the exponent (log n)2/(1+λ) stays unchanged
and the expression is much larger order than log log n.

Recall that Ai, Ai stands for the set and number of blue vertices in layer Γ(b)

i at the
time when blue reaches the layer – at time λ[t(n′ρ)/λ] + λi. Also recall that imax stands
for the index of the last Γ(b)

i layer ever reached by blue, see (6.12). Further, O−z(k) is the
number of vertices explored via a path of length k starting from a half-edge in Aimax−z
that are not explored via a half-edge from Aimax−z+1. Next we show that

∑
z≥0 O−z(k) is

at most the same order of magnitude as Omax(k):

Lemma 7.3. With the notation introduced before,

log
(∑

z≥0

O−z(k)
)
≤ log(Omax(k))(1 + oP(1)).

Proof. Let us denote the number of half-edges in Aimax−z that are not connected directly
to Γ(b)

imax−z+1 by H−z. From Lemma 5.4 we have a bound on the number of vertices Ai in
layer Γ(b)

i , and Lemma 5.2 says that the maximal degree in Ai is at most û(b)

i whp.
First, let us describe the following construction of the blue cluster spreading through

the layers Γ(b)

i . After an extra time unit λ, Ai+1 half-edges out of the at most Aiû
(b)
i

half-edges of blue are connected to half-edges in Γ(b)

i+1, while the other half-edges are
not. In the construction of CMn(d) in Section 2, each half-edge is paired to a uniformly
chosen other half-edge. The uniform distribution restricted to a set is still uniform on
that set, thus we can think of this procedure by picking Ai+1 many of the half-edges out
of the at most Aiûi half-edges uniformly at random and connecting them to uniformly
chosen half-edges in Γ(b)

i+1.
The rest of the half-edges in Γ(b)

i are connected to lower degree vertices, i.e., we
can simply pair these half-edges to lower degree vertices than u(b)

i+1, and apply the path
counting method similar as forM(b)

n in Lemma 7.1, with the restriction that the degree of
the j-th vertex on such a path must be less than the degree in Γ(b)

imax−z+j if j ≤ z and less
than the degree where the red avalanche is at the current time when j > z, respectively.
The restriction for j ≤ z is needed to avoid double counting.

Clearly, H−z ≤ Aimax−zûimax−z . Then the degree truncation for this process at λj time
unit later is at u(b)

imax−z+j if j ≤ z and ũtb+λ(j−z)−Tr if j > z.
A simple modification of Lemma 7.1 gives the number of vertices found from these

half-edges. Moreover, to show that vertices reached from Aimax−z, for z ≥ 1 are of less
order than that reached viaM(b)

n , we can use Markov’s inequality:
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Similarly as in (7.12),

log O−z(k) ≤ log (Aimax−zûimax−z) +

z∑

j=1

log((ûimax−z+j )
3−τ ) +

k−z−1∑

j=1

log νj , (7.8)

where the exponent 3− τ comes from a similar calculation than that in (7.2). We claim
that the maximum of this quantity is at z = 0.

Since log Omax(k) = logM (b)
n +

∑k−1
j=1 log νj , to prove that O−z(k) ≤ Omax(k − z), we

need to show that the sum of the first two terms in (7.8) are less than logM (b)
n .

By the recursive definition of ûi in (5.5), log ûimax−z = (τ − 2)z log ûimax
(1 + o(1)). We

can also use the fact from Lemma 5.4 that Ai = o(ûi) for any i ≤ imax. Hence

log (Aimax−zûimax−z) = (τ − 2)z log(ûimax)(1 + o(1)) whp (7.9)

and the second term in (7.8) is (1 + o(1)) times

0∑

j=−z+1

(3− τ) log(ûimax−z+j) = log(ûimax
)(3− τ)

z−1∑

j=0

(τ − 2)j = log(ûimax
) (1− (τ − 2)z) .

(7.10)
We see that the sum of the right hand sides of (7.9) and (7.10) is exactly log(ûimax). Thus,
returning to (7.8),

log O−z(k) ≤ log ûimax
+

k−z−1∑

j=1

log νj + o(1).

The right hand side is indeed maximal for z = 0, for which we have

log O−0(k) ≤ log ûimax +

k−1∑

j=1

log νj + o(1).

Compare this quantity to log Omax(k) in Corollary 7.2. Since ûimax
(1+o(1)) ≤ D(b,n)

max (∞) ≤
M (b)
n , this finishes the proof of Lemma 7.3, since

O(log logn)∑

z=0

O−z(k) ≤ O(log log n) max
z

O−z(k),

and the log log n factor becomes a negligible additive term when taking logarithm.

Having analysed the size of the optional cluster of blue, we are ready to finish the
upper bound of Theorem 1.2 by combining the previous results.

Proof of the upper bound in Theorem 1.2. First, fix k = k(n)→∞ so that k(n) = o(log log n).
Then, Lemma 7.3 implies that the logarithm of the total number of vertices that blue
paints in the last phase is at most log Omax(k)(1 + oP(1)). Corollary 7.2 says that the
order of magnitude of log(Omax(k)) = logM (b)

n +
∑k−1
j=1 log νj + oP(1), where M (b)

n is the
number of blue half-edges in the highest layer that blue can reach. Further, Lemma 6.3
determines the order of magnitude of logM (b)

n , which is

logM (b)

n =
((
Y (n)

b

)λ
/Y (n)

r

)1/(λ+1)

(log n)
2

λ+1Hhalf-edge
n (Y (n)

r , Y (n)

b )(1 + oP(1)) (7.11)

and hence converges in distribution to (Y λb /Yr)
1/(λ+1) when divided by the second two

factors.
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Thus, to get the asymptotic of log(Omax(k)), it remains to calculate
∑k
j=1 log νj and

compare it to the order of logM (b)
n . For this recall the definitions of νj in (7.1), tb in (6.18),

tc in (6.5), ũ` in (5.3), and the upper bound on νj in (7.2). With δj := {tb − Tr + λj},

k∑

j=1

log νj ≤
k∑

j=1

log
(
C1

(
ũbtb+λj−Trc

)3−τ)
(7.12)

≤
k∑

j=1

{
(α log n+β log(C log n)) (τ − 2)−1+tb−Tr+λj−δj (3−τ)

}
+k log(C1C log n).

We rewrite tb − Tr = tc + λ
(
1E −

{
Tr+tc
λ

})
in the exponent using (6.18), and then use

formula (6.5) to see that tc = O�( λ−1
λ(λ+1) ). Hence the main order term in (τ − 2)tc is

(log n)(λ−1)/(λ(λ+1)). This implies that the two smaller order terms k log(C1C log n) and
β log(C log n)(τ − 2)tc are o(log n(τ − 2)tc) and can be put in a (1 + oP(1)) factor of the
main term. Using the exact value of tc in (6.5) we obtain then

k∑

j=1

log νj ≤ (1 + oP(1)) · (log n)
2

λ+1

((
Y (n)

b

)λ

Y (n)
r

)1/(λ+1)

×
(

α

τ − 1

) 1
λ+1

·




k∑

j=1

(τ − 2)λj−δj (3− τ)


 (τ − 2)

−λ+b(r)n
λ+1 +λ(1E−{Tr+tcλ }).

(7.13)
Note that we have used the formula in (5.3) for ũ`, but this is valid only until ` < O�(1−ε)
steps, so k = k(n) must satisfy tb − Tr + λk ≤ O�(1 − ε). Again, by (6.18), tb − Tr =

O�( λ−1
λ(λ+1) ), hence any k := k(n)→∞ with k(n) = o(log log n) is still a good choice.
Similarly as in (7.11), we get

k∑

j=1

log νj ≤
((
Y (n)

b

)λ
/Y (n)

r

)1/(λ+1)

(log n)
2

λ+1C = Hpaths,k
n (Y (n)

r , Y (n)

b ), (7.14)

where we introduce

Hpaths,k
n (Y (n)

r , Y (n)

b ) :=

(
τ − 1− (τ − 2)b

(r)
n

(τ − 1)2

) 1
λ+1

(τ − 2)
−λ+b(r)n
λ+1 +λ(1E−{Tr+tcλ })

× (3− τ)

k∑

j=1

(τ − 2)λj−δj ,

(7.15)

and where we used that α = 1− (τ − 2)b
(r)
n /(τ − 1), see (4.1), where bn is replaced by b(r)n .

Let
Hpaths
n (Y (n)

r , Y (n)

b ) := lim
k→∞

Hpaths,k
n (Y (n)

r , Y (n)

b ). (7.16)

Note that in this formula, δj = {tb − Tr + λj} ∈ [0, 1), where both tb, Tr are integers. This
implies that if λ = p for some p ≥ 2 integer, then all δj ≡ 0 and the last sum can be
carried out and tends to 1/(1− (τ − 2)λ). Otherwise, the sum is less than 1/(1− (τ − 2)λ).

Now, recall again that log Omax(k) = logM (b)
n +

∑k
j=1 νj + oP(1) by Corollary 7.2, and

combine (7.14) with (7.11)

log Omax(k)

(log n)
2

λ+1

(
Hhalf-edge
n (Y (n)

r , Y (n)

b ) +Hpaths
n (Y (n)

r , Y (n)

b )
) ≤

((
Y (n)

b

)λ

Y (n)
r

) 1
λ+1

+ oP(1).
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Now we can finally use Y (n)
r

d−→ Yr, Y
(n)

b
d−→ Yb (by Theorem 2.3 ). Hence, the right

hand side converges to (Y λb /Yr)
1/(λ+1).

Let us denote

Hn(Y (n)

r , Y (n)

b ) := Hhalf-edge
n (Y (n)

r , Y (n)

b ) +Hpaths
n (Y (n)

r , Y (n)

b ). (7.17)

Some elementary calculations – optimizing the fractional parts appearing in the expo-
nents – yield the following bounds:

(
(τ − 2)(3− τ)

(τ − 1)2 (1− (τ − 2)λ)

) 1
λ+1λ+ 1

λ
λ
λ+1

≤ Hn(Y (n)

r , Y (n)

b ) ≤ (τ − 2)−
2λ+1
λ+1

4
1

λ+1

(
1 +

3− τ
1− (τ − 2)λ

)
.

(7.18)
The bounds given in Theorem 1.2 are the simplified versions of (7.18).

For the lower bound of Theorem 1.2 we need to show that most of the optional
cluster of blue is actually going to be occupied by blue. For this, let us introduce the
notation O(k) :=

⋃
z≥0O−z(k) ∪ Omax(k), and set Opt(k) := |O(k)|, where k stands for

the length of the paths we are counting. The next lemma shows that essentially all
the vertices in O(k) for some k = kn = o(log log n) will indeed be painted blue, i.e., red
cannot accidentally bite out too much from this set.

Lemma 7.4. Set k = k(n) = o(log log n). The number of vertices in the intersection of
Rtb+λk and O(k) is small, i.e.,

|O(k) ∩Rtb+λk| = oP (Omax(k)) ,

hence

|O(k) \ (O(k) ∩Rtb+λk)| = Omax(k)(1 + oP(1)).

The proof of the lemma will follow from the following claim:

Claim 7.5. Suppose S ⊂ CMn(d) is an arbitrary subset of vertices such that |S| = o(n)

but |S| := sn → ∞. Then with high probability, the total number half-edges that point
out of S, H(S) is at most |S|(τ−2)/(τ−1)n1/(τ−1). Hence, H(S) = o(n) holds also.

Proof. In the worst case scenario, S contains the |S| highest degree-vertices. Order the
degrees D1, D2, . . . , Dn in CMn(d) of vertices in non-increasing order: D(1) ≥ D(2) ≥
· · · ≥ D(n). Then with an arbitrarily chosen Kn > 0 the following bound always hold:

∑

v∈S
dv ≤

|S|∑

j=1

D(j)
1{D(j)<Kn} +

n∑

i=1

Di1{Di>Kn}. (7.19)

By Lemma 5.3, the second term is whp at most nK2−τ
n , with the error probability

exp{−cnK1−τ
n } being small as long as Kn = o(n1/(τ−1)). Hence the rhs of (7.19) is whp

at most ∑

v∈S
dv ≤ |S|Kn + nK2−τ

n .

For the right hand side to be minimal we set Kn := ((τ − 2)n/|S|)1/(τ−1), which is
o(n1/(τ−1)) as long as |S| → ∞ with n. With this choice of Kn,

∑

v∈S
dv ≤ |S|

τ−2
τ−1n

1
τ−1 .

Since the exponents sum up to 1, the rhs is always o(n) if |S| = o(n).
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Proof of Lemma 7.4. Note that we can construct the configuration model by pairing the
half-edges in an arbitrarily chosen order. This enables the joint construction of the graph
and the spread of the red and blue cluster. Hence, we can assume that if a vertex is
not yet colored, its half-edges are still free, and we do not have to take into account
the effect that whole paths can be blocked away from one color by the other color by
painting one or a few vertices only.

Fix the length of the blue exploration path k. For a set S of vertices, we denote by
H(S) the total number of half-edges that point out of the set S. As a lower bound, we
can use the adapted rule that whenever red and blue arrives at a vertex at the same
time, it is going to be red deterministically. We can further assume that if this is the
case, i.e., there are simultaneous jumps of red and blue, then we always pair the red
half-edges first, i.e., when pairing the blue half-edges at time tb + λi, we consider Rtb+λi
as already determined.

Let us consider a path π ending in O(k) given by the sequence of half-edges and
vertices (π0, s0, t1, π1, s1, . . . , tk, πk), that is, si is the half-edge pointing out of vertex πi
that we pair to ti+1, a half-edge belonging to vertex πi+1. We call this path thinned
at step i if the half-edge si−1 is paired to the half-edge ti where πi is already red, i.e.
πi ∈ Rtb+λi. We call a path thinned if it is thinned at some i ≤ k.

Clearly, each time we pair a blue half-edge at time tb + λi, it is with probability
H(Rtb+λi)/Ln(1 + o(1)) paired to a red half-edge. Let us denote σk := {Rtb+λi}ki=1.
Hence, the probability that a particular path ending in O(k) to be thinned can be
bounded using a union bound

P
(
(π0, s0, t1, π1, s1, . . . , tk, πk) ∈ O(k) thinned

∣∣σk
)
≤

k∑

i=1

H(Rtb+λi)
Ln

=: pth,k,

as long as k = k(n) is so that the quantity on the rhs is less than 1. Hence, for any
function δn,k so that δn,kpth,k < 1, the proportion of vertices in O(k) that are thinned -
denoted by Oth(k) - by Markov’s inequality is at most

P

( |Oth(k)|
|O(k)| ≥ δn,kpth,k

∣∣∣σk,O(k)

)
≤
E[ 1
O(k)

∑
π∈O(k) 1{π thinned }|σk,O(k)]

δn,kpth,k
≤ 1

δn,k
.

(7.20)
Now, note that we are done with the lower bound if we can pick a k = k(n)→∞ and an
δn,k so that δn,k →∞ and δn,kpth,k < 1.

For this, let us temporarily believe that k̃ := k̃(n) = log log log n has the property that
Rtb+λk̃ = oP(n). Then, let us write Rtb+λk̃ := O(n/ωn,k̃) where ωn,k̃ → ∞ with n → ∞.
Set

k := k(n) = min{log log log n, (ωn,k̃)
τ−2

2(τ−1) }. (7.21)

Clearly, k ≤ k̃ holds, hence, by monotonicity we have Rtb+λk ≤ Rtb+λk̃. Applying Claim
5.3 on each term in the sum,

pth,k =

k∑

i=1

H(Rtb+λi)
Ln

≤ k n

Ln(ωn,k̃)(τ−2)/(τ−1)
.

On the event {Ln ∈ (1/2E[D]n, 2E[D]n)}, using (7.21),

pth,k ≤
2

E[D]

( 1

ωn,k̃

) τ−2
2(τ−1)

.

This allows us to pick δn,k := (ωn,k̃)
τ−2

4(τ−1) , and then δn,kpth,k → 0 as well as δn,k → ∞
holds with n→∞. As a result, the rhs of (7.20) tends to zero, showing that whp, only a
negligible fraction of the vertices in O(k) will be thinned.
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We are left showing that with k̃ = k̃(n) = log log log n, we have |Rtb+λk| = oP(n). One
way to see this is to use [28, Theorem 1.2] about typical distances: typical distances in
the graph are 2 log log n/| log(τ − 2)| with bounded fluctuations around this value, while
tb + λk̃ < (1 + ε)2λ/(λ+ 1) log log n/| log(τ − 2)|. Hence, the number of vertices at most
tb + λk̃ away from the uniformly chosen red source vertex must be o(n).

To keep the paper self-contained, we provide another proof of this fact here. For this,
note that tb + λk̃, tb defined in (6.18) is at most (1+ε)λ

λ+1
2 log logn
| log(τ−2)| for some ε > 0 whp. To

estimate the expected size of the red cluster, we write

E
[
|Rtb+λk̃|

]
≤ nP (D(R0, v) ≤ tb + λk)

≤ nP
(
D(R0, v)/2 ≤ (1 + ε)λ

λ+ 1

log log n

| log(τ − 2)|

)

Now, using that D(R0, v)/2 has the distribution tb
∣∣
λ=1

, we can continue the bound as

E
[
|Rtb+λk̃|/n

]
≤ P

(
tb
∣∣
λ=1
≤ (1 + ε)λ

λ+ 1

log log n

| log(τ − 2)|

)

≤ P
(

log(Y (n)

r Y (n)

b ) ≥ 1− 2ελ

λ+ 1
log log n

)
.

In the last line, we used (6.18) with λ = 1 and put bounded terms there in the (1− 2ελ)

factor on the rhs inside the probability sign. Further, note that the random variables
Y (n)
r Y (n)

b have asymptotically exponential tails. Hence, the probability is tending to zero
as n→∞. This ensures that most vertices are further away from the source of the red
infection than tb + λk and hence Rtb+λk̃ = o(n). This finishes the proof of the lemma.

Proof of the lower bound in Theorem 1.2. First, note that the time Tr for red to reach
the top of the mountain was a lower bound, i.e., we have shown the existence of a path
that reaches the top in time Tr whp in Lemma 3.3. Clearly, if red reaches the top earlier,
then there is less time for blue to increase its degree, hence, it will occupy fewer vertices.
Fortunately, an adaptation of Lemma 5.2 for red instead of blue shows that this cannot
happen. That is, one can define the sequence û(r)

i by the recursion

u(r)

0 := (n%
′′
C log n)1/(τ−2), u(r)

i := (u(r)

0 C log n)1/(τ−2),

and then exchange every superscript (b) to (r) in the definition of BadPk (see right before
Lemma 5.2). Applying Lemma 5.2 yields that with high probability, red cannot jump a
layer ahead, and hence the time to reach the top remains as defined in Tr.

Next, everything from this point on was a concentrated estimate, hence, we only
need to check what happens in the last phase, how many vertices blue can actually get
from its optional cluster.

Using Lemma 7.4, we see that the log-size of the blue cluster at time tb + λk is
whp log O(k) = log Omax(k)(1 + oP(1)). Note also that by Corollary 7.2, log Omax(k) is
concentrated and is equal to logM (b)

n +
∑k
j=1 log νj + oP(1) by Lemma 6.3. Hence, it only

remains to give a lower bound on
∑k
j=1 log νj . For this, note that the lower bound on νj

is the same as the upper bound, with a factor C1 replaced by c1. This factor becomes an
additive term when taking the logarithm, and hence contributing only inside the oP(1)

factor. Hence,

log Omax(k)

(log n)
2

λ+1

(
Hhalf-edge
n (Y (n)

r , Y (n)

b ) +Hpaths
n (Y (n)

r , Y (n)

b )
) ≥

((
Y (n)

b

)λ

Y (n)
r

) 1
λ+1

+ oP(1).

The right hand side converges to (Y λb /Yr)
1/(λ+1). Combining this with the upper bound

completes the proof of the Theorem 1.2.
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A Path counting methods for restricted paths

For the proof of Lemmas 5.2 and 7.1 we need a preliminary result considering the
behavior of the degree sequence.

Proposition A.1 (Error probabilities for degrees in restricted sets). for yn ≥ 0, define the
following events G2(yn, ε),G3(yn, ε) concerning the empirical second and third factorial
moments of the restricted degrees

G2(yn, ε) :=

{∣∣∣∣∣
n∑

i=1

Di(Di − 1)1{Di ≤ yn} − nE[D(D − 1)1D≤yn ]

∣∣∣∣∣ ≥ εnE[D(D − 1)1D≤yn ]

}
,

G3(yn, ε) :=

{∣∣∣∣∣
n∑

i=1

Di(Di − 1)(Di − 2)1{Di ≤ yn} − nE[D(D − 1)(D − 2)1D≤yn ]

∣∣∣∣∣

≥ εnE[D(D − 1)(D − 2)1D≤yn ]

}
.

Then, for j = 1, 2, some C > 0 that is independent of yn, n

P(Gj(yn, ε)) ≤ Cyτ−1
n /n,

Further, for the total number of half-edges Ln, we have the following large deviation
lower bound for some constant c(ε) > 0:

P

(
n∑

i=1

Di ≤ (1− ε)nE[D]

)
≤ exp{−nc(ε)}.

Proof. The proof of the first statement follows from Chebishev’s inequality and the fact
that the degrees are i.i.d. from distribution F , satisfying (1.1):

P(G2(yn, ε)) =
Var [D(D − 1)1{D ≤ yn}]
ε2nE[D(D − 1)1D≤yn ]2

≤ Cy5−τ
n

nε2y
2(3−τ)
n

= C
yτ−1
n

n
.

For G3(yn, ε), the proof is analogous: on the rhs the exponent of yn in the numerator is
7− τ and 2(4− τ) in the denominator. The proof of the second statement uses the usual
Chernoff bound. For any t > 0,

P
(

e−t
∑n
i=1Di ≥ e−t(1−ε)nE[D]

)
≤ et(1−ε)nE[D]E

[
e−tD

]n

From (1.1) it follows that E
[
e−tD

]
= 1− tE[D] +O(tτ−1), hence, the rhs can be bounded

from above by
exp{−n(εtE(D) +O(tτ−1))}.

Setting the value of t and modifying the constant to swallow the error term finishes the
proof.

Proof of Lemma 5.2. Here we follow the notation of [27, Section 10.4.2] as much as we
can. We will use union bound and Markov’s inequality to bound the probability of the
existence of bad paths:

Pn(∃k ≤ k0,BadPk 6= ∅|Ft(n%′ )) ≤
k0∑

k=1

En[|BadPk||Ft(n%′ )]. (A.1)

First we give an upper bound on the expected number of bad paths conditioned on the
degree sequence, so let us fix the degrees first and write dv for the degree of the vertex
v. A (directed) path of length k from vertex a to some vertex πk can be described as

{(π0, s0), (π1, t1, s1), . . . , (πk−1, tk−1, sk−1), (πk, tk)} , (A.2)
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where πi ∈ [n] is the i-th mid-vertex along the path, si ∈ [dπi ] denotes the label of the
outgoing and ti ∈ [dπi ] the label of the incoming half-edge of πi. Recall that we call a
path good if deg(πi) ≤ û(b)

i for all 0 ≤ i ≤ k, and BadPk is a subset of bad paths with
π0 ∈ Z[t(n%′ )/λ], dπi ≤ û(b)

i for all 0 ≤ i ≤ k − 1 but dπk > û(b)

k .
Since the number of half-edges out of vertex πi is dπi , there are many possible

paths via the vertices (πi)
k
i=0. Thus, the expected number of paths through fixed vertices

π0, . . . , πk equals the probability that a given path in (A.2) is present in CMn(d) multiplied
by the combinatorial factor of picking the possible half-edges for the paths, i.e.,

k∏

i=1

1

L∗n − 2i+ 1
· dπ0

(
k−1∏

i=1

dπi(dπi − 1)

)
dπk , (A.3)

where L∗n is the number of free half-edges when the procedure starts, i.e., at time t(nρ
′
).

Thus, the expected number of all self-avoiding bad paths in BadPk equals

En[|BadPk||Ft(n%′ )] =
∑

π0∈Z[t(n%
′
)/λ]

dπ0

(
k∏

i=1

L∗n
L∗n − 2i+ 1

) ∑∗

π1,...,πk−1

∀i πi≤û(b)
i

(
k−1∏

i=1

dπi(dπi − 1)

L∗n

)(∑

πk
dπk≥û

(b)
k

dπk
L∗n

)
,

(A.4)

where
∑∗

means that we sum over distinct vertices. Allowing non-distinct vertices, we
get the upper bound

En[|BadPk||Ft(n%′ )] ≤
∑

π0∈Z[t(n%
′
)/λ]

dπ0e
k2

L∗n

k−1∏

i=1

( ∑

dπi≤û
(b)
i

dπi(dπi − 1)

L∗n

)( ∑

πk
dπk≥û

(b)
k

dπk
L∗n

)
, (A.5)

where the factor e
k2

L∗n is a bound on the term
∏k
i=1 L∗n/(L∗n − 2i+ 1) above. Note that L∗n

is Ln minus the already used or active half-edges at time t(n%
′
), and these are the ones

in or incident to the red or blue Branching Process, and as a result, their total number
is no more than of order n%

′/(τ−2). Hence, L∗n = Ln −O(n%
′/(τ−2)). Hence, when we set

k0 = O(log log n), the factor exp{ k2L∗n } = 1 + o(1) and stays close to 1. Further, when we

switch from L∗n to Ln in the denominators, this causes an error factor (Ln/L?n)k, which
is at most (1 +O(nρ

′−1))k ≤ exp{kn%′/(τ−2)−1}. Since k = O(log log n) and ρ′/(τ − 2) < 1,
this factor also tends to 1 with n and can be bounded from above by a constant.

By the Law of Large Numbers, Ln/n→ E[D], hence the i-th factor on the right hand
side is close to

1

E[D]
E

[
D(D − 1)1{

D≤û(b)
i

}] ≤ C3(û(b)

i )3−τ , (A.6)

while the last factor in (A.5) is close to

1

E[D]
E

[
D1{

D≥û(b)
k

}] ≤ C3(û(b)

k )2−τ (A.7)

by the tail behavior (1.1) of the distribution function of D, for some constant C3. Recall
that π0 is a vertex that belongs to the last generation of the branching process approxi-
mation phase. By the coupling to the BP, the degrees in this generation are i.i.d. from
distribution F ∗ in (1.2), hence for some constants C ′, C2 > 0 we expect

∑

π0∈Z[t(n%
′
)/λ]

dπ0
≤ (C ′ log nZ[t(n%′ )/λ])

1/(τ−2) ≤ C2û
(b)

0 , (A.8)

by the definition of û(b)

0 in (5.5). (Note that only the vertices are included in Ft(n%′ ) not
their degrees, i.e., it makes sense to take conditional expectation of this event later w.r.t.
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Ft(n%′ ).) Making the statements in (A.6), (A.7) and (A.8) rigorous, the complement of the

following event3

En :=

{
∀i < k

∑

dπi≤û
(b)
i

dπi(dπi − 1)

L∗n
< ω(n)(û(b)

i )3−τ and
∑

π0∈Z[t(n%
′
)/λ]

dπ0 < ω(n)û(b)

0

and
∑

πk
dπk≥û

(b)
k

dπk
L∗n
≤ ω(n)(û(b)

k )2−τ

}

(A.9)
can be estimated by Markov inequality and union bound for any function ω(n) → ∞,
yielding

P(En|Ft(n%′ )) ≥ 1− k + 1

ω(n)
.

Further note that, with m := Z[t(n%′ )/λ] and the definition of û(b)

0 again, by Lemma 3.1,

P(∃π0 ∈ Z[t(n%′ )/λ], dπ0
> û(b)

0 |Ft(n%′ )) ≤
1

nc1C
. (A.10)

Then on En, we can write

En[|BadPk||Ft(n%′ ), En] ≤ ω(n)2û(b)

0 (û(b)

k )2−τ
k−1∏

i=1

(
ω(n)(û(b)

i )3−τ). (A.11)

The recursion for û(b)

i in (5.5) gives

û(b)

i = (û(b)

0 )(τ−2)−i(C log n)((τ−2)−i−1)/(3−τ).

Using this in (A.11), after a somewhat longish but elementary calculation, the powers of
(τ − 2)−1 cancel in the exponent of û(b)

0 and C log n, and the formula simplifies to

En[|BadPk||Ft(n%′ )] ≤ ω(n)(ω(n)/C log n)k.

This estimate and (A.10) together implies that the union bound in (A.1) leads to

P(∃k ≤ k0,BadPk 6= ∅) ≤ ω(n)

∞∑

k=1

(ω(n)/C log n)k+P(∃π0 ∈ Z[t(n%′ )/λ], dπ0 > û(b)

0 ) ≤ 2ω(n)2

C log n
.

Setting e.g. ω(n) :=
√

log log n completes the proof of Lemma 5.2.

Proof of Lemma 7.1. Similarly as in the proof of Lemma 5.2, first we give upper and
lower bound on the expected number of k-length paths starting from half-edges in the
setM(b)

n conditioned on the degree sequence and on Ftb . Then, we relate the number of
paths to the total number of vertices found in Omax(k) or Od

max(k).
Let us fix the degrees first and write dv for the degree of the vertex v. Let us also

introduce the nested sets Λ1 ⊃ Λ2 ⊃ . . . -s by

Λi =
{
v ∈ [n] : dv ≤ ũbtb+λi−Trc

}
.

Similarly as in the previous lemma, a (directed) path of length k from vertex a = π0 to
b = πk can be described as

{(π0, s0), (π1, t1, s1), . . . , (πk−1, tk−1, sk−1), (πk, tk)} . (A.12)

3note that in the definition of En, the first intersection could be switched to a sharper estimate⋂
1≤i≤k G(û

(b)

i , ε), on the cost of having larger error terms, (order 1/ε). The extra factor (1 + ε)k or ω(n)k is
swallowed either way at the end, when dividing by logn.
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We call a path now good if πi ∈ Λi and good-directed if πi ∈ Λi \ Λi+1 for all 1 ≤ i ≤ k.
We write Nk(a, b), Nd

k (a, b) for the number of self-avoiding good paths and good-
directed paths going from vertex a to b, respectively, and L∗n for the total number of
half-edges present in CMn(d) at time tb. Similarly as in (A.4), the expected value of all
self-avoiding good paths equals

En[Nk(a, b)|Ftb ] =
dadb

L∗n − 2k + 1

(
k−1∏

i=1

Ln
L∗n − 2i+ 1

)
·
∑∗

π1,...,πk−1

∀i πi∈Λi

(
k−1∏

i=1

dπi(dπi − 1)

Ln

)
(A.13)

where
∑∗

means that we sum over distinct vertices. Now clearly we have the upper
bound

En[Nk(a, b)|Ftb ] ≤ da
db
Ln

(Ln
L∗n

)k
· e

k2

L∗n ·
k−1∏

i=1

( ∑

πi∈Λi

dπi(dπi − 1)

Ln

)
:= nk(a, b). (A.14)

Note that Ln/L∗n → 1 by the argument in Lemma 7.4. Similarly as in the proof of
Lemma 5.2, we can have an estimate on L∗n by calculating the number of half-edges
that are non-free by time tb: this includes (1) the sizes of the two branching processes,
Zt(n%) +Z(b)

b(t(n%′ )/λc = O(n%
′/(τ−2)), (2) the total number of half-edges in the last layer red

occupies, i.e., the half-edges in Γ̃tb , (3) vertices in different layers of blue, denoted by
Ai-s, which has a total order at most the same as M (b)

n = O(exp{(log n)2/λ+1Cn}). Note
that the worst case is given by (2), since the total number of half-edges with degree at
least ũtb can be calculated by Claim 5.3 and is of order nũ2−τ

tb
. As a result the factor

(Ln/L∗n)k is at most of order

(1− ũ2−τ
tb

)k ≤ exp{kũ2−τ
tb
} → 1,

since ũtb = O(exp{(log n)2/λ+1C}) while k = O(log log n). Let us define the event

E ′n :=
⋂

1≤i≤k−1

G2(ũbtb+λi−Trc, ε)
C ∩ G3(ũbtb+λi−Trc, ε)

C
⋂
{Ln ≥ nE[D]/(1 + ε)}. (A.15)

Proposition A.1 yields that

P(E ′n) ≥ 1− C
∑

1≤j≤k−1

(ũbtb+λi−Trc)
τ−1/n− exp{−nc(ε)} → 1,

since the terms ũbtb+λi−Trc decrease double-exponentially and the dominating term is
O(exp{(log n)2/λ+1}). As a result, on E ′n,

En[Nk(a, b)|Ftb , E ′n] ≤ da
db
Ln

(
k−1∏

i=1

(1 + ε)2νi

)
· e

k2

L∗n =: E[Nk(a, b)|Ftb ] (A.16)

where νi is from (7.1). By contracting all the vertices belonging to the setM(b)
n , we have

da = M (b)
n and by letting b be the contraction of all the vertices with degree less than K

for some arbitrary constant K ≥ 2, we have db/L∗n ≤ 1 is of constant order again. Note
that the total number of explored vertices on paths of length k is bounded from below
and from above by

Nk(a, b) ≤ Omax(k) ≤
k∑

i=1

Ni(a, b). (A.17)

Noting that νi grows super-exponentially,
∑k
i=1En[Ni(a, b)|Ftb ] = E[Nk(a, b)|Ftb ](1+o(1)).

This finishes the proof of the upper bound in (7.3).
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We can get a lower bound on (A.13) if in the sum over distinct vertices, we leave out
the i highest degree vertices Vi := {vmax

i,1 , . . . , vmax
i,i } from each set Λi. That is, we have

En[Nk(a, b)|Ftb ] ≥ da
db
Ln

k−1∏

i=1



∑

πi∈Λi
πi /∈Vi

dπi(dπi − 1)

Ln


 := nk(a, b). (A.18)

Note that since we leave out only finitely many vertices, the ith sum within the product
still converges to νi. More precisely, on E ′n ∩ {Ln ∈ n(E[D]/2, 2E[D])}, each factor is at
least (1− ε)νi/2.4 Again contracting all the vertices belonging to the setM(b)

n , we have
da = M (b)

n and by letting b be the contraction of all the vertices with degree less than K
for some arbitrary constant 2 ≤ K, we have db/Ln is of constant order again. Combining
with the lower bound in (A.17) finishes the proof of the lower bound in (7.3).

The proof of the bounds (7.4) for good-directed paths are analogous, but now one
has to use the restricted sets

Λd
j := Λj \ Λj+1 =

{
v ∈ [n] : ũbtb+λ(j+1)−Trc < dv ≤ ũbtb+λj−Trc

}
.

Next we prove the variance formula for Od
max(k) following more or less the lines of

[27, Section 10.4.2 and 9.4]. Note that the major difference between the proof of [27,
Proposition 9.17] and our case is that here we have the extra restriction πi, ρi ∈ Λd

i , and
the Λd

i sets are disjoint.
First write Nd

k (a, b) as the sum of indicators that a given good-directed path is present,
and write |π∩ρ| for the number of edges the two paths share. Then we have the variance
formula

Varn[Nd
k (a, b)|Ftb ] =

k∑

`=0

∑

π,ρ
|π∩ρ|=`

[Pn(π, ρ ⊆ CMn(d)|Ftb)−

Pn(π ⊆ CMn(d)|Ftb)Pn(ρ ⊆ CMn(d)|Ftb)] .
Consider first the inner sum for ` = 0, i.e. when the two path have disjoint edge-sets.
Since at the time of pairing the ith half-edge, there are L∗n − 2i + 1 free half-edges to
pick from, the probability that both π, ρ are present is exactly

∏2k
i=1(L∗n − 2i+ 1)−1. On

the other hand, the square of the probability that a path present is P(π ⊆ CMn(d))2 =∏k
i=1(L∗n − 2i+ 1)−2. Comparing the two, we get for ` = 0, the inner sum is
∑

π,ρ
|π∩ρ|=0

[Pn(π, ρ ⊆ CMn(d)|Ftb)− Pn(π ⊆ CMn(d)|Ftb)Pn(ρ ⊆ CMn(d)|Ftb)]

=
∑

π,ρ
|π∩ρ|=0

(
k∏

i=1

L∗n − 2i+ 1

L∗n − 2i− 2k + 1
− 1

)
Pn(π ⊆ CMn(d)|Ftb)Pn(ρ ⊆ CMn(d)|Ftb),

(A.19)

which, combined with the earlier observation about L∗n = Ln−O(n exp{(log n)2/(λ+1)(2−
τ)}), gives rise to the first term in the error term ek,n in (7.6).

For ` = k, that is, the two paths are identical, Pn(π ⊆ CMn(d)|Ftb) − Pn(π ⊆
CMn(d)|Ftb)2 ≤ Pn(π ⊆ CMn(d)|Ftb), hence the inner sum can be bounded by the
inequality ∑

π,ρ
|π∩ρ|=k

Pn(π ⊆ CMn(d)|Ftb) ≤ En[Nd
k (a, b)|Ftb ], (A.20)

4Note that we have this weaker lower bound since we do not have upper large deviations for Ln, i.e. we
do not have a bound for P(Ln ≥ (1 + ε)E[D]n). This is because D only has a finite first moment but infinite
variance, and also the moment generating function does not exist for positive values.
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explaining the first term on the right hand side of (7.5).

Now we are left with handling the cases 1 ≤ ` ≤ k − 1. Note that in these cases we
have to evaluate over all possible overlaps between the paths π, ρ. For this, note that the
restriction that πi, ρi ∈ Λd

i and Λd
i are disjoint sets implies that for each i there are only

two cases: either πi = ρi or πi 6= ρi, but in both cases they are disjoint from all πj , ρj , j 6= i.
We will merge these cases into shapes. Let us call an excursion of length s a connected
component of π \ ρ, that is, a consecutive sequence of edges where the two paths are not
the same. Formally, for some i, (πi, πi+1) 6= (ρi, ρi+1), . . . , (πi+s−1, πi+s) 6= (ρi+s−1, ρi+s),
is an excursion if it is started and ended by the common edges (πi−1, πi) = (ρi−1, ρi)

and (πi+s, πi+s+1) = (ρi+s, ρi+s+1) unless i− 1 = −1 or i+ s+ 1 = k + 1, in which cases
there is no edge before/after the excursion, respectively. Due to the property that Λd

i

are disjoint, note that there are exactly the same number of edges on the π part of an
excursion as on the ρ part of the excursion.

Let us denote by m the number of excursions, and again, we denote by ` := |π∩ ρ| = `

the total number of shared edges. For a fix m, there can be m − 1,m or m + 1 many
segments of π ∩ ρ, depending on whether none of, only one of, or both a, b are part of an
excursion. Let us thus introduce the indicators δa = 1, δb = 1 if vertex a, b are parts of an
excursion.

We can now define the class of shapes called Shapem,` corresponding to pairs of paths
for which |π ∩ ρ| = ` and π \ ρ consists of m excursions. That is, ρ has m edge-disjoint
excursions from π, and between two consecutive excursions there is at least one edge in
π ∩ ρ. Note that the number of excursions m is thus at most `+ 1. Also note that each
shape in Shapem,` can be uniquely characterised by a sequence of numbers of the form

(δa, δb, (`1, `2, . . . , `m+1−δa−δb), (e1, e2 . . . , em)), (A.21)

where δa, δb are indicators as before; `i is the number of edges in the ith connected
component of π ∩ ρ, with the property that

∑m+1−δa−δb
i=1 `i = `; and ei is the number

of edges on the ith excursion with the property that
∑m
i=1 ei = k − `. See Figure for

examples.

The contribution of paths with 1 ≤ ` ≤ k − 1 to the variance Var[Nd
k (a, b)] can be

bounded from above as follows:

∑

π,ρ
1≤|π∩ρ|≤k−2

Pn(π, ρ ⊆ CMn(d)|Ftb) ≤
k−1∑

`=1

`+1∑

m=1

∑

σ∈Shapem,`

∑

π,ρ
Shape(π,ρ)=σ

Pn(π, ρ ⊆ CMn(d)|Ftb).

(A.22)
Note that if |π ∩ ρ| = ` is fixed, then there are exactly 2k − ` different edges in π ∪ ρ, so
that with fixed vertices and fixed half-edges,

Pn(π, ρ ⊆ CMn(d)|Ftb) =

2k−`∏

i=1

1

L∗n − 2i+ 1
. (A.23)

If we now fix only the vertices, but not the half-edges, then we have to multiply this
with a combinatorial factor similar to that in (A.3) counting the number of possible
variations of half-edges for fixed vertices (πi, ρi)1≤i≤k. Recall again that δa = 1{a ∈
first excursion of π \ ρ} and δb = 1{b ∈ last excursion of π \ ρ}. Let us write dσ(v) for
the number of half-edges of v used in the union of paths π, ρ of shape σ, and in text we
write degreeσ for this degree. At the end of every excursion we have degreeσ-3 vertices,
while on the excursions and inside segments of π ∩ ρ we have degreeσ-2 vertices. Thus
the combinatorial factor to pick half-edges, once fixing the vertices along the path (but
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Figure 7: Paths of length 8 belonging to Shape2,3: m = 2 indicates that there are two
excursions, ` = 3 means that the two paths share 3 edges in total. On the first picture,
the excursion do not start at the ends of the path, hence δa = δb = 0, on the second
picture, δa = 1, δb = 0, while on the third picture both excursions start at the ends, hence
δa = δb = 1. Note that in all cases, the number of degree three vertices is 2m− δa − δb,
and the shared edges form m+ 1− δa − δb many connected components.

not the half-edges) is at most

da(da− 1)δadb(db− 1)δb
∏

s:
dσ(πs)=3

dπis (dπis − 1)(dπis − 2)
∏

t:
dσ(πt)=2

dvt(dvt − 1)
∏

u:
dσ(ρu)=2
ρu∩π=∅

dvu(dvu − 1). (A.24)

Thus, establishing the contribution of a given fixed shape σ in (A.22), we should sum
the product of (A.23) and (A.24) over all possible configurations (πi, ρi)i=1,...,k forming
the shape σ. Note that the number of factors in (A.23) equals the number of edges while
the number of factors in (A.24) equals the number of vertices in σ. Since the number of
edges minus the number of vertices without counting a and b is at least m+ 1 (equality
if all the vertices on excursions are different – see Remark A.2 below when this is not
true), we obtain

∑

π,ρ
Shape(π,ρ)=σ

P(π, ρ ⊆ CMn(d)|Ftb) ≤
1

Lm+1
n

2k−`∏

i=1

Ln
L∗n − 2i+ 1

· da(da − 1)δadb(db − 1)δb

×
∏

s:
dσ(πs)=3

( ∑∗

i∈Λd
is

di(di − 1)(di − 2)

Ln

) ∏

t:
dσ(πt)=2

( ∑∗

i∈Λd
it

di(di − 1)

Ln

) ∏

u:
dσ(ρu)=2
ρu∩π=∅

( ∑∗

i∈Λd
iu

di(di − 1)

Ln

)
.

(A.25)
Recall the event E ′n from (A.15). We put G3 in there exactly since now we can use
it again: on E ′n, the sums in the previous display can be bounded by (1 + ε)2κis and
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(1 + ε)2νit , (1 + ε)2νiu , respectively. Thus, we get that on E ′n the rhs of (A.25) is at most

1

Lm−1
n

2k−`∏

i=1

Ln
L∗n − 2i+ 1

· d1+δa
a

d1+δb
b

L2
n

∏

s:
dσ(πs)=3

κis
∏

t:
dσ(πt)=2

νit
∏

u:
dσ(ρu)=2
ρu∩π=∅

νiu(1 + ε)2k. (A.26)

Remark A.2. Note that even though the edges of an excursion are different by definition,
the vertices in the excursions might still coincide, i.e. πi = ρi can happen even if πi, ρi
are sitting in the middle of an excursion. In this case, instead of having the factor
dπi(dπi − 1)dρi(dρi − 1) in (A.24) we have dπi(dπi − 1)(dπi − 2)(dπi − 3). Since in (A.25),
every original vertex gets a factor L−1

n as a normalisation, when πi = ρi is merged within
an excursion, there is a factor of the form

∑

πi∈Λd
i

dπi(dπi − 1)(dπi − 2)(dπi − 3)/L2
n

in (A.25). Similarly as in the proof of Proposition A.1, it can be shown that this expression
is less than Cũ5−τ

f(i)/n where f(i) = [tb + λi− Tr]. If the vertices πi, ρi are not merged, we

have a factor ν2
i = ũ

2(3−τ)
f(i) in (A.25) instead. Note that

ũ5−τ
f(i)/n = o(ũ

2(3−τ)
f(i) )

as long as ũf(i) = o(n1/(τ−1)). Since the maximal degree in the graph is of this order,
this is always the case. That is, it in not worth merging vertices on excursions. We can
continue analysing formula (A.26).

Now we identify the indices is, it, iu, using the restrictions πi, ρi ∈ Λd
i . The crucial

observation is the following: follow the indices π1, π2, . . . , πk−1 and ρ1, ρ2, . . . , ρk−1 along
the two paths. If for some i, the vertices πi 6= ρi are degreeσ-2 vertices on an excursion,
then the corresponding ν2

i appears in the product in (A.26). If πi = ρi is a degreeσ-3
vertex, then we have a factor κi replacing ν2

i in the product. If πi = ρi is a degreeσ-2
vertex in π ∩ ρ, then we only have a factor νi in the product (instead of ν2

i ) in (A.26).
Thus, dividing (A.26) by

∏2k−2
i=1 ν2

i yields that for each degreeσ-3 vertex we have a
factor κi/ν2

i and for each coinciding degreeσ-2 vertex we have a 1/νi ≤ 1/νk−1 in the
product. Elementary calculation shows that

κi/ν
2
i =

(
ũbtb+λi−Trc

)τ−2
(A.27)

and since the sequence ũi is decreasing in i, we get

κi
ν2
i

≤ κ1

ν2
1

.

Thus, we can bound the contribution of every degreeσ-3 vertex by a factor κ1/ν
2
1 , and

every coinciding degreeσ-2 vertex by a factor 1/νk−1. Since there are m− δa − δb many
degreeσ-3 vertices and

∑m+1−δa−δb
j=1 (`i−1) = `−m−1+δa+δb many coinciding degreeσ-2

vertices, if we take out En[Nk(a, b)|Ftb ]
2

as in (A.16) from (A.26), we are left with the
following upper bound

∑

π,ρ
Shape(π,ρ)=σ

Pn(π, ρ ⊆ CMn(d)|Ftb) ≤ En[Nk(a, b)|Ftb ]
2 1

d1−δa
a d1−δb

b

(
κ1

ν2
1

)2m−δa−δb 1

ν`−m−1+δa+δb
k−1 Lm−1

n

≤ En[Nk(a, b)|Ftb ]
2 · 1

Lm−1
n

(
κ2

1νk−1

ν4
1

)m−1
1

ν`k−1

(
κ1νk−1

ν2
1da

)1−δa (κ1νk−1

ν2
1db

)1−δb
.

(A.28)
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Recall that we have to sum this formula over all the shapes in Shapem,`, and over m ≥ 1

and ` as in (A.22).
When m = 1, the number of σ ∈ Shape1,` is ` − 1 if δa + δb = 0, and 1 if δa + δb = 1,

and 0 if δa = δb = 1. Thus, fixing m = 1 and summing in δa, δb, ` gives at most

(
κ1νk−1

ν2
1da

+
κ1νk−1

ν2
1db

)
·
∞∑

`=1

1

ν`k−1

+
κ2

1ν
2
k−1

ν4
1dadb

∞∑

`=1

`− 1

ν`k−1

Thus the contribution from m = 1 can be bounded from above by

En[Nk(a, b)|Ftb ]
2
[

κ1νk−1

ν2
1(νk−1 − 1)

(
1

da
+

1

db

)
+

κ2
1ν

2
k−1

ν4
1(νk−1 − 1)2

1

dadb

]
. (A.29)

We are left with counting the contribution of shapes with m ≥ 2. We can bound the
number of shapes in Shapem,l (for fixed δa, δb) similarly as in [27, Lemma 9.18]

|{σ : σ ∈ Shapem,l}| ≤
(
k − `− 1

m− 1

)(
`− 1

m− δa − δb

)
. (A.30)

To explain this formula, recall the description of the shape in (A.21). Note that since
excursions are separated by at least one common edge, we have to pick `1, `2, `m+1−δa−δb
in (A.21) so that for all i, `i ≥ 1 and

∑
i `i = `. This can be done in

(
`−1

m−δa−δb

)
many ways.

Then, we also have to pick the length of excursions so that
∑m
i=1 ei = k − ` and each

ei ≥ 1. This can be done in
(
k−`−1
m−1

)
many ways.

For m ≥ 2, the factors in (A.30) can be bounded by

(
k − `− 1

m− 1

)
≤ km−1

(m− 1)!
,

(
`− 1

m− δa − δb

)
≤ `m−δa−δb

(m− δa − δb)!
≤ km,

since ` ≤ k. So, the total number of shapes in Shapem,` can be bounded by

|{σ : σ ∈ Shapem,`}| ≤ k
k2(m−1)

(m− 1)!
, (A.31)

which is independent of `. Using this bound in (A.28) when summing over the number
of shapes, summing over δa, δb ∈ {0, 1}, then over ` ≥ 1, we get that the contribution of

m ≥ 2 terms can be bounded from above by E[Nk(a, b)]
2

times

(
1 +

κ1νk−1

ν2
1da

)(
1 +

κ1νk−1

ν2
1db

)
k

νk−1 − 1

∞∑

m=2

(
κ2

1νk−1

ν4
1Ln

)m−1
k2(m−1)

(m− 1)!

=

(
1 +

κ1νk−1

ν2
1da

)(
1 +

κ1νk−1

ν2
1db

)
k

νk−1 − 1

(
ek

2κ2
1νk−1/(ν

4
1Ln) − 1

)
.

(A.32)

Now let us set da := M (b)
n and in db we collect all the vertices that are less then νk:

these contain vertices with constant degree (say all the degrees smaller than K for
F (K) = 1/2). This implies that db ≥ Ln/2 whp. Combining the contribution for ` = 0

in (A.19), ` = k in (A.20), and then m = 1 in (A.29) and finally m ≥ 2 in (A.32) yields
(7.5).
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