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Moment bounds for the corrector in stochastic
homogenization of a percolation model
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Abstract

We study the corrector equation in stochastic homogenization for a simplified Bernoulli
percolation model on Z%, d > 3. The model is obtained from the classical {0,1}-
Bernoulli bond percolation by conditioning all bonds parallel to the first coordinate
direction to be open. As a main result we prove (in fact for a slightly more general
model) that stationary correctors exist and that all finite moments of the corrector are
bounded. This extends a previous result in [18], where uniformly elliptic conductances
are treated, to the degenerate case. With regard to the associated random conduc-
tance model, we obtain as a side result that the corrector not only grows sublinearly,
but slower than any polynomial rate. Our argument combines a quantification of
ergodicity by means of a Spectral Gap on Glauber dynamics with regularity estimates
on the gradient of the elliptic Green’s function.
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1 Introduction

We consider the lattice graph (Z<¢,B%), d > 3, where B denotes the set of nearest-
neighbor edges. Given a stationary and ergodic probability measure (-) on 2 - the space
of conductance fields a : B? — [0, 1] - we study the corrector equation from stochastic
homogenization, i.e. the elliptic difference equation

V' (a(Vp+e)=0, zez (1.1)

Here, V and V* denote discrete versions of the continuum gradient and (negative)
divergence, cf. Section 2, and e € R¢ denotes a vector of unit length, which is fixed
throughout the paper. The corrector equation (1.1) emerges in the homogenization of
discrete elliptic equations with random coefficients: For random conductances that are
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stationary and ergodic (with respect to the shifts a(-) — a(- + z), z € Z4, cf. Section 2),
and under the assumption of uniform ellipticity (i.e. there exists \g > 0 such that a > )\
on B almost surely), a classical result from stochastic homogenization (e. g. see [23, 25])
shows that the effective behavior of V*aV on large length scales is captured by the
homogenized elliptic operator V*ayn.,, V where ayo,, is a deterministic, symmetric and
positive definite d x d matrix. It is characterized by the minimization problem

€ apome = nf ((e+ V) - ale+ Vy)), (1.2)
%

where the infimum is taken over random fields ¢ that are (-)-stationary in the sense of
ola,z + z) = p(a(- + z),z) for all z,z € Z% and (-)-almost every a € ). Minimizers to
(1.2) are called stationary correctors and are characterized as the stationary solutions
to the corrector equation (1.1). Due to the lack of a Poincaré inequality for V on the
infinite dimensional space of stationary random fields, the elliptic operator V*aV is
highly degenerate and the minimum in (1.2) may not be obtained in general. In fact, it is
expected to fail generally for d = 2, see Remark 3.4 below. The only existence result of a
stationary corrector (in dimensions d > 3) has been obtained recently in [18] by Gloria
and the third author under the assumption that the a’s are uniformly elliptic, and that
(-) satisfies a Spectral Gap Estimate, which is in particular the case for independent and
identically distributed coefficients. They also show that {|¢|P) < 1 for all p < cc.

The goal of the present paper is to extend this result to the case of conductances with
degenerate ellipticity. To be definite, consider the probability measure (-), constructed
by the following procedure:

Take the classical {0, 1}-Bernoulli-bond percolation on B¢ with parameter A € (0, 1]

and declare all bonds parallel to the coordinate direction e; to be open.

(1.3)
(We adapt the convention to call a bond “open” if the associated coefficient is “1”,
while a bond is “closed” if the associated coefficient is “0”. The parameter A denotes
the probability that a bond is “open”). As for d-dimensional Bernoulli percolation, (-),
describes a random graph of open bonds, which is locally disconnected with positive
probability, i.e. the intersection of the graph with a box of arbitrary size yields a
disconnected graph with positive probability. However, as a merit of the modification,
any two vertices in the random graph are almost surely connected by some open path.
As a main result we show that (1.1) admits a stationary solution, all finite moments of
which are bounded:

Theorem (main result). Let d > 3 and A € (0,1]. There exits ¢ : Q x Z¢ — R such
that for (-), almost every a € 2 we have

* ¢(a,-) solves (1.1),
s ¢(a, +2) = d(a(- + 2),-) forall z € Z4,

and forall 1 <p < oo

=

(lo)x < C.
Here C denotes a constant that only depends on p, A and d.

The modified Bernoulli percolation model (-), fits into a slightly more general frame-
work that we introduce in Section 2 below, cf. Lemma 2.3. The result above will then
follow as a special case of Theorem 3.2 stated below.
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Relation to stochastic homogenization. Consider the decaying solution u, : Z¢ —

R to the equation

V*(aVu.)(-) = e?f(e)  in Z%,
where f : RY — R is smooth, compactly supported, and a is distributed according to
<~>/\. Classical results of stochastic homogenization (see [29], [22], [25]) show that for
almost every a € () the (piecewise constant interpolation of the) rescaled function ua(é)
converges as ¢ | 0 to the unique decaying solution upom : R — R of the deterministic
elliptic equation

~V - (@homVunom) = f  in R%

Moreover, a formal two-scale expansion suggests that

d
Ue() A Unom (£7) + € Y _ 6;(2)0;unom (ex), (1.4)

Jj=1

where ¢; denotes the (stationary) solution of (1.1) for e = e; - the jth coordinate direction.
The question how to quantify the errors emerging in this limiting process is rather subtle.
Note that in the case of deterministic periodic homogenization, the good compactness
properties of the d-dimensional “reference cell of periodicity” yield a natural starting
point for estimates. In contrast, in the stochastic case the reference cell has to be
replaced by the probability space (€2, (-)), which has infinite dimensions and thus most
“periodic technologies” break down. Nevertheless, estimates for the homogenization
error ||us — upom|| and related quantities have been obtained by [20, 12, 10, 14], see
also [11, 3] for recent results on fully nonlinear elliptic equations or equations in non-
divergence form.

While the asymptotic result of stochastic homogenization holds for general stationary
and ergodic coefficients (at least in the uniformly elliptic case), the derivation of error
estimates requires a quantification of ergodicity. In a series of papers (see [16, 17, 18,
19]) two of the authors and Gloria developed a quantitative theory for the corrector
equation (1.1) (and regularized versions) based on the assumption that the underlying
statistics satisfies a Spectral Gap Estimate (SG) for a Glauber dynamics on the coefficient
fields. This assumption is satisfied e.g. in the case of independent and identically
distributed (i. i. d. coefficients). In [18, 16] moment bounds for the corrector, similar
to the one in the present paper, have been obtained. These bounds are at the basis of
various optimal estimates; e.g. [16] contains a complete and optimal analysis of the
approximation of ay., via periodic representative volume elements, and [17] establishes
optimal estimates for the homogenization error and the expansion in (1.4).

While in the works mentioned above it is always assumed that the coefficients are
uniformly elliptic, i.e. a € [A, 1}]Bd for some fixed \g > 0, in the present paper we derive
moment bounds for a model with degenerate elliptic coefficients. As in [18, 16], a crucial
element of our approach is an estimate on the gradient of the elliptic Green’s function
associated with V*aV. The required estimate is pointwise in a, but (dyadically) averaged
in space, and obtained by a self-contained and short argument, see Proposition 3.8 below.
It extends the argument in [18] to the degenerate elliptic case. Since in the degenerate
case the elementary inequality \o|Vu|? < Vu - aVu breaks down, we replace it by a
weighted, integrated version (see Lemma 3.10 below). Compared to more sophisticated
methods that e.g. rely on isoperimetric properties of the graph, an advantage of our
approach is that it only invokes simple geometrical properties, namely spatial averages
(on balls) of the inverse of the chemical distance between nearest neighbor vertices. We
believe that our approach extends (although not in a straight-forward manner) to the
case of standard supercritical Bernoulli percolation. This is a question that we study in a
work in progress.
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Connection to random walks in random environments (RWRE). Although, the
main motivation of our work is quantitative homogenization, we would like to comment
on the connection to invariance principles for (RWRE). In fact, there is a strong link
between stochastic homogenization and (RWRE): The operator V*(aV) generates a
stochastic process, namely the variable-speed random walk X = (X4(t));>0, which is
a continuous-time random walk in the random environment a. In the early work [21]
(see also [25]) the authors considered general stationary and ergodic environments.
For uniformly elliptic coefficients they prove an annealed invariance principal for X,
saying that the law of the rescaled process /z X, (¢ ~!t) weakly converges to that of a
Brownian motion with covariance matrix 2ay.m. In [31] Sidoravicius and Sznitman prove
a stronger quenched invariance principle for X, which says that the convergence even
holds for almost every environment a.

More recently, invariance principles have been obtained for more general environ-
ments, see [7] and [24] for recent surveys in this direction. Most prominently, supercrit-
ical bond percolation on Z¢ has been considered: Here, the annealed result is due to
[15], while quenched results have been obtained in [31] for d > 4 and in [5, 26] for d > 2.
See also [1, 2] for recent related results on degenerate elliptic, possibly unbounded
conductances.

The main difficulty in proving a quenched invariance principle compared to the
annealed version is to establish a quenched sublinear growth property (see (3.4) below)
for a corrector field x. The latter is closely related to the function ¢ considered in Theo-
rem 3.2, see the discussion below Corollary 3.3 for more details. In the uniformly elliptic
case, sublinearity of x is obtained by soft arguments from ergodic theory combined with
a Sobolev embedding, see [31]. For supercritical Bernoulli percolation the argument is
more subtle: For d > 3 the proofs in [31, 5, 26] use heat-kernel upper bounds (as deduced
by Barlow [4]) or other “heat-kernel technologies” (e.g. see [8, 1, 2]) that require a
detailed understanding of the geometry of the percolation cluster, and thus require
the use of sophisticated arguments from percolation theory (e.g. isoperimetry, regular
volume growth and comparison of chemical and Euclidean distances). Conceptually, the
use of such fine arguments seems not to be necessary in the derivation of quenched
invariance principles. Motivated by this in [8] and [2] different methods are employed
with a reduced usage of heat-kernel technology.

Our approach yields, as a side-result, an alternative way to achieve this goal: The
quenched sublinear growth property can easily be obtained from the moment bound
derived in Theorem 3.2. In fact, the estimate of Theorem 3.2 is stronger: As we explain
in the discussion following Corollary 3.3, our moment bounds imply that the growth
of x is not only sublinear, but slower than any polynomial rate, see (3.5). Of course,
the environment considered in the present paper, namely the modified percolation
model (-),, is much simpler than supercritical Bernoulli percolation. Nevertheless, it
shares some of the “degeneracies” featured by percolation; e.g. for every ball B C Z¢
with finite radius Poincaré’s inequality >, .5 u*(z) < C(a, B) Y, .5 a(b)|Vu(b)|? fails
with positive probability. Furthermore, in contrast to the above mentioned results,
our argument requires only mild estimates on the Green’s function. More precisely,
as already mentioned, we require an estimate on the gradient of the elliptic Green’s
function, which - in contrast to quenched heat kernel estimates — can be obtained by
fairly simple arguments, see Proposition 3.8. Of course, as it is well-known, estimates
on the gradient of the elliptic Green’s function can also be obtained from estimates
on the associated heat kernel by an integration in time, and a subsequent application
of Caccioppoli’s inequality. In particular, heat-kernel estimates in the spirit of the one
obtained by Barlow in the case of supercritical Bernoulli percolation, see [4, Theorem 1],
would be sufficient to make this program work. Yet, since the elliptic estimates that
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we require are less sensitive to the geometry of the graph, and thus can be obtained
by simpler arguments, we opt for a self-contained proof that only relies on elliptic
regularity theory. Another interesting, and - as we believe — advantageous property of
our approach is that (thanks to the Spectral Gap Estimate) probabilistic and deterministic
considerations are well separated, e.g. Proposition 3.8 is pointwise in a and does not
involve the ensemble.

Structure of the paper. In Section 2 we gather basic definitions and introduce
the slightly more general framework studied in this paper. We then present the main
result in the general framework. Section 3.1 is devoted to the proof of the main result:
we first discuss the general strategy of the proof and present several auxiliary lemmas
needed for the proof of the main theorem - in particular, the coercivity estimates, see
Lemmas 3.10 and 3.11, and an estimate for the gradient of the elliptic Green’s function,
see Proposition 3.8, which play a key role in our argument. The proof of the main result
is given at the end of Section 3.1, while the auxiliary results are proven in Section 4.

Throughout this article, we use the following notation, see Section 2 for more details:

* d is the dimension;

» 7Z¢is the integer lattice;

* (e1,...,eq) is the canonical basis of Z%;

e ¢ € R% which appears in (1.1), denotes a vector of unit length and is fixed through-
out the paper;

e BY:={b={z,v+e}:2€7Zi=1,...,d} is the set of nearest neighbor bonds
of 74,

* Bg(xo) is the cube of vertices x € zo + ([~ R, R] N Z)%;

* Qr(wo) is the cube of bonds b = {z,z +¢;} € B? with z € Br(v) andi € {1,...,d};

* |A| denotes the number of elements in A C Z? (resp. A C BY).

2 General framework

In the first part of this section, we introduce the general framework following the
presentation of [16]: We introduce a discrete differential calculus, the random conduc-
tance model, and finally recall the standard definitions of the corrector and the modified
corrector.

2.1 Lattice and discrete differential calculus

We consider the lattice graph (Z%, B?), where B¢ := {b = {2,z +¢;} : x € Z%, i =
1,...,d} denotes the set of nearest-neighbor bonds. We write ¢?(Z%) and ¢?(B%), 1 < p <
oo, for the usual spaces of p-summable (resp. bounded for p = co) functions on 7Z¢ and
B?. For u : Z* — R the discrete derivative Vu(b), b € B?, is defined by the expression

Vu(b) = u(yp) — u(xp).
Here z1, and ¥, denote the unique vertices with b = {x,,3,} € B satisfying vy, — ap, €
{e1,...,eq}. We denote by V* the adjoined of V, so that we have for F: B¢ = R

d

ViF@) =Y (F({:v — e a)) — F({z,x + ei})).

i=1
Furthermore, the discrete integration by parts formula reads
> Vub)F(b) = > u(z)V*F(x), (2.1)
beB4 TEZ?

and holds whenever the sums converge absolutely.
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2.2 Random conductance field

To each bond b € B? a conductance a(b) € [0,1] is attached. Hence, a configuration
of the lattice is described by a conductance field a € €2, where Q) := |0, 1]]Bd denotes
the configuration space. Given a € €2 we define the chemical distance between vertices
z,y € Z% by

diste(x,y) := inf { > a(b)™' : misapath from z to y } (where } := +00).
benr

We equip 2 with the product topology (i. e. the Z9-fold product of the Borel-o-algebra
on [0,1] C R) and the usual product c-algebra, and describe random configurations by
means of a probability measure on (2, called the ensemble. The associated expectation is
denoted by ().

Our assumptions on (-) are the following:
Assumption 2.1.

(A1) (Stationarity). The shift operators 2 > a — a(-+2) € Q, z € Z? preserve the
measure (-). (For abondb = {z,y} € B? and » € Z¢ we writeb+ 2 := {z + 2,y + 2}
for the shift of b by z.)

(A2) (Moment condition). There exists a modulus of integrability A : [1,00) — [0, 00)
such that the distance of neighbors is finite on average in the sense that

=

Vp < oo : max ((distq(0,€;))P)? < A(p).

i=1,....d

(A3) (Spectral Gap Estimate). There exists a constant p > 0 such that for all ( € L*(Q)

we have
(SGIREEDS <<§g)2>

beB?

where % denotes the vertical derivative as defined in Definition 2.2 below.
For technical reasons we need to strengthen (A2):

(A2+) We assume that

S

Vp<oo : ma d((distaei,o((),ei))p> < A(p),

i=1,...,

where a®° denotes the conductance field obtained by “deleting” the bond {0, ¢;}
(i. e. a®°(b) = a(b) for allb # {0, ¢;} and a®°({0,¢;}) = 0).

Let us comment on these properties. A minimal requirement needed for qualitative
stochastic homogenization in the uniformly elliptic case is stationarity and ergodicity
of the ensemble. The basic example for such an ensemble are i. i. d. coefficients which
means that (-) is a B¢-fold product of a “single edge” probability measure on [0, 1]. The
assumption (A3) is weaker than assuming i. i. d., but stronger than ergodicity. Indeed, in
[16] it is shown that any i. i. d. ensemble satisfies (A3) with constant p = 1. Moreover, it is
shown that (A3) can be seen as a quantification of ergodicity. From the functional analytic
point of view the spectral gap estimate is a Poincaré inequality where the derivative is
taken in vertical direction, see below. (The terminology “vertical” versus “horizontal” is
motivated from viewing a € 2 as a “height”-function defined on the “horizontal” plane
B%). We recall from [16] the definition of the vertical derivative:
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Definition 2.2. For ( € L'(f)) the vertical derivative w. r. t. b € B? is given by

oc . _

%_C_<C>ba

where ((), denotes the conditional expectation where we condition on {a(b’)}y/4,. For
¢ : Q — R sufficiently smooth we denote by 63—&) the classical partial derivative of (
w. . t. the coordinate a(b).

Properties (A2) and (A2+) are crucial assumptions on the connectedness of the graph.
In particular they imply that almost surely every pair of vertices can be connected by
a path with finite intrinsic length. Note that (A2+) is stronger than (A2), e.g. (A2+)
implies that vertices almost surely can be connected by two disjoint paths. It is easy
to construct an example which satisfies (A2) but not (A2+): First, one constructs a
periodic, deterministic coefficient field that connects all sites of the lattice, but looses
this property when deleting a specific edge. The stationary environment is then obtained
by randomizing the origin. However, (A2) and (A2+) do not exclude configurations with
coefficients that vanish with non-zero probability, as it is the case for (-), — the model
considered in the introduction:

Lemma 2.3. The modified Bernoulli percolation model (-), defined via (1.3) satisfies
Assumption 1 with p = 1.

Proof. Evidently, (-) , can be written as the (infinite) product of probability measures
attached to the bonds in B?. These “single-bond” probability measures only depend
on the direction of the bond. Hence, (:), is stationary. Another consequence of the
product structure is that (-), satisfies (A3) with constant p = 1 (see [16, Lemma 7] for
the argument). It remains to check (A2+). By stationarity and symmetry we may assume
that e; = e4. Consider the (random) set

L(a):={jecZ: a*“"{jer,je1 +eq}) =1}

Clearly, each j € L(a) yields an open path connecting 0 and ¢4, for instance the
“U-shaped” path through the sites 0, jei, je; + eq and eqy. Hence, distgeq.0(0,e4) <
2dist (0, L(a)) + 1 almost surely, where dist(0, £(a)) := min c,(q) |j|. Since the random
variable dist(0, £(a)) has the geometric distribution with parameter (1 — (1 — \)?), all of
its moments are bounded and (A2+) follows. O

3 Main result

We are interested in stationary solutions to the corrector equation (1.1). Note
that we tacitly identify the vector ¢ € R? with the translation invariant vector field
e(b) :=e- (ypb — x1,). For conciseness we write

S = {<p : @ x Z* - R| ¢ is measurable & stationary, i. e. p(a(- + 2),z) = p(a,z + z)

for all z, 2 € Z¢ and (-)-almost every a € }

for the space of stationary random fields. Thanks to (A1) the expectation (p) = {(p(-, x))
1
¢llz2 ) = (lel?)?

of a stationary random variable does not depend on x. Therefore,
defines a norm on (S, || - ||z2(q))-

We are interested in solutions to (1.1) in (S, | - |[z2(). Thanks to discreteness, the
operator V*(aV) is bounded and linear on (S, ||-||z2(n)). However, it is degenerate-elliptic
for two-reasons:
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* In general the Poincaré inequality does not hold in (S, || - [ z2(q))-

¢ The conductances a may vanish with positive probability.

Therefore, following [29], we regularize the equation by adding a Oth order term and
consider for 7' > 0 the modified corrector equation

%QST(:C) +V*(@a(Vér +e))(z)=0  forallz e Z?and a € Q. (3.1)

Thanks to the regularization and the maximum principle, (3.1) admits (for all 7" > 0 and
a € ) a unique bounded solution (see discussion around (4.1)).

Definition 3.1 (modified corrector). The unique bounded solution ¢ to (3.1) is called
the modified corrector.

Note that ¢ is automatically stationary and thus belongs to (S, || - [|z2(q)). We think
about the modified corrector as an approximation for the stationary corrector and hope
to recover a solution to (1.1) in the limit 7" 1 oo. This is possible as soon as we have
estimates on (some) moments of ¢ that are uniform in 7" — this is the main result of the
paper:

Theorem 3.2 (Moment bounds for the modified corrector). Let d > 3 and (-) satisfy
Assumption 2.1 for some p and A. Let ¢ denote the modified corrector as defined in
Definition 3.1. Then for all T > 0 and 1 < p < co we have

(|orP)7 1. (3.2)

Here < means < up to a constant that only depends on p, A, p, and d.

Since the estimate in Theorem 3.2 is uniform in 7" we get as a corollary:
Corollary 3.3. Let d > 3 and () satisfy Assumption 2.1 for some p and A. Then the
corrector equation (1.1) has a unique stationary solution ¢ € (S, || - [[z2(q)) with (¢) = 0.
Moreover, we have

(lol)yr S 1

for all 1 < p < oco. Here < means < up to a constant that only depends on p, A, p and d.

For the proof of Theorem 3.2 and Corollary 3.3 see Section 3.1.
Remark 3.4. In general one cannot expect (3.2) to hold in dimension d = 2. In fact,

even in the case of uniformly elliptic, independent and identically distributed coefficients
one expects that

(¢7) ~logT. (3.3)

The upper bound has been established in [16]. The lower bound might be established
following the lines in [13]. A heuristic argument for the lower bound is the following: In
the limit of vanishing ellipticity contrast, the modified corrector equation “linearizes” to

1
quT + V*Vor = —V*ae.

With the Green’s function representation and by appealing to independence of the
coefficients we get
(07) = (D (VGE(0,))* {(ae)?),
beBd
where G% denotes the Green’s function associated with the operator 7 + V*V. Now
> pena IVGY(0,b)]? ~ log T suggests (3.3). Finally, we note that (3.3) implies that (1.1)
cannot have a stationary solution with finite second moments. We give an indirect
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argument: If ¢ is a stationary solution to (1.1) and (¢?) < oo, then the difference
Y = ¢r — ¢ solves the equation

~r 4V (@Viir) = 16,

and thus (¢3.) < (¢?) by a standard energy estimate. But this implies that (¢3.) is
bounded uniformly in 7', which contradicts (3.3).

As mentioned in the introduction the corrector can be used to establish invariance
principles for random walks in random environments. Suppose that () satisfies Assump-
tion 2.1 for some p and A. Then, thanks to Corollary 3.3, for each coordinate direction
ey, there exist stationary correctors ¢* € (S, || - ||12(q) with (¢*) = 0 that solve (1.1) with
e = e;,. Hence, we can consider the random vector field x = (x!,...,x%) : Q x Z¢ — R4
defined by

Xk(a,li) = ¢k(a7x) - ¢k(a7x - O)

By construction the map Z? > x — 2 + x(a, z) is a-harmonic, has finite second moments,
and is shift covariant, i.e. x(a,z+vy) —x(a,z) = x(a(- +y),z). The field x is precisely the
“corrector” used e.g. in [21, 31] to introduce harmonic coordinates for which the random
walk in the random environment is a martingale. In particular, in [31] Sidovaricius
and Sznitman use x to prove a quenched invariance principle for the random walk in
a random environment. A key step in their argument is to show that x has sublinear
growth, i.e.

: [x(a,z)|
1%1_{1100 xenéi}((o) R = 0 for (-)-almost every a € Q. (3.4)
Variants of this property have been established for supercritical bond percolation on
7Z< in dimension d > 4 in [31] and for d > 2 in [5, 26], see also [9] where the uniformly
elliptic case in dimension d = 2 is treated. The moment bounds established in our work
(under the more restrictive Assumption 2.1) are stronger. Indeed, from Theorem 3.2 we
get (3.4) in the stronger form

Vo €10,1) : lim R’ max

=0 -y -almost surely. 3.5
Rtoco  xeBp(0) R () Y 3.5)

This can be seen by the following simple argument (cf. Corollary 4.2 in [27]): Set

k
— Y IxX*(a,z)|
@) =R TR 6.6

By the Borel-Cantelli Lemma, we only need to show that for all A > 0 we have
> (1{ICal > M) < o,
R=1
where here and below 1(-) denotes the indicator function of the set in the bracktes. Since

{IKrl > A} € Usenpo X (a,2)| > AR}, for every p > 1 we get

<|Xk(a,1,)|p> < C(d)Rd—P(l—G) <‘¢k|1)> .

(1({ICr| > A})) < |BR(0)\W <

For p > 1%‘9, the exponent of R is negative and (3.6) follows.
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3.1 Outline and Proof of Theorem 3.2

The proof of Theorem 3.2 is inspired by the approach in [18] where uniformly elliptic
conductances are treated. All auxiliary results in this section hold for dimension d > 2.
The only place where we use d > 2 is in the proof of the theorem itself, where we appeal
to the fact that the ¢>-norm of |[VGr| is bounded uniformly in 7. As it is well-known, this
is not the case in dimension d = 2. The starting point of our argument is the following
p-version of the Spectral Gap Estimate (A3), which we recall from [16, Lemma 2]:

Lemma 3.5 (p-version of (SG)). Let (-) satisfy (A3) with constant p > 0. Then forp € N
and all ¢ € L*?(Q) with ({) = 0 we have

() 5 < > (%Y >

beB4

where < means < up to a constant that only depends on p, p and d.

Applied to ¢ = ¢p(z = 0), this estimate yields a bound on stochastic moments of ¢
in terms of the vertical derivatives 222&=% 1, € B9 (see Definition 2.2). Heuristically,

o6’
9¢1(@=0) 11, hehave as the classical partial derivative

ob
. As we shall see, the latter admits the Green’s function representation

we expect the vertical derivative

8¢T (IZO)
da(b)

M = _VGT(av b, O)(V¢T(b) + e(b)) (3.7)

a(b

Recall that e(b) = e - (y1, — x1,) where e € R? denotes the vector in the modified corrector
equation (3.1). Above G denotes the Green'’s function associated with (% + V*aV) and
is defined as follows:

Definition 3.6. For T > 0 the Green’s function Gr : Q x Z% x Z% — R is defined as
follows: For each a € Q and y € Z? the function x — Gr(a,x,y) is the unique solution in
2(Z4) to

1

TGT(a’ )+ V*aVGr(a,-,y) =4(- —y). (3.8)

For uniformly elliptic conductances we have 6¢T£§§:0) ~ 64’5(1(&:)0) up to a constant

that only depends on the ratio of ellipticity. In the case of degenerate ellipticity this
is no longer true. However, the discrepancy between the vertical and classical partial
derivative of ¢ can be quantified in terms of weights defined as follows: We introduce
the weight function w : Q x B? — [0, o] as

w(a,b) := (distg(xp, yp)) 4> (@€, b= {zy,y} € BI). (3.9)

For b € B? and a € Q) we denote by a”” the conductance field obtained by “deleting” the
bond b (i. e. a®°(b') = a(b’) for all b’ # b and a®°(b) = 0), and introduce the modified
weight wg as

wola,b) := w(a®’,b). (3.10)

Lemma 3.7. Assume that (-) satisfies (A1) and (A2+). For T > 0 let ¢r denote the
modified corrector. Then for all b € B* we have

’8¢T(93 =0)

5 S 0 VG (0.0) [Tor() +0)].

Here < means < up to a constant that only depends on d.
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To benefit from (3.7) (in the form of Lemma 3.7) we require an estimate on the
gradient of the Green'’s function. As it is well known, the constant coefficient Green'’s
function G%(z) := Gr(a = 1,z,0) (which is associated with the modified Laplacian
% + V*V) satisfies the pointwise estimate

Vb= {z,z+e;} : VG (b)| < (14 |z))'™?  uniformly in 7 > 0. (3.11)

We require an estimate that captures the same decay in x. It is known from the continuum,
uniformly elliptic case, that such an estimate cannot hold pointwise in = and at the same
time pointwise in a. In [18, Lemma 2.9], for uniformly elliptic conductances, a spatially
averaged version of (3.11) is established, where the averages are taken over dyadic
annuli. The constant in this estimate depends on the conductances only through their
contrast of ellipticity. In the degenerate elliptic case, the ellipticity contrast is infinite.
In order to keep the optimal decay in x, we need to allow the constant in the estimate
to depend on a. For zo € Z%, R > 1 and 1 < ¢ < oo consider the spatial average of the
weight w (cf. (3.9))

1
C(a,Qr(wo),q) == |QR(xo)|beQz:(x )wq(a,b) . (3.12)

We shall prove the following estimate:
Proposition 3.8. For Ry > 1 and k € INy consider

A, — QRO(O) k= O7
" Q2x R, (0) \ Qar-15,(0) k> 1.

Then for all 2% < p < 2 we have

1 P
<|Ak| > |VGT<a,b,0>|p> < Cla)2Ft=),
beAg

where < means < up to a constant that only depends on Ry, d and p, and

8

C(a) :=C?(a,Qar+15,(0), 2%}) (3.13)

with 8 := 22=1 + p* and p* := ..

The precise form of the constant C in (3.13) is not important. In fact, in the random
setting, when 2 is equipped with a probability measure satisfying (A1) and (A2), we may
view C as a random variable with controlled finite moments:

Remark 3.9. Let () satisfy Assumption (A1l). Then the spatial average introduced in
(3.12) satisfies

q

<Cq(anR(xo)7fJ’)>< e S w(a,b) >g <‘”q>q if ¢' > g,

|QR<$O)| beQn(z0) <wq> if ¢ < g,

as can be seen by appealing to Jensen’s inequality and stationarity. Moreover, if (-)
additionally fulfills (A2), then C defined in (3.13) satisfies

VmeN : (C™)m <1,

where < means < up to a constant that only depends on m, p, A and d.
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The proof of Proposition 3.8 relies on arguments from elliptic regularity theory, which
in the uniformly elliptic case are standard. They typically involve the pointwise inequality

Xo|Vu(b)]? < Vu(b)a(b)Vu(b), (b e B), (3.14)

where )y > 0 denotes the constant of ellipticity. In the degenerate case, the conductances
a may vanish on a non-negligible set of bonds and (3.14) breaks down. As a replacement
we establish estimates which provide a weighted, integrated version of (3.14):

Lemma 3.10. Let p > d + 1. For any function u : Z* — R and all a € ) we have (with
the convention = = 0)

> [Vub)Pdist,” (2, 1) < C(p,d) Y a(b)|Vu(b)?, (3.15)

beBd beBd

where C(p,d) := ", .,a(|z|+1)' 7 and the inequality holds whenever the sums converge.

While Lemma 3.10 is purely deterministic, we also need the following statistically
averaged version:

Lemma 3.11. Let (-) be stationary, cf. (A1), and p > d + 1. Then for any stationary
random field v and any bond b € B? we have (with the convention é =0)

{|Vu(b)Pdist, (zp, yp)) < C(p,d) Z {a(D)|Vu(®)|?),

b/={0,e;}
i=1...d

where C(p,d) := > ey 21 7P)| Byria (0)] < o0.
A last ingredient required for the proof of Theorem 3.2 is a Caccioppoli inequality in
probability that yields a gain of stochastic integrability and helps to treat the V¢ -term

on the right-hand side in (3.7). In the uniformly elliptic case, i. e. when 0 < \g < a <1,
the Caccioppoli inequality

(Vor|#2) e < (g2 77 (3.16)

holds for any integer exponents p (see [18, Lemma 2.7]). The inequality follows from
combining the elementary discrete inequality

[Vu(b)] = lulyp) — w(zn)| < |ulyn)] + [ulzp)]; (3.17)

with the estimate

<¢?‘rp\V¢T\2> S %O <¢2T”IV¢T|>. (3.18)

The latter is obtained by testing the modified corrector equation (3.1) with ¢>2Tp 1 and
uses the uniform ellipticity of a. In the degenerate elliptic case (3.18) is not true any
longer. However, by appealing to Lemma 3.11 the following weaker version of (3.16)
survives:

<IV¢T|(2”+2)9>m < ( 2p>** (3.19)

~

for any factor 0 < 6 < 1. Hence, we only gain an increase of integrability by exponents
strictly smaller than two. As a matter of fact, in the proof of our main result we only
need the estimate in the following form:

Lemma 3.12 (Caccioppoli estimate in probability). Let (-) satisfy (A1) and (A2). Let ¢r
denote the corrector associated with e € RY, |e| = 1, T > 0. For every even integer p and
b € B we have

|~

D
p p+1

(IVor(h) )77 5 (g30) 77 (3.20)

where < means < up to a constant that only depends on p, A and d.

|
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Now we are ready to prove our main result:

Proof of Theorem 3.2. It suffices to consider exponents p € 2IN that are larger than a
threshold depending only on d - the threshold is determined by (3.22) below.
Further, we only need to prove

1
2p\ 2P _1
< T”> S max ([Ver(b)PrTHF 4 1. (3.21)

Indeed, in combination with the Caccioppoli estimate in probability, cf. Lemma 3.12,

~

estimate (3.21) yields <<;$2Tp>E < <¢§!’>%p+1 + 1. S1nce < 1 the first term can be
absorbed and the desired estimate follows.
We will now prove (3.21). For reasons that will become clear at the end of the

argument we fix an exponent d2f2 < g < 2 such that
1 1
d-+—-1)+1<0. (3.22)
q 2p

This is always possible forp > 1 and 0 < 2 — ¢ < 1, since

1 1 d
lim di-+—-1)=—-—=< -1 ford > 3.
q12,ptoo ( 2p ) 2 -

Our argument for (3.21) starts with the p-version of the spectral gap estimate, see
Lemma 3.5, that we combine with Lemma 3.7:

()" = <2Tp(x=0)>;5< 2 (6¢Tgb20))2 p>;

beB?

|=

p

< > (VGr(b,0))*(Vér(b) + e(b)) ws(b) > :

beB?

AN

Now we wish to benefit from the decay estimate for VG in Proposition 3.8, and therefore
decompose B? into dyadic annuli: Let the dyadic annuli A;, k¥ € INy be defined as in
Proposition 3.8 with initial radius Ry = 2. Note that B? can be written as the disjoint
union of Ay, Ay, Ay, . ... With the triangle inequality w. r. t. <(~)P>% and Hoélder’s inequality
in b-space with exponents ( P, p) we get

1 p %
(o) s > <<Z (VGT<b,0)>2<V¢T<b>+e(b)>2wg(b>> >
kelNg beAy
p—1 3
<2 <<Z IVGTU%O)IP”I) (Z (Vor(b) + e<b>>2pwép<b>)>
kE€No \ \beA, beAy,
(3.23)
Since ﬁdz <g<2< 7t 2P we have | - || 22 < || - |les, which combined with the decay

estimate of Proposition 3.8 yields

2p

p—1 s
<Z |VGT(b70)|;_fa> < (Z IVGT(b,O)I‘I> < C2kCr-0-0D) (3 24)
beAy beAy
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Here and below, C' denotes a generic, non-negative random variable with the property
that (C™) < 1 for all m < oo, where < means < up to a constant that only depends on m,
p, ¢, A and d. Combining (3.23) and (3.24) yields

< sz>% = 92k(1=(1=3)d) (Z <C (Vor(b) + e(b))? wgp(b)>> ;. (3.25)

keNg beAg

Next we apply a triple Holder inequality in probability with exponents (6, ¢’,6’), where
we choose 6§ = 2’;—;1 (so that 2pf = 2p + 1). We have

1
o7

_2p ’ i/ ’
(C (Vor(b) +e(b) wi? (b)) < (Vor(b) +e(b)> 1) =T ()" (™ (b))
The first term is estimated by stationarity of V¢r and the assumption |e| = 1 as

((Vor(b) +e®)> )77 < max (|Vor()[>+)» 41,

i=1,...,d

1

o7

L !’
For the second term we have <C"’> ’ <w§p9 (b)> < 1 due to (A2+), so that we obtain

(C(Vor() +em) wi (1)) S max (IVér (b)) 1 1. (3.26)

Combined with (3.25) we get

< 2
(o) = ( max <|v¢T<b’>|2p“>2p“+1> x Y AN

b/={0,¢e;}
i=1,.,.€,d kelNg

< ( max {|Vorp(b)[?PH)= T 4+ 1) .
b/={0,e; }
i=1,..., d

In the last line we used that
Z 22k(17(17§)d)|Ak|§ < Z 221@(17(17%7%)@ <1,
kelNg kelNg

which holds since the exponent is negative, cf. (3.22). This proves (3.21). O

Proof of Corollary 3.3. Since the estimate of Theorem 3.2 is uniform in 7T, we recover
¢ € (S, - llz2(q)) from ¢r by taking the limit 7' 1 co. To prove uniqueness, we only need
to show that every u € (S, || - || .2(q)) that satisfies

V*aVu =0, (uy =0, (3.27)

must be zero. This can be seen as follows: Fix p > d 4 1. Then for any b € B? we have

1
2

(IVu(b)]) < (|Vu(b)|*dist,” (zb, yb)) > (disth (zb, yb)) ,

which combined with Lemma (3.15) and assumption (A2) turns into

(Vuh <C > (a®d)|Vu®))

b/={0,e;}
i=1...d

for some positive constant C'. Thanks to (3.27) and stationarity, on the right-hand side
we may integrate by parts and get
Z {a(D)|Vu(D')|*) = (uV*aVu) = 0.

b/={0,e;}
i=1...d

Hence, for all b € B¢ we have (|Vu(b)|) = 0, and thus ergodicity implies that u(a,-) is a
constant for almost every a € 2. Now, (u) = 0 implies u = 0 in (S, || - [ 2())- O
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4 Proofs of the auxiliary lemmas
4.1 Proof of Lemma 3.7

The argument for Lemma 3.7 is split into three lemmas. In the first lemma we gather
a couple of standard formulas for derivatives of ¢ and G, where the derivative is taken
w. I. t. to a coefficent a(b). Taking derivatives w.r.t. coefficients is a standard method in
the context of quantitative stochastic homogenization. It is also used to study central
limit theorems and related questions for random conductance models. Formulas, similar
to those in Lemma 4.1 below, have been obtained e.g. in [28, 30, 6]. In the form stated
below, the formulas can be found in [18].

A pecularity of the situation considered below, is the fact that we treat coefficients
a € () that might vanish for an infinite number of edges, including the extreme case of
a = 0. Nevertheless, we can differentiate w. r. t. coefficients thanks to the regularizing
effect of the Oth order term in the modified corrector equation (3.1) and the equation
for G, respectively. The reason is the following: As a consequence of the maximum
principle we have the estimate

Va € Q : > |Gr(a,z,0)| =T, (4.1)

€74

which follows from the non-negativity of G and testing the equation for G with test-
functions that approximate the constant function x — 1. Thanks to (4.1) for 7' > 0 and
all a € Q) the modified corrector can be expressed via the convolution

dr(az) =Y Gr(z,y)V*(ae)(y).

yEeZ4

Since (4.1) is uniform in a € ©, a direct calculation shows that for all @ € 2, b € B% and
z € Z% the function

[0,1] 3 a+ ¢r(a®®, z) €R
belongs to C?([0,1]) (in fact it is smooth up to the boundary). By discreteness, the same
is true for V¢ and similar arguments show that Gy, VG, VVGr feature the same
regularity.
Lemma 4.1. Let b € B? be fixed. For T > 0 let ¢ and G denote the modified corrector
and the Green’s function, respectively. Then

O¢r(z =0)
Qai(m —VGr(b,0)(Vor(b) + e(b)), (4.2)
0 6(]57“(]‘ = 0) _ 8¢T($ — 0)
&?a))VVGT(ba b) = —(VVGr(b,b))>. (4.4)

Moreover, VVGr(b,b) and 1 — a(b)VVGr(b,b) are strictly positive.
Proof of Lemma 4.1. For simplicity we write ¢ and G instead of ¢ and Gr.

Step 1. Argument for (4.4).
We first claim that

=— 4.
da (D) G(z,y) = =VG(b,y)VG(b, z), (4.5a)
0
5a(b) VG(z,b) = —VVG(b,b)VG(b, z). (4.5b)
EJP 20 (2015), paper 106. ejp.ejpecp.org
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Indeed, since V and 8%(]0) commute, an application of a%m to (3.8) yields
1 9G (- y) da(")
il * = _V* 1Y) 4.
<T +V aV) da(b) \% 8a(b)VG( Y) (4.6)
We test this identity with G(-, z):
9G(z,y) IG(Y,y) /
—_— = —=5(x —y) 4.7)
da(b) N da(b)
(3.8) G y) (1 | o /
= Ba(b) T—I—V aV | Gy, z)
'EZd
@.1) / 1 . IG(y',y)
= Z Gy, x) (T+V aV) da (D)
y/GZd
(4.6),(2.1) da(b’) , ,
= > Pa(D) VG(Y,y) VG, z).
b’eB
Since %‘Z((b')) is equal to 1 if b’ = b and 0 else, the sum on the right-hand side reduces to

VG(b,y)VG(b,xz) and we get (4.5a). An application of V to (4.5a) yields (4.5b), and an
application of V to (4.5b) finally yields (4.4).

Step 2. Argument for (4.2) and (4.3).

We apply %(b) to the modified corrector equation (3.1):

196 . 96, dal()
Taa®) Y “Vaam) =~ " dab)

(Vo + e(b)). (4.8)

As in (4.7) testing with G(-, z) yields

O¢(x)
da(b)

= —(Vo¢(b) + e(b))VG (b, ), (4.9)

and (4.2) follows. By applying a%(b) and V to (4.9) we obtain the two identities

o 0¢(x)  9(Ve(b)+e(b)) OVG(b,z)
da(b) da(b) — da(b) VG(b, @) = (Vo(b) + (b)) da(b) ’
9¢(b)
Voo = (Vo) + c®)VIG(h.b).

By combining the first with the second identity, (4.5b) and (4.9) we get
0 0¢(x)

= 2(Ve(b) + e(b))VVG (b, b)VG(b, z)

0¢(x)
da(b)

= -2 VVG(b,b),

and thus (4.3).

Step 3. Positivity of VVG(b,b) and 1 — a(b)VVG(b, b).
Let b = (xp,y,) € B? be fixed. An application of V (w. r. t. the y-component) to (3.8)
yields

(; + V*aV) VG(,b) = 8(-—yp) — 8(- — ap). (4.10)
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We test this equation with VG(+,b) and get

— Z VG2 D)+ > a®)[VVGD,b)* = VVG(b,b). (4.11)

wEZd b’eB4

This identity implies that VVG(b,b) and 1 — a(b)VVG(b, b) are strictly positive. Indeed,
first notice that 3, ,4 [VG(z,b)|> must be strictly positive, since otherwise VG(-,b) =0
in contradiction to (4.10). Combined with (4.11) we deduce that VVG(b,b) must also
be strictly positive. The strict positivity of 1 — a(b)VVG(b,b) follows from the strict
positivity of VVG(b,b) — a(b)|[VV&(b,b)|>. The latter can be seen by the following
argument:

VVG(b,b) —a(b) [VVG(b, )P > VVG(bb) - Y a®)|[VVGH,b)f
b’eBe

1
T > IVG(z,b))* > 0.
reZ4

(4.11)

O

The next lemma establishes a (quantitative) link between the vertical and classical
partial derivative of ¢r.

Lemma 4.2. Letb € B? be fixed. For T > 0 let ¢1 and G denote the modified corrector
and the Green'’s function. Then

‘W‘ : (1 1 <b>av(3)GT<b,b>> ’a(bgsc(b:) : ’

(4.12)

Proof of Lemma 4.2. Fix a € Q and b € BY. Set ag := a(b). We shall use the following
shorthand notation

b,a —
o) = P =0 g@)= VVGH @b, (e01). @13

where a”® denotes the coefficient field obtained from a by setting a>?(b’) = ¢ if b’ = b
and a®?(b') := a(b’) else. With that notation (4.3) and (4.4) turn into

o' = —2gp, (4.14)
g =—g° (4.15)
Since we have ‘L‘ < fo |p(a)| da, it suffices to show
)| da < 1+> ap)|. (4.16)
[ el < (14 1Y ot

The positivity of g and (4.14) imply that ¢ is either strictly positive, strictly negative or
that it vanishes identically. In the latter case, the claim is trivial. In the other cases we
have

o(a) = exp(h(a))p(ag), where h(a) :=In pla) ,
¢(ao)
and (4.16) reduces to the inequality
1 ao
exp(h(a))da <14+ ——F—F——. (4.17)
J, ettande <1+ 0
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From (4.14) we learn that ' = —2g. Since g > 0, h is decreasing. Combined with the
identity h(ap) = 0 we get
o / !
2/ g(a') da fora € |0, a9p),
ha)<{ " Ja (@) 0, 20) (4.18)

0 for a € [ap, 1].
On the other hand, we learn from integrating (4.15) that g(a’) = wf#(zz%q(ao). Hence,
for a < ag the right-hand side in (4.18) turns into 4

ao
2 [ g(a") da' = ~210(1 + (@ - an)g(an)).
a

which in combination with (4.18) yields (4.17). O

Lemma 3.7 is a direct consequence of (4.12), (4.2) and the following estimate:

Lemma 4.3. Let Gt denote the Green’s function. Assume that (A1) is satisfied. Then
forallT >0, a € Q and b € B? we have

a(b)

1
T 1 aB)VVGr(b,b)

< wi(a,b), (4.19)

where < means up to a constant that only depends on d.

Proof of Lemma 4.3. Step 1. Reduction to an estimate for a®°.
We claim that

a(b)

< b,0 2
[ aM)vVGrabp) = 1+ VVGr(a™bb)

For the argument let @ € 2 and b € B? be fixed. With the shorthand notation introduced

in (4.13), the claim reads
ao

1 —agg(ao)

For ag = 0 the statement is trivial. For ay > 0 consider the function

< (1+g(0)2 (4.20)

with help of which the left-hand side in (4.20) can be written as ?EZ‘;; The function f is

non-negative and decreasing, as can be seen by combining the inequality 0 < g(a) < %
from Lemma 4.1 with the identity f'(a) = g(a)(g?(a) — 25 + g*(a) — g(a)) which follows

from (4.15). The latter also implies that g(1) = 1'1(;)()0) and thus f(1) = g(1)(1 — ¢g(1)) =
9(0)

(1+9(0))%"

Hence,

ao _ 9(a0) _ glao) 29(ao)
1—aog(ao)  flao) = f(1) 9(0)

in the last step we used in addition that g(ag) < ¢(0) which is a consequence of (4.15).

= (1+4(0)) < (1+9(0))%

Step 2. Conclusion.
To complete the argument we only need to show that

VVGr(a™,b,b) < wola,b). (4.21)
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For simplicity set ag := a°. Note that wy(a,b) = w(ag,b). From (4.11) and Lemma 3.10
(which we prove below) we obtain

(4.11)

VVGr(ag,b,b) > > ag(b') (VVGr(ag, b, b))’
b’eBd
(3.15) 9
Z Y, wl(ag,b)(VVGr(ag,b',b))
b’eBd

Z wil(a()ab) (VVGT(a07bab))2 .
Dividing both sides by w™*(ag, b)VVGr(ag,b,b) yields (4.21). O

4.2 Proof of Lemma 3.10 and Lemma 3.11

Proof of Lemma 3.10. Fix for a moment a € Q). For every b € B? with distq (zh, yp) < 00,
let m,(b) denote a shortest open path (arbitrary but fixed from now on) that connects z},

and y, i.e.
1

a(®)’

Thanks to the triangle inequality and the Cauchy-Schwarz inequality we have

dista(zn, yp) = Y

b’ €7 (b)

1
2 2

Z |Vu(b’)| < Z a(:]l:)/) Z ‘Vu(b’)‘Qa,(b/)

b’en(b) b’E€mq(b) b’E€mq(b)

[Vu(b)]

IN

2

distd (zo,0) | [Vu(d)Pa(®)

b’ Emq (b)
Hence, using the convention é =0, we conclude that for all b € B and a € :
dist,? (x, yp )| Vau(b) > < disth P (zn, yb) Z |Vu(')2a(b’). (4.22)
b’E€mq(b)

We drop the “a” in the notation from now on. Summation (4.22) over b € B¢ yields

Zdistfp(wb,yb)|Vu(b)|2 < Z Z dist' 7P (xy,, yp ) [ Vu(b')|?a(d’)

beB4 beB? b’en(b)

Z Z dist' 7P (zy,, y) [ Vu(b')|2a (D).

b’€B4 beBd with
7(b)3b/

Since 7 (b) is a shortest path, and because a < 1, we have dist(zp, yp) > |2, — 21| + 1 for
all b,b’ € B? with b’ € (b). Combined with the previous estimate we get

> dist P (zp,p0)[Vub)? < >0 > (o — |+ 1) P Vub) Pa(b)

beBd b’€Bd beBd with
7(b)2b/
< C(dp) Y [Vu®)a®).
b’ eBd
O
Proof of Lemma 3.11. Fix b € B¢, For L € IN consider the indicator function
1 if L < distq(zp,yp) < 2L,
xr(a) = { @ (4.23)
0 else.
EJP 20 (2015), paper 106. ejp.ejpecp.org
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With the convention é =0, we have
o0
> " Xor(@)dist,” (zp, yn) = dist,? (1, yb) (4.24)
k=0

for all a € 2. In the following we drop “a” in the notation. We recall (4.22) in the form of
X dist ™ (2, y6) | Vu(b)> < xpdist' P (an,y) > [Vu(d)[*ad). (4.25)
b’ e (b)
From a < 1 and dist(zp, y) < 2L for xp # 0, cf. (4.23), we learn that 7(b) is contained
in the box Q21 (x1). Hence, (4.25) turns into

(4.23)
xrdist P (xp, y,)|[Vu(b)? < xpL'P Z |Vu(b)|a (D).
b’€Q2r (wb)

We take the expectation on both sides and appeal to stationarity:

(xrdist ™ (zh, yn) | Vu(b)|*) < L7y (alVu®)Pa())
b’€Qar (z1)

o S (e Ram))

zE€Bay (zp) P ={zx+e;}
i=1,...,d

stationarity

< LBu(0) Y (IVu(b)Pa®)).

Using 1 +d — p < 0 we get

(dist ™" (b, yb)|Vu(b)[*) @29 Z<X2kdist7p(a:b,yb)\Vu(b)|2>

k=0
< O Y, (IVu®)Pa®)).
b/={0,e;}
i=1,..., d
O
4.3 Proof of Proposition 3.8 - Green’s function estimates
We first establish an estimate for the Green’s function itself:
Lemma 4.4. Let d > 2 and consider u, f € ¢*(Z?) with
V*aVu=f inZ" (4.26)
Then for all dQ—fQ <p<2 R>1andzxy € Z* we have
> lu@) —ul SCR* D |f(@)]. (4.27)

z€BR(zo) YA

Here, 4 := m 2_weBp(xy) () denotes the average of u on Br(zo), C' := C(a, Qr(z0), 355).
and < means < up to a constant that only depends on d and p.

Proof of Lemma 4.4. W. 1. 0. g. we assume » 4 |f| = 1 and R € IN. To shorten the
notation we write B and Qg for Br(zo) and Qr(x), respectively. We start with a small
reduction step. Let M (u) denote a median of u on Bg, i. e.

[fu > M(u)} 1 Bal, [fu < M(u)} 1 Bal > 5|Bal.

EJP 20 (2015), paper 106. ejp.ejpecp.org
Page 20/30


http://dx.doi.org/10.1214/EJP.v20-3618
http://ejp.ejpecp.org/

Moment bounds for the corrector in stochastic homogenization

By Jensen'’s inequality we have |t — M (u)| < ﬁ >y, [u— M(u)|, so that it suffices

to prove for v := u — M (u) the estimate
YW SCRY |f|=CR”.
Br VA

Note that by construction v satisfies

1
|{’U20}OBR‘,‘{U§0}QBR| > §|BR|, (4.28)

which is the only reason why we introduced the shift by M (u) (which we may forget
about from now on). Also notice that (4.28) is symmetric in the sense that we might
replace v by —v without changing the statement.

The proof of the sought for estimate invokes a truncation of peaks of v above a
threshold that we denote by M. Moreover, we consider the positive and negative part
of v separately. In fact, by symmetry of (4.28), it suffices to consider the positive part
of v (for the negative part consider —wv). In conclusion, for 0 < M < oo we consider the
cut-off version of v

vy := max{min{v, M },0}.

Then vj, satisfies

Z Vouy aVoy = Z VuaVuy,
IBd IBd

since either Vv (b) = Vu(b) or Vo (b) = 0. Since u € ¢1(Z) (by assumption) and
var € £°(Z%) (by construction), we may integrate by parts:

ZVuaVvM = ZUMV*aVu = ZfUM < MZ |f| =
Bd Zd 74

Zd
Hence,
ZWM aVuy < M. (4.29)
]Bd
Set p* = % and ¢* = pf’:l. By (4.28) and the definition of vy;, we have |[{vy =

0} N Bg| = [{vam < 0} N Bg| > 3|Bg|. Hence, the Sobolev-Poincaré inequality yields

1
p

(RdZmMP*) SRR [Voul
Br Qr

Lemma 3.10 combined with Holder’s inequality with exponents (i %) yields
» »
R Voul? = *dnginW%
Qr
2-p 1
2p 2
< dZuﬂ » R*dZ|V1}M\2w*1
Qr
%
Lemma 3.10
< c: (R VuyaVuy | (4.30)
Bd
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so that

T . H (4.29) .
(Rdz loag|? ) < C?R (RdZva aVvM> < (CR*‘M)s. (4.31)
Br

Bd

Next we use Chebyshev’s inequality in the form of

M (R d\{U>M}ﬂBR|I% ( dZlep>p.

With (4.31) we get
R™{v>M}nBg| < o5 RC-DE -5

By the symmetry in (4.28) we get the same estimate for —v and thus arrive at
R™{|v| > M} N Bp| g o Re-DE -5

Since p > d +2 (by assumption), we have Z- > 1 and the “wedding cake formula” for
M = CR?* “yields

R™Y ol
Br

/ R{|v| > M’} A Bp|dM' < M+/ R {|v| > M’} A Bp|dM’
0 M

*

< M4 CTREDEM-E < OR

O
A careful Caccioppoli estimate combined with the previous lemma yields:
Lemma 4.5. Letd > 2, zy € Z% and R > 1. Consider f > 0 and u related as
V*aVu = —f in BQR(Z‘()). (432)
Then for 2 d+2 < p < 2 we have
1 1
p 2
R > RVulP | SC% | R DY ul+ (R > fu- ,  (4.33)
Qr(zo) Bar(zo) Bzr(zo)
where u_ :==m x{—u 0} denotes the negative part of u, C := C(a, Q2r(%0), 35;), o ==
2§ — and p* . Here < stands for < up to a constant that only depends on p and d

Proof of Lemma 4.5. Step 1. Caccioppoli estimate.
We claim that for every cut-off function 7 that is supported in Bor—1(x0) (so that in
particular Vi) = 0 outside of Q2r(xg)) we have

1 2
P
(Rdz RV(un)”) S0 | R deu 7+ RN uan)ulyy) [ RVn(b)[*a(b)
B4 beBd
(4.34)
Indeed, we get with Lemma 3.10 (using an argument similar to (4.30)):
1 1
P P 2
(Rdz van)p) =R Y RVl | $cCz ( dZ | RV (un)] ) ,
B Q2r(z0)
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Combined with the elementary identity
|V (un) (b)|* = Vu(b)V (un?)(b) + u(zy)u(ys)|Vi(b) [,

the equation for u, and the fact that — fun? < fu_n? (here we use f > 0), the claimed
estimate (4.34) follows.

Step 2. Conclusion.

Set 0 := QT” and note that « is defined in such a way that for the considered range of
p we have

1 1

5= 0—+(1—-0) and 2(1-0)<1. (4.35)
p

As we shall see below in Step 3, there exists a cut-off function n with = 1 in Br41(z0)

and 7 = 0 outside of Bag_1(x0), such that

1
2

RS fulay) () |RVnb) | < (R-danlf’*)p RS

beBd Bar (o)

+<R—d2|unp*> R > Jul] . (4.36)
7.d

Bar(z0)

Let us explain the right-hand side of this estimate. While the first term on the right-hand
side would also appear in the continuum case (i.e. when Z? is replaced by R?), the
second term is an error term coming from discreteness. In fact, it is of lower order: A
sharp look at (4.40) below shows that (4.36) holds with the vanishing factor R~¢ (for
some € > 0 only depending on p and d) in front of the second term on the right-hand side.

To continue our estimate, we appeal to the Gagliardo-Nirenberg-Sobolev inequality on

.\ = 1
7% ie. (R g |unP )" < (R4 pa |RV(u77)|p)’1“, which we apply to the right-hand
side of (4.36):

0 1-6

P

(Rd;wnp*) RN ul

Bar(zo0)

N|=

1
2p*
+<Rdz|unp*> RY
A Bar(zo)
1—6

< <RdZ|RV<un)|p> R 3" uf
IBd

Bar(zo0)

+<R‘dZ|Rv<un>|p) [ r S ] -

Bd Bar(zo)

We estimate both products on the right-hand side by appealing to Youngs’ inequality

(with exponents (5, —15) and (2, 2), respectively), and find that for all § > 0 there exists a
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constant C'(§) > 0 only depending on 4, p and d, such that

2

CR™ Y Julan)|lulyn)| V(b)) a(b)

beB?
§6<R‘dZRV(un)p> +C@) |cmaR N jul+CR Yyl
Bd Bar(zo) Bar(zo)
2(1-0)<1 % 1
< (R IRVl | +20@0)CT=I R Y ul,
B Bar (o)

We combine this estimate with (4.34) and absorb the first term on the right-hand side of
the previous estimate into the left-hand side of (4.34). Since V(nu) = Vu in Qg (x¢) this
yields (4.33).
Step 3. Proof of (4.36).

We first construct a suitable cut-off function n for Bry1(z¢) in Bog_1(x¢). W. 1. 0. g.

we assume that o = 0. Recall that o = 25::;. Fort > 0 set

7(t) :== max{1 —-2rnax{j§%T-— 1,0},0}¢,
and define

d
n(x) = [ [il)- (4.37)
=1

Using the relation a — 1 = fa, cf. (4.35), it is straightforward to check that for all edges
b with |[Vn(b)| > 0 the function 7 satisfies:

RIVn()| < {min{n@(m,n@(yb)} if min{n(zy). n(yy) > 0}, (4.38)
TR if min{r(2p), 7(ys)} = 0.

Now we turn to (4.36). We split the sum into a “interior” and a “boundary” contribution:

> luta)lfulys)|(Va(b))®

beBd
= > Jul@)lus) (Vo) + > Jul@)|uly)[(Vn(b)?,
b€ Aint b€ Apound
where
At = {b:[Vn(b)| >0 and min{n(zy),n(ys)} >0},
Apouna = {b : |Vn(D)| >0 and min{n(xy),n(y)} =0}.

For A, we get with (4.38), Young’s inequality, and Holder’s inequality with exponents
(p* %a ﬁ)

RS Ju(an)[Julys)|IRVA(D))* S BT un®
beAint 7

h~]

20 2(1-6) (4.39)
= R~ (un)*u?? < (RdZ(un)”*> <Rdz|“> :
7,d

Zd Bar

Next we treat Apoung, Which is an error term coming from the discrete nature of the
gradient. By the definition of Ayoung the cut-off function 7 vanishes at one and only one
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of the two sites adjacent to b € Apouna. Given b € Apoung we denote by Zy, (resp. 71,) the
site adjacent to b with n(Z) = 0 (resp. n(gn) # 0), so that

R Y fulew)|lu(y)[IBVA()P = R D7 Jul@n)|lu(@s) n(5) RV (b)].

b€ Apound b€ Abound

We combine this with (4.38), Holder’s inequality with exponents (p*, ¢* := %)' and the
discrete ¢*-¢7 -estimate:

R Y Julan)llu(y)[[BV(D)P S R4 (@)l [ul@n) n(3,)

b€ Apound b€ Apound
1 1 1
p* a* p*
< pia (z un ) (z |) < gt (z |un|P*) Sl
Bar Bagr Bar Bar
1
— R 2 <R‘dz |un|1’*> <R‘dz |u|> . (4.40)
Bar Bar
From the definition of « and p*, and the fact that a > 2, we deduce that the exponent
1% — 2 — « is negative. Together with (4.39) the desired estimate (4.36) follows. O

Now we are ready to prove Proposition 3.8. We distinguish the cases £ > 1 and k£ = 0.

Proof of Proposition 3.8. Step 1. Argument for k£ > 1.
For brevity set R := 2¥"'R; and recall that A, = Q2r(0) \ Qr(0). We cover the
annulus A; by boxes Qg(xo), zo € Xp C Z4, such that

Ayc |J Qul@o)c |J Qrlwo) € Qsr(0)\ {0} (4.41)

o€XR 2o€EXR

Since the diameter of the annulus and the side length of the boxes are comparable,
we may choose Xy such that its cardinality is bounded by a constant only depend-
ing on d. Since in addition we have for zy € Xp the inequality C(a, Qr(zo), ﬁ) <
C(a,Q3r(0), 2%17) (thanks to the third inclusion in (4.41)), it suffices to prove

R Y |[VGr(ab0)” | <SCER'™Y  where C:=C(a,Qn(z0), 52).
beQ%(zo)

for each zy € Xpg separately. We use the shorthand Gr(z) := Gr(a,z,0) and set
GT = [Brte)] LoweBr(eo) GT(%). In view of (3.8), u(z) := Gr(z) — Gr satisfies (4.26)
with f =6 — L+Gr. Since

1 1
D 10— 5Gr| <1+ 5 Gr(w) =2, (4.42)
A VA
Lemma 4.4 yields
R 3" |ul S 03 R (4.43)
BR(:L’())
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Thanks to the last inclusion in (4.41) we have 0 ¢ Br(zy), and thus u satisfies (4.32) with
f= %GT (with Bygr(xo) replaced by Bgr(xo)). Hence, Lemma 4.5 yields

1 1
R~ N VG| = | R [VuP
Qg (z0) Q g (o)
2 2
1 2
SCHR S+ cbe (B Y G | 44
BR(I(]) BR(IO)
%
(443) . 1 1
S ciletI Rty o [ RN T SGrus
Br(zo)

Regarding the second term on the right-hand side we only need to show

1 .
T > Gru- SCP R (4.45)
BR(ZI/’Q)

We note that (Gr — G7)(Gr — Gr)_ <0, so that

1 1 _ ~ ~ 1 - _
T Z Gru_ = T Z (GT—GT-FGT)(GT—GT),STGT Z ‘GT—GT|.

Br(zo) Br(zo) Br(zo)

Combined with (4.43) and the inequality ~Gr < R™%1 > Ba(ze) GT < R4, (4.45) follows.

Step 2. Argument for kK = 0. Fix a € Q. For brevity set Gr(z) := Gr(a,x,0) and
Gr = m > weBon, (0) Gr(2). By the discrete ('-(P-estimate and the elementary
0 0

inequality |[VGr(b)| < |Gr(xv,) — Gr| +|Gr(y,) — Gr| we have

Y Werb)P| £ Y 16— Gl

|Qr, (0)] bEQ 1y (0) Bang (0)

As in Step 1 an application of Lemma 4.4 yields

> IGr - Gr| £ C7 (a,Q2r,(0). +25) Rj-
BQRO(O)

Since R3 ~ Ry~ and because the exponent of the constant satisfies % < g the desired
estimate follows. O

4.4 Proof of Lemma 3.12

In order to deal with the failure of the Leibniz rule we will appeal to a number of
discrete estimates, which are stated in Lemma A.1 below. As already mentioned, we
replace the missing uniform ellipticity of a by the coercivity estimate of Lemma 3.11
which makes use of the weight w defined in (3.9). Morally speaking it plays the role of
/\io in (3.18). In view of Assumption (A2) all moments of w are bounded, i. e. (w*) <1,
where < means < up to a constant that only depends on &, p, A and d. We split the proof
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of Lemma 3.12 into the following two inequalities:

(Vo)1) F < S {(IV(ertH ) Pa®)), (4.46)
b= {o el}
> V@) Pa®)) S (477). (4.47)

b/={0.¢;}

i=1,...,d
Here and below we write ¢ instead of ¢ for simplicity. We start with (4.46). We smuggle
in w by appealing to Hélder’s inequality with exponent 2272 and exploit that all moments
of w are bounded by Assumption (A2):

2+1

(VD)) < (Vg (b)[2+2w1 (b))

We combine (3.17) in the form of |[V¢(b)|?P2 < (w)ﬂVqﬁ(b)P (where we use
that p is even) with the discrete version of the Leibniz rule FPVFE = ?V(Fp“) see
(A.3) in Corollary A.2 below:

(IVo) 2w (b)) < (IV (") (b)Pw ™ (b)) (4.48)

Now (4.46) follows from the coercivity estimate of Lemma 3.11.
Next we prove (4.47). The discrete version of the Leibniz rule |V(FP+1)|? = (72’;1)1 VEV(F?r+)
(see Lemma A.1 (ii)) yields

ST V@) Pa®)) S D (Ved)a®) V(e T(D)).

b={0.c;} b'={0.c;)
i=1,..., =1

By stationarity and the modified corrector equation (3.1) we have

> (Vo )a®)V (g (V) = (V*aVe) ¢*7*)
b’ {o, cL}
= (U S (Ve ()a()e(n))
b/= {Oe}
< D) (VT M)]a®)),
b’ {Oe}

where for the last inequality we use that (¢*®*1) > 0 and |e| = 1. By Corollary A.2 and
Young’s inequality we get for any € > 0

(A.2) » »
> (@ mlaw) K e ¥ (V0P (0 ) a) )
b’={o0, el} b/={0,e;}
i=1,..., i=1,...,d
S <(¢P<xb/>+w<yb/>)>
et
(A.3)
S e Y (VT Pa®)) + - <¢2p>
b/={0,e;}
i=1,...,d

Since we may choose ¢ > 0 as small as we wish, the first term on the right-hand side can
be absorbed into the left-hand side of (4.47) and the claim follows.
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A Appendix: Replacements of the Leibniz rule for the discrete
derivative

Lemma A.1l. Let F be a scalar function on Z% and b € B?.
[@)]
1. Assume that p € 2IN. Then we have

VE )] ~ V() )

2. For every integer p we have

[V(FPTH ()2 < VE(b)V(F*+1)(b).

Here < (resp. ~) means up to a constant that only depends on p.

Proof of Lemma A.1. Let x,y € Z? denote the vertices with b = {z,y} and y — z €
{e1,...,eq} sothat VF(b) = F(y) — F(x).

Proof of part (i). The statement ” < ” is equivalent to [18, Equation (5.29)] and is
proven there. Concerning 2 we appeal to [18, Equation (5.28)]. From that equation we
learn that
FP(xp) + FP(yn)

2

By dividing by |VF(b)| one immediately finds the claimed result.

V(EPY)(B)VE®) 2 VE(b)[2,

Proof of part (ii). We have to distinguish two cases.

First case: F(z),F(y) > 0 or F(z), F(y) < 0. It suffices to show the statement for
F(z),F(y) > 0, since then the case F(z), F(y) < 0 follows by symmetry. We have to
prove that

(FPHi(y) = Frii(a))? S (Fy) = F(2))(F (y) — F7 (2).

~

By symmetry and and scale invariance, it suffices to show the elementary inequality
VFE>0: (1= fP)2 <l - f)(1— 2, (A1)

where ¢ > 0 only depends on p. We omit its proof for the sake of brevity.

Second case: F(z) < 0,F(y) > 0 or F(z) > 0,F(y) < 0. It suffices to show the
statement for F(z) < 0,F(y) > 0, since then the case F(z) > 0, F(y) < 0 follows by
symmetry. We have to prove that

(PP (y) — FP7H(2))? S (F(y) — F(2)(FPT (y) — FPH ()
or equivalently

F2(p+1)(y) + F2<p+1)(x) _ 2F”+1(y)Fp+1(x)
S FPP(y) + FP2(2) — F(a)F2PH (y) — Fy) F* ().

Note that since 2p + 1 is an odd integer, the last two terms on the right hand side of the
above inequality are positive. Hence, it suffices to prove that

F20HD (y)  F20HD () — 2FPH (y) FPH (2) S FPPP2 (y) + FPH2 (),

which follows due to —2FPH1(y)FPi(z) < F2PF2(y) + F2P+2 (7). O
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In the course of proving our main result we will use the discrete Leibniz rule, (i) in
the above lemma, in the following form.

Corollary A.2. For every scalar function F, every bond b and every even integer p we

have
) 5w (ZELETI )
P(p P 2
|VF(b)|2 <F ( b);‘F (yb)> < |V(Fp+1)(b)|2. (A.3)

Here < means up to a constant that only depends on p.
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