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Abstract

We examine a new path transform on 1-dimensional simple random walks and Brow-
nian motion, the quantile transform. This transformation relates to identities in
fluctuation theory due to Wendel, Port, Dassios and others, and to discrete and Brown-
ian versions of Tanaka’s formula. For an n-step random walk, the quantile transform
reorders increments according to the value of the walk at the start of each increment.
We describe the distribution of the quantile transform of a simple random walk of n
steps, using a bijection to characterize the number of pre-images of each possible
transformed path. We deduce, both for simple random walks and for Brownian motion,
that the quantile transform has the same distribution as Vervaat’s transform. For
Brownian motion, the quantile transforms of the embedded simple random walks
converge to a time change of the local time profile. We characterize the distribution
of the local time profile, giving rise to an identity that generalizes a variant of Jeulin’s
description of the local time profile of a Brownian bridge or excursion.
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1 Introduction

Given a simple walk with increments of ±1, one observes that the step immediately
following the maximum value attained must be a down step, and the step immediately
following the minimum value attained must be an up step. More generally, at a given
value, the subsequent step is more likely to be an up step the closer the value is to the
minimum and more likely to be a down step the closer the value is to the maximum. To
study this phenomenon more precisely, one can form a two-line array with the steps of
the walk and the value of the walk, and then sort the array with respect to the values
line and consider the walk defined by the correspondingly re-ordered steps. It is this
transformation, which we term the quantile transform, that we study here.
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The quantile transform of simple walks and Brownian motion

More precisely, for w a walk, let φw be the permutation of [1, n] such that, for i < j,
either w(φw(i) − 1) < w(φw(j) − 1), or w(φw(i) − 1) = w(φw(j) − 1) and φw(i) < φw(j).
The quantile path transform sends w to the walk Q(w) where

Q(w)(j) =

j∑
i=1

xφw(i).

In this paper, we characterize the image of the quantile transform on simple (Bernoulli)
random walks, which we call quantile walks, and we find the multiplicity with which each
quantile walk arises. These results follow from a bijection between walks and quantile
pairs (v, k) consisting of a quantile walk v and a nonnegative integer k satisfying certain
conditions depending on v.

We also find, by passing to a Brownian limit, that the quantile transform of certain
Bernoulli walks converge to an expression involving Brownian local times. This leads to
a novel description of local times of Brownian motion up to a fixed time.

It is not difficult to describe the image of the set of walks under the quantile trans-
form; they are nonnegative walks and first-passage bridges. Our main work is to prove
the multiplicity with which each image walk arises; this is stated in our Quantile bijec-
tion theorem, Theorem 2.7, and illustrated in Figure 4. We establish the bijection by
decomposing the quantile transform into three maps:

(Q(w), φ−1
w (n)) = γ ◦ β ◦ α(w). (1.1)

In the middle stages of our sequence of maps we obtain combinatorial objects which we
call marked (increment) arrays and partitioned walks.

walk
α7−→ marked array

β7−→ partitioned walk
γ7−→ walk-index pair. (1.2)

The three maps α, β, and γ are discussed in sections 4, 5, and 6 respectively.
In section 2 we prove an image-but-no-multiplicities version of the Quantile bijection

theorem for a more general class of discrete-time processes.
In section 3 we show that the total number of quantile pairs (v, k) with v having

length n is equal to the number of walks of length n, i.e. 2n.
Section 4 introduces increment arrays and defines the map α. These arrays are a

finite version of the stack model of random walk, which is the basis for cycle-popping
algorithms used to generate random spanning trees of edge-weighted digraphs – see
Propp and Wilson[47]. Theorem 4.7 asserts that α is injective and characterizes its
range; i.e. this theorem gives sufficient and necessary conditions for a marked increment
array to minimally describe a walk.

In section 5 we introduce partitioned walks and the map β. This map is trivially a
bijection, and Theorem 5.8 describes the image of β ◦ α. Equation (5.3) is a discrete
version of Tanaka’s formula; this formula has previously been studied in several papers,
including [38, 19, 51, 53], and it plays a key role both in this section and in the continuous
setting.

In section 6 we prove that γ acts injectively on the image of β ◦α, thereby completing
our proof of Theorem 2.7.

Moving on from Theorem 2.7, in section 7 we demonstrate a surprising connection
between the quantile transform and a discrete version of the Vervaat transform, intro-
duced in [55]. Theorem 7.3 is the Vervaat analogue to Theorem 2.7. We find that quantile
pairs and Vervaat pairs coincide almost perfectly and that every walk has equally as
many preimages under the one transform as under the other.

In section 8, we pass from simple random walks to a Brownian limit in the manner of
Knight[36, 35]. Our path transformed walk converges strongly to a formula involving
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The quantile transform of simple walks and Brownian motion

Brownian local times. The bijection from the discrete setting results in an identity,
Theorem 8.18, describing local times of Brownian motion up to a fixed time, as a function
of level. This identity generalizes a theorem of Jeulin[32].

Jeulin’s theorem was applied by Biane and Yor[10] in their study of principal values
around Brownian local times. Aldous[3], too, made use of this identity to study Brownian
motion conditioned on its local time profile; and Aldous, Miermont, and Pitman[1], while
working in the continuum random tree setting, discovered a version of Jeulin’s result for
a more general class of Lévy processes. Leuridan[39] and Pitman[45] have given related
descriptions of Brownian local times up to a fixed time, as a function of level.

Related path transformations have been considered by Bertoin, Chaumont, and Yor[8]
and later by Chaumont[15] in connection with an identity of fluctuation theory that had
previously been studied by Wendel[56], Port[46], and Dassios[21, 22, 23]. We conclude
with a discussion of these and other connections in section 9.

2 The quantile transform of a non-simple walk

It is relatively easy to describe the image of the quantile transform; the difficulty lies
in enumerating the preimages of a given image walk. In this section we do the easy work,
offering in Theorem 2.5 a weak version of Theorem 2.7 in the more general setting of
non-simple walks. We conclude the section with a statement of our full Quantile bijection
theorem, Theorem 2.7.

Throughout this document we use the notation [a, b] to denote an interval of integers.
While most results in the discrete setting apply only to walks with increments of ±1, our
results for this section apply to walks in general.

Definition 2.1. For n ≥ 0 a walk of length n is a function w : [0, n] → R with w(0) = 0.
We may view such a walk w in terms of its increments, xi = w(i) − w(i − 1), so that
w(j) =

∑j
i=1 xi.

A walk of length n is simple if w(i)− w(i− 1) = ±1 for each i ∈ [1, n]. In particular, a
simple walk is a function w : [0, n]→ Z

In subsequent sections of the document, for the sake of brevity we will say “walk” to
refer only to simple walks.

Definition 2.2. The quantile permutation corresponding to a walk w of length n, denoted
φw, is the unique permutation of [1, n] with the property that

(w(φw(1)− 1), φw(1)− 1); (w(φw(2)− 1), φw(2)− 1); · · · ;

(w(φw(n)− 1),φw(n)− 1)

is the increasing lexicographic reordering of the sequence

(w(0), 0); (w(1), 1); · · · ; (w(n− 1), n− 1).

The quantile path transform sends w to the walk Q(w) given by

Q(w)(j) =

j∑
i=1

xφw(i) for j ∈ [1, n]. (2.1)

Note that the quantile permutation does not depend on the final increment xn of
w. A variant that does account for this final increment was previously considered by
Wendel[56] and Port[46], among others; this is discussed further in section 9.

We show an example of a simple walk and its quantile transform in Figure 1; for each
j the jth increment of w is labeled with φ−1

w (j). Observe that for a walk w of length n, we
have Q(w)(n) = w(n). As j increases, the process Q(w)(j) incorporates increments that
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The quantile transform of simple walks and Brownian motion

arise at higher values within w. Consider example in Figure 1. The first two increments
of Q(w) correspond to the increments in w that originate at the value −2, the first five
increments of Q(w) correspond to those that originate at or below the value −1, and so
on.

Q7−→7

3

5

8

2

2

9

413

6

1 7659 4

8

Figure 1: A walk and its quantile transform.

In discussing the proof and consequences of Theorem 2.7 it is helpful to refer to
several special classes of walks.

Definition 2.3. We have the following special classes of (simple) walks:

• A bridge to level b is walk w of length n with w(n) = b; when b = 0, w is simply a
bridge.

• A non-negative walk is a walk of finite length that is non-negative at all times.

• A first-passage bridge of length n is a walk w that does not reach w(n) prior to
time n.

• A Dyck path is a non-negative bridge (to level 0).

As illustrated in Figure 2, Q(w)(j) is the sum of increments of w that come from
below a certain level. The graph of w is shown on the left and that of Q(w) is on the right.
The increments that contribute to Q(w)(6) are shown in both graphs as numbered, solid
arrows, and those that do not contribute are shown as dashed arrows. The time j = 6 is
marked off with a vertical dotted line on the left. Increments with their left endpoints
strictly below this value do contribute to Q(w)(6), increments that originate at exactly
this value may or may not contribute, and increments that originate strictly above this
value do not contribute.

Aw(6)

j

Q(w)

w

2

4

3
2

15 63
4

1

6
5

Figure 2: The value Q(w)(6) is the sum of increments of w that originate below Aw(6),
as well as some that originate exactly at Aw(6).

Definition 2.4. Given a walk w, for j ∈ [1, n] we define the quantile function of occupa-
tion measure

Aw(j) := w(φw(j)− 1).

The quantile function of occupation measure may also be expressed without reference
to the quantile permutation by

Aw(j) = min{a ∈ R : #{i ∈ [0, n− 1] : w(i) ≤ a} ≥ j}.

On the left in Figure 2, the horizontal dotted line indicates Aw(6).
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Theorem 2.5. For any walk w of length n,

Q(w)(j) ≥ 0 for j ∈ [0, φ−1
w (n)), and

Q(w)(j) > Q(w)(n) for j ∈ [φ−1
w (n), n).

(2.2)

Consequently, Q(w) is either a non-negative walk in the case where w(n) ≥ 0 or a
first-passage bridge to a negative value in the case where w(n) < 0.

Proof. First we prove that for j < φ−1
w (n) we have Q(w)(j) ≥ 0. Afterwards, we prove

that for j ∈ [φ−1
w (n), n) we have Q(w)(j) > Q(w)(n).

Fix j < φ−1
w (n) and let

I :=

{
i ∈ [1, n] :

either w(i− 1) < Aw(j),

or w(i− 1) = Aw(j) and i ≤ φw(j)

}
.

Thus

Q(w)(j) =
∑
i∈I

xi.

We partition I into maximal intervals of consecutive integers. For example, in Figure
3 with j = 6 we have I = {1, 2, 4, 5, 8, 9}, which comprises three intervals: {1, 2}, {4, 5},
and {8, 9}. We label these intervals I1, I2, and so on.

I3

︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸
I1 I2

w
Aw(6)

Figure 3: Three segments of the path of w correspond to the three intervals in I.

These intervals correspond to segments of the path of w, shown in solid lines in the
figure. Each such segment begins at or below Aw(j) and each ends at or above Aw(j).
Here we rely on our assumption that j < φ−1

w (n) and thus n 6∈ I: if one of our path
segments included the final increment of w then that segment might end below Aw(j).

Thus, for each k we have ∑
i∈Ik

xi ≥ 0,

and so

Q(w)(j) =
∑
i∈I

xi =
∑
k

∑
i∈Ik

xi ≥ 0.

Now fix j ∈ [φ−1
w (n), n), and we must show that Q(w)(j) > Q(w)(n). Let Ic denote

[1, n]− I. Thus,

Q(w)(n)−Q(w)(j) =
∑
i∈Ic

xi.

As with I above, we partition Ic into maximal intervals of consecutive numbers,
Ic1 , I

c
2 , · · · . These intervals correspond to segments of the path of w. Each such segment

begins at or above and ends at or below Aw(j). As in the previous case, here we rely on
our assumption that j ≥ φ−1

w (n): if one of the Ick included the final increment then the
corresponding path segment might end above Aw(j).
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The quantile transform of simple walks and Brownian motion

Moreover if one of these segments begins exactly at Aw(j) then it must end strictly
below Aw(j). In order for the segment corresponding to some block [l, l + 1, · · · ,m] of
Ic to begin exactly at Aw(j) we would need: (1) w(l − 1) = Aw(j) = w(φw(j) − 1) and
(2) l ∈ Ic. Thus, by definition of I, we would have l ≥ φ−1

w (j). And since m+ 1 ∈ I and
m + 1 > φ−1

w (j), we would then have w(m) < Aw(j), as claimed. We conclude that for
each block Ick, ∑

i∈Ick

xi < 0.

Consequently,

Q(w)(n)−Q(w)(j) =
∑
i∈Ic

xi =
∑
k

∑
i∈Ick

xi < 0,

as desired.

Theorem 2.5 motivates the following definition.

Definition 2.6. A quantile walk is a simple walk that is either non-negative or a first-
passage bridge to a negative value.

A quantile pair is a pair (v, k) where v is a quantile walk of length n and k is a
nonnegative integer such that v(j) ≥ 0 for j ∈ [0, k) and v(j) > v(n) for j ∈ [k, n).

The following is our main result in the discrete setting.

Theorem 2.7 (Quantile bijection). The map w 7→ (Q(w), φ−1
w (n)) is a bijection between

the set of simple walks of length n and the set of quantile pairs (v, k) with v having
length n.

This theorem is proved at the end of section 6. The next several sections build tools
for that proof in the manner described in the introduction.

The index φ−1
w (n) serves as a helper variable in the statement of the theorem, distin-

guishing between walks that have the same Q-image. This helper variable is the time at
which the increment corresponding to the final increment of w arises in Q(w).

Figure 4 illustrates which indices k may appear as helper variables alongside a
particular image walk v, depending on the sign of v(n). If v(n) < 0 then its helper k may
be any time from 1 up to the hitting time of −1. If v(n) ≥ 0 and v ends in a down-step
then k may be any time in the final excursion above the value v(n), including time n. In
the special case where v(n) ≥ 0 and v ends with an up-step, k can only equal n.

Figure 4: The allowed times for the helper variable (circled).

Throughout the remainder of the document we say “walk” to refer to simple walks.

3 Enumeration of quantile pairs

In this section we show that there are as many quantile pairs (v, k) in which v has
u up-steps and d-down steps as there are walks with u up-steps and d down-steps. We
begin with notation.

Let q(u, d) denote the number of quantile pairs (v, k) for which v has exactly u up-
steps and d down-steps. For u ≥ d let walk+(u, d) denote the number of everywhere
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The quantile transform of simple walks and Brownian motion

7−→

Figure 5: A path transformation that almost preserves number of allowed helper values.

non-negative walks with u up-steps and d down-steps. For u 6= d let fpb(u, d) denote the
number of first-passage bridges with u up-steps and d down-steps.

The following two formulae are well known and can be found in Feller[30, p. 72-77].

walk+(u, d) =

(
u+ d

u

)
−
(
u+ d

u+ 1

)
and (3.1)

fpb(u, d) =

(
u+ d− 1

u ∧ d

)
−
(
u+ d− 1

(u ∧ d)− 1

)
. (3.2)

A discussion of these and other formulae in this vein may also be found in [28].
We call upon a version of the Cycle lemma.

Lemma 3.1 (Cycle lemma, Dvoretzky and Motzkin, 1947[27]). A uniformly random first-
passage bridge to some level −b, with b > 0, may be decomposed into b consecutive,
exchangeable random first-passage bridges to level −1. If we condition on the lengths of
these first-passage bridges then they are independent and uniformly distributed in the
sets of first-passage bridges to −1 of the appropriate lengths.

Versions of this lemma have been rediscovered many times. For more discussion on
this topic see [24] and [44, p. 172-3] and references therein.

Finally, we require the following formula.

Lemma 3.2. For any non-negative integers u and d,

q(u, d+ 1) = q(d, u+ 1)−
(
u+ d

u+ 1

)
+

(
u+ d

u− 1

)
. (3.3)

Proof. The formula is trivial in the case u = d. Moreover, it suffices to prove the formula
in the case u > d, since the case u < d follows by swapping variables.

Let v be a non-negative walk that ends in a down step. We define a bijective path
transformation T that transforms such a walk into a first passage bridge down. In
particular, T transforms v by the following three steps: (1) it removes the final down-step
of v; (2) it reverses the sign and order of the remaining increments in v; and (3) it adds a
final down-step to the resulting walk. This is illustrated in Figure 5.

Fix u > d. The transformation T bijectively maps: (1) non-negative walks that end
in down-steps and take u up-steps and d + 1 down-steps to (2) first-passage bridges
that take d up-steps and u+ 1 down-steps. This map has the additional property that v
belongs to exactly one more quantile pair than T (v) does:

#{k : (v, k) is quantile} = #{k : (T (v), k) is quantile}+ 1. (3.4)

This gives the following identity for u > d:

q(u, d+ 1)−walk+(u− 1, d+ 1) = q(d, u+ 1) + fpb(d, u+ 1). (3.5)

The second term on the right corresponds to the “+1” from equation (3.4). The second
term on the left accounts for quantile pairs involving non-negative walks that end in
up-steps. Subbing in the known counts (3.1) and (3.2) gives the desired result.
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The quantile transform of simple walks and Brownian motion

We now have all of the elements needed to prove our enumeration of quantile pairs.

Proposition 3.3. For any non-negative integers u and d,

q(u, d) =

(
u+ d

u

)
. (3.6)

Proof. We prove the result in the case u < d and then use equation (3.3) to pass our
result to the case where u ≥ d.

Suppose u < d. Let (Wj , j ∈ [0, n]) denote a uniform random first passage bridge
conditioned to have u up-steps and d down-steps, where u and d are fixed. Let T denote
the first-arrival time of W at −1 – this is the random number of quantile pairs to which
W belongs. By the Cycle Lemma, W may be decomposed into d− u exchangeable first
passage bridges to −1. Thus,

E(T ) =
u+ d

d− u
.

So

q(u, d) = E(T )fpb(u, d)

=
u+ d

d− u

((
u+ d− 1

d− 1

)
−
(
u+ d− 1

u− 1

))
=
u+ d

d− u

((
u+ d

d

)
d

u+ d
−
(
u+ d

u

)
u

u+ d

)
=

(
u+ d

d

)
,

as desired.
Now suppose u ≥ d. By equation (3.3) and the previous case

q(u, d) =

(
u+ d

u+ 1

)
−
(
u+ d− 1

u+ 1

)
+

(
u+ d− 1

u− 1

)
=

(
u+ d− 1

u

)
+

(
u+ d− 1

u− 1

)
=

(
u+ d

u

)
.

4 Increment arrays

The increment array corresponding to a walk is a collection of sequences of ±1s, with
each sequence listing the increments from a particular level of that walk. This is a finite
version of the stack model of a Markov process, discussed in Propp and Wilson[47, p.
205] in connection with the cycle popping algorithm for generating a random spanning
tree of an edge-weighted digraph. Whereas the stack model assumes an infinite excess of
instructions, we study increment arrays which minimally describe walks of finite length.
Theorem 4.7 characterizes these increment arrays.

In terms of the decomposition of Q proposed in equations (1.1) and (1.2), this section
defines and studies the map α.

By virtue of their finiteness, increment arrays may be viewed as discrete local
time profiles with some additional information. Discrete local times have been studied
extensively; see, for example, Knight[35] and Révész[49]. A more complete list of
references regarding asymptotics of discrete local times is given in section 8.

The quantile transform rearranges increments on the basis of their left endpoints.

Definition 4.1. Let w be a walk of length n. For 1 ≤ j ≤ n we define the level of (the
left end of) the jth increment of w to be

w(j − 1)− min
0≤i<n

w(i).
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The quantile transform of simple walks and Brownian motion

The jth increment of w is said to belong to, or to leave, that level. We name four
important levels of a walk w, illustrated in Figure 6.

• The start level is the level of the first increment, or −mini<n w(i). We typically
denote this S, or Sw in case of ambiguity.

• The terminal level is (w(n)−mini<n w(i)). We typically denote this T or Tw.

• The preterminal level is the level of the final increment, or (w(n− 1)−mini<n w(i)).
We typically denote this P or Pw.

• The maximum level is maxj∈[0,n−1] w(j). We typically denote this L or Lw.

S = 3
L = 4

P = 0
T = 1

Figure 6: A walk with its distinguished levels labeled.

Note that if w is a first-passage bridge then no increments leave its terminal level. In
this case T equals either −1 or L+ 1. Because T attains these exceptional values, the
set of first-passage bridges arise as a special case throughout this document.

The start, preterminal, and terminal levels share the following relationship.

S = T − w(n) = P − w(n− 1). (4.1)

The quantile transform of a walk w is determined by the levels at which the increments
of w occur and the orders in which they occur at each level. We define increment arrays
to carry this information.

Definition 4.2. An increment array is an indexed collection x = (xi)
L
i=0 of non-empty,

finite sequences of ±1s. We call the xis the rows and L the height of the array. We say
that an increment array (xi)

L
i=0 corresponds to a walk w with maximum level L if, for

every i ∈ [0,L], the sequence of increments of w at level i equals xi; i.e.

xwi = (w(s1 + 1)− w(s1)), · · · , w(sk + 1)− w(sk)),

where s1 < · · · < sk is the sequence of times prior to n at which w visits level i.

An example of a walk and its corresponding increment array is given in Figure 7. In
that figure we’ve bolded the increments from level 4.

4

level i di ui

(1)
(1,-1,1)

(1,1,-1)
(1,−1,−1)
(-1)

xi

(-1,-1,-1)

0
1
2
3

5 1

1
3
1
0

0
2
1

2

0
12

Figure 7: A walk with the corresponding increment array and up- and down-crossing
counts.
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The quantile transform of simple walks and Brownian motion

Definition 4.3. Given an increment array x, we define uxi and dxi to be the number of
‘1’s and ‘−1’s, respectively, that appear in xi. Correspondingly, for a walk w we define
uwi and dwi to be the numbers of up- and down-steps of w from level i. We call the uxi s
and dxi s (respectively uwi s and dwi s) the up- and down-crossing counts of x (resp. of w).
We define the sum of x, denoted σx, to be the sum of all increments in the array:

σx :=

L∑
i=0

∑
j∈xi

j =

L∑
i=0

ui − di. (4.2)

Clearly, if x corresponds to a walk w of length n then σx = w(n), and for each i

uxi = uwi and dxi = dwi .

We now define the map α, which was referred to in equations (1.1) and (1.2). We
need this map to be injective, but we see in Theorem 4.13 that the map from a walk to
its corresponding increment array is not injective, so α(w) must pass some additional
information.

Definition 4.4. Given an increment array x = (xi)
L
i=0, we may arbitrarily specify one

row xP with P ∈ [0,L] to be the preterminal row. We call the pair (x,P) a marked
(increment) array, since one row has been “marked” as the preterminal row. We say that
the marked array corresponds to a walk w if w corresponds to x and has preterminal
level P.

We define α to be the map that sends a walk w to its corresponding marked array.

Equation (4.1) may be restated in this setting. If an array x corresponds to a walk w
with preterminal level P then the start and terminal levels of w are specified by

T = P − x∗P , and S = T − σx, (4.3)

where x∗P denotes the final increment in the row xP .

Definition 4.5. For a marked array (x,P) we define the indices S and T via equation
(4.3). If S falls within [0,L] then we call xS the start row of x; otherwise we say that the
start row is empty. Likewise, if T ∈ [0,L] then we call xT the terminal row, and if not
then we say that the terminal row is empty.

In Figure 8 we state an algorithm to reconstitute the walk corresponding to a valid
marked array. This is the same algorithm implied by the stack model of random walks,
discussed in [47]. In light of this algorithm, a marked increment array may be viewed as
a set of instructions for building a walk: the row xi tells the walk which way to go on
successive visits to level i. Figure 9 presents an example run of this algorithm.

We wish to characterize which marked arrays correspond to walks. This is the main
result of section 4.

Definition 4.6. An increment array has the Bookends property if for every i ≤ min{P, T }
the final entry in xi is a 1, and for each i ≥ max{P, T } the final entry is a −1.

A marked array has the The Crossings property if for each i ∈ [0,L+ 1]

ui−1 − di = 1{i ≤ T } − 1{i ≤ S}, (4.4)

where we define u−1 = dL+1 = 0.
A marked array with the Bookends and Crossings properties is called valid. We call

an increment array x valid if (x,P) is valid for some P.

Theorem 4.7. The map α is a bijection between the set of walks and the set of valid
marked arrays.
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The quantile transform of simple walks and Brownian motion

1 Reconstitution(x[],P)
2 ## Takes two arguments - incr array x[] and preterm lvl P
3 ## Each x[i] is a queue w/ operation Pop(x[i]) which pops
4 ## x[i][0] off of x[i] and returns the popped value.
5

6 L := length(x) - 1 ## set max level
7 S := P + x[P+1][length(x[P+1])-1] ## define S via (4.3)
8

9 w[0] := 0, m := 0, i:= S
10

11 While x[i] not empty:
12 x := Pop(x[i])
13 w[m+1] := w[m] + x
14 i := i+x, m := m+1
15

16 Return w

Figure 8: A pseudocode algorithm to reconstitute a walk from a marked array.

P = 3; x0 = (1), x1 = (−1, 1), x2 = (1), x3 = (−1)

(1) i = 1; x0 = (1), x1 = (−1, 1), x2 = (1), x3 = (−1)

(2) i = 0; x0 = (1), x1 = (1), x2 = (1), x3 = (−1)

(3) i = 1; x1 = (1), x2 = (1), x3 = (−1)

(4) i = 2; x2 = (1), x3 = (−1)

(5) i = 3; x3 = (−1)

Figure 9: Reconstitution algorithm (Fig. 8) run on a valid marked array (see Def. 4.6).
Input (x,P) shown at top. Each row below corresponds to an iteration of the loop.
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The quantile transform of simple walks and Brownian motion

The necessity of the Bookends property is clear. For each i 6= P the last increment
from level i of a walk w must go towards the preterminal level. Likewise, for each i 6= T
the last increment from level i must go towards the terminal level. Note that because
there can be no index i strictly between P and T , these two requirements are never in
conflict.

Next we consider decomposing a walk around its visits to a level. We use this idea
first to prove the necessity of the Crossings property, and then to prove the sufficiency of
the conditions in Theorem 4.7. This approach is motivated by excursion theory and by the
approach in Diaconis and Freedman[25], which deals with related issues. In particular,
whereas our Theorem 4.7 gives conditions for the existence of a path corresponding
to a given set of instructions (a marked array), Theorem (7) in [25] gives conditions,
based on comparing instructions, for two paths to arise with equal probability in some
probability space. Whereas we begin with instructions and seek paths, Diaconis and
Freedman begin with paths and consider instructions.

The following proposition asserts the necessity of the Crossings property in Theorem
4.7.

Proposition 4.8. For any walk w with start, terminal, and maximum levels S, T , and L
respectively, and for any i ∈ [0,L+ 1],

uwi−1 − dwi = 1{i ≤ T } − 1{i ≤ S}, (4.5)

where we define uw−1 = dwL+1 = 0.

Proof. Consider the behavior of a walk w around one of its levels i. The walk may be
decomposed into: (i) an initial approach to level i (trivial when i is the start level), (ii)
several excursions above and below i, and (iii) a final escape from i (trivial when i is the
terminal level). Such a decomposition is shown in Figure 10.

The down-crossing count di must equal the number of excursions below level i, plus 1
if the terminal level is (and final escape goes) strictly below level i. Similarly, ui−1 must
equal the number of excursions below i, plus 1 if the start level is (and thus the initial
approach comes from) strictly below level i.

Figure 10: A walk decomposed into an initial approach to a level, excursions from that
level, and a final escape.

We observe several special cases of this formula.

Corollary 4.9. (i) If w is a bridge then uwi = dwi+1 for each i.

(ii) The down-crossing count dw0 = 0 unless w is a first-passage bridge to a negative
value, in which case dw0 = 1.
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The quantile transform of simple walks and Brownian motion

(iii) The up-crossing count uwL = 0 unless w is a first-passage bridge to a positive value,
in which case uwL = 1.

We prove the sufficiency of the Bookends and Crossings properties for Theorem 4.7
by structural induction within certain equivalence classes of marked arrays.

Definition 4.10. We say that two marked arrays are similar, denoted (x,P) ∼ (x′,P ′),
if: (1) P = P ′, (2) uxi = ux

′

i and dxi = dx
′

i for each i, and (3) the final increment of each
row of x equals the final increment of the corresponding row of x′.

This equivalence relation corresponds to a relation between paths observed in Diaco-
nis and Freedman[25]. Note that similarity respects both the Bookends and Crossings
properties. The following is the base case for our induction.

Lemma 4.11. Suppose that (x,P) is a valid marked array with the property that, within
each row of x, all but the final increment are arranged with all down-steps preceding all
up-steps. Then there exists a walk w corresponding to (x,P).

We sketch a proof with two observations. Firstly, the proof of this lemma follows
along the lines of the proof of Proposition 4.8. Secondly, the corresponding walk w would
be of the form: (1) an initial direct descent from start level to minimum (except in the
case T = −1, for which this descent may not reach the minimum) followed by (2) an
up-down sawing pattern between the levels 0 and 1, and then between levels 1 and 2, on
up to levels L − 1 and L, and finally (3) a direct descent from the maximum level L to
the terminal level T (except in the case T = L+ 1, for which this descent is replaced by
a single, final up-step). A walk of this general form is shown in Figure 11.

Figure 11: A walk corresponding to an array of the form described in Lemma 4.11.

We follow with the remainder of our induction argument.

Proof of Theorem 4.7. The necessity of the Bookends property is clear, and that of the
Crossings property is asserted in Proposition 4.8. If there exists a walk corresponding to
a given marked array then its uniqueness is clear from the algorithm stated in Figure 8.
So it suffices to prove that for every valid marked array, there exists a corresponding
walk. We proceed by structural induction within the ∼-equivalence classes.

Base case: Every ∼-equivalence class of valid marked arrays contains one of the form
described in Lemma 4.11. Thus, each class contains a marked array that corresponds to
some walk.

Inductive step: Suppose that (x,P) is a valid marked array that corresponds to a walk
w. Let x′ denote an array obtained by swapping two consecutive, non-final increments
within some row xi of x, and leaving all other increments in place. Operations of this
form generate a group action whose orbits are the ∼-equivalence classes; thus, it suffices
to prove that (x′,P) corresponds to some walk.

As in our proof of Proposition 4.8, we decompose w into an initial approach to level i,
excursions away from level i, and a final escape.

Take, for example, the array:

x0 = (1), x1 = (1,−1), x2 = (1,−1, 1,−1),

x3 = (1,−1,−1, 1,−1), x4 = (−1,−1),
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with P = 0. This corresponds to the walk w shown in Figure 10.

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

w(i) 0 1 0 −1 0 −1 −2 −1 0 1 0 −1 −2 −3 −2

Suppose that x′ is formed by swapping two consecutive increments within x2. Then we
decompose the values of w around level 2, which corresponds to the value w(j) = −1:

(0, 1, 0); (−1, 0); (−1,−2); (−1, 0, 1, 0); (−1,−2,−3,−2).

This is analogous to the decomposition depicted in Figure 10. The three middle blocks
are excursions.

The non-final increments of xi are the initial increments of excursions of w away from
level i (in the special case i = T , the final increment of xi also begins an excursion).
Each 1 corresponds to an excursion above level i, and each −1 to an excursion below.
In the example, the (1,−1, 1) that appear before the final increment of x2 correspond
to the three excursions mentioned above. Swapping a consecutive ‘+1’ and ‘-1’ in xi
while leaving the (xj)j 6=i untouched corresponds to swapping a consecutive upward and
downward excursion.

Returning to the example, swapping the second and third increments in x2 corre-
sponds to swapping the second and third excursions of w away from the value −1,
resulting in the value sequence:

(0, 1, 0); (−1, 0); (−1, 0, 1, 0); (−1,−2); (−1,−2,−3,−2).

Because the middle three blocks all begin at the value −1 and end adjacent to it,
swapping two of these result in the value sequence for a walk w′ – that is, a sequence of
values starting at 0, and with consecutive differences of ±1. Thus, there exists a walk w′

corresponding to (x′,P).

Theorem 4.7 may be generalized to classify instruction sets for walks on directed
multigraphs. In that setting the Crossings property is replaced by a condition along
the lines of “in-degree equals out-degree,” and the Bookends property is replaced by a
condition resembling “the last-exit edges from each visited, non-terminal vertex form a
directed tree.” The latter of these has been observed by Broder[14] and Aldous[2] in
their study of an algorithm to generate random spanning trees. See also [13, p. 12].

We now digress from our main thread of proving the bijection between walks and
quantile pairs to address the question: given a valid array x, what can we say about
the indices P for which (x,P) is valid? We begin by asking: what does the Bookends
property look like?

By the definition of T given in (4.3), it must differ from P by exactly 1. Therefore the
two classifications i ≤ min{P, T } and i ≥ max{P, T } are exhaustive and non-intersecting.
Given x, there exists a P for which the Bookends property is satisfied if and only if, for
all i below a certain threshold xi ends in an up-step, and for all i above that threshold xi
ends in a down-step; if this is the case then P and T must stand on either side of that
threshold.

Consider the following array.

x4 = (−1)

x3 = (+1,−1,−1)

}
x2 = (−1,+1,+1,−1,+1)

x1 = (+1,+1,−1,+1)

x0 = (+1)
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The row-ending increments transition from 1s to −1s between rows 2 and 3. Thus, the
Bookends property requires that either P = 2 and T = 3 or vice versa. Both of these
choices are consistent with equation (4.3).

Proposition 4.12. Given an increment array x, there are at most two distinct triples
(P, T ,S) that satisfy: (i) equation (4.3), (ii) the Bookends property, and (iii) the property
P ∈ [0,L]. Furthermore, if there are two such triples then no entry is the same in both
triples.

Proof. We begin with the special cases corresponding to first-passage bridges. First,
suppose that every row of x ends in a ‘1’. Then the Bookends property and the bounds on
P are only satisfied if P = L, and then T and S are pinned down by (4.3); in particular
T = L+ 1. By a similar argument, if every row ends in a ‘-1’ then P must equal 0, and
again T and S are specified by (4.3) with T = −1.

Now suppose that some rows of x = (xi)
L
i=0 end in ‘1’s and others in ‘-1’s. Then

there exists a P for which the Bookends property is satisfied if and only if there is some
number a ∈ [0,L) such that, for i ≤ a row xi ends in a ‘1’, and for i > a row xi ends
in a ‘-1’. So the Bookends property and (4.3) force (P, T ) to equal either (a, a + 1) or
(a+ 1, a). Thus, the two triples that satisfy all three properties are

(P, T ,S) = (a, a+ 1, a+ 1− σx) or (a+ 1, a, a− σx). (4.6)

We can now classify with which P a given x may form a valid marked array.

Theorem 4.13. Let x = (xi)
L
i=0 be a valid array. If σx 6= 0 then x corresponds to a

unique walk, and if σx = 0 then x corresponds to exactly two distinct bridges.

Proof. By the uniqueness asserted in Theorem 4.7 it suffices to prove that if σx 6= 0 (or if
σx = 0) then there is a unique P (respectively exactly two distinct values P) for which
(x,P) is valid. We proceed with three cases.

Case 1: σx > 0. By Theorem 4.7, for any valid choice of P the resulting S lies within
[0,L] – a walk must start at a level from which it has some increments. By the Crossings
property,

ui−1 = di for i ≤ S and uS+1 = dS+1 + 1. (4.7)

These two properties uniquely specify S; and by Proposition 4.12 our choice of S uniquely
specifies P.

Case 2: σx < 0. This dual to case 1. In this case, S must satisfy

ui = di+1 for i ≥ S and uS−1 = dS − 1. (4.8)

Again S is uniquely specified, and by Proposition 4.12 P is uniquely specified.
Case 3: σx = 0. In this case, the Crossings property asserts that ui = di+1 for every i;

this places no constraints on P, T , or S. By our assumption that x is valid, it therefore
satisfies the crossings property regardless of P, so the only constraints on P are coming
from the Bookends property.

The Crossings property tells us that

d0 = u−1 = 0 and uL = dL+1 = 0,

so x0 ends in a ‘1’ and xL ends in a ‘-1’. We observed in the proof of Proposition 4.12
that in this case there are either zero or two values P for which (x,P) is valid. And by
our assumption that x is valid there are two such values.
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5 Partitioned walks

In this section we introduce partitioned walks and define the map β suggested in
equations (1.1) and (1.2). A partitioned walk is a walk with its increments partitioned
into contiguous blocks with one block distinguished. Partitioned walks correspond in a
natural manner with marked arrays (not just valid marked arrays). Theorem 5.8, which
is the main result of this section, describes the β-image of the valid marked arrays.
The elements of this image set are called quantile partitioned walks. In section 6 we
demonstrate a bijection between the quantile partitioned walks and the quantile pairs.

Let w be a walk of length n, and let the uwi and dwi be the up- and down- crossing
counts of w from level i, as defined in the previous section.

Definition 5.1. For j ∈ [0,L+ 1], define twj to be the number of increments of w at levels
below j:

twj :=

j−1∑
i=0

ui + di.

So 0 = tw0 < · · · < twL+1 = n. We call twj the jth saw tooth of w.

Whenever it is clear from context we suppress the superscripts in the saw tooth of a
walk.

Note that the helper variable employed in the quantile bijection theorem, Theorem
2.7, appears in this sequence:

φ−1
w (n) = tP+1. (5.1)

This is because the nth increment of w is its final increment at the preterminal level.

We are interested in the saw teeth in part because less considerations go into the
value of Q(w) at twj than at some general t. In particular, Q(w)(twj ) ignores the order of
increments within each level of w.

Lemma 5.2. Let w be a walk with up- and down-crossing counts (ui) and (di) and saw
teeth (ti). Let S, T , and L be the start, terminal, and maximum levels of w. Then

Q(w)(tj) =
∑
i<j

ui − di for each j ∈ [0,L+ 1]. (5.2)

This may be restated in the closed form

Q(w)(tj+1) = uj + (j − S)+ − (j − T )+ for each j ∈ [−1,L]. (5.3)

Proof. We note that Q(w)(tj) is a sum of all increments of w that belong to levels less
than j. This proves equation (5.2). Regrouping the terms of (5.2) and applying equation
(4.5) then gives equation (5.3).

Equation (5.3) is a discrete-time form of Tanaka’s formula, the continuous-time
version of which we recall in section 8. Briefly, the value Q(w)(tj+1) corresponds to

the integral
∫ 1

0
1{X(t) ≤ a}dX(t) in that it sums all increments of w that appear below

the fixed level j; the term uj corresponds to 1
2`
a – roughly half of the visits of a simple

random walk to level j are followed by up-steps; and the latter terms j − S and j − T
correspond to a and a−X(1). Further discussion of the discrete Tanaka formula may be
found in [38, 19, 51, 53].

Equation (5.3) takes the following form in the bridge case.

Corollary 5.3. If w is a bridge then Q(w)(tj+1) = uj for each j.
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Q7−→

Figure 12: Increments emanating from a common level in w appear in a contiguous
block in Q(w).

The saw teeth partition the increments of Q(w) into blocks in the manner illustrated in
Figure 12: increments from the jth block, between tj and tj+1, correspond to increments
from the jth level of w. This partition provides the link between increment arrays and the
quantile transform. This is illustrated in Figure 13. The saw teeth are shown as vertical
dotted lines partitioning the increments of Q(w). Each block of this partition consists of
the increments from a row of xw, stuck together in sequence.

t0 t1 t2 t3

-1 -11 11 -1 -1

x2x1x0

x1 = (−1, 1, 1,−1)
x0 = (1)

x2 = (−1,−1)

Figure 13: Left to right: a walk, its increment array, and its quantile transform partitioned
by saw teeth.

We will now define the map β alluded to in equations (1.1) and (1.2) such that it will
satisfy

β ◦ α(w) = (Q(w), (twi )L+1
i=0 ,Pw). (5.4)

We define the partitioned walks to serve as a codomain for this map.

Definition 5.4. A partitioned walk is a triple v = (v, (ti)
L+1
i=0 ,P) where v is a walk, say

of length n,
0 = t0 < t1 < · · · < tL+1 = n,

and P ∈ [0,L]. Here we are taking the tj , L, and P to be arbitrary numbers, rather than
the saw teeth and distinguished levels of v. The name “partitioned walk” refers to the
manner in which the times ti partition the increments of v into blocks. We call the block
of increments of v bounded by tP and tP+1 the preterminal block of v. We say that such
a partitioned walk v corresponds to a walk w if v = (Q(w), (twi )Lw

i=0,Pw).

Definition 5.5. Define β to be the map that sends a marked array ((xi)
L
i=0,P) to the

unique partitioned walk (v, (ti)
L+1
i=0 ,P) that satisfies

xi =

(
v(ti + 1)− v(ti), v(ti + 2)− v(ti + 1),

· · ·, v(ti+1)− v(ti+1 − 1)

)
for every i ∈ [0,L]. (5.5)

Define γ to be the map from partitioned walks to walk-index pairs given by

γ(v, (ti),P) := (v, tP+1). (5.6)

We address the map γ in section 6. The map β may be thought of as stringing together
increments one row at a time, as illustrated on the right in Figure 13, as well as in Figure
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x4 = (−1)

x3 = (1, 1,−1)

x2 = (1, 1)

x1 = (1,−1,−1) F
x0 = (−1,−1)

←→
F

Figure 14: A marked array and its image under β.

14. In this latter example neither the array nor the partitioned walk corresponds to any
(unpartitioned) walk.

While it is clear that β is a bijection, we are particularly interested in the image of
the set of valid marked arrays. Before we describe this image, we make a couple more
definitions.

Definition 5.6. Let v = (v, (ti)
L+1
i=0 ,P) be a partitioned walk. Motivated by the later

terms in equation (5.3) we define the trough function for v to be

Mv(j) := (j − S)+ − (j − T )+, (5.7)

where we define the indices T and S via

T := P + v(tP+1)− v(tP+1 − 1), and S := T − v(tL+1). (5.8)

This is the partitioned walk analogue to equation (4.3) for marked arrays. If they exist,
then we call the block of increments bounded by tS and tS+1 the start block, and the
block bounded by tT and tT+1 the terminal block.

Definition 5.7. A partitioned walk has the Bookends property if for i ≤ T ,P, the tst
i+1

increment of v (i.e. the last increment of the ith block) is an up-step; likewise, if i ≥ T ,P,
then the tst

i+1 increment of v is a down-step.
A partitioned walk has the Saw property if for each j ∈ [0,L],

v(tj+1) + v(tj) = tj+1 − tj + 2Mv(j). (5.9)

A partitioned walk with the Bookends and Saw properties is called a quantile parti-
tioned walk.

Theorem 5.8. The map β bijects the set of valid marked arrays with the set of quantile
partitioned walks.

The equivalence of the Bookends properties for partitioned walks versus marked
arrays is clear. We first define the saw path of a partitioned walk, and we use this to
generate several useful restatements of the Saw property. Then we demonstrate the
equivalence of the Saw property of partitioned walks to the Crossings property of arrays,
and use this to prove the theorem.

Definition 5.9. For any partitioned walk v = (v, (ti),P), we define the saw path Sv to
be the minimal walk that equals v at each time ti.

The saw teeth of a walk w have been so-named because they typically coincide with
the maxima of the saw path Sv, where v = β ◦ α(w).

Lemma 5.10. Let v be a partitioned walk, and let uj and dj denote the number of up-
and down-increments of v between times tj and tj+1 for each j. Then the saw property
for v is equivalent to each of the following families of equations. For every j ∈ [0,L],

Mv(j) = −dj +
∑
i<j

ui − di, or equivalently (5.10)

Mv(j) = min
t∈[tj ,tj+1]

Sv(t). (5.11)
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Proof. By definition of the saw path

min
t∈[tj ,tj+1]

Sv(t) = −dj +
∑
i<j

ui − di. (5.12)

Thus, it suffices to show that the saw property is equivalent to (5.10).
First we express a few quantities in terms of the uis and dis:

tj+1 − tj = uj + dj , (5.13)

v(tj+1)− v(tj) = uj − dj , and (5.14)

v(tj) =
∑
i<j

ui − di. (5.15)

From these equations we obtain

v(tj+1) + v(tj)− (tj+1 − tj) = −2dj + 2v(tj) = −2dj + 2
∑
i<j

ui − di.

The saw property asserts that 2Mv(j) equals the expression on the left-hand side above.
The claim follows.

Figure 15 shows two examples of

w
β◦α7−→ (Q(w), (twi ),P).

The saw teeth are represented by vertical dotted lines and the preterminal block is
starred. The saw path is drawn in dashed lines where it deviates below Q(w). In between
each pair of teeth tj and tj+1 we show a horizontal dotted line at the level of Mv(j).
Observe how the saw path bounces off of these horizontal lines; this illustrates equation
(5.11).

7→

F

t1 t3 t4 t5 t6t0 t2

7→

F

Figure 15: Two walks and their quantile transforms overlayed with saw teeth, saw paths,
and troughs.

In Figure 16 we show the saw path of a partitioned walk v that doesn’t have Saw
property. This diagram follows the same conventions as the diagrams on the right hand
side in Figure 15.

By definition of the saw path

v(t) ≥ Sv(t) for every t. (5.16)

This gives us the following corollary to Lemma 5.10.

EJP 20 (2015), paper 90.
Page 19/39

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v20-3479
http://ejp.ejpecp.org/


The quantile transform of simple walks and Brownian motion

P

Figure 16: A general partitioned walk and its saw path.

Corollary 5.11. If v = (v, (ti),P) is a partitioned walk with the Saw property then for
t ∈ [tj , tj+1],

v(t) ≥Mv(j). (5.17)

Lemma 5.12. If v = (v, (tj)
L+1
j=0 ,P) is a partitioned walk with the Saw property then the

index S of its start block falls within [−1,L+ 1].

Proof. We consider three cases.
Case 1: v(n) = 0. Then S = T , and so the desired result follows from the definition

of T in (5.8), and from the property P ∈ [0,L] which is stipulated in the definition of a
partitioned walk.

Case 2: v(n) > 0. Then S < T ≤ L + 1. But if S < −1 then M(0) > 0. This would
contradict Corollary 5.11 at j = 0, t = 0.

Case 3: v(n) < 0. Then S > T ≥ −1. If both S, T > L then M(L) = 0; this would
contradict Corollary 5.11 at j = L with t = n. And if T ≤ L < S then

M(L) > (L − S)− (L − T ) = v(n),

which would again contradict Corollary 5.11 at the same point.

In fact, it follows from Theorem 5.8 that S ∈ [0,L], but we require the weaker result
of Lemma 5.12 to prove the theorem.

Proof of Theorem 5.8. Let (x,P) be a marked array and let β(x,P) = v = (v, (tj)
L+1
j=0 ,P).

Clearly (x,P) has the Bookends property for arrays if and only if v has the Bookends
property for partitioned walks. For the remainder of the proof, we assume that both
have the Bookends property.

It suffices to prove that v has the Saw property if and only if (x,P) has the Crossings
property. In fact, the Saw property is equivalent to the Crossings property even outside
the context of the Bookends property, but we sidestep that proof for brevity’s sake.

Let (uj) and (dj) denote the up- and down-crossing counts of x; these also count the
up- and down-steps of v between consecutive partitioning times tj and tj+1. Let S and
T denote the start and terminal row indices for (x,P), or equivalently, the start and
terminal block indices for v.

The Saw property for v is equivalent to the following three conditions:

Mv(−1) = 0, Mv(L+ 1) = v(n), and (5.18)

Mv(j)−Mv(j − 1) = uj−1 − dj for each j ∈ [0,L+ 1]. (5.19)

The Saw property implies (5.18) by way of Lemma 5.12; and given (5.18), equation (5.19)
is equivalent to (5.10), which in turn is equivalent to the Saw property by Lemma 5.10.

The Crossings property for (x,P) is equivalent to those same three conditions. The
validity of (x,P) implies (5.18) via Theorem 4.7: because the array corresponds to a
walk, it must have S ∈ [0,L]. Furthermore, given (5.18) the Crossings property may be
shown to be equivalent to (5.19) by substituting in the formula (5.7) for Mv.
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6 The quantile bijection theorem

In this section we give a lemma that will help us show that γ is injective on the
quantile partitioned walks. We then apply this lemma to prove Theorem 2.7, the Quantile
bijection theorem.

Lemma 6.1. A partitioned walk v = (v, (ti)
L+1
i=0 ,P) has the Saw and Bookends properties

if and only if the following two conditions hold.

(i) For every j ∈ [0,P]

tj = inf{t ≥ 0 : v(t) = tj+1 − t+ 2Mv(j)− v(tj+1)}. (6.1)

(ii) For every j ∈ [P + 1,L]

tj+1 = inf{t ≥ 0 : v(t) = t− tj + 2Mv(j)− v(tj)}. (6.2)

Proof. The Saw property of v is equivalent, by algebraic manipulation, to the conditions
that for j ∈ [0,P], the tj must solve

v(t) + t = tj+1 + 2Mv(j)− v(tj+1) (6.3)

for t, and for j ∈ [P + 1,L], the tj+1 must solve

v(t)− t = −tj + 2Mv(j)− v(tj). (6.4)

Now suppose that some s solves equation (6.3) for some j ≤ P. A time r < s offers
another solution to (6.3) if and only if

v(r) + r = v(s) + s.

This is equivalent to the condition that v takes only down-steps between the times r and
s. Therefore tj equaling the least solution to (6.3) is equivalent to the tthj increment of v
being an up-step, as required by the Bookends property.

Similarly, suppose that s solves equation (6.4) for some j ≥ P + 1. A time r < s

provides another solution if and only if

v(r)− r = v(s)− s,

which is equivalent to the condition that v takes only up-steps between r and s. Therefore
tj equaling the least solution to (6.4) is equivalent to the tst

j+1 increment of v being a
down-step, as required by the Bookends property.

Equation (5.8) defines T from P in such a way that the tst
P+1 increment of v will

always satisfy the Bookends property. Thus, if (6.1) holds for j ∈ [0,P] and (6.2) holds
for every j ∈ [P + 1,L], then the Bookends property is met at every tj .

Finally, we are equipped to prove our main discrete-time result.

Proof of the Quantile bijection, Theorem 2.7. Definitions 4.4 and 5.5 define the maps α,
β, and γ in such a way that, for a walk w of length n,

γ ◦ β ◦ α(w) = (Q(w), φ−1
w (n)).

Theorem 2.5 asserts that this map sends walks to quantile pairs, and by Proposition 3.3
the set of walks with a given number of up- and down-steps has the same cardinality as
the set of quantile pairs with those same numbers of up- and down-steps. Theorems 4.7
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and 5.8 assert that that β ◦ α bijects the walks with the quantile partitioned walks, so it
suffices to prove that γ is injective on the quantile partitioned walks.

Now suppose that γ(v) = γ(v′) = (v, k) for some pair of quantile partitioned walks
v = (v, (ti)

L+1
i=0 ,P), and v′ = (v, (t′i)

L′+1
i=0 ,P ′). We define

M̃(i) := (i+ v(n)− yk)+ − (i− yk)+, where yk = v(k)− v(k − 1). (6.5)

Note that, by definition 5.6,

M̃(i) = Mv(P + i) = Mv′(P ′ + i) for every i. (6.6)

We prove by induction that v must equal v′, and therefore that γ is injective on the
quantile partitioned walks.

Base case: tP+1 = t′P′+1 = k.
Inductive step: We assume that tP+1−i = t′P′+1−i > 0 for some i ≥ 0. Then by Lemma

6.1

tP−i = t′P′−i = inf{t ≥ 0 : v(t) = tP+1−i − t+ 2M̃(−i)− v(tP+1−i)}.

Likewise, if we assume tP+1+i = tP′+1+i for some i ≥ 0 then by Lemma 6.1,

tP+2+i = t′P′+2+i = inf{t ≥ 0 : v(t) = t− tP+1+i + 2M̃(i+ 1)− v(tP+1+i)}.

By induction, tP+i = t′P′+i wherever both are defined. Thus there is some greatest
index I ≤ 0 at which these simultaneously reach 0. This I must equal both −P and −P ′.
By the same reasoning L = L′. We conclude that v = v′.

We also have the following special case.

Corollary 6.2. The quantile transform of a bridge is a Dyck path. Moreover, for a
uniform random bridge b of length 2n and a fixed Dyck path d of the same length,

P{Q(b) = d} =
2k(
n
2

) ,
where 2k is the duration of the final excursion of d.

7 The Vervaat transform of a simple walk

The quantile transform has much in common with the (discrete) Vervaat transform
V , studied in [55]. For discussions of this and related transformations, see Bertoin[9]
and references therein. Like the quantile transform, the Vervaat transform permutes the
increments of a walk.

Breaking with usual conventions, let mod n to denote the map from Z to the (mod n)

representatives [1, n] (instead of the standard [0, n− 1]).

Definition 7.1. Given a walk w of length n, let

τV (w) = min{j ∈ [0, n] : w(j) ≤ w(i) for all i ∈ [0, n]}. (7.1)

The Vervaat permutation ψw is the cyclic permutation i 7→ i+ τV (w) mod n. As with the
quantile transform, we define the Vervaat transform V by

V (w)(j) =

j∑
i=1

xψw(i). (7.2)
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ψw(n) V7−→
ψ−1
w (n)

Figure 17: A walk transformed by V .

Compare this to definition 8.16. An example of the Vervaat transform appears in
Figure 17.

This transformation was studied by Vervaat because of its asymptotic properties. As
scaled simple random walk bridges converge in distribution to Brownian bridge, the
Vervaat transform of these bridges converges in distribution to a continuous-time version
of the Vervaat transform, applied to the Brownian bridge.

Surprisingly, the discrete Vervaat transform has a very similar bijection theorem to
that for Q.

Definition 7.2. A Vervaat pair is a pair (v, k) where v is a walk of length n and k is a
nonnegative integer such that v(j) ≥ 0 for 0 ≤ j ≤ k and v(j) > v(n) for k ≤ j < n.

Theorem 7.3. The map w 7→ (V (w), n−τV (w)) is a bijection between the walks of length
n and Vervaat pairs.

Proof. If we know that a pair (v, k) arises in the image of (V,K), then it is clear how
to invert this map: let yi = v(i) − v(i − 1) for each i; let xi = yi+k, where we take
these indices mod n; and we define F (v, k) to be the walk with increments xi. Then
F (V (w), n−τV (w)) = w. We show that for every w the pair (V (w), n−τV (w)) is a Vervaat
pair, and that every Vervaat pair satisfies (v, k) = (V (F (v, k)), n− τV (F (v, k))).

Let w be a walk of length n. By definition of τV , for every j ∈ [0, τV (w)) we have
w(j) > w(τV (w)). It follows that V (w)(j) > v(n) for j ∈ [n− τV (w), n). Likewise, for j ∈
[τV (w), n] we have w(j) ≥ w(τV (w)); so it follows that V (w)(j) ≥ 0 for j ∈ [0, n− τV (w)].

Now, consider a Vervaat pair (v, k). Then by definition of F and by the properties of
the pair, for j ∈ [0, n− k) we have F (v, k)(j) > F (v, k)(n− k), and for j ∈ [n− k, n], we
have F (v, k)(j) ≥ F (v, k)(n− k). Thus, τV (F (v, k)) = n− k, and the result follows.

To our knowledge, this result has not been given explicitly in the literature. This
statement strongly resembles our statement of Theorem 2.7, but we note two differences.
The first is the helper variable. The helper variable in this theorem equals ψ−1

w (n)

except in the case where w is a first-passage bridge to a negative value, in which case
ψ−1
w (n) = n whereas n − τw = 0; in our statement of Theorem 2.7, the helper always

equals φ−1
w (n) and may not equal 0. The second difference is that the value V (w)(k) must

be non-negative, whereas Q(w)(k) may equal −1 (see Figure 4). Again, this only affects
the case where w(n) < 0.

Corollary 7.4. Let v be a walk of length n and k ∈ [1, n]. If v(n) ≥ 0 then (v, k) is a
quantile pair if and only if it is a Vervaat pair. And in the case v(n) < 0, the pair (v, k) is
a quantile pair if and only if (v, k − 1) is a Vervaat pair. In particular, regardless of v(n),

#{w : V (w) = v} = #{w : Q(w) = v}. (7.3)

Equation (7.3) is a key result as we pass into the continuous-time setting.

8 The quantile transform of Brownian motion

Our main theorem in the continuous setting compares the quantile transform to a
related path transformation.
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We begin with some key definitions and classical results. Let (B(t), t ∈ [0, 1]) denote
standard real-valued Brownian motion. Let (Bbr(t), t ∈ [0, 1]) denote a standard Brownian
bridge and (Bex(t), t ∈ [0, 1]) a standard Brownian excursion – see, for example, Mörters
and Peres[42] or Billingsley[12] for the definitions of these processes. When we wish
to make statements or definitions that apply to all three of B, Bbr, and Bex, we use

(X(t), t ∈ [0, 1]) to denote a general pick from among these. Finally, we use ‘
d
=’ to denote

equality in distribution.

Definition 8.1. We use `t(a) to denote an a.s. jointly continuous version of the (occupa-
tion density) local time of X at level a, up to time t. That is

`t(a) = lim
ε↓0

1

2ε

∫ 1

0

1{|X(s)− a| < ε}ds. (8.1)

The existence of an a.s. jointly continuous version is well known, and is originally due to
Trotter[54]. We often abbreviate

`(a) := `1(a).

Let F (a) denote the cumulative distribution function (or CDF) of occupation measure,

F (a) :=

∫ a

−∞
`ydy = Leb{s ∈ [0, 1] : X(s) ≤ a}. (8.2)

By the continuity of X, the function F is strictly increasing in between its escape from 0
and arrival at 1. Thus we may define an inverse of F , the quantile function of occupation
measure,

A(s) := inf{a : F (a) > s} for s ∈ [0, 1), (8.3)

and we extend this function continuously to define A(1) := maxs∈[0,1]X(s).

Recall that for a walk w, the value Q(w)(j) is the sum of increments from w that
appear at the j lowest values in the path of w. Heuristically, at least, the continuous-time
analogue to this is the formula

Q(X)(t) =

∫ 1

0

1{X(s) ≤ A(t)}dX(s). (8.4)

This formula would define Q(X)(t) as the sum of bits of the path of X that emerge from
below a certain threshold – the exact threshold below which X spends a total of time t.
But it is unclear how to make sense of the integral: it cannot be an Itô integral because
the integrand is not adapted. Perkins[43, p. 107] allows us to make sense of this and
similar integrals. We quote Tanaka’s formula:∫ 1

0

1{X(s) ≤ a}dX(s) =
1

2
`(a) + (a)+ − (a−X(1))+, (8.5)

where (c)+ denotes max(c, 0). For more on Tanaka’s formula see e.g. Karatzas and
Shreve[34, p. 205]. The particulars of Perkins’ result are not important here – we quote
it only as motivation. He defines∫ 1

0

1{X(s) ≤ A(t)}dX(s) :=

∫ ∞
−∞

1{a ≤ A(t)}dJ(a) (8.6)

=

∫ ∞
−∞

1{F (a) ≤ t}dJ(a), (8.7)

where J(a) equals the right-hand side of (8.5), which is a semi-martingale with respect
to a certain naturally arising filtration. This motivates us in the following definition.
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Definition 8.2. The quantile transform of Brownian motion / bridge / excursion is

Q(X)(t) :=
1

2
`(A(t)) + (A(t))+ − (A(t)−X(1))+. (8.8)

In the bridge and excursion cases this expression reduces to

Q(X)(t) :=
1

2
`(A(t)). (8.9)

We call upon classic limit results relating Brownian motion and its local times to
their analogues for simple random walk. The work here falls into the broader scheme of
limit results and asymptotics relating random walk local times to Brownian local times.
We rely heavily on two results of Knight[36, 35] in this area. Much else has been done
around local time asymptotics; in particular, Csáki, Csörgő, Földes, and Révész have
collaborated extensively, as a foursome and as individuals and pairs, in this area. We
mention a small segment of their work: [49, 48, 18, 19, 20, 17]. See also Bass and
Khoshnevisan[7, 6] and Szabados and Székeley[52].

Definition 8.3. For each n ≥ 1 let τn(0) := 0 and

τn(j) := inf{t > τn(j − 1) : B(t)−B(τn(j − 1)) = ±2−n} for j ∈ (0, 4n]. (8.10)

We define a walk

Sn(j) := 2nB(τn(j)) for j ∈ [0, 4n] and (8.11)

S̄n(t) := 2−nSn([4nt]) for t ∈ [0, 1]. (8.12)

From elementary properties of Brownian motion, (Sn(j), j ≥ 0) is a simple random walk.
We call the sequence of walks Sn the simple random walks embedded in B. Since we
will be dealing with the quantile transformed walk Q(Sn), we define a rescaled version:

Q(Sn)(t) := 2−nQ(Sn)([4nt]).

Note that τn4n is the sum of 4n independent, Exp(4n)-distributed variables. By a
Borel-Cantelli argument, the τn(4n) converge a.s. to 1. So the walks Sn depend upon the
behavior of B on an interval converging a.s. to [0, 1] as n increases.

The remainder of this section works to prove that, as n increases, Q(Sn) almost surely
converge uniformly to Q(B).

Definition 8.4. We define the (discrete) local time of Sn(j) at level x ∈ R

Ln(x) :=

4n−1∑
j=0

(1− (x− [x]))1{Sn(j) = [x]}+ (x− [x])1{Sn(j) = [x] + 1}

This is a linearly interpolated version of the standard discrete local time. We also require
a rescaled version,

L̄n(x) := 2−nLn(2nx).

Note that for x ∈ Z we get

Ln(x) = #{j ∈ [0, 4n) : Sn(j) = x} and

L̄n(2−nx) = Leb{t ∈ [0, 1] : S̄n(t) = 2−nx}.

We note that previous authors have stated convergence results for a discrete version
of Tanaka’s formula. See Szabados and Szekely[53, p. 208-9] and references therein.
However, these results are not applicable in our situation due to the random time change
A(t) that appears in our continuous-time formulae.

We require several limit theorems relating simple random walk and its local times to
Brownian motion, summarized below.
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Theorem 8.5.

S̄n(·)→ B(·) a.s. uniformly (Knight, 1962[36]). (8.13)

mint{S̄n(t)} → mint∈[0,1]Bt and
maxt{S̄n(t)} → maxt∈[0,1]Bt

(corollary to above). (8.14)

L̄n(·)→ `(·) a.s. uniformly (Knight, 1963[35]). (8.15)

Equation (8.13) is an a.s. variant of Donsker’s Theorem, which is discussed in standard
textbooks such as Durrett[26] and Kallenberg[33]. Equation (8.14) is a corollary to the
Knight result: both max and min are continuous with respect to the uniform convergence
metric. The map from a process to its local time process, on the other hand, is not
continuous with respect to uniform convergence; thus, equation (8.15) stands as its own
result. An elementary proof of this latter result, albeit with convergence in probability
rather than a.s., can be found in [48], along with a sharp rate of convergence. Knight[37]
gives a sharp rate of convergence under the L2 norm.

Definition 8.6. The cumulative distribution function (CDF) of occupation measure for
Sn, denoted by Fn, is given by

Fn(y) :=

∫ y

−∞
Ln(x)dx and

F̄n(y) := 4−nFn(2ny) =

∫ y

−∞
L̄n(x)dx.

Compare these to F , the CDF of occupation measure for B, defined in equation (8.2).
We have restated it to highlight the parallel to Fn. Also note that for integers k,

Fn(k) =
∑
j<k

Ln(j) +
1

2
Ln(k) (8.16)

= #{i ∈ [0, 4n) : Sn(i) < k}+
1

2
#{i ∈ [0, 4n) : Sn(i) = k}.

Equations (8.15) and (8.14) have the following easy consequence.

Corollary 8.7. As n increases the F̄n a.s. converge uniformly to F .

Because Brownian motion is continuous and simple random walk cannot skip levels,
the CDFs F and Fn are strictly increasing between the times where they leave 0 reach
their maxima, 1 or 4n respectively. This admits the following definitions.

Definition 8.8. We define the quantile functions of occupation measure

An(t) := F−1
n (t) for t ∈ (0, 4n), and

Ān(t) := F̄−1
n (t) for t ∈ (0, 1),

and we extend these continuously to define An(0), Ān(0), An(4n) and Ān(1).

Compare these to A defined in equation (8.3) in the introduction.

Lemma 8.9. As n increases the Ān a.s. converge uniformly to A.

Proof. In passing a convergence result from a function to its inverse it is convenient to
appeal to the Skorokhod metric. For continuous functions, uniform convergence on a
compact interval I ⊂ R is equivalent to convergence under the Skorohod metric (see
[12]). Let i denote the identity map on I, let || · || denote the uniform convergence metric,
and let Λ denote the set of all increasing, continuous bijections on I. The Skorokhod
metric may be defined as follows:

σ(f, g) := inf
λ∈Λ

max{||i− λ||, ||f − g ◦ λ||}. (8.17)
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Thus, it suffices to prove a.s. convergence under σ.
Fix ε > 0. By the continuity of A, there is a.s. some 0 < δ < ε sufficiently small so that

A(δ)−min
[0,1]

B(t) < ε and max
[0,1]

B(t)−A(1− δ) < ε.

And by Equation (8.14) and Corollary 8.7 there is a.s. some n so that, for all m ≥ n,

min
t∈[0,1]

S̄m(t) < A(δ);

max
t∈[0,1]

S̄m(t) > A(1− δ); and

sup
y
|F̄m(y)− F (y)| < ε.

We show that σ(Ān, A) < 3ε.
We seek a time change λ : [0, 1] → [0, 1] that is close to the identity and for which

Ān ◦ λ is close to A. Ideally, we would like to define λ = F̄n · A so as to get Ān ◦ λ = A

exactly. But there is a problem with this choice: because S̄n and B may not have the
exact same max and min, F̄n ◦A may not be a bijection on [0, 1]. We turn this map into a
bijection by manipulating its values near 0 and 1.

We define the random time change on [0, 1]

λ(t) :=


t
δ F̄n(A(δ)) for 0 ≤ t < δ

F̄n(A(t)) for δ ≤ t ≤ 1− δ
1 + 1−t

δ (F̄n(A(1− δ))− 1) for 1− δ < t ≤ 1.

(8.18)

By our choice of n we get

F̄n(A(δ)) > 0 and F̄n(A(1− δ)) < 1.

Thus λ is a bijection.
We now show that it is uniformly close to the identity. Since t = F (A(t)), our

conditions on n give us

||λ(t)− t||t∈[δ,1−δ] ≤ ||barFn(A(t))− F (A(t))|| < ε.

For t near 0

||λ(t)− t||t<δ ≤ |λ(δ)− F (A(δ))| < ε,

and likewise for t > 1− δ.
Next we consider the difference between A and Ān ◦ λ. These are equal on [δ, 1− δ].

For t < δ we get

A(t) ∈ [(min
t
Bt), A(δ)] and Ān ◦ λ(t) ∈ [(min

t
S̄n(t)), A(δ)].

By our choices of n and δ, the lower bounds on these intervals both lie within 2ε of δ. A
similar argument works for t > 1− δ. Thus A(t) lies within 2ε of Ān ◦ λ(t).

We conclude that σ(Ām, a) < 3ε for m ≥ n.

For our purpose, the important consequence of the preceding lemma is the following.

Corollary 8.10. As n increases the L̄n ◦ Ān a.s. converge uniformly to `1 ◦A.

General results for convergence of randomly time-changed random processes can be
found in Billingsley[12], but in the present case the proof of Corollary 8.10 from equation
(8.15) and Lemma 8.9 is an elementary exercise in analysis, thanks to the a.s. uniform
continuity of `.

We now make use of the up- and down-crossing counts described in Definition 4.3,
and of the saw teeth in Definition 5.1. For our present purpose it is convenient to re-index
these sequences.
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Definition 8.11. Let mn = minj<4n Sn(j). For each i ≥ mn we define uni to be the
number of up-steps of Sn that go from the value i to i+ 1. Likewise, let dni denote the
number of down-steps of Sn from value i to i− 1. Finally, let

tni =
∑
j<i

(unj + dnj ). (8.19)

We call these quantities up- and down-crossing counts and saw teeth.

Note that the strict inequality in the bound on j in the definition of mn is necessary.
Comparing the sequence (uSn

i ) in Definition 4.3 with the sequence (uni ), we have

uni = uSn
i+mn

.

Comparing the sequence (tSn
i ) defined in Definition 5.1 with the sequence tni , we have

tni = tSn
i+mn

.

Note that

Ln(k) = unk + dnk = tnk+1 − tnk . (8.20)

At saw tooth times, the quantile transform Q(Sn) is uniformly well approximated by a
formula based on discrete local time.

Lemma 8.12. Let Ank denote An(tnk ). As n increases the following quantities a.s. vanish
uniformly in k:

(i) 2−n|Ln(k)− 2unk |,
(ii) 2−n|Fn(k)− tnk |,

(iii) |F (2−nk)− 4−ntnk |,
(iv) 2−n|Ank − k|, and

(v) 2−n
∣∣∣∣Q(Sn)(tnk )−

(
1

2
Ln(Ank ) + (Ank )+ − (Ank − Sn(4n))+

)∣∣∣∣ .
Proof. The convergence of (ii) follows from that of (i) by equation (8.16), which gives us

Fn(k) = tkn +

(
1

2
Ln(k)− unk

)
(8.21)

for integers k; (iii) then follows by Corollary 8.7. The convergence of (iv) follows from
that of (ii) by Lemma 8.9 and the uniform continuity of a. And finally, (v) then follows
from the others by the discrete Tanaka formula, equation (5.3). Note that by re-indexing,
we have replaced the S and T from that formula, which are the start and terminal levels,
with 0 and Sn(4n) respectively, which are the start and terminal values of Sn. Thus, it
suffices to prove the convergence of (i).

If we condition on Ln(k) then unk is distributed as Binomial(Ln(k), 1
2 ). Our intuition

going forward is this: if Ln(k) is large then (Ln(k) − 2unk )/
√
Ln(k) approximates a

standard Gaussian distribution. Throughout the remainder of the proof, let binom(n)

denote a Binomial(n, 1
2 ) variable on a separate probability space. Fix ε > 0 and let

C1 = 1 + max
t
|B(t)| and C2 = 1 + max

x
`(x).

Let M be sufficiently large so that for all n ≥M ,

P {|2nC2 − 2binom(2nC2)| > 2nε} <
√

2/π exp(−2n−1ε2/C2).
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Such an M must exist by the central limit theorem and well-known bounds on the tails
of the normal distribution. Let N ≥M be sufficiently large so that for all n ≥ N ,

max
t
|Sn(t)| < 2nC1 and max

x
Ln(x) < 2nC2.

Equations (8.15) (8.14) indicate that N is a.s. finite.

We now apply the Borel-Cantelli Lemma.∑
n>M

∑
k

P {|Ln(k)− 2unk | > 2nε; n > N}

≤
∑
n>M

2n+1C1 max
k

P {|Ln(k)− 2unk | > 2nε; n > N}

<
∑
n>M

2C1e
n max
y≤2nC2

P{|y − 2binom(y)| > 2nε}

<
∑
n>M

C1

√
8

π
exp(n− (2n−1ε2/C2)) <∞.

The claimed convergence follows by Borel-Cantelli.

Our proof implicitly appeals to the branching process view of Dyck paths. This
perspective may be originally attributable to Harris[31] and was implicit in the Knight
papers [36, 35] cited earlier in this section. See also [45] and the references therein.

In order to prove Theorem 8.18, we must extend the convergence of (v) in the
previous lemma to times between the saw teeth. The convergence of (iii) leads to a
helpful corollary.

Corollary 8.13. The sequence mink |t− 4−ntnk | a.s. converges to 0 uniformly for t ∈ [0, 1].

Proof. Since mink t
n
k = 0 and maxk t

n
k = 4n, it suffices to prove that 4−n supk(tnk−tnk−1) a.s.

converges to 0. This follows from: the uniform continuity of F , the uniform convergence
of the F̄n to F asserted in Corollary 8.7, and the uniform vanishing of |F̄n(k) − 2−ntnk |
asserted in Lemma 8.12.

We now prove a weak version of Theorem 8.15 before demonstrating the full result.

Lemma 8.14. Let Zn be the process that equals Q(Sn) at the saw teeth and is linearly
interpolated in between, and let Z̄n be the obvious rescaling. As n increases, Z̄n a.s.
converges uniformly to Q(B).

Proof. Let

X̄n(t) :=
1

2
L̄n(Ān(t)) + (Ān(t))+ − (Ān(t)− S̄n(1))+, (8.22)

and let Ȳn denote the process that equals X̄n at the (rescaled) saw teeth 4−ntnk and is
linearly interpolated between these times. We prove the lemma by showing that the
following differences of processes go to 0 uniformly as n increases: (i) X̄n −Q(B), (ii)
Ȳn − X̄n, and (iii) Z̄n − Ȳn.

The uniform vanishing of (i) follows from equations (8.13) and (8.15), Lemma 8.9, and
Corollary 8.10. That of (iii) is equivalent to item (v) in Lemma 8.12. Finally, each of the
three terms on the right in equation (8.22) converge uniformly to uniformly continuous
processes, so by Corollary 8.13, (Ȳn − X̄n) a.s. vanishes uniformly as well.
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Before the technical work of extending this lemma to a full proof of Theorem 8.15 we
mention a useful bound. For a simple random walk bridge (D(j), j ∈ [0, 2n]),

P( max
j∈[0,2n]

|D(j)| ≥ c
√

2n) ≤ 2e−c
2

. (8.23)

This formula may be obtained via the reflection principle and some approximation of
binomial coefficients; we leave the details to the reader. The Brownian analogue to this
bound appears in Billingsley[12, p. 85]:

P( sup
t∈[0,1]

|Bbr(t)| > c) ≤ 2e−2c2 . (8.24)

For our purposes the ‘2’ in the exponent above is unnecessary, so we’ve sacrificed it to
keep our discrete-time inequality (8.23).

We now arrive at our main result.

Theorem 8.15. As n increases, Q(Sn) a.s. converges uniformly to Q(B).

Proof. Let Zn and Z̄n be as in Lemma 8.14. After that lemma it suffices to prove that
(Q(Sn)− Z̄n) vanishes uniformly as n increases. By definition, this difference equals 0 at
the saw teeth. Moreover, we deduce from Theorems 4.7 and 5.8 that conditional on Zn,
the walk Q(Sn) is a simple random walk conditioned to equal Zn at the saw teeth tnk and
with some constraints, coming from the Bookends property, on its (tnk )th steps.

We must bound the fluctuations of Q(Sn) in between the saw teeth. Heuristic
arguments suggest that these ought to have size on the order of 2n/2; we need only show
that they grow uniformly slower than 2n. We prove this via a Borel-Cantelli argument.
There are many ways to bound the relevant probabilities of “bad behavior;” we proceed
with a coupling argument.

For each (n, k) for which tnk is defined – i.e. with k ∈ [minSn, maxSn] – we define
several processes and stopping times. These objects appear illustrated together in figure
18. First, for j ∈ [0, Ln(k)− 1] we define

Ŵn
k (j) := Q(Sn)(tnk + j)−Q(Sn)(tnk ) and

W̌n
k (j) := Q(Sn)(tnk + j)−Q(Sn)(tnk+1 − 1).

Recall from equation (8.20) that Ln(k) is the difference between consecutive saw teeth.
We only define these walks up to time Lnk − 1 so as to sidestep issues around constrained
final increments and the bookends property. Observe that

max
j∈[tnk ,t

n
k+1]
|Q(Sn)(j)− Zn(j)| ≤ 1 + max

j∈[0,Ln(k)−1]
{|Ŵn

k (j)|, |W̌n
k (j)|},

so it suffices to bound the fluctuations of the Ŵ and W̌ .
We further define

∆n
k := Q(Sn)(tnk+1 − 1)−Q(Sn)(tnk )

Observe that

Ŵn
k (0) = 0 and Ŵn

k (Ln(k)− 1) = ∆n
k , whereas

W̌n
k (0) = −∆n

k and W̌n
k (Ln(k)− 1) = 0.

(8.25)

If Ln(k) is an odd number then we may define a simple random walk bridge Dn
k

that has random length Ln(k)− 1 but is otherwise independent of Sn (we enlarge our
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Ďn
k

−∆n
k

∆n
k

0

Dn
k

D̂n
k

W̌n
k

Ŵn
k

T̂n
k

Ťn
k

Figure 18: Objects from the coupling argument.

probability space as necessary to accommodate these processes). In the next paragraph
we deal with the case where Ln(k) is even. Let

T̂nk := min{j : Dn
k (j) + ∆n

k = Ŵn
k (j)} and

Ťnk := max{j : Dn
k (j)−∆n

k = W̌n
k (j)}.

These stopping times must be finite, thanks to the values of Ŵ and W̌ observed in (8.25).
Finally we define the coupled walks.

D̂n
k (j) =

{
Dn
k (j) + ∆n

k for j ∈ [0, T̂nk ]

Ŵn
k (j) for j ∈ (T̂nk , Ln(k)− 1].

(8.26)

Ďn
k (j) =

{
W̌n
k (j) for j ∈ [0, Ťnk ]

Dn
k (j)−∆n

k for j ∈ (Ťnk , Ln(k)− 1].
(8.27)

Conditional on Ln(k), the D̂n
k and Ďn

k remain simple random walk bridges, albeit vertically
translated. These are illustrated in Figure 18.

In the case where Ln(k) is even rather than odd, we modify the above definitions
by making Dn

k a bridge to −1 if ∆n
k > 0 (or 1 respectively if ∆n

k < 0) instead of 0 and
including appropriate ‘+1’s (respectively ‘−1’s) into the definitions of T̂nk and D̂n

k so that
the final value of Dn

k + ∆n
k + 1 (resp. −1) aligns with that of Ŵn

k .
Fix ε > 0. We may bound the extrema of Ŵn

k and W̌n
k by bounding the extrema of D̂n

k

and Ďn
k . In particular, we have the following event inclusions.

{max
j
{|Ŵn

k (j)|, |W̌n
k (j)|} ≥ 2n+1ε}

⊆ {max
j
{|D̂n

k (j)|, |Ďn
k (j)|} ≥ 2n+1ε}

⊆ {|∆n
k |+ 1 ≥ 2nε} ∪ {max

j
|Dn

k (j)| ≥ 2nε}. (8.28)

First we use previous results from this section to prove that a.s. only finitely many of
the ∆n

k are large. Then we make a Borel-Cantelli argument to do the same for the
maxj |Dn

k (j)|.
By the continuity of Q(B), there is a.s. some δ ∈ (0, ε2) sufficiently small so that

max
|t−s|<δ

|Q(B)(t)−Q(B)(s)| < ε.

And there is a.s. some N sufficiently large so that for n ≥ N :

sup
j
|Sn(j)| < n2n,

max
k

Ln(k) < 3nδ, and

sup
t
|Z̄n(t)−Q(B)(t)| < ε.
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The first two of these bounds follow from the continuity of ` and equations (8.13) and
(8.15); the third follows from Lemma 8.14. The second and third of these imply that for
n ≥ N ,

|∆n
k | ≤ |Zn(tnk+1)− 2nQ(B)(4−ntnk+1)|+ 2n|Q(B)(4−ntnk+1)−Q(B)(4−ntnk )|

+ |2nQ(B)(4−ntnk )− Zn(tnk )|
≤ 3 · 2nε.

So, folding constants into ε, there is a.s. some largest n for which any of the |∆n
k | exceed

2nε.
We proceed to our Borel-Cantelli argument to bound fluctuations in the Dn

k .∑
n

∑
k

P{max
j
|Dn

k (j)| > 2nε; n > N}

≤
∑
n

2n+1n max
|k|<2nn

P{max
j
|Dn

k (j)| > 2nε; n > N}

≤
∑
n

2n+1n max
l≤[3nδ]

P{max
j
|Dn

0 (j)| > 2nε | Ln(0) = l}

≤
∑
n

2n+2ne−( 4
3 )n <∞.

The last line above follows from (8.23). We conclude from the Borel-Cantelli Lemma
that a.s. only finitely many of the Dn

k exceed 2nε in maximum modulus. So by the event
inequality (8.28), a.s. only finitely many of theWn

k exceed 2n+1ε in maximum modulus.

Our main result in the continuous setting, Theorem 8.18 below, now emerges as a
corollary.

Definition 8.16. Let τm denote the time of the (first) arrival of (X(t), t ∈ [0, 1]) at its
minimum. The Vervaat transform maps X to the process V (X) given by

V (X)(t) :=

{
X(τm + t)−X(τm) for t ∈ [0, 1− τm)

X(τm + t− 1) +X(1)−X(τm) for t ∈ [1− τm, 1].
(8.29)

This transform should be thought of as partitioning the increments of X into two
segments, prior and subsequent to τm, and swapping the order of these segments.

Theorem 8.17. For U an independent Uniform[0, 1] random variable, we have

(V (Bbr)(t), t ∈ [0, 1])
d
= (Bex(t), t ∈ [0, 1]). (Vervaat, 1979[55]) (8.30)

(τm, (V (Bbr)(t), t ∈ [0, 1]))
d
= (U, (Bex(t), t ∈ [0, 1])). (Biane, 1986[11]) (8.31)

We demonstrated in section 7 that for simple random walks, the discrete-time ana-
logue of the Vervaat transform of the walk has the same distribution as the quantile
transform. Now we have shown that Q(B) arises as an a.s. limit of the quantile trans-
forms of certain simple random walks.

Theorem 8.18. We have (Q(B), B(1))
d
= (V (B), B(1)).

Proof. Let V (Sn)(t) := 2−nV (Sn)([4nt]). Vervaat proved that V (Sn) converges in distri-

bution to V (B). By Corollary 7.4 we have Q(Sn)
d
= V (Sn), and by Theorem 8.15 the

Q(Sn) converge in distribution to Q(B). Thus Q(B)
d
= V (B) as desired.

We may use properties of Brownian bridge to give a unique family of distributions
for Q(B) and V (B) conditional on B(1) = a which is weakly continuous in a. In the case
where B(1) = 0, Theorem 8.18 specializes to the following.

EJP 20 (2015), paper 90.
Page 32/39

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v20-3479
http://ejp.ejpecp.org/


The quantile transform of simple walks and Brownian motion

Theorem 8.19 (Jeulin, 1985[32]). If ` and A denote the local time and the quantile
function of occupation measure, respectively, of a Brownian bridge or excursion, then(

1

2
`(A(t)), t ∈ [0, 1]

)
d
= (Bex(t), t ∈ [0, 1]). (8.32)

This assertion for Brownian excursions appeared in Jeulin’s monograph [32, p. 264]
but without a clear, explicit proof; a proof appears in [10, p. 49].

9 Further connections

Vervaat’s original paper[55] introducing the Vervaat transform focused on the tran-
form of a Brownian bridge, resulting in a Brownian excursion. Theorem 8.18 has
motivated a recent study of the Vervaat transform of a Brownian path up to any final
value in Lupu, Pitman, and Tang[40].

Similar transformations have previously been widely studied in the literature. For
example, let x1, x2, · · · be a sequence of real numbers, and define S(0) = 0 and

S(n) :=
n∑
j=1

xj . (9.1)

So the xi are the increments of the process S. Fix some level l ≥ 0. We define S−(n) (and
respectively S+(n)) to be the sum of the first n increments of S that originate at or below
(resp. strictly above) the value l. That is, an increment xi of S is an increment of S− only
if S(i− 1) ≤ l. This is illustrated in Figure 19; in that example, the increments x3, x7, x8

and x9 contribute to S+(4). For the sake of brevity we omit a more formal definition,
which may be found in Bertoin, Chaumont, and Yor[8]. We call the map S 7→ S− the BCY
transform (with parameter l).

I4I1 I2

Lnk
Rnk k

Mnk

I4I3

I1 I2 I3

Figure 19: The BCY transform.

The BCY transform resembles the quantile transform in that it sums increments
below some level. But whereas the quantile transform may only be applied to a walk
that has finite length or is upwardly transient, the BCY transform applies equally well to
infinite-length recurrentalks.

There are two big differences between the BCY and quantile transforms. Firstly, in the
case of the BCY transform, the process S− comprises all those increments that appear
in S below some previously fixed level l; whereas in the case of the quantile transform,
Q(S)(j) comprises (roughly) those increments that appear in S below a variable level
that increases with j. Secondly, the increments of S− appear in the same order in which
they appeared in S, whereas the increments of Q(S) appear in order of the value at
which they appear in S.

If we suppose that the xi are i.i.d. random variables then by the strong Markov
property, S− has the same distribution as S [8, Lemma 2]. But this is not the case for
Q(S); Theorem 2.7 indicates that for S a simple random walk, Q(S) tend to rise at early
times and fall later.
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As a further example, the path transformation studied by Chaumont[15] resembles
the concatenation of S− followed by S+, but with some delicate changes. To define it,
we require different notation than that introduced earlier. In order to define the quantile
transform, we required a quantile permutation φw that does not depend on the final
increment of the walk w. We now require a version of the permutation that does account
for that final increment. We draw from the notation of Port[46] and Chaumont[15].

Definition 9.1. Let the increment sequence (xi)
∞
i=1 and the process S be as above. Let

(Sn(j), j ∈ [0, n]) denote the restriction of S to its n initial increments. For k ∈ [0, n] we
define MS

nk and LSnk so that

(MS
n0, L

S
n0); (MS

n1, L
S
n1); · · · ; (MS

nn, L
S
nn)

is the increasing lexicographic reordering of the sequence

(S(0), 0); (S(1), 1); · · · ; (S(n), n)

We call the permutation
(0, 1, · · · , n) 7→ (LSn0, · · · , LSnn)

the quantile permutation of vertices of Sn (whereas φSn might be thought of as a quantile
permutation of increments). We define

RSnk := #{i ≤ LSnk : S(i) ≤MS
nk}.

We suppress the superscript when it is clear from context which process is being
discussed.

Both the BCY and Chaumont transforms are motivated by the following theorem.

Theorem 9.2 (Wendel, 1960[56]; Port, 1963[46]; Chaumont, 1999[15]). Suppose that
x1, · · · , xn are exchangeable real-valued random variables, and let S denote the process
with these increments. Fix k ∈ [0, n] and let S′ denote the process

S′(j) = S(k + j)− S(k) for j ∈ [0, n− k].

Then 
S(n)

MS
nk

LSnk
RSnk

 d
=


S(k) + S′(n− k)

MS
kk +MS′

n−k,0
LSkk + LS

′

n−k,0
RSkk +RS

′

n−k,0

 . (9.2)

The identity in the first two coordinates in equation (9.2) is due to Wendel; Port made
the extension of the result to the third coordinate. For more discussion of related results
such as Sparre Andersen’s Theorem[5, 4] and Spitzer’s Combinatorial Lemma[50], see
Port[46]. Port’s paper also gives, on page 140, a combinatorial formula for the probability
distribution of φS(j) given the distributions of the increments of S.

Chaumont made the suggestive extension of (9.2) to the fourth coordinate and
presented the first path-transformation-based proof Port’s result. Let the xi and S be as
in Theorem 9.2 and fix some k ∈ [0, n]. Chaumont’s transformation works by partitioning
the increments of S into four blocks.

I1 := {i ∈ [1, Lnk] : S(i− 1) ≤Mnk},
I2 := {i ∈ (Lnk, n] : S(i) < Mnk},
I3 := {i ∈ [1, Lnk] : S(i− 1) > Mnk}, and

I4 := {i ∈ (Lnk, n] : S(i) ≥Mnk}
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The Chaumont transform sends S to the process S̃ whose increments are the xi with
i ∈ I1, followed by those with i ∈ I2, then I3, and finally I4, with the increments within
each block arranged in order of increasing index. Details may be found in [15, p. 3-4].
This transformation is illustrated in Figure 20, in which increments belonging to I1 and
I2 are shown as solid lines, whereas those belonging to I3 and I4 are shown as dotted.

Mnk

I3

I1

Lnk

I4

I2
I1 I2 I3

I4

kRnk

Figure 20: On the left a process S and on the right its Chaumont transform.

If S has exchangeable random increments then S and S̃ have the same distribution; as
with the BCY transform, this presents a marked difference from the quantile transform.
Chaumont demonstrates that if we substitute S̃ for S on the right-hand side of equation
(9.2) then we get identical equality, rather than identity in law.

Theorem 9.2 admits various continuous-time versions. Before stating some of
these, we state a loose continuous-time analogue to the quantile permutation, due
to Chaumont[16].

Definition 9.3. For (X(t), t ∈ [0, 1]) a continuous, real-valued stochastic process with
continuous local time, as in equation (8.1), we define

mX
s := inf

{
t ∈ [0, 1] : X(t) = A(s) and

`t(A(s))

`1(A(s))
> U

}
for s ∈ [0, 1], (9.3)

where U is an independent Uniform[0, 1] random variable.

The analogy between ms and the quantile permutation is flawed because ms requires
additional randomization in its definition. But there can be no bijection from [0, 1] to
itself that has all of the properties we would want in a quantile permutation; so we must
settle for ms.

Theorem 9.4. Let (X(t), t ∈ [0, 1]) be a Lévy process, and let A be the quantile function
of its occupation measure, as in equation (8.3). Fix T ∈ [0, 1] and define

X ′(t) := X(t+ T )−X(T ) for t ∈ [0, 1− T ].

Then

(X(1), A(T ))
d
= (X(T ) +X ′(1− T ), sup

t∈[0,T ]

X(t) + inf
t∈[0,1−T ]

X ′(t)) (9.4)

(Dassios, 1996[21, 22]). If X is Brownian bridge plus drift, then X(1)

A(T )

mT

 d
=

 X(T ) +X ′(1− T )

supt∈[0,T ]X(t) + inft∈[0,1−T ]X
′(t)

mX
T +mX′

0

 . (9.5)

(Chaumont, 2000[16]).

Various path transformation-based proofs of (9.4) were obtained by Embrechts,
Rogers, and Yor[29] in the Brownian case and by Bertoin et. al.[8] in the Lévy case.
Chaumont proved (9.5) with a continuous-time analogue to the Chaumont transform
described above. These results have applications to finance in the pricing of quantile, or
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percentile options, first studied in Miura[41]. For a discussion of these applications see
Dassios[21, 22, 23] and references therein.

Beyond connections in the literature around fluctuations of random walks and Brow-
nian motion, we also find links between the quantile transform and discrete versions
of Tanaka’s formula. Such formulae have previously been observed by Kudzma[38],
Csörgö and Revész[19], and Szabados[51]. See also [53]. The quantile transformed path
may be thought of as interpolating between points specified by Tanaka’s formula. This
connection is made in section 5.

10 Open problems

The three main results of this paper

(i) describe the distribution of the quantile transform of a simple random walk,

(ii) prove the convergence of the transform of a simple random walk to that of Brownian
motion, and

(iii) describe the distribution of the quantile transform of Brownian motion.

Each of these three results could be generalized.

The main achievement of this paper in the discrete setting is a description of the
quantile transform of a simple random walk, in Theorem 2.7. Our only result for non-
simple walks is Theorem 2.5. We are unsure whether Theorem 2.7 may in fact be
generalized to all finite-length walks on the reals; the quantile permutation becomes far
more complicated in this setting. Rather than reaching for the full generalization, one
might attempt to prove the bijection theorem for skip-free (to the) left walks; these are
integer-valued walks with no increments less than −1.

Let us relax our definition of quantile pairs to allow any sort of finite-length walk.

Conjecture 10.1. The number of skip-free left walks of length n with final value at most
n equals the number of quantile pairs (v, k) with v being a skip-free left walk of length n
with final value at most n.

This has been computationally verified up to n = 8.

Conjecture 10.2. The map w 7→ (Q(w), φ−1
w (n)) is a bijection between the set of skip-

free left walks of length n and the set of quantile pairs (v, k) with v being a skip-free
walk of length n.

This conjecture has been computationally verified up to n = 6. It is possible to adapt
Theorem 4.13 and the other results of Section 4 to describe skip-free left walks, but
the partitioned walk and saw-path approach of Section 5 doesn’t lend itself as naturally
to generalization. If this conjecture were verified, it could contribute to a study of the
quantile transforms of spectrally positive Lévy processes, perhaps through methods
similar to those in Section 8.

Even without knowing the exact distribution of Q(S) for S a non-simple random walk,
under suitable conditions it may be possible to prove asymptotic results akin to our limit
theorem, Theorem 8.15.

Conjecture 10.3. Let X1, X2, · · · be a sequence of i.i.d. random variables with mean 0
and finite variance, and for each n, let Sn = (Sn(j), j ∈ [0, n]) be a walk with these incre-
ments. Then, under the appropriate rescaling, the walks Q(Sn) converge in distribution
to Q(B).

If the Xj also have finite fourth moments, then it might be possible to obtain a strong
convergence result with Skorokhod embedding, as in Theorem 8.15.
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[19] M. Csörgő and P. Révész. On strong invariance for local time of partial sums. Stochastic
Process. Appl., 20(1):59–84, 1985. MR-0805116
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