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Abstract

We consider a variant of the radial spanning tree introduced by Baccelli and Bordenave.
Like the original model, our model is a tree rooted at the origin, built on the realization
of a planar Poisson point process. Unlike it, the paths of our model have independent
jumps. We show that locally our diffusively rescaled tree, seen as the collection of
the paths connecting its sites to the root, converges in distribution to the Brownian
Bridge Web, which is roughly speaking a collection of coalescing Brownian bridges
starting from all the points of a planar strip perpendicular to the time axis, and ending
at the origin.
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1 Introduction

The Radial Spanning Tree (RST) of a Poisson point process has been introduced by
Baccelli and Bordenave in [2]. It is a random planar tree rooted at the origin whose
vertices are points in a realization of a homogeneous Poisson point process on the plane.
The motivation comes from an increasing interest in random graphs from both applied
and theoretical fields. For instance, spanning trees are an essential modeling tool in
communication networks — see [2] and references in this respect. From a theoretical
point of view, the RST is related to models like the random minimal directed spanning
trees [4, 17, 18] and the Poisson trees [8, 9].

Consider the branches of the RST as random paths heading towards the root of
the tree. It forms a system of planar colescing random paths heading towards the
origin. A large class of space-time systems of one dimensional symmetric coalescing
random walks converge in distribution under diffusive scaling to the Brownian Web (BW),
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Scaling limit of the radial Poissonian web

which is a system of coalescing Brownian motions introduced in [1], and later studied
in [24] and [11]. The latter paper started the study of convergence of rescaled systems of
random paths to the BW (see also [10]), and since then quite a few papers have presented
convergence results to the BW and variations [3, 5, 7, 6, 9, 12, 13, 16, 21, 22, 19], to
name a few, of which [9] is concerned with the convergence of (the rescaled paths of) a
Poisson tree to the BW.

Two other of these papers are worth singling out, since they are closely related either
to the present paper or to [2]. It is worth to first point out two features of the paths of the
radial spanning tree of [2], distinguishing them from the case of most of the previously
studied models. One feature is the (long-range) dependence of their increments on past
history, leading to non-Markovianness, and the other is their radial character: they are
directed towards the origin.

Reference [19] deals with a planar model of discrete space-time (non-radial) paths
with long-range dependence of increments similar to those of the radial spanning tree,
and shows that when diffusively scaled, they converge to the BW. A key step in it
showing that the dependence washes out in the limit is by establishing the existence of
regeneration times with well-behaved tails when the path increments lose memory (a
similar step is taken in the analysis in [2], even though that model is better described as
a continuum space-time one, and the regeneration times there have a somewhat weaker
character).

Reference [6] deals with a radial path model in continuum space, discrete time,
whose paths have independent increments, showing convergence of the rescaled paths
to a web of coalescing Brownian bridges, an object called Radial Brownian Web in that
paper — let us call it the Brownian Bridge Web (BBW) in this paper. It was obtained as a
suitable mapping of the ordinary BW. (The appearance of coalescing Brownian bridges is
somehow to be expected in such a situation, and even in the context of the RST, even
though it has not been suggested before, as far as we know.)

Based on these results, it is natural to ask whether the (suitably rescaled) radial
spanning tree converges (locally) in distribution to the BBW.

The aim of this paper is to introduce, as a variation of the RST, a path model which
we call the Radial Poissonian Web. Like the RST, it consists of radial paths directed
towards the origin, passing through the points of a planar Poisson point process, and
whose increments, unlike the case of the RST, have independent (step) increments (from
one Poisson point to the next). We show that such a model, when diffusively rescaled
around a ray, converges to the BBW.

Our approach is similar to that of [6]. We roughly speaking transform the model
(from the beginning, in our case) to a planar, non-radial path model, verify convergence
criteria of the latter model to the BW, and map back, thus giving rise to the BBW.

We believe that our model is considerably closer to the RST than the one of [6], and
poses extra technical issues in its analysis. Given the results of [19], and similar if
weaker ones of [2] (concerning regeneration times), it seems safe to conjecture that
an approach similar to ours here as far as transforming the radial model to a planar
one is concerned, and similar to the one of [19] in the analysis of the planar model, by
resorting to regeneration times (like the ones already shown to exist in [2], probably
with some modification), will lead to a proof that the BBW is the scaling limit of the RST,
thus answering a question asked in [2].

This brings us to the main motivation of this study, namely to obtain the scaling limit
of a radial family of coalescing paths which on the one hand is close in some sense to the
family of paths emerging from the RST, and on the other hand is amenable to methods
developed for planar such families. Our main contribution would thus be the strategy
of mapping the radial model to a planar one, which may then be analyzed with those
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Scaling limit of the radial Poissonian web

methods, with the suggestion that a refinement of such methods may lead to a similar
result for the RST via the same strategy.

As will be seen below in detail, our choice of model is somewhat particular; the
particularities are for technical convenience. Mild variations, perhaps more natural (one
case is discussed below), should be equally treatable, with extra if not substantial work.
It is conceivable that our model or a mild variation thereof, as the one suggested below,
has an applied relevance, as the RST does, but we make no claim in that direction at this
point.

Some other features of our model (to be described in detail in the next section) and
our approach, with respect to others in the literature are as follows. The random paths in
our system have (long-range) dependence on each other before coalescence. This feature
is already present in drainage network models whose convergence to the Brownian Web
were considered in [5, 7]. The techniques employed in the study of convergence in these
two last cited papers and also in [16] are going to play a central role in our approach,
although [7] and [16] deals with systems with crossing paths, which is not the present
case, as we will see in detail below.

The paper is organized as follows: In Section 2 we introduce our model, the RPW,
and the main result, namely its convergence in distribution when suitably centered
and scaled to the BBW. In Section 3, we delineate the strategy of proof of our result,
describing the mapping from the radial to the planar model. Sections 4 and 5 are
devoted to preliminaries, leading to a listing of the criteria of convergence of the
transformed, planar model to the BW. In Section 6 we prove an auxiliary result about the
coalescence time of two of our paths, and in the remainder Sections 7 and 8 we verify
the aforementioned convergence criteria.

2 The model. Main result.

We will be concerned in this paper with a collection of planar directed paths, to be
defined below. After the initial definition of the collection, we will at several points of
the paper consider modifications of the collection of paths, introduced for technical
convenience. Those modifications, as will be argued for each one of them, do not make
any change in probabilistic terms, as far as our analysis goes. We will also discuss the
conceptual convenience of the initial definition.

Let P be a planar Poisson point process of intensity 1 and let P0 = P ∪ {O}, where O
denotes the origin. We form a network of paths in the plane directed towards the origin
as follows. From each point x in P we start a directed edge ending at another point
s = s(x), the successor of x, in P0, chosen as follows.

Choice of successor Fix θ ∈ (0, π/2) which is a parameter of the model. First consider
the convex quadrangle Qx := Qx,θ with opposing vertices at the origin and at x. Let
y = y(x) and z = z(x) be the other two vertices of Qx. We assume that the internal
angles at y and z are right ones. The internal angle at x is given by 2θ. We further
assume that the segment Ox bisects the angles at the origin and at x. See Figure 1.

We now choose s as the point of P0 within Qx \ {x} which is farthest from the origin.
This choice is uniquely defined for every x ∈ P for a.e. P. (A perhaps simpler and more
natural choice of s would be as the point of P0 ∩ Sx \ {x} closest to x, where Sx is the
circular sector centered at x whose circumference contains the origin, with central angle
2θ bisected by the segment Ox, but it poses difficulties which we have rather avoid in
this paper. We believe our results can be established also for this choice at least for θ
small enough — θ < π/4 should do —, with not much more work in the latter case.)

Since Qx lies within the circumference centered at the origin passing by x, we have
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Figure 1: Representation of Qx (in full straight lines).

that s is (a.s.) closer to the origin than x is. This property and the homogeneity of P
insures that going along successive points towards the origin is a procedure with finitely
many steps almost surely, ending at the origin. This is a reason for this choice of Qx,
although as we will see below the particular shape of Qx away from x (at macroscopic
distances) is not very important. Indeed, for our purposes, since in particular we will not
be concerned in our analysis below with the final steps at short macroscopic distances
from the origin, it is enough to look for a successor in the triangle-like subset Tx,logn of
Qx introduced at the beginning of Subsection 4.1 below (where n is a scaling parameter).

Paths For each x ∈ P, let us now introduce the sequence γx = (sn) = (sn(x))In=0 as
follows: s0(x) = x and si = s(si−1(x)), i = 1, . . . , I, where I = I(x) is such that si 6= O,
i = 0, . . . I − 1, and sI = O. It is a straightforward matter to check that I is almost surely
well defined and finite. Then γx may be identified with a directed path starting at x and
ending at the origin, passing through the edges ei = (si−1, si), i = 1, . . . , I. We will have
γx actually as the planar (polygonal) curve determined by {si, i = 0, . . . , I} by linear
interpolating between the edge endpoints, in the usual way. We say that x is the starting
point of γx, with the origin its ending point.

Then Γ = {γx, x ∈ P} is a family of paths from every point of P ending at the origin.
We want to understand the large scale behavior of Γ under diffusive scaling. We will
then indeed consider a (relatively small) portion of Γ, whose paths will indeed be also
clipped at a point when they get (macroscopically) close to the origin, and differently
modified if they wander too far to the sides, in a way to be explained in detail below.

Modified paths In order to define which portion of Γ and which clipping and other
modification we will consider, let us denote a general point x in the plane by its polar
coordinates, namely, in complex numbers notation, x = reiϕ.

Let α ∈ (0, 1) and 1/4 < a < b < 1/2. As θ these are also parameters of the model.
Recall also that n is the scaling parameter. Let us first define the clipping. Fix x = reiϕ

such that r ∈ [αn, n] and ϕ ∈ [−π/2± n−b] (with the notation [c± d] := [c− d, c+ d] for a
real number c and a positive real number d) and let I ′ = min{0 ≤ i ≤ I : ‖si(x)‖ < αn},
where ‖ · ‖ is the Euclidean norm in the plane. We define γ′x to be the path determined
by {si(x), i = 0, . . . , I ′ − 1} as a planar polygonal curve, similarly as in the definition of
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Figure 2: Representation of Λn (in full lines).

γx, concatenated to the segment (sI′−1(x), s′I′(x)), where s′I′(x) is the intermediate point
of the segment (sI′−1(x), sI′(x)) such that ‖s′I′(x)‖ = αn. So γ′x is γx clipped at the point
where it is at distance αn from the origin.

Now the final modification: again for x such that r ∈ [αn, n] and ϕ ∈ [−π/2 ± n−b],
let I ′′ = min{0 ≤ i ≤ I ′ : | arg(si(x)) + π/2| > n−a}, where min ∅ = ∞; then γ′′x = γ′x if
I ′′ =∞, otherwise γ′′x is the path determined by {si(x), i = 0, . . . , I ′′ − 1} concatenated
to the segment (sI′′−1(x), αnei arg(sI′′−1(x))).

The set of paths we will analyse is then as follows.

Γn = {γ′′x , , x ∈ P ∩ Λn}, (2.1)

where
Λn = Λn(α, b) = {x = reiϕ, r ∈ [αn, n], ϕ ∈ [−π/2± n−b]}. (2.2)

See Figure 2.
Note that as subsets of the plane, the paths of Γn are contained in

Λ∗n := Λn(α, a). (2.3)

We will show below that with high probability (that is, with probability going to 1
as n → ∞) we have γ′′x = γ′x for all paths γ′′x in Γn. The set Γn has properties, to be
discussed below, which are convenient for our analysis.

Diffusive rescaling of Γn We first claim that for all n large enough and every x ∈ Λ∗n,
Qx is above the horizontal line through x. To argue this, let us consider x ∈ Λ∗n such that
arg(x) ≥ −π/2. By the definition of Λ∗n, we have that σ := arg(x) + π/2 ≤ n−a. Let hx and
ox be the horizontal and perpendicular straight lines through x, respectively. We thus
have that the angle between hx and ox to the left of x equals σ. Since the angle between
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Figure 3: Illustration of the fact that Qx (whose bottom sides appear partially in full
lines; see Figure 1) is above the horizontal (dashed) line through x ∈ Λ∗n for all n large
enough.

Ox and the left bottom side of Qx, call it `x, equals θ, and by assumption θ < π/2, we
have that the angle between `x and hx to the left of x equals π

2 − θ − σ, which is positive
for all large enough n, and thus `x and Qx are above hx, and the claim is established.
See Figure 3.

We may then conclude that all paths of Γn have their second coordinate strictly
increasing as one goes from their starting points to the origin, and we may then interpret
the second coordinate as time and the paths as continuous trajectories.

Let us now introduce a diffusive scaling of the plane given by the map R : R2 → R2

such that

D(x1, x2) =

(
x1√
n
,
x2

n

)
. (2.4)

The rescaled set of trajectories is then

D(Γn) = {D(γ); γ ∈ Γn}. (2.5)

We want to state a (weak) convergence result for D(Γn) in terms of a (limiting)
random set of trajectories in a suitable path space. Let us introduce this space now.

Path space; Hausdorff space Let β, β′, β′′ be real numbers such that β < β′ ≤ β′′,
and for β ≤ t0 ≤ β′ ≤ t1 ≤ β′′, let C[t0, t1] denote the set of functions f from [t0, t1] to
[−∞,∞] such that tanh ◦f is continuous, and define

Π = Πβ′,β′′

β =
⋃

β≤t0≤β′≤t1≤β′′
C[t0, t1]× {(t0, t1)}, (2.6)

where (f, t0, t1) ∈ Π represents a path/trajectory in [−∞,∞]× [β, β′′] starting at (f(t0), t0)

and ending at (f(t1), t1). Note that, given α′ ∈ (0, α), we have that D(Γn) ⊂ Π−α,−α
′

−1 for
all large enough n.
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For (f, t0, t1) ∈ Π, let f? : [β, β′′]→ [−∞,∞] be the function which equals f in [t0, t1],
identically equals f(t0) in [β, t0], and identically equals f(t1) in [t1, β

′′]. Let us equip Π

with the metric

d((f, t0, t1), (g, s0, s1)) = |t0 − s0| ∨ |t1 − s1| ∨ sup
β≤s≤β′′

| tanh(f?(s))− tanh(g?(s))|, (2.7)

under which it is complete and separable. One may check that D(Γn) is a Borel subset

of Π−α,−α
′

−1 (as soon as n is large enough; α′ ∈ (0, α), as above).

Consider now the Hausdorff space H = Hβ
′,β′′

β of compact subsets of (Π, d) equipped
with the Hausdorff metric

dH(K,K ′) = sup
h∈K

inf
h′∈K′

d(h, h′) ∨ sup
h′∈K′

inf
h∈K

d(h, h′), (2.8)

which makes it a complete separable metric space.
The weak limit of D(Γn) will be given below in terms of the restricted Brownian web,

an object which we describe next.

Restricted Brownian web The (ordinary) Brownian web is (the closure of) a family of
coalescing one dimensional Brownian motions (ordinarily with diffusion coefficient 1, but
here we will for convenience take the diffusion coefficient a number ω, to be exhibited
below — see (7.2) —, which is a function of θ, with ω ∈ (0,∞) whenever θ ∈ (0, π/2)),
starting from all points in the planar space-time. See [FINR] for details. In this paper
we will consider a restricted version of that family: we will take Brownian paths (with
diffusion coefficient ω) starting from times in the interval [0, τ ] and ending at time τ ,
where

τ =
1

α
− 1. (2.9)

One way to define/analyse this object is to construct/study it as done in [FINR], but
taking Πτ

0 := Πτ,τ
0 and Hτ0 := Hτ,τ0 as the relevant path and sample spaces, instead of the

full space versions considered in [FINR], which we will call here (Π̄, d̄) and (H̄, d̄H̄) (in
[FINR], the full space versions were denoted as (Π, d) and (H, dH)).

A more economic approach though is to take a restriction map of the full space
(ordinary) Brownian web. We discuss that now.

Let W̄ be the ordinary Brownian web, defined in the Hausdorff space H̄ of compact
subsets of Π̄ (see [FINR] for details; again, beware of the different notation: Π̄ and H̄
here correspond to Π and H in [FINR], respectively).

Let Π̄τ be the (closed) subset of paths of Π̄ starting at or before time τ , and let
R : Π̄τ → Πτ

0 be the restriction of semi-infinite paths of Π̄τ to [0, τ ], namely, given
(f, t0) ∈ Π̄τ , in which case f : [t0,∞]→ [−∞,∞] is continuous (under a suitable metric
on [−∞,∞]2 making it compact — see [FINR] for details), and t0 ≤ τ ,

R((f, t0)) = (f ′, t0, τ), (2.10)

where f ′ = f |[t0,τ ] is the restriction of f to [t0, τ ].
Note that the metric induced by d̄ on Πτ

0 via R is equivalent to d. It is a straightforward
matter to check that the map R is continuous.

Similarly, let H̄τ be the (closed) subset of compact sets of H̄ whose paths belong to
Π̄τ (in other words, whose paths start at or before time τ ), and let R : H̄τ → Hτ0 be such
that

R(K) = {R(h); h ∈ K}. (2.11)

Note that the metric induced by d̄H̄ on Hτ0 via R is equivalent to dHτ0 . It is a straight-
forward matter to check that the map R is continuous.
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Let W̄τ = W̄|Π̄τ be the restriction of the ordinary Brownian web to sets of paths of
Π̄τ (that is, to sets of paths starting at or before τ ). We define the restricted Brownian
web as

Wτ
0 := R(W̄τ ). (2.12)

In other words,Wτ
0 is the restriction of the ordinary (full space) Brownian web to subsets

of paths starting between times 0 and τ , and ending/clipped at τ .

Main result In order to state our main result concerning D(Γn), let us introduce the
following map. Let ψ : [−∞,∞]× [0, τ ]→ [−∞,∞]× [−1,−α] such that

ψ(y, s) =

(
y

1 + s
,− 1

1 + s

)
. (2.13)

We note that the image of an arbitrary path h of Πτ
0 under ψ, denoted as usual ψ(h),

is a path of Π−α−1 . We may thus view ψ as a map from Πτ
0 to Π−α−1 . And for K ⊂ Πτ

0 , we
let as usual ψ(K) denote the image of K under ψ (which as just remarked is a subset of
Π−α−1 ), and we may thus view ψ as a map from Hτ0 to H−α−1 .

We are now ready to state our main result.

Theorem 1. Let α′ ∈ (0, α) be given. As n→∞,

D(Γn)⇒ ψ(Wτ
0 ), (2.14)

where Wτ
0 is the restricted Brownian web given in (2.12) above, and “⇒” stands for

convergence in distribution in H−α,−α
′

−1 .

It is a straightforward matter to verify that the path of ψ(Wτ
0 ) starting at a determin-

istic point (a, t0) ∈ (−∞,∞)× [−1,−α] (from the well known corresponding property of
the (restricted) Brownian web, there is almost surely only one such path) is a Brownian
bridge (with diffusion coefficient ω) starting at (a, t0) and finishing at the origin, stopped
at time −α. Indeed, for y = a/|t0| and s = (1− |t0|)/|t0| and W = (W (r))r≥s a Brownian
motion starting at W (s) = y, we have that ψ(y, s) = (a, t0) and the path defined by ψ(W )

is a Brownian Bridge stating at (a, t0) and stopped at time −α. To see this note that this
path is given by

Yt = |t|W 1−|t|
|t|

, t ∈ [t0,−α] ,

which is a Gaussian process with mean function E[Yt] = |t|y = |t|a/|t0| and covariance
function Cov(Yr, Yt) = |r|(|t0| − |t|)/|t0| for t0 < t < r < 0. For this reason we may call
ψ(Wτ

0 ) the Brownian bridge web, which then may be roughly described as a collection of
coalescing Brownian bridges starting from all points of [−∞,∞]× [−1,−α] and finishing
at the origin, stopped at time τ .

3 Proof of Theorem 1

Strategy. In this section we (begin to) present a proof of Theorem 1. The rough idea is
to map D(Γn) with the inverse of ψ to a set of paths of Πτ

0 , prove a convergence result of
the mapped set to the restricted Brownian webWτ

0 , and then map back with ψ.

For convenience, we will actually apply a variation of this strategy. We will take the
rescaling of Γn after a suitable mapping — related to, but not quite the inverse of ψ
—, in this case to Πτn

0 , and then prove two things: 1) the convergence to the restricted
Brownian web, and 2) that the map by ψ of the rescaled image of Γn is close to D(Γn).
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Map. Representing points of Λ∗n in complex polar coordinates, namely x = rei(σ−
π
2 )

, where r = |x| and σ = π
2 + arg(x), with αn ≤ r ≤ n and |σ| ≤ n−a , let Ξn : Λ∗n →

[−∞,∞]× [0, τn] such that

Ξn(rei(σ−
π
2 )) =

(
nσ,

n− r
r/n

)
. (3.1)

For the sake of simplifying notation, we remove the subscript n in Ξn, but the reader
must keep in mind that the map Ξ carries a dependence on the scaling parameter n.

Let

Γ̃n = Ξ(Γn) = {Ξ(γ) : γ ∈ Γn}. (3.2)

Note that a path γ̃ = Ξ(γ), for γ ∈ Γn, happens to be a path in R× [0, τn]. One important
remark concerning notation is that the symbol ∼ over an object will always denote the
image of that object by the map Ξ.

Ξ is the mapping alluded to at the beginning of the section. As we will see in Section 4
below, it maps Γn — or rather a collection of paths that is virtually the same as Γn — to
a planar (non radial) collection of coalescing paths which is rather more convenient to
take the scaling limit of. And as it turns out, ψ ◦D ◦ Ξ is rather close to D as maps on
Γn (or rather its virtually identical proxy — see Γ̂n at the beginning of Subsection 4.1
below), thus enabling the strategy described above.

Notice that

Λ̃n := Ξ(Λn) = [−n1−b, n1−b]× [0, τn]; (3.3)

Λ̃∗n := Ξ(Λ∗n) = [−n1−a, n1−a]× [0, τn]. (3.4)

Let us now rescale Γ̃n diffusively. Let

D(Γ̃n) = {D(γ̃); γ̃ ∈ Γ̃n}, (3.5)

where D was given in (2.4) above. Note that D(γ̃) for γ ∈ Γn may be readily checked to
be a trajectory in Πτ

0 .
The proof of Theorem 1 then follows readily from the following two auxiliary results.

Proposition 2. As n→∞,

D(Γ̃n)⇒Wτ
0 , (3.6)

where Wτ
0 is the restricted Brownian web given in (2.12) above, and “⇒” stands for

convergence in distribution.

Lemma 3. Let α′ ∈ (0, α) be given. We have

dH−α,α′−1

(
D(Γn), ψ

(
D(Γ̃n)

))
→ 0 (3.7)

in probability as n→∞.

In the next section, we prove Lemma 3 and begin the proof of Proposition 2, deferring
the conclusion to the remaining sections of the paper.

4 Proofs of Proposition 2 and Lemma 3

4.1 Preliminaries

Also for convenience, we are going to work with a variant of Γn, which equals Γn
with high probability. Let us go into this point next, and after that describe properties of
the map Ξ and their consequences for our analysis.
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��
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��

x

w

l

O

Figure 4: Representation of Tx,l (in full lines). The length of the dotted segment inside
Tx,l is l, as indicated.

Variant of Γn. For x ∈ Λn and 0 ≤ l ≤ log n, let w = w(x, l) be the point on the segment
Ox at distance l from x, and let Tx,l denote the closed subset of Qx outside the circle
centered at the origin and passing by w. See Figure 4. Note that for all n large enough,
and all x ∈ Λn, Tx,l is roughly triangular, as shown in the picture, and not roughly
pentagonal, which could happen if we took w at distance of order n from x (to visualize
the latter point, consider a high enough point w of Ox in Figure 1).

We define now a set of polygonal paths Γ̂n = {γ̂x, x ∈ P ∩ Λn} starting in Λn made of
the concatenation edges similarly as before, namely for x ∈ P ∩ Λn, γ̂x is determined by
{ŝi(x), i = 0, . . . , Î} , where ŝ0(x) = x, and given ŝi−1(x) ∈ Λ∗n, if Tŝi−1(x),logn∩P 6= ∅, then
ŝi(x) is the point of Tŝi−1(x),logn∩P which is farthest from the origin; if Tŝi−1(x),logn∩P = ∅,
then ŝi(x) is given by w(ŝi−1(x), log n); and Î = min{i > 0 : ŝi(x) /∈ Λ∗n}. Then γ̂x is the
path within Λ∗n obtained by linear interpolating ŝi(x), i = 0, . . . , Î − 1, concatenated
to an edge from ŝÎ−1(x), say ê, defined as follows. Let ŝ′

Î
(x) be the point of the edge

(ŝÎ−1(x), ŝÎ(x)) where that edge intersects the boundary of Λ∗n. Then ŝ′
Î
(x) is either at

the top of that boundary, or it is at its sides. If it is at the top, then ê = (ŝÎ−1(x), ŝ′
Î
(x));

otherwise, ê = (ŝÎ−1(x), αnei arg(ŝÎ−1(x))).

We will now show that Γ̂n = Γn with probability tending to one as n→∞.

Lemma 4. limn→∞P
(
Γ̂n = Γn

)
= 1.

Proof
The statement is equivalent to

lim
n→∞

P
(
γ̂x = γ′′x for all x ∈ P ∩ Λ∗n

)
= 1 , (4.1)

and it is enough to show that with probability tending to one s1(x) = ŝ1(x) for all
x ∈ P ∩ Λ∗n, but that follows immediately from proving that with probability tending to
one Tx,logn ∩ P 6= ∅ for all x ∈ P ∩ Λ∗n.

This in turn follows readily from the following two estimates. First, that outside an
event of vanishing probability as n→∞ the cardinality of P ∩ Λ∗n is bounded above by
constant times n2−a (since that is the order of magnitude of the area of Λ∗n. And the
second estimate is for the probability of Tx,logn ∩ P = ∅ for a single x ∈ Tx,logn ∩ P = ∅,
which equals e−area of Tx,logn ≤ e−area of T ′x , where T ′x is the triangle obtained by
removing the portion of Tx,logn above the line through w(x, log n) orthogonal to Ox.
Since the area of T ′x is given by sin θ(log n)2 , the result follows from the fact that
n2−ae− sin θ(logn)2 → 0 as n→∞. �
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Scaling limit of the radial Poissonian web

We may then work with either Γn or Γ̂n. We will for a while below work with Γ̂n while
we discuss some properties of the map Ξ.

Let
Ξ(Γ̂n) = {Ξ(γ̂); γ̂ ∈ Γ̂n}; (4.2)

as an immediate corollary to Lemma 4, it equals Γ̃n with probability tending to one
as n → ∞. Let us first look at P̃ = P̃n, the image of P by Ξ (we also suppress the
superscript n from P̃n as with Ξn, but the reader should keep in mind that both depend
on the scaling parameter).

Lemma 5. P̃ is a Poisson point process on R× [0, τn] with intensity measure

1

(1 + s/n)3
dy ds, (4.3)

where s is the second (time) coordinate.

Proof
Follows from the distribution of P and a straightforward computation of the Jacobian

of the relevant transformation. �

We will next see how the choice of successors of the points determining the paths of
Γ̂n get translated by Ξ. Given Lemma 5, a key step in that direction is understanding
how Tx,l, x ∈ Λ∗n, 0 ≤ l ≤ log n, are mapped by Ξ. A straightforward analysis finds that
for (y, s) ∈ R2 such that Ξ(x) = (y, s)

T̃(y,s),l := Ξ(Tx,l) =
⋃

`∈[0,l]

[y ± nη]×

{
s+

(1 + s
n )2

1− `
n

(
1 + s

n

)`} , (4.4)

where

η = arcsin
c(`+ a)

r − `
= arcsin

{
c

n

1 + s
n

1− `
n

(
1 + s

n

) (`+ a)

}
, (4.5)

with
c = tan θ, (4.6)

r = n/(1 + s/n), and a satisfies

c2(`+ a)2 + (r − `− a)2 = (r − `)2. (4.7)

See Figure 5: notice that the top vertices of Tx,l in that picture get mapped to {y−nη, y+

nη} ×
{
s+

(1+ s
n )2

1− `
n (1+ s

n )
`

}
. Notice that for n large, T̃(y,s),l is roughly the isosceles triangle

depicted on Figure 6.

Description of Ξ(Γ̂n). We may now describe the paths of Ξ(Γ̂n) in terms of starting
points and successors in P̃ similarly as we did above with Γ̂n, using T̃(y,s),l instead of
Tx,l. It is an important step to understand the succession mechanism for the image of
{ŝi(x); i = 0, 1, . . . , Î}, x ∈ P ∩ Λn, as described at the beggining of this subsection, let
us identify it as

{s̃i(z); i = 0, 1, . . . , Î} := Ξ({ŝi(x); i = 0, 1, . . . , Î}), (4.8)

z ∈ P̃ ∩ Λ̃n, where for each of those points z such that z = Ξ(x) for some x ∈ P ∩ Λn, we
have that s̃i(z) = Ξ(ŝi(x)), i = 0, 1, . . . , Î.

It follows from the discussion above that, given z ∈ P̃ ∩ Λ̃n and s̃i−1(z) ∈ Λ̃∗n for some
i ≥ 1, if T̃s̃i−1(z),logn ∩ P̃ 6= ∅, then s̃i(z) is the point of T̃s̃i−1(z),logn ∩ P̃ whose second

EJP 20 (2015), paper 31.
Page 11/40

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v20-3395
http://ejp.ejpecp.org/


Scaling limit of the radial Poissonian web

��

��

x

O

η

θ

r − `

r − `− a

`

a
c(`+ a)

Figure 5: η = arcsin c(`+a)
r−` ; a satisfies c2(`+ a)2 + (r − `− a)2 = (r − `)2

(y, s)

l(1 + s
n )2

2cl(1 + s
n )

Figure 6: Rough shape of T̃(y,s),l. Top side of triangle is orthogonal to s-axis.
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Scaling limit of the radial Poissonian web

coordinate is closest to that of s̃i−1(z); if on the other hand T̃s̃i−1(z),logn∩P̃ = ∅, then s̃i(z)
is the intersection of the vertical straight line segment (s̃i−1(z)1, s̃i−1(z)2 + u)u≥0, where
s̃i−1(z)j is the j-th coordinate of s̃i−1(z), j = 1, 2, and the top boundary of T̃s̃i−1(z),logn.

We may characterize Î in terms of the s̃i(z)’s as

Î = inf{i ≥ 1 : s̃i(z) /∈ Λ̃∗n}. (4.9)

So, given γ̂x ∈ Γ̂n for some x ∈ P ∩ Λn, in which case γ̂x is determined by {ŝi(x); i =

0, 1, . . . , Î} and the straight line edges (ŝi−1(x), ŝi(x)), i = 1, . . . , Î, the path Ξ(γ̂x) is
determined by {s̃i(z); i = 0, 1, . . . , Î} and the edges (s̃i−1(z), s̃i(z)) = Ξ((ŝi−1(x), ŝi(x))),
which are not straight line segments.

Modification of T̃(y,s),l. For convenience, for each set (y, s) ∈ P̃ ∩ Λ̃∗n and l ∈ [0, log n],

we will replace T̃(y,s),l by another set, T̃ ′(y,s),l, such that the area of the symmetric

difference is small enough so that with high probability Ξ(Γ̂n) is unchanged by the
replacement. We start by observing that from (4.7) we have

a

`
=

1

n

(1 + c2)(1 + s
n )

2
+O(n−2). (4.10)

Substituting that into (4.5) we find, after further computation, that

nη = c (1 + d/n)
1 + s

n

1− `
n

(
1 + s

n

) `+O((`)3n−2), (4.11)

where d = (1 + c2)/[2(1 + s/n)]. So, defining

T̃ ′(y,s),l =
⋃

u∈[0,l]

[
y ± c 1 + d/n

1 + s/n
u

]
× {s+ u} , (4.12)

we have that the symmetric difference between the sets T̃(y,s),logn and T̃ ′(y,s),d′n logn, say
∆(y,s), where

d′n = d′n(s) =
(1 + s

n )2

1− logn
n

(
1 + s

n

) , (4.13)

has area of order O((log n)4n−2), which is then also the order of the probability that we
find a point of P̃ in ∆y,s for any (y, s) ∈ P̃ ∩ Λ̃∗n. Arguing as is the proof of Lemma 5 above,

we get that the probability of finding a point of P̃ in ∆y,s for some (y, s) ∈ P̃ ∩ Λ̃∗n goes to
0 as n→∞, and we have that with probability tending to one Ξ(Γ̂n) is unchanged if we
use T̃ ′(y,s),d′n logn instead of T̃(y,s),logn, (y, s) ∈ P̃ ∩ Λ̃∗n, in its definition. So we will do: for

(y, s) ∈ Λ̃n ∩ P̃) fixed, let us consider {s̃′i(y, s); i = 0, 1, . . . , Î ′}, where s̃′i(y, s) is defined
as s̃i(y, s) was in the full paragraph below (4.8) above, except that we use T̃ ′s̃′i−1(z),d′n logn

instead of T̃s̃i−1(z),logn. Then, as just argued, we have that with probability tending to

one for all (y, s) ∈ Λ̃n ∩ P̃)

Î ′ = Î and s̃′i(y, s) = s̃i(y, s); i = 0, 1, . . . , Î, (4.14)

so we may and will replace {s̃i(y, s); i = 0, 1, . . . , Î} by {s̃′i(y, s); i = 0, 1, . . . , Î ′}, (y, s) ∈
P̃ ∩ Λ̃n throughout.

Notice that T̃ ′(y,s),d′n logn is an isosceles triangle similar to the one depicted in Figure 6,

with height d′n log n and base 2c
1+ d

n

1− logn
n (1+ s

n )
(1 + s

n ) log n instead.

Notice also that {s̃′i(y, s); i = 0, 1, . . . , Î ′} (as well as the other paths considered so
far) may be similarly defined with arbitrary starting point in Λ̃n (in this case).
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Path increments. The increments of the paths of Ξ(Γ̂n) may be understood as follows.
Let us consider the following two independent families of independent random variables
indexed by points of Λ̃∗n. Let {Uy,s, (y, s) ∈ Λ̃∗n} be iid uniform in [−1, 1] and {Ty,s, (y, s) ∈
Λ̃∗n} be such that

P(Ty,s > v) = exp

{
− cn

(1 + s
n )2

v2

(1 + s+v
n )2

}
1{v<Ln}, (4.15)

where

cn := c(1 +
d

n
), Ln := d′n log n. (4.16)

And for (y, s) ∈ Λ̃∗n let

Xy,s =
cn

1 + s
n

Ty,s1{Ty,s<Ln}Uy,s. (4.17)

Let us now define for (y, s) ∈ Λ̃n ∩ P̃, (Y0, S0) = (y, s), and for i ≥ 1

(Yi, Si) = (Yi−1, Si−1) + (XYi−1,Si−1 , TYi−1,Si−1), (4.18)

and let
I = inf{i ≥ 1 : (Yi, Si) /∈ Λ̃∗n}. (4.19)

Lemma 6. Given (x, t) ∈ Λ̃n, we have that

{s̃′i(x, t); i = 0, 1, . . . , Î ′} d
= {(Yi, Si); i = 0, 1, . . . , I}, (4.20)

with (Y0, S0) = (x, t), where
d
= means identity in distribution.

Remark 7. It is worth at this point to notice that even though the time and space
increments depend on the time location, this is somehow a weak dependence for nearby
increments (since s is divided by n, the increments have to be at a macroscopic time
distance of each other in order that the difference of time locations be felt). We also point
out that time and space increments depend on initial time in a diffusive way: a simple and
straightforward computation shows that the expectation of the time increment and the
second moment of the space increment both equal (roughly, and apart from constants)
(1 + s/n)2, where s is the initial time location. These points suggest that the rescaled
path converges to a Brownian motion, as will be proven in Proposition 17 below.

Proof
Follows from elementary properties of Poisson point processes.
Notice that given s̃′i−1(x, t) = (y, s) and 0 ≤ v < Ln, the event {s̃′i(x, t)2 − s̃′i−1(x, t)2 >

v} corresponds to {T̃ ′(y,s),v ∩ P̃ = ∅}; the probability of the latter event is then the

exponential of minus the integral over T̃ ′(y,s),v against the intensity measure of P̃, given
in (4.3); a straightforward computation of that integral gives the absolute value of the
expression within braces in (4.15) in that case. The event {s̃′i(x, t)2 − s̃′i−1(x, t)2 = Ln}
corresponds to {T̃ ′(y,s),Ln ∩ P̃ = ∅} and the expression in (4.15) follows in this last case.
Now given s̃′i−1(x, t) = (y, s) and s̃′i(x, t)2 − s̃′i−1(x, t)2 = v, 0 ≤ v ≤ Ln, it follows from
elementary properties of Poisson point processes that s̃′i(x, t)1 − s̃′i−1(x, t)1 is either

uniformly distributed on the top side of T̃ ′(y,s),v, if v < Ln, or it vanishes, if v = Ln, giving
rise to the distribution of Xy,s in both cases. �

We are now in the position to drop a modification operated in the construction of our
paths, namely the one involving lateral excursions of s̃′i(y, s); i = 0, 1, . . . , outside the left
or right lateral boundaries of Λ̃∗n till it reaches the top of Λ̃∗n. We show next that with
high probability these excursions do not happen for any (y, s) ∈ Λ̃n ∩ P̃. Before we state
the result recall that s̃′i(y, s) is a vector

(
s̃′i(y, s)1, s̃

′
i(y, s)2

)
representing the endpoints in

the construction of paths of Ξ(Γ̂n) using the regions T̃ ′(y,s),v.
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Lemma 8. Given (y, s) ∈ Λ̃n ∩ P̃, let

J = Jy,s = inf{i ≥ 1 : s̃′i(y, s)2 > τn}. (4.21)

Then

lim
n→∞

P

(
max

(y,s)∈P̃∩Λ̃n

max
1≤i≤J

|s̃′i(y, s)1| > n1−a

)
= 0 . (4.22)

Proof
This is a simple large deviation argument, if burdened somewhat by technicalities

intrinsic to the problem. We first control the cardinality of P̃ ∩ Λ̃n, and then use the
fact that the tail of the distribution of the spatial increments has a uniform (super)
exponential bound to conclude.

We will show that

lim
n→∞

P

(
max

(y,s)∈P̃∩Λ̃n

max
1≤i≤J

|s̃′i(y, s)1 − y| > n1−b

)
= 0 . (4.23)

Recall that 1/4 < a < b < 1/2. Now outside the event in the probability on the left hand
side of (4.23), we have that

max
(y,s)∈P̃∩Λ̃n

max
1≤i≤J

|s̃′i(y, s)1| ≤ n1−b + max
(y,s)∈P̃∩Λ̃n

|y| ≤ 2n1−b ≤ n1−a

for all large enough n. So (4.22) follows from (4.23).
The rest of the proof is to show (4.23). We are going to consider the event (4.23)

with (s̃′i(y, s)1 − y) without the absolute value. The argument we provide gives the same
bound when we replace (s̃′i(y, s)1− y) by −(s̃′i(y, s)1− y) and we thus get twice the bound
for |s̃′i(y, s)1 − y|. The probability of the latter event is bounded above by

Mn2−b max
(y,s)∈Λ̃n

P

(
max

1≤i≤J
(s̃′i(y, s)1 − y) > n1−b

)
+ P(|P̃ ∩ Λ̃n| > Mn2−b) , (4.24)

where M is a fixed constant chosen sufficiently large so that the second term above
vanishes as n → ∞. To see that M can be thus chosen, we may repeat the argument
already used in the proof of Lemma 4 concerning the cardinality of Poisson points within
a region, this time the cardinality of P̃ ∩ Λ̃n: we have that outside an event of vanishing
probability as n→∞, it is bounded by constant times n2−b.

Therefore (4.23) holds if

lim
n→∞

n2−b max
(y,s)∈Λ̃n

P

(
max

1≤i≤J
(s̃′i(y, s)1 − y) > n1−b

)
= 0 . (4.25)

We now verify (4.25). Fix (y, s) ∈ Λ̃n. The first step is to obtain proper estimates to
control the size of J . By (4.18), s′i(y, s)2 = s +

∑i
j=1 Ti, with Ti = TYi−1,Si−1

. It follows
from (4.15) and Lemma 6 that {Tj}j≥1 are stochastically dominated by an iid family
{Vj}j≥1 such that

P(Vj > v) = e−Kv
2

1{v<Ln}, (4.26)

for some constant K > 0. Standard large deviation estimates then yield the existence of
positive constants M,K ′ such that

P(J > Mn) ≤ e−K
′n.

Therefore

P

(
max

1≤i≤J
(s̃′i(y, s)1 − y) > n1−b

)
≤ P

(
max

1≤i≤J
(s̃′i(y, s)1 − y) > n1−b

∣∣∣J ≤Mn

)
+ e−K

′n ,

(4.27)
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and it is enough to show that the first term in the right hand side of the above inequality
vanishes as n→∞.

Conditioning on s̃′i(y, s)2, i ≥ 1, such that J ≤Mn, and using (4.17) and Lemma 6, we
have that

P′
(

max
1≤i≤J

(s̃′i(y, s)1 − y) > n1−b
)
≤Mn max

1≤i≤J
P′(s̃′i(y, s)1 − y > n1−b), (4.28)

where P′ is P conditioned on s̃′i(y, s)2, i ≥ 1, such that J ≤ Mn. By standard large
deviation estimates, we have that

P′(s̃′i(y, s)1 − y > n1−b) ≤ e−λn
1−b

J∏
i=1

E′(eλT
′
iU ), (4.29)

where λ > 0 is a positive number to be chosen, and T ′i = cn
1+S′′i−1/n

T ′′i 1{T ′′i <Ln}, with

S′′i = s̃′i(y, s)2 e T ′′i = S′′i − S′′i−1. Now the expected value in the right hand side of (4.29)
is bounded above by

E(ecnλT
′′
i U ) =

ecnλT
′′
i − e−cnλT ′′i
2cnλT ′′i

. (4.30)

Put λ = 1/(cn
√
n), and use the fact that T ′′i ≤ Ln, and thus cnλT ′′i = o(1) to obtain from

(4.30) that

E(ecnλT
′′
i U ) ≤ 1 + c2nλ

2(T ′′i )2 ≤ 1 +
(T ′′i )2

n
.

Then the product in (4.29) is thus bounded above by the exponential of

1

n

J∑
i=1

(T ′′i )2 ≤ 2(1 + τ)2 log n

n

J∑
i=1

T ′′i . (4.31)

By the definition of J , we have that
∑J−1
i=1 T

′′
i ≤ τn and

J∑
i=1

T ′′i =

J−1∑
i=1

T ′′i + T ′′J ≤ τn+ 2(1 + τ)2 log n ≤ 2τn (4.32)

for all large enough n.
Using (4.29), (4.31) and (4.32) in (4.29), we get the following bound for all large n:

P′
(

max
1≤i≤J

(s̃′i(y, s)1 − y) > n1−b
)
≤Mne−c

−1
n n

1
2
−b+4τ(1+τ)2 logn ≤ exp

{
− 1

2c
n

1
2−b
}
.(4.33)

Since b < 1/2, from (4.33) and (4.27) we obtain (4.25). �

Variant of Ξ(Γ̂n). Summing the above up, we may and will replace the paths of Ξ(Γ̂n)

determined by {s̃′i(y, s); i = 0, 1, . . . , Î ′} by those determined by {s̃′i(y, s); i = 0, 1, . . . , J},
(y, s) ∈ Λ̃n ∩ P̃. Indeed, for (y, s) ∈ Λ̃n ∩ P̃, let γ̃′y,s be the path determined by
{s̃′i(y, s); i = 0, 1, . . . , J} as suggested above: γ̃′y,s starts at (y, s) and runs through the
edges (s̃′i−1(y, s), s̃′i(y, s)), i = 1, . . . , J − 1 and the last edge (s̃′J−1(y, s), s̃∗J(y, s)), where

s̃∗J(y, s) is the point of the top side of Λ̃∗n intersected by the edge (s̃′J−1(y, s), s̃′J(y, s)).
The edge (s̃′i−1(y, s), s̃′i(y, s)) is given by (s̃i−1(y, s), s̃i(y, s)), whenever the respective
endpoints of the pair of edges coincide (in this case, it is not linear, as remarked above;
see discussion at the end of paragraph below (4.9)); otherwise (an event such that the
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union of all such events as the start point varies over Λ̃n ∩ P̃ has vanishing probability
as n→∞), it is the linear interpolation of its endpoints.

Let then

Γ̃′n = {γ̃′y,s; (y, s) ∈ Λ̃n ∩ P̃}. (4.34)

From the above discussion, we may replace Ξ(Γn) by Γ̃′n in proving Proposition 2 and
Lemma 3. Namely, it is enough to prove the following results.

Let

D(Γ̃′n) = {D(γ̃′); γ̃′ ∈ Γ̃′n} (4.35)

be the collection of diffusively rescaled paths of Γ̃′n, see (2.4).

Proposition 9. As n→∞
D(Γ̃′n)⇒Wτ

0 . (4.36)

We will prove this result in the remaining sections of this paper.

Lemma 10. Let α′ ∈ (0, α) be given. We have

dH−α,α′−1

(
D(Γn), ψ(D(Γ̃′n))

)
→ 0 (4.37)

in probability as n→∞.

We will prove this result in the next subsection.

4.2 Proof of Lemma 10

Recall the notation of Section 2. We will denote γ̊ = D(γ) for be the diffusive rescaling
of a path γ in Γn (which is a path in D(Γn)). We also denote by γ̊′ = ψ ◦D ◦ Ξ(γ), i.e. the
image under ψ of the diffusive rescaling of the image of γ under Ξ. The symbol ◦ over an
object will be always related to the diffusive rescaling of that object.

We will show that

1. as subsets of the plane, γ̊x and γ̊′x belong to [−n 1
2−a, n

1
2−a]× [−1,−α′] with proba-

bility tending to one as n→∞; and

2. maxx∈P∩Λn d(̊γx, γ̊
′
x) → 0 in probability as n → ∞, where d is the distance in

Π−α,−α
′

−1 defined in (2.7).

The first point follows in a straightforward manner from the definitions of Γn, ψ, and
Lemmas 4 and 8. We leave the details to the reader.

The remainder of this section is devoted to proving the second point. Recall that a path
γx ∈ Γn, where x ∈ P ∩ Λn, is determined by {si(x), i = 0, 1, . . . , I ′}. Let us start by con-
sidering the vertices of the polygonal line forming γ̊, namely D(si(x)), i = 0, 1, . . . , I ′. Let

w = (w1, w2) be one of those points. Let us write w = D(rei(−
π
2 +σ)) =

(
r sinσ√

n
,− r cosσ

n

)
,

where rei(−
π
2 +σ) = si(x) for some i = 0, 1, . . . , I ′. Then, ψ ◦ D ◦ Ξ(rei(−

π
2 +σ)) = w′ =

(w′1, w
′
2) =

(
rσ√
n
,− r

n

)
is one of the vertices of γ̊′. Since r ≤ n and |σ| ≤ n−a, we have that

|w1 − w′1| = O(n−3a+1/2), |w2 − w′2| = O(n−2a) (4.38)

uniformly over x ∈ P∩Λn. It immediately follows that the absolute value of the difference
between the starting times of γ̊ and γ̊′ is o(1) uniformly over x ∈ P ∩ Λn, and the same
holds for the ending times. From now on, we consider both γ̊ and γ̊′ continued to [−1, α′]

as defined in the paragraph of (2.7), but we keep the same notation. It is enough then to
show that sup−1≤s≤α′ |̊γ(s)− γ̊′(s)| is also o(1) uniformly over x ∈ P ∩ Λn.
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In order to acomplish that, note first that w2 ≥ w′2. Suppose that w = D(sI′(x)), and
take s ≥ w2. Then γ̊(s) = w1, γ̊′(s) = w′1, and thus |̊γ(w2)− γ̊′(w′2)| = |w1 − w′1|, wich as
established in the previous paragraph, equals O(n−3a+1/2) uniformly over x ∈ P ∩ Λn.

To bound |̊γ(s)−γ̊′(s)|when s = w2 for i < I ′, we first claim that the portion of γ̊′ above
w′2 and up to w2 is contained in an isosceles triangle like the one depicted in Figure 6 with
lower vertex at w′, internal angle at w′ whose tangent equals K

√
n, K a constant, and

height w2−w′2. This follows from a straightforward analysis of ψ◦D(T̃ ′w′,w2−w′2
); see (4.4),

(4.5) and (4.11). We then have by (4.38) that |̊γ(w2)−γ̊′(w2)| ≤ |w1−w′1|+K ′
√
n|w2−w′2| ≤

K ′′n−2a+1/2 for some constants K ′,K ′′.
Finally, for s between succesive w2’s, we may similarly as in the previous paragraph

argue that the portion of γ̊′ above w′2 and up to s is contained in a triangle like the one
of the previous paragraph, except that with height larger than the one of the previous
paragraph by s − w′2 which is lesser than or equal to a constant times log n/n and the
same bound (with a larger K ′′) follows for |̊γ(s)− γ̊′(s)|. The argument is thus complete,
once we recall that a > 1/4. �

5 Proof of Proposition 9

For the convenience of being able to deal with paths starting from any point of Λ̃n,
we will consider the following completion of Γ̃′n.

Γ̃′′n = {γ̃′′x ; x ∈ Λ′n}, (5.1)

where γ̃′′x is a path determined by {s̃′i(x); i = 0, 1, . . . , J}, using T̃ ′x,d′n logn, as for γ̃′x, except

that now it may start from any x ∈ Λ̃n. Recall discussion and definitions on the paragraph
of (4.12). We will stipulate that the edges of γ̃′′x are straight line segments until a point
of P̃, say x′, is hit, after which the edges are identical with those of γ̃′′x′ .

Claim. We now claim that, with probability tending to one as n→∞, s̃′′1(x) ∈ P̃ for all
x ∈ Λ̃′n. Indeed, let us fix x ∈ Λ̃n and take xn as a closest point to x of Z2 ∩ T̃ ′x,d′n logn. We

note that for all n large enough T̃ ′
xn,

1
2d
′
n logn

⊂ T̃ ′x,d′n logn for all x ∈ Λ̃n. The claim will be

established once we show that the following probability

P(∪x∈Z2∩Λ̃n
{P̃ ∩ T̃ ′x,d′n logn = ∅}) (5.2)

vanishes as n → ∞. But this probability is bounded above by constant times n2−a

times exp{−area of T̃ ′
x, 12 logn

}. Since the latter area is bounded below by constant times

(log n)2, the claim follows.
We may then suppose that s̃′′1(x) ∈ P̃ for all x ∈ Λ̃n. Notice that if x /∈ P̃, then γ̃′′x

coincides with γ̃′s̃′1(x) from its second vertex – given by s̃′1(y, s) – on. Otherwise γ̃′′x = γ̃′x.
Let

D(Γ̃′′n) = {D(γ̃′′); γ̃′′ ∈ Γ̃′′n}. (5.3)

In the following sections we will write γ̊ to represent a path in D(Γ̃′′n), since we only need
notation for diffusively rescaled paths when they belong to D(Γ̃′′n), we avoid the use of ′

and ′′.
We will establish the following result.

Proposition 11. As n→∞
D(Γ̃′′n)⇒Wτ

0 . (5.4)

This immediately implies the claim of Proposition 9, once we show the following
lemma.
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Lemma 12. We have that
dHτ,τ0

(D
(
Γ̃′′n), D(Γ̃′n)

)
→ 0 (5.5)

with high probability.

Proof of Lemma 12
Given x = (y, s) ∈ Λ̃n and γ̃′′x ∈ Γ̃′′n, if s ≤ τn − d′n log n, then, as noticed above, we

have that (with high probability simultaneously for all x ∈ Λ̃n) γ̃′′x coincides with γ̃′x′ ∈ Γ̃′n
from its second edge x′ on. We thus have that the distance of the starting times of D(γ̃′′x)

and D(γ̃′x′) is bounded above by a constant times n−1 log n, and the (uniform) distance
between the continuations (starred versions) of D(γ̃′′x) and D(γ̃′x′), which is then given
by n−1/2|x1 − x′1|, which is bounded above by a constant times n−1/2 log n.

Let us now examine the case where y > τn− d′n log n. Let us introduce T̂ ′x,d′n logn, the

triangle obtained by reflecting T̃ ′x,d′n logn on the horizontal axis through x. Then again we

may argue that with high probability T̃ ′x,d′n logn ∩ P̃ ′ 6= ∅ for all x ∈ Λ̃n. Let x′′ be the point

of T̃ ′x,d′n logn∩P̃ closest to x, and let us consider D(γ̃′′x) and D(γ̃′x′′). The distance between

their starting points is thus bounded above by n−1 log n. Both paths are contained in
isosceles triangles shaped like T̃ ′x,d′n logn, but with the tangent to the internal angle at

the bottom vertices (x and x′, respeectively) a constant times
√
n, and height a constant

times log n/n. We conclude that the uniform distance between the continuations of D(γ̃′′x)

and D(γ̃′x′′) is bounded above by a constant times n−1/2 log n.
We conclude from the above paragraphs for every path D(γ̃′′) ∈ D(Γ̃′′n), we may find a

path D(γ̃′) ∈ D(Γ̃′n) such that d
(
D(γ̃′′), D(γ̃′)

)
is bounded above by (a uniform) constant

times n−1/2 log n, and we are done �

Below, for x ∈ R× [0, τ ], we will write γ̊x for D(γ̃′′D−1(x)) = D(γ̃′′
(
√
nx1,nx2)

).
In order to prove Proposition 11, we will verify criteria of [11], which were devised

for the case of convergence to the ordinary Brownian web, adapted in an obvious way
for convergence to the restricted Brownian web. These criteria are technical and we
recommend the reader to check Theorem 2.2 in [11] and the discussion about it in the
same work. The adapted criteria are as follows.

(I) Let D be a countable dense deterministic set in R× (0, τ). For any x1, ..., xm ∈ D,
γ̊x1 , ..., γ̊xm ∈ D(Γ̃′′n) converge in distribution as n → ∞ to coalescing Brownian
motions, with the same diffusion constant ω, starting from x1, ..., xm, and ending at
time τ .

(B′1) For a system V of space-time trajectories in R2, let ηV(t0, t; a, b), a < b, denote the
random variable that counts the number of distinct points in R× {t0 + t} that are
touched by paths in V which also touch some point in [a, b]× {t0}. Then, for every
0 < β < τ ,

lim sup
ε→0+

lim sup
n→+∞

sup
t>β

sup
(a,t0)∈R×[0,τ−β]

P(ηD(Γ̃′′n)(t0, t; a, a+ ε) ≥ 2) = 0 .

(B′2) For every β > 0,

lim sup
ε→0+

1

ε
lim sup
n→+∞

sup
t>β

sup
(a,t0)∈R×[0,τ−β]

P(ηD(Γ̃′′n)(t0, t; a, a+ ε) ≥ 3) = 0 .

That these criteria are valid (as criteria) can be argued with a straightforward and
obvious adaptation of the arguments for the proof of Theorem 2.2 in [11]. Let us roughly
point out the significance of each of these criteria. (I) combined with the non-crossing
property of the paths of Γ̃′′n implies tightness and that collections of paths of the BW
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started from deterministic countable sets of space-time points are present in limits of
Γ̃′′n. (B′1) implies that from each point of D there issues a single BW path. It follows that
the BW is contained in such limits. (B′2) finally rules out the existence of other paths in
those limits other than the ones of the BW. Details may be found in Section 5 of [11].

It turns out that we do not know how to verify (B′2) for the present model. Resorting
to FKG-type inequalities, a strategy that has been successful in a few other cases, does
not seem to be a way. We resort instead to an alternative criterium to (B′2), as adopted
in [16] in the study of a coalescing system in the full space-time plane. We present it
next, again in a suitable adaptation for the case of R× [0, τ ].

(E) For a system V of space-time trajectories in R × [0, τ ], let η̂V(t0, t; a, b), a < b,
t0 ∈ [0, τ), t ∈ (0, τ − t0], be the number distinct points in (a, b)× {t0 + t} that are
touched by a path that also touches R×{t0}. Then for any subsequential limit X of
D(Γ̃′′n) we have that

E[η̂X (t0, t; a, b)] ≤
b− a√
πωt

. (5.6)

(In [16] the diffusion coefficient of the Brownian web is 1, so the factor ω does not
appear (explictly). It is of course straightforward to go from that condition to (5.6)
by rescaling time suitably.)

Again, the legitimacy of (E) as a criterium may be argued entirely as in [16], with
obvious adaptations.

The verification of condition E requires tightness of D(Γ̃′′n), but this follows from con-
dition I due to the noncrossing property (see Proposition B2 in [11]). Futhermore, once
we have proper estimates on the distributions of the coalescence times and condition I,
the verification of conditions B′1 and E follows from adaptations of arguments presented
in [16], [20] and [5], as we will see below. The estimate we need on the distribution of
the coalescence time of two random trajectories of Γ̃′′n is that the probability that they
coalesce after time t is of order 1/

√
t. This is the content of Proposition 13 below.

6 Coalescence time

One important step to establish convergence in distribution of a family of random
coalescing paths to the BW is to prove that the tail of the distribution of the coalescence
time between two such paths decays as O(1/

√
t). In this section, we want to avoid

problems with the fact that the paths of Γ̃′′n, n ≥ 1, are defined on bounded time intervals.
(Recall that Γ̃′′n is defined in the interval [0, τn], and so is the Poisson point process
P̃ ′n). So we begin by extending P̃n to a Poisson point process on the upper half plane
H := R× [0,∞), and then extend Γ̃′′n accordingly, as follows.

Let P?n be a Poisson point process on H with intensity measure(
1(0,τn](s)

(1 + s/n)3
+

1(τn,+∞](s)

(1 + τ)3

)
dyds . (6.1)

So P?n can be considered the union of P̃n with an independent homogeneous Poisson
point processes in R× (τn,+∞) with intensity (1 + τ)−3.

The paths in Γ̃′′n are restricted to Λ̃n. We will also drop this restriction. Recall the
definition of T̃ ′(y,s) from (4.12). We still need to define T̃ ′(y,s) for (y, s) ∈ R× [τn,+∞]. We
take a natural definition:

T̃ ′(y,s),d′n logn = T̃ ′(y,s) =
⋃

u∈[0,d′n logn]

[
y ± c 1 + d/n

1 + τ
u

]
× {s+ u} , if s ≥ τn . (6.2)
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Now let us define the system of random paths that we are going to consider through-
out the rest of this section. We define {s̃?i (x) : i ≥ 1} using T̃ ′(y,s),d′nlog(n) analogously to

{s̃′j : j ≥ 1} defined in Section 4.1, but without restricting to R× [0, τn]. Let

Γ̃?n = {γ̃?x : x ∈ H} ,

where γ̃?x is a path determined by x and the transition points {s̃?i (x) : i ≥ 1} as for γ̃′′x
except that now there is no truncation of paths.

For some given t0 ≥ 0, let X0
s = γ̃?(0,t0)(t0 + s), s ≥ 0, and Xm

s = γ̃?(m,t0)(t0 + s), s ≥ 0,

be two paths in a given realization of Γ̃?n starting at time t0 respectively in 0 and m,
where m is an arbitrary deterministic positive real number. Denote

νm = inf{t > 0 : Xm
t −X0

t = 0} . (6.3)

The aim of this section is to prove the following proposition:

Proposition 13. There exists a constant C > 0, such that

P(νm > t) ≤ Cm√
t
, for every t > 0. (6.4)

For the sake of simplifying the notation, we supress n from the notation. However, it
is important to point out that the estimates are uniform in n. In particular, the constant
in the statement of Proposition 13 does not depend on n.

Proof

The strategy for the proof is similar to that of Theorem 4 in [5] and of Proposition
3.1 in [7]. However, as we explain explicitly below, the particularities of our model pose
some extra difficulties. This overall proof strategy is the following: first we introduce a
jump version of (Xm

t −X0
t )t≥0 which turns out to be a square integrable martingale with

respect to its canonical filtration; using Skorohod Embedding Theorem, we can represent
this martingale as a time change of a Brownian motion such that if this Brownian motion
hits zero during some associated time intervals then Xm

t and X0
t coalesce; this allows us

to show that the probability of the event {νm > t} is bounded by the probability that the
Brownian motion starting at m hits 0 before a time of order t, which is of order m/

√
t

plus a term of smaller order with respect to t.

We start by introducing jump versions of X0
t and Xm

t . For j = 0,m, let X̄j
t = Xj

s̃?i (j,t0)

whenever t ∈ [s̃?i (j, t0), s̃?i+1(j, t0)) for some i ≥ 0. Note that νm = inf{t > 0 : X̄m
t − X̄0

t =

0} .
Define the time increments

S0
1 = d′n log n∧ inf{t > 0 : (X̄0

t , t0 + t) ∈ P?n}, Sm1 = d′n log n∧ inf{t > 0 : (X̄m
t , t0 + t) ∈ P?n}

and, by induction, for n ≥ 2,

S0
i = d′n log n ∧ inf{t− S0

i−1 : t > S0
i−1, X̄

0
t ∈ P?n} ,

Smi = d′n log n ∧ inf{t− Smi−1 : t > Smi−1 , X̄
m
t ∈ P?n} .

Note that
∑i
j=1 S

0
j (resp.

∑i
j=1 S

m
j ) is equal to the second coordinate of the transition

point s̃?i ((0, t0)) (resp. s̃?i ((m, t0))).
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We have that, for j = 0,m, (Sji )i≥0 is a sequence of independent random variables.
Note that they are not identically distributed due to the non-homogeneity of P?n. Let
(N j

t )t≥0 be the counting process associated to (Sji )i≥0, j = 0, m, i.e.,

N j
t = sup

{
k ≥ 0 :

k∑
l=0

Sjl ≤ t
}
. (6.5)

Thus N j
t represents the number of transition points in the time interval [0, t] of the path

(X̄j
t )t≥0, j = 0,m. Denote by N+

t the total number of transition points in the time interval
[0, t] of both paths (X̄0

t )t≥0 and (X̄m
t )t≥0. Let S+

1 be the random time of the first transition
point of N+

t , and S+
i , i ≥ 2, be the random time of the i-th jump of N+

t .
Put Zm0 = m and Zml = X̄m

S+
l

− X̄0
S+
l

, j ≥ 1. Note that

νm = inf
{
t > t0 : Zm

N+
t

= 0
}
.

Note that (Zmj )j≥0 is a martingale with bounded increments with respect to its
canonical filtration (the bound on the increments depends on and increase with the
scaling parameter n). By the Skorohod Embedding Theorem, see [15], there exist a
standard Brownian motion (B(s))s≥0 adapted to a certain filtration (Gs)s≥0 and stopping
times T1, T2, ..., such that Zm0 = B(0) = m and Zmj = B(Tj), for j ≥ 1. Furthermore,
denoting T0 = 0, the stopping times T1, T2, ..., have the following representation:

Tk = inf
{
s ≥ Tk−1 : B(s)−B(Tk−1) /∈

(
Uk, Vk)

)}
,

where {(Uk, Vk) : k ≥ 1} is a family of random vectors taking values in {(0, 0)}∪(−∞, 0)×
(0,∞). In our case, contrary to the cases analyzed in [5, 7, 25], where a similar approach
is taken, the random vectors (Uk, Vk)k≥1 are not independent because of the transition
mechanism of X̄0

t and X̄m
t that depends on the cones T̃ ′(y,s) as searching regions for

points in P?n.
Now we have the required notation and the first step to obtain (6.4) is to consider

the inequality

P(νm > t) ≤ P
(
νm > t, TN+

t
< ζt

)
+ P(νm > t , TÑt ≥ ζt) , (6.6)

where ζ is a constant that will be fixed later.
The second term in the right hand side of (6.6) is easier to deal with. Before νm the

Brownian motion cannot hit 0, otherwise we would have for some k that Uk < −B(Tk−1)

meaning that Zmk < 0 with positive probability which cannot happen since X̄0
t and X̄m

t

cannot cross each other. Thus P(νm > t , TÑt ≥ ζt) is bounded by the probability that

the Brownian motion starting at m hits 0 after time ζt which is an O(m/
√
t).

From now on, we only consider the first probability on the right hand side of (6.6).
We are going to show that it decays exponentially fast in t for a proper choice of the
constant ζ.

First note that for each j = 0,m, (N j
t ) stochastically dominates a renewal process

whose renewal times are distributed as the square root of an exponential law with
parameter

an := c
(

1 +
d

n

)
(1 + τ)−4 , (6.7)

truncated at d′n log n. Indeed, for t ≤ d′n log n, we have that

P(Sji > t) ≤ P

 ⋃
u∈[0,t]

[
y ± c 1 + d/n

1 + τ
u

]
× {Zji−1 + u}

⋂P?n = ∅

 .
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The right hand side is bounded above by the probability that⋃
u∈[0,t]

[
y ± c 1 + d/n

1 + τ
u

]
× {u}

contains no point of a Poisson point process of parameter (1 + τ)−3, which is readily
checked to equal

e− ant
2

.

From the Large Deviations Principle for the Law of Large Numbers of renewal
processes, see Theorem 2.3 and Lemma 2.6 in [23], we have that, for j = 0,m, P(N j

t ≤ bt)
decays exponentially fast for any fixed constant b smaller than(∫ ∞

0

e− 2c (1+τ)−4 u2

du
)−1

,

which is the inverse of the mean waiting time of the renewal process. Writing TN+
t

=

TN0
t +Nmt

, the previous result implies that

P
(
νm > t, TN+

t
< ζt

)
is bounded above by a term decaying exponentially in n plus

P
(
νm > t, Tbbtc < ζt

)
. (6.8)

From now on, we follow similar arguments as those presented in [5, 25]. However, we
need to make sure that the time increments Ti − Ti−1 are sufficiently large outside an
event with probability of order O(1/

√
t), this happens if Zmi−1 is sufficiently large.

Fix γ > 0 and b̃ < b, then the probability in (6.8) is bounded above by

P
(
#{1 ≤ i ≤ bbtc : 0 < |Zmi−1| ≤ γ} ≥ b(b− b̃)tc

)
+P
(
#{1 ≤ i ≤ bbtc : |Zmi−1| > γ} ≥ bb̃tc, Tbbtc < ζt

)
. (6.9)

We will estimate the two terms in (6.9) separately. For the first term, the estimate is
given in the following lemma:

Lemma 14. There exists ρ > 0 sufficiently small such that for every b̃ < b, there exist
α = α(b̃, b) > 0 and β = β(b̃, b) <∞ such that

P
(
#{1 ≤ i ≤ bbtc : 0 < |Zmi−1| ≤ ρ} ≥ b(b− b̃)tc

)
≤ βe−αt .

The proof of Lemma 14 is postponed to the end of this section.

It remains to deal with the second probability in (6.9). Here we need to introduce
more notation. Let W0 = T0 = 0 and Wi = Ti − Ti−1, i ≥ 1. We now write

Tbbtc =

bbtc∑
i=1

(Ti − Ti−1) =

bbtc∑
i=1

Wi .

Let N = {1 ≤ i <∞ : |Zmi−1| > ρ}, and Ft =
{

#[N ∩ (0, bt)] ≥ bb̃tc
}
. The second term in

(6.9) is then bounded above by

P

Ft, ∑
i≤bbtc:|Zmi−1|>ρ

Wi < ζt

 ≤ eζtE
1Ft

∏
i≤bbtc: |Zmi−1|>ρ

e−Wi

 . (6.10)
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Let I1 < I2 < . . . denote the elements of N in increasing order. Then the expectation
on the right of (6.10) is bounded above by

∑
i1,...,ibb̃tc≤bt

E
[ bb̃tc∏
k=1

e−Wik , I1 = i1, ..., Ibb̃tc = ibb̃tc

]

≤ Ebb̃tc
∑

i1,...,ibb̃tc−1≤bt

E
[ bb̃tc−1∏

k=1

e−Wik , I1 = i1, ..., Ibb̃tc−1 = ibb̃tc−1

]
≤ · · · ≤

bb̃tc∏
k=1

Ek,(6.11)

where, for k ≤ 1, Ek = supE
[
e−Wik

∣∣∣GTik−1

]
, with the sup taken over histories up to Tik−1

such that |Zmik−1| > ρ.
Therefore to finish the proof it is enough to show that, for a suitable choice of ζ,

Ek is uniformly bounded way from one. To do this, we need some information on the
distribution of the random vectors (Uik , Vik).

Lemma 15. For every 0 < δ < ρ
8c(1+τ) sufficiently small, where τ and c are the constants

defined earlier in (2.9) and (4.6), respectively, there exists ϑ = ϑ(ρ, δ) < 1 such that

sup
M>ρ

P
(

min{−Ui, Vi} ≤ δ
∣∣GTi−1

, |Zmi−1| = M
)
< ϑ. (6.12)

The proof of Lemma 15 is postponed to the end of this section.

Let W−δ,δ be the exit time of interval (−δ, δ) by a standard Brownian motion. By
Lemma 15, we have that Ek is bounded above by the supremum over M > ρ of

E
[
e−Wik

∣∣min{−Uik , Vik} > δ , |Zmik−1| = M
]
P
(
min{−Uik , Vik} > δ

∣∣|Zmik−1| = M
)

+

+ P
(
min{−Uik , Vik} ≤ δ

∣∣|Zmik−1| = M
)

≤ E
[
e−W−δ,δ

] (
1− P

(
min{−Uik , Vik} ≤ δ

∣∣|Zmik−1| = M
))

+ P
(
min{−Uik , Vik} ≤ δ

∣∣|Zmik−1| = M
)

= P
(
min{−Uik , Vik} ≤ δ

∣∣|Zmik−1| = M
)

(1− ϑ′) + ϑ′

≤ ϑ(1− ϑ′) + ϑ′ (6.13)

where ϑ < 1 is given by Lemma 15 and ϑ′ = E
[
e−W−δ,δ

]
< 1. Now, choose ζ such that

β = eζ [ϑ(1− ϑ̃) + ϑ̃] < 1, then from (6.11) and (6.13) we have that (6.10) is bounded by
βt. This completes the proof. �

The rest of this section is devoted to the proofs of Lemmas 14 and 15, used in the
proof of Proposition 13.

Proof of Lemma 14
The proof is based on the intuitively clear fact that if X̄m

S+
i

is close to X̄0
S+
i

then X̄m
s

and X̄0
s should coalesce with high probability at time S+

i+1. Let

G = {1 ≤ i ≤ bt : 0 < |Zmi | ≤ γ} .

We will estimate
P
(
#G ≥ bb̂tc

)
, (6.14)

where b̂ = b− b̃.
Let I ′1 < I ′2 < . . . denote the elements of {1 ≤ i < ∞ : 0 < |Zmi | ≤ γ} in incresing

order. For i ≥ 1, j = 0,m, let Yi = j if the i-th transition point of (N+
t )t≥0 is a transition
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point of (N j
t )t≥0. (See paragraph of (6.5).) Then the probability in (6.14) is bounded

above by

∑
i1,...,ibb̂tc≤bt

`1,...,`bb̂tc=0 orm

P
[ bb̂tc⋂
k=1

{Zik+1
6= 0, I ′k = ik, Yk = `k}

]

≤ E ′bb̂tc
∑

i1,...,ibb̂tc−1
≤bt

`1,...,`bb̂tc−1
=0 orm

P
[ bb̂tc−1⋂

k=1

{Zik+1
6= 0, I ′k = ik, Yk = `k}

]
≤ · · · ≤

bb̂tc∏
k=1

E ′k, (6.15)

where, for k ≥ 1, E ′k = supP
[
Zik+1

6= 0
∣∣FS+

ik

]
, with the sup taken over x, y ∈ R, 0 <

y − x ≤ ρ, s̃ ≥ 0, ` = 0,m, and histories up to S+
ik

= s̃ such that X̄0
s̃ = x, X̄m

s̃ = y, Yik = `.
Here Ft is the σ-algebra generated by P?n restricted to R× [0, t], t ≥ 0.

It is enough now to argue that E ′k is bounded above away from 1 uniformly in k and
all large n. With x, y, s̃ fixed as above and ` = 0 (the case ` = m is essentially the same),
let T = T̃ ′(x,s̃) and T̂ = T̃ ′(y,ŝ), where ŝ is the last transition point of (Nm

t )t≥0 before s̃

(see (4.12) and (6.2) for the definition of T̃ ′(y,s)). See Figure 7.

Given that X̄m
s̃ > X̄0

s̃ and that Yik = 0, we must have that T̂ ∩ {R × [0, s̃]} does not
contain (X̄0

s̃ , s) — otherwise, since the interior of T̂ ∩ {R× [0, s̃]} must contain no point of
P?n, we would have that X̄m

s̃ = X̄0
s̃ . All this implies that s̃− q < ŝ < s̃, where q = q(y − x)

is the sup over z > 0 such that T̃ ′(y,s̃−z) ∩ {R× [0, s̃]} does not contain (X̄0
s̃ , s̃). See Figure

7.
Let now s̄ denote the time coordinate of the point where the right hand boundary of

T meets the left hand boundary of T̂ (see Figure 7). We define the following regions of
H. Let Q be the quadrangle bounded by the horizontal lines at times s̃, s̄ + 1, the left
hand boundary of T and the right hand boundary of T̂ . Let ∆ be the triangle bounded by
the horizontal line at time s̄+ 1, the right hand boundary of T and the left hand boundary
of T̂ . And let ∆′ be the triangle bounded by the horizontal line at time s̃, the right hand
boundary of T and the left hand boundary of T̂ . Let Q′ = Q \ {∆ ∪∆′}. See Figure 7,
where Q′ appears shaded.

Let Ak = Ak(x, y, s̃, ŝ) denote the event that Q′ ∩P?n = ∅ and ∆∩P?n 6= ∅. It is a simple
yet tedious matter to verify that the area of ∆ is bounded away from zero, and the area
of Q′ is bounded as x, y, s̃, ŝ vary within their restricted range (notice that q = q(y − x)

is bounded above by q(ρ) < ∞ within that range). This readily implies that P(Ak) is
bounded away from zero within that range.

Since E ′k ≤ inf P(Ack), with the inf taken over x, y, s̃, ŝ varying within their restricted
range, the result follows from the uniform positive bound on P(Ak) and (6.15). �

Proof of Lemma 15
As in the proof of Lemma 14, let us again suppose that Yi = 0 (and again, the case

Yi = m is argued similarly). Given GTi−1 and |Zmi−1| = M , M > ρ, the probability of the
event {min{−Ui, Vi} > δ} is bounded below by the probability of the event F1 ∩ F2 ∩ F3,
where

F1 = {C1 ∩ P?n = ∅} , F2 = {C2 ∩ P?n = ∅} and F3 = {C3 ∩ P?n 6= ∅} ,
with

C1 = T̃ ′
(X̄0

S
+
i−1

,S+
i−1), ρ4c

∩
{[
X̄0
S+
i−1

± δ
]
×
[
S+
i−1, S

+
i−1 +

ρ

4c

]}
,

C2 = T̃ ′
(X̄m

S
+
i−1

,S+
i−1), ρ4c

∩
{[
X̄m
S+
i−1

± δ
]
×
[
S+
i−1, S

+
i−1 +

ρ

4c

]}
,
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ŝ

s̃

s̄

s̄+ 1

Figure 7: T and T̂ are the inverted triangles with lower vertices at (x, s̃) and (y, ŝ),
respectively, (with top portions missing); q is such that the left hand boundary of T̃ ′(y,s̃−q)
touches (x, s̃).

and
C3 = T̃ ′

(X̄0

S
+
i−1

,S+
i−1), ρ4c

\ C1 .

See Figure 8. Since C1, C2 and C3 are disjoint with Area(C1) = Area(C2) ≤ δ ρ
2c and

Area(C3) = Area
(
T̃ ′

(X̄0

S
+
i−1

,S+
i−1), ρ4c

)
−Area(C1) ≥ ρ2

16c2(1 + τ)
− δρ

2c
=

ρ

2c

( ρ

8c(1 + τ)
−δ
)
> 0 .

Thus,

P
(

min{Ui, Vi} ≥ δ
∣∣GTi−1 , |Zmi−1| = M

)
≥ P

(
F1 ∩ F2 ∩ F3

∣∣GTi−1 , |Zmi−1| = M
)

= P
(
F1

)
P
(
F2

)
P
(
F3

)
≥ e−

δρ
c

(
1− e−

ρ
2c

(
ρ

8c(1+τ)
−δ
))
.

�

Remark 16. We will need below two variations of Proposition 13. One variation is
the same statement for an independent pair ((X̂0

t )t≥0, (X̂
m
t )t≥0), with marginals equally

distributed to those of ((X0
t )t≥0, (X

m
t )t≥0) (in this case we should replace the "=" inside

brackets in (6.3) by "≤"). The other variation is as follows.

P(νm > t|Fs) ≤ C
|Xm

s −X0
s |√

t− s
for every t > s > 0. (6.16)

The proofs of the variant statements are straightforward adaptations of or require
minimal additional arguments with respect to the above proof.

7 Verification of condition I

7.1 Convergence of a single trajectory of D(Γ̃′′n)

In this subsection we consider a single trajectory starting from a deterministic point
of Λ̃∗n of the form (

√
nz0, nt0) for given fixed (z0, t0) ∈ (−∞,∞) × [0, τ). We will denote

EJP 20 (2015), paper 31.
Page 26/40

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v20-3395
http://ejp.ejpecp.org/


Scaling limit of the radial Poissonian web

M > ρ

C1 C2

Xji
S+
i

δ δ

C3 C3

Xm−ji
S+
i

ρ/4c

Figure 8: Representation of C1, C2 and C3

it as above by γ̃′′√
nz0,nt0

(see (5.1)). As in Section 5, we will denote its rescaled version

D(γ̃′′√
nz0,nt0

) by γ̊
z0,t0

. So the reader should keep in mind that γ̊ is the rescaled version

γ̃′′, we are not using γ̊′′ to simplify notation.
We will establish a weak convergence result of γ̊

z0,t0
to a Brownian motion as follows.

Proposition 17. As n→∞
γ̊
z0,t0

⇒ B
z0,t0

, (7.1)

a Brownian trajectory with diffusion coefficient

ω =
1√

6π1/4
(tan θ)3/4 , (7.2)

starting at (z0, t0), and ending at time τ , where ⇒ in this case means convergence in
distribution in the uniform topology on continuous trajectories from [0, τ ]→ R.

Remark 18. As reasoned in the proof of Lemma 10, it is not very important how we join
the (directed) edges of γ̊

z0,t0
, provided they stay within the isosceles triangle described

towards the end of that proof, which, as argued in that proof, is the case of the edges of
the trajectories of Γ̃′n, and is clearly also the case for linear interpolations of successive
vertices. So, it is also the case for the edges of γ̊

z0,t0
. Below we will consider a jump

version of γ̊
z0,t0

, for which the same also holds.

Proof
By the horizontal translation invariance of the model we may take z0 = 0. We will for

simplicity also take t0 = 0. The argument for other cases is an easy adaptation.
Let us consider the jump version of γ̃′′0 defined as follows.

Z ′t =

J∑
i=1

(Y ′i − Y ′i−1) 1{t≥S′i}, (7.3)

where
(Y ′i , S

′
i) = s̃′′i (0). (7.4)

By Lemma 6, (Y ′i , S
′
i)i≥1 is distributed like (Yi, Si)i≥1. So it is enough to show the

convergence to B0 of {Z(n)
t , 0 ≤ t ≤ τ}, where Z(n)

t = 1√
n
Ztn, and

Zt =
∑
i≥1

Xi 1{t≥Si}, (7.5)
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where Xi = Yi − Yi−1.
We start by establishing a law of large numbers for Srn.

Law of large numbers for Srn.

Lemma 19. Let J be as in (4.21). We have that almost surely

sup
0≤r≤ Jn

∣∣∣∣ 1nSbrnc − ĉr

1− ĉr

∣∣∣∣→ 0 (7.6)

as n→∞, where ĉ is a positive constant defined in (7.15) below.

Proof of Lemma 19
It is convenient to go back to S′rn. See (7.4), and recall that by Lemma 6 (Y ′i , S

′
i)i≥1 is

distributed like (Yi, Si)i≥1. We have that

S′i = s̃′′i (0)2 =
n− |ŝi(0,−n)|
|ŝi(0,−n)|/n

(7.7)

(where ŝi(x) starting from a deterministic point of Λn is defined as in the beginning of
Subsection 4.1, using Tx,logn). We readily find that

n− |ŝi(0,−n)| =: S′′i =
i∑

j=1

Ri, (7.8)

where given S′′i−1, Ri is distributed as

P(Ri > u|S′′i−1) = exp{−area of T(0,S′′i−1),u}1{u<logn}. (7.9)

One may readily check from our discussions on Subsection 4.1 (see e.g. Figure 5
and (4.10)) that for i = 1, . . . , Î the area of T(0,S′′i−1),u is bounded from below and from

above by respectively cu2 and (c+ c′/n)u2, where c′ is a constant. (Recall that with high
probability Î is the first i for which |ŝi(0,−n)| < αn and Î = J .) We conclude that we may
dominate R1, R2, . . . from above and from below by iid sequences of random variables
R′1, . . . , R

′
Î

and R′′1 , . . . , R
′′
Î
, respectively, where

P(R′1 > u) = e−cu
2

1{0<u<logn}, (7.10)

P(R′′1 > u) = e−(c+c′/n)u2

1{0<u<logn}. (7.11)

It follows readily that we may with probability larger than 1 − e−c′′(logn)2 replace
R′1, . . . , R

′
Î

and R′′1 , . . . , R
′′
Î

by respectively R̂′1, . . . , R̂
′
Î

and R̂′′1 , . . . , R̂
′′
Î
, independent ran-

dom variables such that

P(R̂′i > u) = e−cu
2

, (7.12)

P(R̂′′i > u) = e−(c+c′/n)u2

. (7.13)

It now follows from standard large deviation estimates that outside an event of
exponentially small probability in n, and inside the event of the previous paragraph,
given α′ ∈ (0, α), J is smaller than 1

E(R̂′1)
(1−α′)n. Again applying standard large deviation

estimates we get that

sup
0≤r≤ Î

n

∣∣∣∣ 1nS′′brnc − ĉr
∣∣∣∣→ 0 (7.14)

as n→∞, using the fact that

E(R̂′1) = ĉ :=
1

2

√
π/c and E(R̂′′1 ) =

1

2

√
π/(c+ c′/n). (7.15)

The result follows from (7.7-7.8). �

We continue with the proof of Proposition 17.
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Convergence of finite dimensional distributions. Let k ≥ 1 and 0 < t1 < . . . < tk ≤
τ . Given S1, S2 . . . satisfying (7.6), which is an event of full measure, we have that the
increments of Z(n) are independent. Let us consider Z(n)

t2 − Z
(n)
t1 . We write it as

1√
n

∑
i≥1

Xi 1{t1<Si
n ≤t2}. (7.16)

Taking the log of the Laplace transform of the above random variable, conditional on
S1, S2 . . ., we get ∑

i≥1

log κ

(
λcn√
n

Ti1{Ti<Ln}

1 + Si−1

n

1{t1<Si
n ≤t2}

)
, (7.17)

where κ(x) = sinh(x)/x, λ is the argument of the transform, and T1, T2, . . . are indepen-
dent, with Ti distributed as (4.15), with s = Si−1.

Since κ(x) = 1 + 1
6x

2 +O(x4), we may estimate (7.17) by

λ2c2n
6n

∑
i≥1

T 2
i 1{Ti<Ln}(
1 + Si−1

n

)2 1{t1<Si
n ≤t2} + const

(log n)4

n2

∑
i≥1

1{t1<Si
n ≤t2}. (7.18)

The estimates in the proof of Lemma 19 imply that the second term of the above sum
is almost surely negligible as n→∞. Let us analyse the first term.

Given 0 < ε < t1, Lemma 19 can be applied to get that the first term in (7.18) is
almost surely bounded from above and below respectively by

(1± ε)2λ
2c2n
6n

n
ĉ
t2±ε
1+t2∑

i=n
ĉ
t1±ε
1+t1

T̃ 2
i(

1− ĉ in
)2 (7.19)

for all large n, where T̃i = Ti/ (1 + Si−1/n)
2. (That the indicator 1{Ti<Ln} may be dropped

follows from the fact that T̃ ′s̃′i(z0,t0),Ln
∩P̃ 6= ∅ for all i = 0, 1, . . . , J , with probability tending

to one as n→∞, which can be argued as in the proof of Lemma 4.)

Remark 20. In order to estimate (7.19), let us first observe that from (4.15) we may
dominate the distribution of T̃i, i = 1, 2, . . ., above and below by Ťi, i = 1, 2, . . ., iid
random variables such that

P(Ť1 > v) = e−čnv
2

(7.20)

and čn → ĉ as n→∞, where (čn) does not depend on S and varies as upper and lower
bounds).

Let us thus analyse

(1± ε)2λ
2c2n
6n

n
ĉ
t2±ε
1+t2∑

i=n
ĉ
t1±ε
1+t1

Ť 2
i(

1− ĉ in
)2 . (7.21)

A standard large deviation estimate tells us that the latter expression is bounded
above and below respectively by

(1± ε)2λ
2c2n

6čn

n
ĉ
t2±ε
1+t2∑

i=n
ĉ
t1±ε
1+t1

1/n(
1− ĉ in

)2 ± ε, (7.22)

also for all n sufficiently large, where we have used the fact, as follows from (7.20), that
E(Ť 2

1 ) = 1/čn.
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Now, the latter sum is a Riemann sum for the integral∫ 1
ĉ
t2±ε
1+t2

1
ĉ
t1±ε
1+t1

dx

(1− ĉx)
2 =

1

ĉ

∫ t2±ε
1+t2

t1±ε
1+t1

dy

(1− y)
2 . (7.23)

Since ε is arbitrary, we find that the first term in (7.18) converges almost surely as
n→∞ to

λ2c

6ĉ

∫ t2
1+t2

t1
1+t1

dy

(1− y)
2 = λ2 c

6ĉ
(t2 − t1) =: λ2ω2(t2 − t1) , (7.24)

where

ω =

√
c

6ĉ
=

1√
6π1/4

(tan θ)3/4.

Collecting the above steps, we readily conclude that given S1, S2 . . . in a set of full
measure, the increments of Z(n) converge to independent Gaussian random variables
with variance given by ω2 times the time increments. This establishes the convergence
of the finite dimensional distributions of Z(n) given S1, S2 . . . in a set of full measure to
those of Brownian motion with diffusion coefficient ω.

Let us now check tightness of Z(n) given S1, S2 . . . in a set of full measure. Along with
the finite dimensional distribution convergence result, that implies that the statement of
Proposition 17 holds for the distribution of Z(n) given S1, S2 . . . in a set of full measure.
The (unconditional) result then follows by integration. �

Tightness. We will verify standard tightness criteria for the distribution of Z(n) given
S1, S2 . . . in a set of full measure. We may assume S1, S2 . . . satisfies (7.6).

Given the convergence of finite dimensional distributions established above, it is
enough to verify condition (b) of Corollary 7.4, page 129 in Ethier and Kurtz (1986). For
that it is enough to show that given ε, δ > 0, making tj = jδ, j = 0, 1, . . . , dδ−1τe, we have
that

lim
δ→0

lim sup
n→∞

dδ−1τe∑
j=1

P

(
sup

s,t∈[tj−1,tj ]

|Z(n)
t − Z(n)

s | > ε

)
= 0,

where P (·) = P(·|S1, S2 . . .). Indeed, we are going to show that

lim
δ→0

δ−1 lim sup
n→∞

sup
1≤j≤dδ−1τe

P

(
sup

s,t∈[tj−1,tj ]

|Z(n)
t − Z(n)

s | > ε

)
= 0 . (7.25)

It is enough to get this result replacing sups,t∈[tj−1,tj ] |Z
(n)
t −Z

(n)
s | by supt∈[tj−1,tj ] |Z

(n)
t −

Z
(n)
tj−1
|.

Since

Z
(n)
t − Z(n)

ti−1
=

1√
n

∑
i≥1

Xi 1{tj−1<
Si
n ≤t} =:

1√
n
Wt, (7.26)

and using Markov’s inequality, we get that

P

(
sup

t∈[tj−1,tj ]

|Z(n)
t − Z(n)

tj−1
| > ε

)
= P

(
sup

t∈[tj−1,tj ]

|Wt| > ε
√
n

)
≤ 1

ε4n2
E(M4

j ) ≤ const

n2
E(W 4

tj ),

(7.27)
where Mj = supt∈[tj−1,tj ] |Wt|, and we have used Doob’s Lp maximal inequality, valid
here since under P , the Yi’s are independent and have zero mean.
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Now, E(W 4
tj )/n

2 is equal to

1

n2

∑
i≥1

(E(X4
i )− E2(X2

i )) 1{tj−1<
Si
n ≤tj} +

 1

n

∑
i≥1

E(X2
i ) 1{tj−1<

Si
n ≤tj}

2

, (7.28)

The first term of (7.28) is positive. Dropping E2(X2
i ) and using (4.17), we find that it

is bounded above by constant times

1

n2

∑
i≥1

T 4
i 1{tj−1<

Si
n ≤tj}, (7.29)

and arguing as in the estimation of (7.19), we find that the latter sum is of order n
outside an event of P-probability exponentially small. Thus the first term of (7.28) is
almost surely negligible as n→∞. The squared term on (7.28) may likewise be upper
bounded by

1

n

∑
i≥1

T 2
i 1{tj−1<

Si
n ≤tj}, (7.30)

and again an argument like the one to estimate (7.19) yields an almost sure upper bound
for the n limit of (7.30) of constant times δ.

Substituting successively in (7.28) and (7.27), we get (7.25). �

Remark 21. Below we will need extensions of Proposition 17 to the case of conditional
distributions of γ̊z0,t0 and its jump version given the history up to a deterministic or
stopping time. These follow by virtually the same reasoning as above, with minimal,
straightforward modifications.

7.2 Convergence of a finite number of trajectories of D(Γ̃′′n)

Now that we have convergence of single trajectories to Brownian Motion, we can
prove condition I following the same steps of the proof presented in [7]. A similar
approach is undertaken also in [5], so we will allow ourselves to be somewhat sketchy in
our arguments for this subsection. With respect to [7], here we have the advantage that
trajectories cannot cross each other and the disadvantage that the trajectories are not
evolving according to a discrete space-time lattice.

Proposition 22. Let (z0, t0), (z1, t1), ... , (zm, tm) be m + 1 distinct points in R × [0, τ).
Then (

γ̊z0,t0 , ..., γ̊zm,tm

)
=⇒D

(
Bz0,t0 , ..., Bzm,tm

)
,

where Bz0,t0 , ... , Bzm,tm are coalescing Brownian Motions with constant diffusion
coefficient ω starting at (z0, t0),...,(zm, tm).

We prove Proposition 22 by induction on m, the case m = 0 having been treated
in Proposition 17. We may start by supposing that tj < tm, j = 1, ...,m − 1. From the
induction hypothesis, conditioning on the history up to tm, we may indeed reduce to the
case where t0 = t1 = · · · = tm, and, relabeling if necesssary, z0 < z1 < · · · < zm.

Denote by D([s, t]), for s < t, the space of càdlàg real functions on [s, t]. Let us fix
a uniformly continuous bounded function H : D([tm, τ ])m+1 → R, with the following
property. Let us start by defining coalescence operators of two trajectories as follows.

Given γ, γ′ ∈ D([tm, τ ]) such that γ(0) < γ′(0), let ť = ť(γ, γ′) = inf{t ∈ [tm, τ ] : γ(t) ≥
γ′(t)}, with inf ∅ =∞. Now let C(γ, γ′) = (γ, γ̌), with γ̌(t) = γ′(t) for t < ť, and γ̌(t) = γ(t)

for t ≥ ť. This should be seen as coalescence with the path (initially) to the left. (The
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cases where γ(0) = γ′(0) are immaterial for our purposes, and can be defined arbitrarily,
say in such a way that either C(γ, γ′) = (γ, γ) or C(γ, γ′) = (γ′, γ′).)

Let us now define a coalescence operator of m+ 1 trajectories. Suppose γ0, . . . , γm ∈
D([tm, τ ]) such that γ0(tm) < · · · < γm(tm). Then Cm(γ0, . . . , γm) = (γ̌0, . . . , γ̌m), where
γ̌0 = γ0, and for k = 1, . . . ,m, (γ̌k−1, γ̌k) = C(γ̌k−1, γk). We may say that under Cm, γ0

remains invariant, and the paths γ1, . . . , γm coalesce to the left.
Now for the above mentioned property of H. We require H to be invariant under coa-

lescence, in the following sense. Given γ0, . . . , γm as above, we ask that H(γ0, . . . , γm) =

H ◦ Cm(γ0, . . . , γm).
Denote by γ̄z,t the jump version of γ̊z,t (similarly as above). Note that γ̄z,t depends on

the scaling parameter n, but as with previous notation we are omitting it. We will show
that

lim
n→∞

|E[H(γ̄z0,t0 , ..., γ̄zm,tm)]− E[H(Bz0,t0 , ..., Bzm,tm)]| = 0 . (7.31)

Notice that Cm is almost surely continuous with respect to the product Wiener measure
on D([tm, τ ])m+1 (under the sup norm). By induction and the definition of convergence
in distribution, we obtain Proposition 22.

We start by taking a version of γ̄zm,tm which is independent of (γ̄z0,t0 , ..., γ̄zm−1,tm−1
).

Let
ν = τ ∧ inf

{
s ≥ 0 : (γ̄zm,tm(s)− γ̄zm−1,tm−1

(s)) ≤ n− 1
8

}
.

For every n, let P??n be a Poisson point process which is also independent of P?n and has
the same intensity measure given in (6.1). LetQ?n = {P?n∩{R×[0, ν]}}∪{P??n ∩{R×(ν, τ ]}}.
One readily checks that Q?n is equally distributed with P?n. Now let γ̄?zm,tm be the as
the path γ̄zm,tm , except that using Q?n rather than P?n. It may be checked that for all
large enough n, γ̄?zm,tm is independent of (γ̄z0,t0 , ..., γ̄zm−1,tm−1). Notice that γ̄?zm,tm equals
γ̄zm,tm up to time ν.

We are now ready to prove (7.31). The expression inside the lim sign there is bounded
above by

|E[H(γ̄z0,t0 , ..., γ̄zm,tm)]− E[H(γ̄z0,t0 , ..., γ̄zm−1,tm−1 , γ̄
?
zm,tm)]|

+|E[H(γ̄z0,t0 , ..., γ̄zm−1,tm−1
, γ̄?zm,tm)]− E[H(Bz0,t0 , ..., Bzm,tm)]|. (7.32)

By the induction hypothesis and Proposition 13, we have that the second term in
(7.32) goes to zero as n goes to +∞. So we only have to deal with the first term in (7.32).
This is bounded above by

E
[∣∣H(γ̄z0,t0 , ..., γ̄zm,tm)−H(γ̄z0,t0 , ..., γ̄zm−1,tm−1 , γ̌

′
zm,tm)

∣∣Iν<τ ], (7.33)

where γ̌′zm,tm is such that (γ̄zm−1,tm−1
, γ̌′zm,tm) = C(γ̄zm−1,tm−1

, γ̄?zm,tm).

To deal with the expectation in (7.33), we define the coalescence times

σ = inf{s ≥ 0 : γ̄zm−1,tm−1 = γ̄zm,tm} and σ? = inf{s ≥ 0 : γ̄zm−1,tm−1 ≥ γ̄?zm,tm} .

The tail of the distributions of the times σ and σ? are both O(1/
√
tn) — see Proposition 13

and Remark 16.
Define the event

Cn,τ =
{

sup
0≤s≤τ

|γ̌′zm,tm(s)− γ̄zm,tm(s)| ≥ n− 1
16 log n

}
=

{
sup
ν≤s≤τ

|γ̌′zm,tm(s)− γ̄zm,tm(s)| ≥ n− 1
16 log n

}
,
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where the second equality follows from the fact that γ̄?zm,tm equals γ̄zm,tm up to time ν.

Now P
(
Cn,τ , ν < τ

)
is bounded above by

P
(
Cn,τ , ν < τ, {σ, σ? ∈ [ν, ν + n−

1
8 ]}
)

+ P
(
σ > ν + n−

1
8

)
+ P

(
σ? > ν + n−

1
8

)
. (7.34)

By Proposition 13 and its extensions — see Remark 16 —, the latter two terms in (7.34)

are bounded above by 2 n
3
8

n
7
16

= 2n−
1
16 . On the other hand, since γ̌′zm,tm = γ̄zm,tm after

max{σ, σ?}, the first term in (7.34) is bounded above by

P
(

sup
ν≤s≤(ν+n−

1
8 )∧τ

|γ̌′zm,tm(s)− γ̄zm,tm(s)| ≥ n− 1
16 log n, ν < τ

)
,

and this is in turn bounded above by

P
(

sup
0≤s≤n

7
8

∣∣γ̆zm,tm(ν + s)− γ̆zm,tm(ν)
∣∣

n
7
16

≥ log n

2

∣∣∣ ν)
+P
(

sup
0≤s≤n

7
8

∣∣γ̆?zm,tm(ν + s)− γ̆?zm,tm(ν)
∣∣

n
7
16

≥ log n

2

∣∣∣ ν),
where γ̆zm,tm is the unscaled version of γ̄zm,tm (also the jump version of γ̃′′zm,tm), and
likewise for γ̆?zm,tm with respect to γ̄?zm,tm . By Proposition 17 and its extension (see
Remark 21), the first probability above goes to zero as n goes to infinity, and by a
virtually forthright extension of those results for γ̆?zm,tm , so does the second probability.

Finally we have that (7.33) is bounded above by a term that converges to zero as
n→∞ plus

E
[∣∣H(γ̄z0,t0 , ..., γ̄zm,tm)]−H(γ̄z0,t0 , ..., γ̄zm−1,tm−1 , γ̌

′
zm,tm)

∣∣ICcn,τ ,ν<τ ]. (7.35)

By the uniform continuity of H the rightmost expectation in the previous expression
converges to zero as n goes to +∞.

8 Verification of conditions B1 and E

8.1 Verification of condition B1

By spatial translation invariance of the system we have to show that

lim sup
ε→0+

lim sup
n→+∞

sup
t>β

sup
t0∈R

P(ηD(Γ̃′′n)(t0, t; 0, ε) ≥ 2) = 0 .

We note that ηD(Γ̃′′n)(t0, t; 0, ε) ≥ 2 if and only if leftmost and rightmost trajectories of

D(Γ̃′′n) crossing the interval [0, ε] at time t0 have not met up to time t0 + t. By Proposition
22, this pair of trajectories converge to those of two coalescing Brownian motions
starting at points (0, t0) and (ε, t0). Then, it is straightforward to get that

lim sup
n→∞

P(ηn(t0, t; 0, ε) ≥ 2) = 2Φ(ε/
√

2t )− 1 ≤ 2Φ(ε/
√

2β )− 1,

where Φ(·) is the standard normal distribution function. (We have used the fact that the
time of coalescence of two coalescing Brownian paths is an almost surely continuous
function of those trajectories, say in a suitable probability space, e.g. where the coalesc-
ing paths are constructed out of independent paths. An independent argument goes by
invoking Proposition 13.) From the previous inequality we obtain (B1) by taking the limit
as ε goes to 0.
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8.2 Verification of condition E

We will work here with the following sets of paths

Γ̆n = {γ̆x, x ∈ P̃},

which is the jump version of {γ̃′′x , x ∈ P̃n}.
As before, define the set of diffusively rescaled paths of Γ̆n as

D(Γ̆n) = {D(γ); γ ∈ Γ̆n}. (8.1)

Notice that in Γ̆n we only have paths starting from the points of the Poisson point
process P̃. Nevertheless, it follows from some analogous arguments presented in Section
5 above that

dHτ,τ0

(
D(Γ̃′′n), D(Γ̆n)

)
→ 0 (8.2)

in probability (even though D(Γ̆n) is in principle not in Hτ,τ0 — but could be included, as
càdlàg trajectories —; see arguments in the proof of Lemma 12 and Remark 18), and
thus subsequential limits of D(Γ̃′′n) and D(Γ̆n) coincide (along the same subsequences).
Then, it is enough to show that D(Γ̆n) satisfies condition E.

We will follow [16] and [20] closely, with similar notation, which we now introduce.
We fix X as a subsequencial limit of D(Γ̆n), which is a tight sequence, as follows from
Proposition B.2 of [11], since the paths of each of its elements are noncrossing, and, as
seen above, converge to Brownian motions (see Proposition 17 and its proof above). For
any system of space time paths Y, given T ∈ R, we write set YT− as the set of paths in
Y that start at some time s < T . We also write Y(T ) to represent the set of intersection

points of all paths in Y with R× {T}. Note that, η̂Y(t0, t; a, b) = #(Yt
−
0 (t0 + t) ∩ (a, b)).

In the proof of condition E, the first result we need to show is that X t
−
0 (t0 + ε) is a

locally finite point process. Here the proof is more complicated than the lattice random
walk case presented for instance in [20]. The first step is to prove that Γ̆T

−

n (T ) is in a
certain sense locally finite uniformly in T > 0 (note that here we are considering Γ̆n as a
set of paths starting at space-time points in P̃). This is the object of the next result.

Lemma 23. There exists a constant C > 0, which does not depend on the scaling
parameter n, such that

E
[
#
(
Γ̆T
−

n (T ) ∩ [0,M)
)]
≤ CM ,

for every M > 0.

Proof
We say that a point (x, s) ∈ {[0,M)× [0, T )} ∩ P̃ touches [0,M)× {T} if the path γ̆x,s

does not meet any other point of P̃ during the time interval [s, T ]. By the definition of
the random paths in Γ̆n, if γ̆x,s touches [0,M)× {T}, then it is constantly equal to x in

the time interval [s, T ). Note that Γ̆T
−

n (T ) ∩ {[0,M)× {T}} is equal to the random set of
points that touch [0,M)× {T}.

Now fix L = c
1+τ ∧ 1, where τ and c are the specific constants introduced respectively

in Sections 2 and 4. Enlarging M if necessary, we can suppose that M/L is an integer.
For j = 1, ...,M/L and 1 ≤ k ≤ dT e, let Dj,k = [(j − 1)L, jL)× [T − k, T − k + 1), and let

Aj,k be the random sets of points in Dj,k ∩ P̃ that touch [0,M)× {T}, and also let

Bj,k = Dj,k ∩ P̃.

For k > dT e, let Bj,k ≡ ∅.
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L

1

T̃ ′s̃′
i?−1

(x)

y

ỹ

Dj,k0

Dj,k0+2

s̃′i?−1(x)

d′n log(n)

Figure 9: If y ∈ Bj,k0 and ỹ ∈ Bj,k0+2 and x ∈ Aj,k for some k > k0 + 2, then either

ỹ ∈ T̃ ′s̃′
i?−1

(x),d′n logn, or y ∈ T̃ ′s̃′
i?

(x),d′n logn.

EJP 20 (2015), paper 31.
Page 35/40

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v20-3395
http://ejp.ejpecp.org/


Scaling limit of the radial Poissonian web

We claim that Bj,k0 6= ∅ and Bj,k0+2 6= ∅ implies that Aj,k = ∅ for every k > k0 + 2. To
prove the claim, let y ∈ Bj,k0 and ỹ ∈ Bj,k0+2. Suppose that there exists x = (x1, x2) ∈
Aj,k for some k > k0 + 2. Recall de definition of d′n(·) in (4.13). Let δ0 = x2 and, for i ≥ 0,
δi+1 = δi + d′n(δi) log n — here we are making explicit that d′n(·) is a function. Let i? be
the largest i ≥ 0 such that δi? < T − k0 + 1. Then one of two mutually exclusive events
may happen see (Figure 9):

1. s̃′i?(x) = (x1, δi?) lies in Dj,k0 ∪Dj,k0+1, in which case ỹ ∈ T̃ ′s̃′
i?−1

(x),d′n logn, in contra-

diction to the fact that x touches M

2. s̃′i?(x) lies below Dj,k0+1, in which case y ∈ T̃ ′s̃′
i?

(x),d′n logn, again in contradiction to

the fact that x touches M .

So the claim is established. Note that the above argument does not work if we consider
Bj,k0 6= ∅ and Bj,k0+1 6= ∅, since we can still have Aj,k 6= ∅ for some k ≥ k0 + 2, we leave
the details to the reader.

Define βj = min
{
k ≥ 1 : Bj,3k 6= ∅ and Bj,3k+2 6= ∅

}
, with min ∅ = (dT e − 2)/3. The

random variables βj , j = 1, ...,M/L, are iid random variables stochastically dominated
by a geometric distribution of parameter (1− e−L)2. Moreover,

#
(
Γ̆T
−

n (T ) ∩ {[0,M)× {T}}
)

=

M/L∑
j=1

3βj+2∑
k=1

#Aj.k ≤
M/L∑
j=1

3βj+2∑
k=1

#Bj.k .

Now the B’s and β’s are not independent, but #Bj.k|βj = m is stochastically dominated
by 1 + ζ where ζ is a Poisson distribution of parameter L, for every 1 ≤ k ≤ 3m + 2.
Therefore

E
[
#
(
Γ̆T
−

n (T ) ∩ {[0,M)× {T}}
)]
≤

M/L∑
j=1

E
[ 3βj+2∑
k=1

#Bj.k

]
≤ M

L
E
[
E
[ 3βj+2∑
k=1

#Bj.k

∣∣∣βj]]
≤ M

L
E
[
1 + ζ

]
E
[
3βj + 2

]
=

M

L
(1 + L)

( 3

(1− e−L)2
+ 2
)
.

�

Lemma 24. There exists a positive constant C > 0, which does not depend on the
scaling parameter n, such that

E
[
#
(
Γ̆T
−

n (T + t) ∩ {[0,M)× {T + t}}
)]
≤ CM√

t
,

for every M > 0.

Remark 25. Lemma 24 is a version of Lemma 2.0.7 in section 2 of [20]. The latter result
holds for the difference of two independent continuous time random walks on Z which is
not our case.

Proof of Lemma 24
First, we point out that, by the additivity of #

(
Γ̆T
−

n (T + t) ∩ ·
)

as a set function in the
borelians of R× {T + t}, it is enough to consider the case M = 1.

Below we use Proposition 13 and Lemma 23 above, as well as an adaptation of the
proof of Lemma 2.7 in [16] (or Lema 2.07 in [20]) that works if we properly replace the
counting variables ξAt and the notion of nearest neighbors sites, as follows.

For every A ⊂ Z, t > 0, and k ∈ Z, let ξAt (k) be the number of points in Γ̆T
−

n (T +

t) ∩ {[k, k + 1) × {T + t}} due to paths that also visit [l, l + 1) at time T for some l ∈ A.

EJP 20 (2015), paper 31.
Page 36/40

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v20-3395
http://ejp.ejpecp.org/


Scaling limit of the radial Poissonian web

Also define ξAt =
∑
j∈Z ξ

A
t (j) which is the number of points in Γ̆T

−

n (T + t) also due to
paths that also visit [l, l + 1) at time T for some l ∈ A. With this definition, we have that

et = E
[
#
(
Γ̆T
−

n (T + t) ∩ {[0, 1)× {T + t}}
)]

= E
[
ξZt (0)

]
.

Let BN = {0, 1, ..., N − 1}, by the same translation invariance argument presented in
Lemma 2.7 in [16], we obtain that

etN = E
[N−1∑
j=0

ξZt (j)
]
≤
∑
k∈Z

E
[N−1∑
j=0

ξBN+kN
t (j)

]

=
∑
k∈Z

E
[N−1∑
j=0

ξBNt (j + kN)
]
≤ E

[
ξBNt

]
. (8.3)

By Lemma 23, we have that E
[
ξBNt

]
is finite. For every k ∈ BN , let Ek = Γ̆T−n (T ) ∩

{[k, k + 1) × {T}} and βk = #Ek. To avoid the event that βk ≡ 0, we perform the
enlargement EN = {1/2, 3/2, ..., (2N + 1)/2} ∪

(
∪N−1
j=0 Ej

)
. Thus EN is a set of cardinality

β = N +
∑N−1
j=0 βk with nearest neighbor points at distance smaller or equal than one

from each other. Given β, ξBNt is bounded above by β times the number of nearest
neighbor pairs in EN that have coalesced by time t. Thus, by Proposition 13, there exists
C1 > 0 such that

E
[
ξBNt

∣∣β ] ≤ β − (β − 1)P(ν1 ≤ t) ≤ 1 + β
C1√
t
.

Also by Lemma 23, we have that the expectation of βk is bounded above by C2 for some
C2 > 0. Hence, for C = C1(C2 + 1)

E
[
ξ̂BNt

]
≤ 1 +

C N√
t
.

From the previous inequality , (8.3) and the fact that N is arbitrarily chosen, we have
that et ≤ C/

√
t. �

As a straighforward application of the previous lemma, we get the following result.

Corollary 26. For every t0, t, a, b ∈ R with t > 0 and a < b, we have

lim sup
n→∞

E
[
η̂D(Γ̆n)(t0, t; a, b)

]
≤ C (b− a)√

t
.

The previous corollary is a version of Lemma 3.5.4 in [20]. From it we are able to
obtain versions of Lemmas 3.5.2 and 3.5.3, which we write as follows.

Lemma 27. For any subsequencial limit X of D(Γ̆n) and every t > 0, X t
−
0 (t0 +t) is almost

surely locally finite.

Lemma 28. For any subsequencial limit X of D(Γ̆n) and every t > 0, X t
−
0
t0+t, i.e. the set

of paths starting at X t
−
0 (t0 + t) truncated before time t0 + t, is distributed as coalescing

Brownian motions starting at the random set X t
−
0 (t0 + t).

With these results, we may conclude, as in [16] and [20], as follows. For every ε < t/2,
we have that

E[η̂X (t0, t; a, b)] ≤ E
[
η̂
X (t0+ε)−
t0+t

(t0 + ε, t; a, b)
]
.
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From Lemma 28, the right hand side in the previous inequality is bounded above by

E[η̂W0
(t0 + ε, t; a, b)] =

b− a√
πω(t− ε)

.

Letting ε→ 0, we obtain condition E.

Proof of Lemma 27
The proof follows the argument for Lemma 3.5.2 in [20] exactly. The strategy is

to obtain an upper bound for the expectation of the number of points of X t
−
0 (t0 + t)

falling inside an arbitrary interval (a, b) in terms of the liminf of the expectations of the
corresponding approximating objects, and then to conclude by resorting to Corollary 26.
The upper bound follows by an application of the portmanteau theorem. �

In the proof of Lemma 28, to be given next, we rely on two lemmas of [20]: Lemmas
3.5.3 and 3.5.5. As we discuss below, there is some minor adaptation to our context
to be done, which we leave to the reader. Let us briefly discuss these results. Lemma
3.5.5 roughly establishes that given a sequence of random sets of space time points
(An) converging in distribution to a locally finite random set of space time points A, we
have that the collection of the analogue of rescaled RPW paths in [20] (in that context,
rescaled coalescing random walk paths) starting from An converges in distribution to
coalescing Brownian motions starting from A. As an application of that result, Lemma
3.5.3 roughly establishes that the collection of rescaled RPW paths starting from (the
analogue of) D(Γ̆n)t

−
0 (t0 + t) (in [20]) converges in distribution to coalescing Brownian

motions starting from X t
−
0 (t0 + t) — so, indeed Lemma 3.5.3 is the analogue of Lemma

28 in [20].

Proof of Lemma 28
The random set D(Γ̆n)t

−
0 (t0 + t) converges in distribution to X t

−
0 (t0 + t) (along the

same subsequence fixed at the beginning of the subsection). Since we already have
condition I, upon attempting to follow the proof of Lemma 3.5.3 in [20], we realize
that all we need is a version of Lemma 3.5.5 in that paper that could be applied to our
case, see also Remark 3.5.1 also in [20]. The difference here is that we cannot consider
D(Γ̆n)t

−
0 (t0 + t) as starting points of random walks, as is the case in [20], due to the

non-Markovian property of the paths. Indeed this is the only difficulty. (Another point is
that the proof of Lemma 3.5.5 in [20] is done for discrete spatial lattices only, but this is
for convenience only, as is apparent in that proof. Indeed, it may be readily checked that
the arguments hold for random sets of R2 that are almost surely locally finite.)

In order to overcome that lack of Markovianity, we proceed by replacing D(Γ̆n)t
−
0 (t0 +

t) by a suitable diffusively rescaled subset of P̃. Let P̃ ′ = {D(x, s) : (x, s) ∈ P̃}. For

each point x in a given realization of D(Γ̆n)t
−
0 (t0 + t), we have that P̃ ′ ∩

(
{x}× (0, t0 + t)

)
contains a single point almost surely; we call its single point the ancestor of x, denoted
by a(x). Let Ān be the random set of ancestors of D(Γ̆n)t

−
0 (t0 + t). We claim that Ān

converges in distribution to X t
−
0 (t0 + t). Since Ān consists of starting points of the

trajectories in D(Γ̆n), if we prove the claim then we can use Lemma 3.5.5 and adapt the
proof of Lemma 3.5.3 in [20] to our case.

The remainder of this proof will be devoted to prove that Ān converges in distribution
to X t

−
0 (t0 + t). Indeed, we show that for each fixed M > 0 the Hausdorff distance

between ĀM,N := {x = (x1, x2) ∈ Ān : x1 ∈ (−M,M)} and D(Γ̆n)M := D(Γ̆n)t
−
0 (t0 +

t) ∩ {(−M,M) × {T + t}} converges to zero in probability. We denote the Hausdorff
distance between sets in R2 by ρH . In order to avoid complications with notation

due to scaling, we introduce the following objects. Let Γ̆M,n := Γ̆
(nt0)−

n (n(t0 + t)) ∩
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(−M
√
n,M

√
n) × {n(t0 + t)}, and let ĂM,n be the set of ancestors of Γ̆M,n, where the

definition of ancestor in is analogous to the one above but uses P̃ in place of P̃ ′. We then
have that D(Γ̆n)M = D(Γ̆M,n), ĀM,n = D(ĂM,n), and

ρH
(
ĀM,n, D(Γ̆M,n)

)
≤ n−1 sup

{
|x− a(x)| : x ∈ Γ̆M,n

}
. (8.4)

Now, from the proof of Lemma 23, we have that for all x ∈ Γ̆M,n, a(x) is a point
that touches (−M

√
n,M

√
n) at time n(t0 + t). Proceeding as in that proof, we make a

partition of the interval (−M
√
n,M

√
n) in d2M

√
n/Le intervals, Ij , of size at most L.

We associate to each Ij , 1 ≤ j ≤ d2Mn/Le, a random variable βj also as in the proof of
Lemma 23. Then, recall that the definition of βj implies that no point at distance greater
than 3βj + 2. Therefore, for every ε > 0,

P
(
ρH
(
ĀM,n, D(Γ̆M,n)

)
≥ ε
)
≤ P

(
max

1≤j≤M
√
n

L

3βj + 2

n
≥ ε
)
.

Since, as argued in the proof of Lemma 23 above, the random variables βj are iid
and stochastically dominated by a geometric distribution, a standard argument shows
that the latter probability vanishes as n→∞. This proves the claim. �

References

[1] R. Arratia: Coalescing Brownian motions and the voter model on Z. Unpublished partial
manuscript (circa 1981), available at rarratia@math.usc.edu.

[2] F. Baccelli; C. Bordenave: The radial spanning tree of a Poisson point process, The Annals of
App. Probab. 17(1), 305–359 (2007). MR-2292589

[3] S. Belhaouari; T. Mountford; R. Sun; G. Valle: Convergence results and sharp estimates for
the voter model interfaces, Electron. J. Probab. 11, 768–801 (2006) MR-2242663

[4] A. Bhatt; R. Roy: On a random directed spanning tree.

[5] C. Coletti; L. R. Fontes; E. Dias: Scaling limit for a drainage network model, J. Appl.Prob. 46,
1184–1197 (2009). MR-2582714

[6] C. Coletti; L. Valencia: The Radial Brownian Web, preprint.

[7] C. Coletti; G. Valle: Convergence to the Brownian Web for a generalization of the drainage
network model, To appear at Ann. L’Inst. Henri Poincaré.

[8] P. A. Ferrari; C. Landim; H. Thorisson: Poisson trees, succesion lines and coalescing random
walks, Ann. Inst. H. Poincaré Probab. Statist. 40, 141-152 (2004). MR-2044812

[9] P. A. Ferrari; L. R. G. Fontes; X. Y. Wu: Two dimensional Poisson trees converge to the
Brownian web, Ann. Inst. H. Poincaré Probab. Statist. 41, 851-858 (2005). MR-2165253

[10] L. R. G. Fontes; M. Isopi; C. M. Newman; K. Ravishankar: The Brownian web, Proc. Natl.
Acad. Sci. USA 99, no. 25, 15888 – 15893 (2002). MR-1944976

[11] L. R. G. Fontes; M. Isopi; C. M. Newman; K. Ravishankar: The Brownian web: characterization
and convergence, Ann. Probab. 32, 2857-2883 (2004). MR-2094432

[12] L. R. G. Fontes; M. Isopi; C. M. Newman; K. Ravishankar: Coarsening, nucleation, and the
marked Brownian web. Ann. Inst. H. Poincaré Probab. Statist. 42, 37-60 (2006). MR-2196970

[13] L. R. G. Fontes; C. M. Newman: The full Brownian web as scaling limit of stochastic flows.
Stoch. Dyn. 6, 213-228 (2006) MR-2239090

[14] S. Gangopadhyay; R. Roy; A. Sarkar: Random oriented trees: a model of drainage networks,
Ann. App. Probab. 14, 1242-1266 (2004). MR-2071422

[15] I. Monroe: Processes that can be embedded in Brownian Motion, Ann. Probab. 6, 42-56
(1978). MR-0455113

[16] C. M. Newman; K. Ravishankar; R. Sun: Convergence of coalescing nonsimple random walks
to the Brownian web, Electron. J. Probab. 10, 21–60 (2005) MR-2120239

EJP 20 (2015), paper 31.
Page 39/40

ejp.ejpecp.org

http://www.ams.org/mathscinet-getitem?mr=2292589
http://www.ams.org/mathscinet-getitem?mr=2242663
http://www.ams.org/mathscinet-getitem?mr=2582714
http://www.ams.org/mathscinet-getitem?mr=2044812
http://www.ams.org/mathscinet-getitem?mr=2165253
http://www.ams.org/mathscinet-getitem?mr=1944976
http://www.ams.org/mathscinet-getitem?mr=2094432
http://www.ams.org/mathscinet-getitem?mr=2196970
http://www.ams.org/mathscinet-getitem?mr=2239090
http://www.ams.org/mathscinet-getitem?mr=2071422
http://www.ams.org/mathscinet-getitem?mr=0455113
http://www.ams.org/mathscinet-getitem?mr=2120239
http://dx.doi.org/10.1214/EJP.v20-3395
http://ejp.ejpecp.org/


Scaling limit of the radial Poissonian web

[17] M. Penrose; A. Wade: Random minimal directed spanning trees and Dickman type distribu-
tions, Adv. in Appl. Probab. 36, 691-714 (2004). MR-2079909

[18] M. Penrose; A. Wade: On the total length of the random minimal directed spanning tree, Adv.
in Appl. Probab. 38, 336-372 (2006). MR-2264948

[19] R. Roy; K. Saha; A. Sarkar: Random directed forest and the Brownian web, arXiv:1301.3766
[math.PR]

[20] R. Sun: Convergence of Coalescing Nonsimple Random Walks to the Brownian Web, Ph.D. The-
sis, Courant Institute of Mathematical Sciences, New York University, arXiv:math/0501141,
(2005). MR-2706830

[21] A. Sarkar, R. Sun: Brownian web in the scaling limit of supercritical oriented percolation in
dimension 1+1, preprint. MR-3035749

[22] R. Sun, J. M. Swart: The Brownian net, Ann. Probab. 36, 1153-1208 (2008). MR-2408586

[23] J. Tiefeng: Large deviations for renewal processes, Stoch. Proc. and their Appl. 50, 57-71
(1994). MR-1262330

[24] B. Tóth; W. Werner: The true self-repelling motion, Prob. Theory Related Fields 111, pp
375-452 (1998). MR-1640799

[25] L. A. Valencia: A Teia Browniana Radial, PhD. thesis (in protuguese), IME-USP (2012)

EJP 20 (2015), paper 31.
Page 40/40

ejp.ejpecp.org

http://www.ams.org/mathscinet-getitem?mr=2079909
http://www.ams.org/mathscinet-getitem?mr=2264948
http://www.ams.org/mathscinet-getitem?mr=2706830
http://www.ams.org/mathscinet-getitem?mr=3035749
http://www.ams.org/mathscinet-getitem?mr=2408586
http://www.ams.org/mathscinet-getitem?mr=1262330
http://www.ams.org/mathscinet-getitem?mr=1640799
http://dx.doi.org/10.1214/EJP.v20-3395
http://ejp.ejpecp.org/

	Introduction
	The model. Main result.
	Proof of Theorem 1
	Proofs of Proposition 2 and Lemma 3
	Preliminaries
	Proof of Lemma 10

	Proof of Proposition 9
	Coalescence time
	Verification of condition I
	Convergence of a single trajectory of D(''n)
	Convergence of a finite number of trajectories of D(''n)

	Verification of conditions B1 and E
	Verification of condition B1
	Verification of condition E

	References

