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Abstract

In a previous paper, the authors introduced an approach to prove that the statistics
of the extremes of a log-correlated Gaussian field converge to a Poisson-Dirichlet
variable at the level of the Gibbs measure at low temperature and under suitable
test functions. The method is based on showing that the model admits a one-step
replica symmetry breaking in spin glass terminology. This implies Poisson-Dirichlet
statistics by general spin glass arguments. In this note, this approach is used to prove
Poisson-Dirichlet statistics for the two-dimensional discrete Gaussian free field, where
boundary effects demand a more delicate analysis.
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1 Introduction

1.1 The model

Consider a finite box A of Z2. The Gaussian free field (GFF) on A with Dirichlet
boundary condition is the centered Gaussian field (φv, v ∈ A) with the covariance matrix

GA(v, v′) := Ev

[
τA∑

k=0

1v′(Sk)

]
, (1.1)

where (Sk, k ≥ 0) is a simple random walk with S0 = v of law Pv killed at the first exit
time of A, τA, i.e. the first time where the walk reaches the boundary ∂A. Throughout
the paper, for any A ⊂ Z2, ∂A will denote the set of vertices in Ac that share an edge with
a vertex of A. We will write P for the law of the Gaussian field and E for the expectation.
For B ⊂ A, we denote the σ-algebra generated by {φv, v ∈ B} by FB.
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Poisson-Dirichlet statistics and 2D Gaussian free field

We are interested in the case where A = VN := {1, . . . , N}2 in the limit N →∞. For
0 ≤ δ < 1/2, we denote by V δN the set of the points of VN whose distance to the boundary
∂VN is greater than δN . In this set, the variance of the field diverges logarithmically
with N (cf. Lemma 2.1 in [13])

E[φ2
v] = GVN (v, v) =

1

π
logN2 +ON (1), ∀v ∈ V δN , (1.2)

where ON (1) will always be a term which is uniformly bounded in N and in v ∈ V δN .
(The term oN (1) will denote a term which goes to 0 as N → ∞ uniformly in all other
parameters.) In addition, there exists c0 > 0 independent of N such that (see Lemma 1
in [7])

sup
v∈VN

E[φ2
v] ≤

1

π
logN2 + c0. (1.3)

In V δN , the covariances can be estimated by (cf. Lemma 2.1 in [13])

E[φvφv′ ] = GVN (v, v′) =
1

π
log

N2

‖v − v′‖2
+ON (1), ∀v, v′ ∈ V δN , (1.4)

where ‖ · ‖ denotes the Euclidean norm on Z2. In view of (1.2) and (1.4), the Gaussian
field (φv, v ∈ VN ) is said to be log-correlated. On the other hand, there are many points
that are outside V δN (of the order of N2 points) for which the estimates (1.2) and (1.4)
are not correct. Essentially, the closer the points are to the boundary the lesser are the
variance and covariance as the simple random walk in (1.1) has a higher probability of
exiting VN early. This decoupling effect close to the boundary complicates the analysis of
the extrema of the GFF by comparison with log-correlated Gaussian fields with stationary
distribution.

1.2 Main results

It was shown by Bolthausen, Deuschel, and Giacomin [7] that the maximum of the
GFF in VN satisfies

lim
N→∞

maxv∈VN φv
logN2

=

√
2

π
, in probability. (1.5)

Their technique was later refined by Daviaud [13] who computed the log-number of high
points in V δN : for 0 < λ < 1,

lim
N→∞

1

logN2
log #{v ∈ V δN : φv ≥ λ

√
2

π
logN2} = 1− λ2, in probability. (1.6)

It is a simple exercise using Laplace’s method to show that the free energy in VN of
the model is given by

f(β) := lim
N→∞

1

logN2
log

∑

v∈VN

eβφv =





1 + β2

2π , if β ≤
√

2π,√
2
πβ, if β ≥

√
2π,

(1.7)

in probability and in L1. Indeed, there is the clear lower bound log
∑
v∈VN e

βφv ≥
log
∑
v∈V δN

eβφv , which can be evaluated using the estimate on the log-number of high
points (1.6). The upper bound follows from a first moment calculation on the number of
high points.
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Poisson-Dirichlet statistics and 2D Gaussian free field

A striking fact is that the three above results correspond to the expressions for N2

independent Gaussian variables of variance 1
π logN2. In other words, correlations have

no effects on the above observables of the extremes. The purpose of the paper is to
extend this correspondence to observables related to the Gibbs measure.

To this aim, consider the normalized Gibbs weights or Gibbs measure

Gβ,N ({v}) :=
eβφv

ZN (β)
, v ∈ VN ,

where ZN (β) :=
∑
v∈VN eβφv . We consider the normalized covariance or overlap

q(v, v′) :=
E[φvφv′ ]

1
π logN2 + c0

, ∀v, v′ ∈ VN , (1.8)

where c0 is introduced in Equation (1.3). This is the covariance divided by the uniform
upper bound of the variance. Note that 1

π logN2 is the dominant term of the variance in
the bulk. It is clear that q(v, v′) ∈ [0, 1] for any v, v′ ∈ VN .

In spin-glass theory, the relevant object to classify the extreme value statistics of
strongly correlated variables is the two-overlap distribution function

xβ,N (q) := E
[
G×2
β,N {q(v, v

′) ≤ q}
]
, 0 ≤ q ≤ 1. (1.9)

The main result shows that the 2D GFF falls within the class of models that exhibit a
one-step replica symmetry breaking at low temperature.

Theorem 1.1. For β > βc =
√

2π,

lim
N→∞

xβ,N (r) = lim
N→∞

E
[
G×2
β,N {q(v, v

′) ≤ r}
]

=

{
βc
β for 0 ≤ r < 1,

1 for r = 1.

Note that for β ≤ βc, it follows from (1.7) that the overlap is 0 almost surely. The
result is the analogue for the 2D GFF of the results obtained by Derrida & Spohn [15]
and Bovier & Kurkova [9, 10] for the branching Brownian motion and for Derrida’s
Generalized Random Energy models (GREM) [14]. In [4], such a result was proved for a
non-hierarchical log-correlated Gaussian field constructed from the multifractal random
measure of Bacry & Muzy [5], see also [20] for a closely related model. This type of
result was conjectured by Carpentier & Le Doussal [12]. We also remark that Theorem
1.1 shows that at low temperature two points sampled with the Gibbs measure have
overlaps 0 or 1 in the limit N → ∞. More precisely, Theorem 1.1 implies that, for all
ε > 0,

G×2
β,N {ε < q(v, v′) < 1− ε} −→ 0, N →∞,

and

G×2
β,N {q(v, v

′) < ε} −→ βc
β
, N →∞,

in probability, which is consistent with the result of Ding & Zeitouni [17] who showed
that the extremal values of GFF are at distance from each other of order one or of order
N .

A general method to prove Poisson-Dirichlet statistics for the distribution of the
overlaps from the one-step replica symmetry breaking was laid out in [4]. This connection
is done via the Ghirlanda-Guerra identities. Another equivalent approach would be using
stochastic stability as developed in [1, 2, 3]. The reader is referred to Section 2.3 of [4]
where the connection is explained in details for general Gaussian fields. For the sake of
conciseness, we simply state the consequence for the 2D GFF.
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Poisson-Dirichlet statistics and 2D Gaussian free field

Consider the product measure G×sβ,N on s replicas (v1, . . . , vs) ∈ V ×sN . Let F : [0, 1]
s(s−1)

2 →
R be a continuous function. Write F ((qll′)l<l′) for the function evaluated at qll′ := q(vl, vl′),
l < l′, for (v1, . . . , vs) ∈ V ×sN . We write EG×sβ,N

[
F ((qll′)l<l′)

]
for the averaged expectation.

Recall that a Poisson-Dirichlet variable ξ of parameter κ ∈ (0, 1) is a random variable on
the space of decreasing weights s = (s1, s2, . . . ) with 1 ≥ s1 ≥ s2 ≥ · · · ≥ 0 and

∑
i si ≤ 1

which has the same law as
(
ηi/
∑
j ηj , i ∈ N

)
↓

where ↓ stands for the decreasing rear-

rangement and η = (ηi, i ∈ N) are the atoms of a Poisson random measure on (0,∞) of
intensity measure s−κ−1 ds.

The theorem below is a direct consequence of the Theorem 1.1, the differentiability
of the free energy (1.7) as well as Corollary 2.5 and Theorem 2.6 of [4].

Theorem 1.2. Let β > βc and ξ = (ξk, k ∈ N) be a Poisson-Dirichlet variable of param-
eter βc/β ∈ (0, 1). Denote by E the expectation with respect to ξ. For any continuous

function F : [0, 1]
s(s−1)

2 → R of the overlaps of s replicas:

lim
N→∞

EG×sβ,N
[
F ((qll′)l<l′)

]
= E


 ∑

k1∈N,...,ks∈N

ξk1 . . . ξks F ((δklkl′ )l<l′)


 .

The above is one of the few rigorous results known on the Gibbs measure of log-
correlated fields at low temperature. Theorem 1.2 is a step closer to the conjecture
of Duplantier, Rhodes, Sheffield & Vargas (see Conjecture 11 in [18] and Conjecture
6.3 in [25]) that the Gibbs measure, as a random probability measure on VN , should be
atomic in the limit with the size of the atoms being Poisson-Dirichlet. Theorem 1.2 falls
short of the full conjecture because only test-functions of the overlaps are considered.
Finally, it is expected that the Poisson-Dirichlet statistics emerging here is related to the
Poissonian statistics of the thinned extrema of the 2D GFF proved by Biskup & Louidor in
[6] based on the convergence of the maximum established by Bramson, Ding & Zeitouni
[11]. To recover the Gibbs measure from the extremal process, some properties of the
cluster of points near the maxima must be known.

1.3 Outline of the proof

The proof of Theorem 1.1 relies on a technique introduced by Bovier & Kurkova in
[10] for GREM’s. The idea of the method is to relate the overlap distribution of a given
model to the free energy of a perturbed version of the model. The main advantage of the
approach is that computing free energies is in general a much simpler task than a direct
computation of overlaps.

With this in mind, we define in Section 2 a perturbed version of the GFF that we
call the (α,σ)-generalized GFF. The generalization is close in spirit to the GREM and
also to a non-hierarchical version introduced by Fyodorov & Bouchaud in [21]. In
essence, the parameter σ = (σ1, σ2) controls the strength of the perturbation, whereas
the parameter α specifies at what scale the perturbation is applied. The pivotal equation
in this approach is the following identity relating the overlap distribution xβ of the
original model to the limiting free energy f (α,σ)(β) of the perturbed model for σ = σ(u)

depending on a small parameter u:

∫ 1

α

xβ(r)dr =
π

β2

∂

∂u
f (α,σ)(β)

∣∣∣
u=0

. (1.10)

In the case of the 2D GFF, the identity (1.10) is approximate due to the dependence of
the covariances on the relative position of the points in the box. To control the effect
of the boundary, we need to limit the analysis to a box AN,ρ in VN containing the points
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Poisson-Dirichlet statistics and 2D Gaussian free field

at distance greater than N1−ρ from the boundary for some ρ > 0. We have a good
control of the overlap as a function of the distance between the points in that box, cf.
Lemma 3.4. In Section 3.1, we show that the Gibbs measure samples in AN,ρ with
large probability so that the overlap distribution is well approximated by the overlap
distribution in AN,ρ. In Section 3.2, we derive the relation corresponding to (1.10) for
the overlap distribution in AN,ρ, cf. Proposition 3.2. The proof of Theorem 1.1 follows
from this and the explicit formula for the free energy of the generalized model given in
Theorem 2.1. The derivation of this formula is given in Section 4 and is the same as the
one of a GREM with two levels.

2 The multiscale decomposition and a generalized GFF

In this section, we construct a Gaussian field from the GFF whose variance is scale-
dependent. The construction uses a multiscale decomposition along each vertex. The
construction is analogous to a GREM, but where correlations are non-hierarchical. Here,
only two different values of the variance will be needed though the construction can be
directly generalized to any finite number of values.

Consider 0 < α < 1. We assume to simplify the notation that N1−α is an even integer
and that Nα divides N . The case of general α’s can also be done by making trivial
corrections along the construction.

For v ∈ VN , we write [v]α for the unique box with N1−α vertices in Z2 on each side
and centered at v. If [v]α is not entirely contained in VN , we take the convention that
[v]α is the intersection of the square box with VN . For α = 1, take [v]1 = v. The σ-algebra
F[v]cα

is the σ-algebra generated by the field outside [v]α. We define

φ[v]α := E
[
φv
∣∣ F[v]cα

]
= E

[
φv
∣∣ F∂[v]α

]
,

where the second equality holds by the Markov property of the Gaussian free field, see
Lemma 5.1. Clearly, for any v ∈ VN , the random variable φ[v]α is Gaussian. Moreover, by
Lemma 5.1,

φ[v]α =
∑

u∈∂[v]α

pα,v(u)φu , (2.1)

where pα,v(u) = Pv(Sτ[v]α = u) is the probability that a simple random walk starting at v
hits u at the first exit time of [v]α.

The following multiscale decomposition holds trivially

φv = φ[v]α +
(
φv − φ[v]α

)
, (2.2)

where φ[v]α and φv − φ[v]α are independent. The decomposition suggests the following
scale-dependent perturbation of the field. For 0 < α < 1 and σ = (σ1, σ2) ∈ R2

+, consider
for v ∈ VN ,

ψv := σ1φ[v]α + σ2

(
φv − φ[v]α

)
. (2.3)

The Gaussian field (ψv, v ∈ VN ) will be called the (α,σ)-GFF on VN .

To control the boundary effects, it is necessary to consider the field in a box slightly
smaller than VN . For ρ ∈ (0, 1), let

AN,ρ := {v ∈ VN : d1(v, ∂VN ) ≥ N1−ρ} , (2.4)

where d1(v,B) := inf{‖v − u‖ ; u ∈ B} for any set B ⊂ Z2. We always take ρ < α so that

[v]α is a square of side-length N1−α for any v ∈ AN,ρ. We write G(α,σ)
β,N,ρ(·) for the Gibbs
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Poisson-Dirichlet statistics and 2D Gaussian free field

measure of (α,σ)-GFF restricted to AN,ρ

G(α,σ)
β,N,ρ({v}) :=

eβψv

Z
(α,σ)
N,ρ (β)

, v ∈ AN,ρ,

where Z(α,σ)
N,ρ (β) :=

∑
v∈AN,ρ eβψv .

The associated free energy is given by

f
(α,σ)
N,ρ (β) :=

1

logN2
logZ

(α,σ)
N,ρ (β), ∀β > 0.

(Note that log #AN,ρ = (1 + oN (1)) logN2.) As it will be explained in Section 3.2, the
limit of its expectation is central to obtain the overlap distribution of the original model.
This limit is better expressed in terms of the free energy of the REM model consisting of
N2 i.i.d. Gaussian variables of variance θ2

π logN2 with θ > 0:

f(β; θ2) :=





1 + β2θ2

2π , if β ≤ βc(θ2) :=
√

2π
θ ,√

2
π θβ, if β ≥ βc(θ2).

(2.5)

Theorem 2.1. Fix α ∈ (0, 1) and σ = (σ1, σ2) ∈ R2
+ and let Γ12 := σ2

1α+ σ2
2(1− α). Then,

for any 0 < ρ < α, and for all β > 0

lim
N→∞

E
[
f

(α,σ)
N,ρ (β)

]
= f (α,σ)(β) :=

{
f(β; Γ12), if σ1 ≤ σ2,

αf(β;σ2
1) + (1− α)f(β;σ2

2), if σ1 ≥ σ2.
(2.6)

The theorem is proved in Section 4. Note that the limit does not depend on ρ. We
expect that Theorem 2.1 also holds for the free energy in the whole box VN . However,
this is not straightforward from our analysis. To do so, one would need to find an
upper bound for the field in VN including vertices close to the boundary. Again, this
is complicated by the sensitivity of the Green’s function on the boundary. Since this
case is not necessary for the result on the overlaps, we have decided to omit it from our
treatment.

We observe that the right-hand side of (2.6) is exactly equal to the limiting free
energy of a 2-level GREM with the same parameters α and σ = (σ1, σ2). Precisely, let

(X
(1)
v1 , v1 ≤ N2α) and (X

(2)
v1,v2 ; v1 ≤ N2α, v2 ≤ N2(1−α)) be i.i.d. centered Gaussian random

variables with variance logN . The corresponding 2-level GREM on N2 points is the
Gaussian field of the form

Xv = σ1X
(1)
v1 + σ2X

(2)
v1,v2 , v = (v1, v2), (2.7)

where σ1, σ2 > 0. The correlations of this Gaussian field have an exact underlying tree
structure with two levels. This is not the case for the (α,σ)-GFF for finite N . However,
a tree structure emerges, at least at the level of the free energy, in the limit N → ∞.
We refer to [8] for a nice introduction to the 2-level GREM, the study of its maximum,
high-points, free energy and Gibbs measure.

3 Proof of Theorem 1.1

3.1 The Gibbs measure close to the boundary

The first step in the proof of Theorem 1.1 is to show that points close to the boundary
do not carry any weight in the Gibbs measure of the GFF in VN . The result would not
necessarily hold if we considered instead the complement of V δN which is much larger
than the complement of AN,ρ.
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Lemma 3.1. For any ρ > 0,

lim
N→∞

Gβ,N (AcN,ρ) = 0, in P-probability. (3.1)

Before turning to the proof, we claim that the lemma implies that, for any r ∈ [0, 1]

and ρ ∈ (0, 1),
lim
N→∞

∣∣xβ,N (r)− xβ,N,ρ(r)
∣∣ = 0 , (3.2)

where
xβ,N,ρ(r) := EG×2

β,N,ρ{q(v, v
′) ≤ r}, r ∈ [0, 1] . (3.3)

is the two-overlap distribution of the Gibbs measure of the GFF (φv, v ∈ VN ) restricted
to AN,ρ

Gβ,N,ρ({v}) :=
eβφv

ZN,ρ(β)
, v ∈ AN,ρ,

for ZN,ρ(β) :=
∑
v∈AN,ρ eβφv . Indeed, introducing an auxiliary term

∣∣xβ,N (r)− xβ,N,ρ(r)
∣∣ ≤

∣∣EG×2
β,N

{
q(v, v′) ≤ r

}
− EG×2

β,N

{
q(v, v′) ≤ r; v, v′ ∈ AN,ρ

}∣∣

+
∣∣EG×2

β,N

{
q(v, v′) ≤ r; v, v′ ∈ AN,ρ

}
− EG×2

β,N,ρ

{
q(v, v′) ≤ r

}∣∣ .

The first term is smaller than 2 EGβ,N (AcN,ρ). The second term equals

EG×2
β,N,ρ

{
q(v, v′) ≤ r

}
− EG×2

β,N

{
q(v, v′) ≤ r; v, v′ ∈ AN,ρ

}

= E

[
G×2
β,N

{
q(v, v′) ≤ r; v, v′ ∈ AN,ρ

}

G×2
β,N

{
v, v′ ∈ AN,ρ

}
(

1− G×2
β,N

{
v, v′ ∈ AN,ρ

})
]
,

which is also smaller than 2 EGβ,N (AcN,ρ). Lemma 3.1 then implies (3.2) as claimed.

Proof of Lemma 3.1. Let ε > 0 and λ > 0. The probability can be split as follows

P
(
Gβ,N (AcN,ρ) > ε

)
≤ P

(
Gβ,N (AcN,ρ) > ε,

∣∣∣∣
1

logN2
logZN (β)− f(β)

∣∣∣∣ ≤ λ
)

+ P

(∣∣∣∣
1

logN2
logZN (β)− f(β)

∣∣∣∣ > λ

)
,

where f(β) is defined in (1.7). The second term converges to zero by (1.7). The first
term is smaller than

P


 1

logN2
log

∑

v∈AcN,ρ

expβφv > f(β)− λ+
log ε

logN2


 . (3.4)

Since the free energy is a Lipschitz function of the variables φv, see e.g. Theorem 2.2.4
in [26], the free energy self-averages, that is for any t > 0

lim
N→∞

P



∣∣∣∣∣∣

1

logN2
log

∑

v∈AcN,ρ

expβφv −
1

logN2
E


log

∑

v∈AcN,ρ

expβφv



∣∣∣∣∣∣
≥ t


 = 0 .

To conclude the proof, it remains to show that for some C < 1 (independent of N but
dependent on ρ)

lim sup
N→∞

1

logN2
E


log

∑

v∈AcN,ρ

expβφv


 < Cf(β). (3.5)
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Poisson-Dirichlet statistics and 2D Gaussian free field

Note that by Lemma 5.1, the maximal variance of φv in VN is 1
π logN2 + ON (1). Pick

(gv, v ∈ AcN,ρ) independent centered Gaussians (and independent of (φv)v∈AcN,ρ) with

variance given by E[g2
v ] = 1

π logN2 + ON (1) − E[φ2
v]. Jensen’s inequality applied to the

Gibbs measure (expβφv/
∑
u∈AcN,ρ

expβφu)v∈AcN,ρ implies that E[log
∑
v∈AcN,ρ

expβ(φv +

gv)] ≥ E[log
∑
v∈AcN,ρ

expβφv]. Moreover, by a standard comparison argument (see

Lemma 5.3 in the Appendix), E[log
∑
v∈AcN,ρ

expβ(φv+gv)] is smaller than the expectation

for i.i.d. variables with identical variances. The two last observations imply that

1

logN2
E


log

∑

v∈AcN,ρ

expβφv


 ≤ 1

logN2
E


log

∑

v∈AcN,ρ

expβφ̃v


 ,

where (φ̃v, v ∈ AcN,ρ) are i.i.d. centered Gaussians of variance 1
π logN2 + ON (1). Since

#AcN,ρ = N2 − |AN,ρ| = 4N2−ρ(1 + oN (1)), the free energy of these i.i.d. Gaussians in the
limit N →∞ is given by (2.5)

lim
N→∞

1

log 4N2−ρE


log

∑

v∈AcN,ρ

expβφ̃v


 =





1 + β2

2π

(
1− ρ

2

)−1, β <
√

2π
(
1− ρ

2

)1/2
,√

2
π

(
1− ρ

2

)−1/2
β, β ≥

√
2π
(
1− ρ

2

)1/2
.

The last two equations then imply

lim sup
N→∞

1

logN2
E


log

∑

v∈AcN,ρ

expβφv


 ≤





(
1− ρ

2

)
+ β2

2π , β <
√

2π
(
1− ρ

2

)1/2
,√

2
π

(
1− ρ

2

)1/2
β, β ≥

√
2π
(
1− ρ

2

)1/2
.

It is then straightforward to check that, for every β, the right side is strictly smaller than
f(β) as claimed.

3.2 An adaptation of the Bovier-Kurkova technique

The Bovier-Kurkova technique is a way to compute the overlap distribution of a model
in terms of the free energy of a perturbed version of that model. In the context of this
paper, this connection is established by Proposition 3.2 below. One difficulty in the
present case is the fact that the Green’s function depends on the relative position to the
boundary. The restriction to the set AN,ρ is a way to control this, cf. Lemma 3.4.

Proposition 3.2. Let σ = (1, 1 + u) where |u| ≤ 1 and consider the (α,σ)-GFF as in
Theorem 2.1. Then for every 0 < ρ < α, every ε > ρ, and N large enough,
∣∣∣∣
∫ 1

α

xβ,N,ρ(r)dr −
π

β2

∂

∂u
Ef

(α,σ)
N,ρ (β)

∣∣∣
u=0

∣∣∣∣ ≤ c
(
xβ,N,ρ(α+ε)−xβ,N,ρ(α−ε)

)
+O(ρ)+oN (1),

(3.6)
where the two-overlap distribution xβ,N,ρ is defined in (3.3), O(ρ) is uniform in N , and c
is an absolute constant.

The proof of Proposition 3.2 is based on combining the following identities. It is
convenient for the statement and the proof to define

qα(v, v′) :=

(
1

π
logN2

)−1

E[φv′(φv − φ[v]α)] for v, v′ ∈ VN .

Lemma 3.3. For every ρ < α < 1 and N ∈ N,
∫ 1

α

xβ,N,ρ(r)dr = 1− α− EG×2
β,N,ρ

[
q(v, v′)− α; q(v, v′) ≥ α

]
, (3.7)

π

β2

∂

∂u
Ef

(α,σ)
N,ρ (β)

∣∣∣
u=0

= 1− α− EG×2
β,N,ρ [qα(v, v′) ; v′ ∈ [v]α] + oN (1) , (3.8)
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where E[X;A] stands for the expectation of a random variable X on the event A.

Proof. The identity (3.7) holds since by Fubini’s theorem

∫ 1

α

xβ,N,ρ(r)dr = EG×2
β,N,ρ

[∫ 1

α

1{r≥q(v,v′)}dr

]

= EG×2
β,N,ρ

[
1− α; q(v, v′) < α

]
+ EG×2

β,N,ρ

[
1− q(v, v′); q(v, v′) ≥ α

]

= (1− α)− EG×2
β,N,ρ

[
q(v, v′)− α; q(v, v′) ≥ α

]
.

For the identity (3.8), direct differentiation gives

π

β2

∂

∂u
Ef

(α,σ)
N,ρ (β)

∣∣∣
u=0

=

(
β

π
logN2

)−1 ∑

v∈AN,ρ

E

[
(φv − φ[v]α)e

βφv

∑
v′∈AN,ρ expβφv′

]
. (3.9)

The identity is then obtained using Gaussian integration by parts. Precisely, for a
centered Gaussian vector X = (X1, . . . , Xn) and a twice-continuously differentiable
function F on Rn, of moderate growth at infinity, we have the formula E[XiF (X)] =∑n
j=1E[XiXj ] E[∂XjF (X)]. Here the relevant Gaussian vector for a given v ∈ AN,ρ is

(φv − φ[v]α ;φ[v]α ;φv′ , v
′ 6= v), and the function F is expβφv/

∑
v′∈AN,ρ expβφv′ . Note that

E[φv′(φv − φ[v]α)] = 0 for v′ /∈ [v]α. Applying the formula to the right-hand side of (3.9)
yields

( 1

π
logN2

)−1(
EGβ,N,ρ

[
E[(φv−φ[v]α)2]

]
−EG×2

β,N,ρ

[
E[φv′(φv−φ[v]α)] ; v′ ∈ [v]α

])
. (3.10)

The field (φu − E[φu|F[v]cα
], u ∈ [v]α) has the law of a GFF in [v]α by Lemma 5.1. Since

ρ < α implies that [v]α is a square of side-length N1−α for any v ∈ AN,ρ, it follows from
Lemma 5.2 that ( 1

π
logN2

)−1

E
[
(φv − φ[v]α)2

]
= 1− α+ oN (1) .

This proves (3.8).

To prove (3.6) from Lemma 3.3, we need to relate the overlap q(v, v′) − α to the
covariance E[φv′(φv − φ[v]α)] as well as relate the event {q(v, v′) ≥ α} to the event
{v′ ∈ [v]α}. One obstacle is to establish an approximate correspondence between the
Green’s function for two points v and v′ and their relative distance. The problem is that
Green’s function is also sensitive to the relative position to the boundary. The restriction
to AN,ρ allows for a sufficient control of the Green’s function.

Lemma 3.4. Let v, v′ ∈ AN,ρ.

(i) If q(v, v′) ≥ α+ ε for some ε > 0, then ‖v − v′‖2 ≤ cN2(1−α)−ε for some constant c
independent of N and ρ. In particular, v′ ∈ [v]α for N large enough.

(ii) If v′ ∈ [v]α, then q(v, v′) ≥ α− ρ+ oN (1).

Proof. For v, v′ ∈ AN,ρ, Lemma 5.2 gives

1−ρ− log ‖v − v′‖2

logN2
+ON ((logN)−1) ≤ q(v, v′) ≤ 1− log ‖v − v′‖2

logN2
+ON ((logN)−1) . (3.11)

The assertion (i) is direct from the right inequality. The claim (ii) follows from the left
inequality since v′ ∈ [v]α implies ‖v − v′‖2 ≤ cN2(1−α) for some constant c.
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Proof of Proposition 3.2. Note that qα(v, v′) is bounded by a constant uniformly in N .
Indeed, by the Cauchy-Schwarz inequality, we get

|qα(v, v′)|2 ≤
(

1

π
logN2

)−2

E[φ2
v′ ] E[(φv − φ[v]α)2] ,

and the boundedness follows from the upper bound (1.3) and Lemma 5.1. Fix ε > ρ.
Then, Lemma 3.4 (ii) implies that {v′ ∈ [v]α} ⊂ {q(v, v′) > α − ε} for N large enough.
Since Lemma 3.4 (i) yields {q(v, v′) ≥ α + ε} ⊂ {v′ ∈ [v]α}, one obtains, for N large
enough,

{v′ ∈ [v]α} \ {q(v, v′) ≥ α+ ε} ⊂ {α− ε < q(v, v′) < α+ ε}.

Because qα(v, v′) is bounded, we get for all ε > ρ and some constant c > 0,

∣∣∣EG×2
β,N,ρ [qα(v, v′); v′ ∈ [v]α]− EG×2

β,N,ρ [qα(v, v′); q(v, v′) ≥ α+ ε]
∣∣∣

≤ c
(
xβ,N,ρ(α+ ε)− xβ,N,ρ(α− ε)

)
.

(3.12)

If q(v, v′) ≥ α + ε, then ‖v − v′‖2 ≤ cN2(1−α)−ε by Lemma 3.4 (i), and, in particular,
v′ ∈ [v]α for N large enough. For such v and v′, we have by conditioning,

qα(v, v′) =

(
1

π
logN2

)−1

E[(φv′ − E[φv′ |F[v]cα
])(φv − φ[v]α)] .

Since (φu − E[φu|F[v]cα
], u ∈ [v]α) has the law of a GFF in [v]α by Lemma 5.1 and since

‖v − v′‖2 ≤ cN2(1−α)−ε, Lemma 5.2 gives

qα(v, v′) = 1− α− log ‖v − v′‖2

logN2
+ oN (1) if q(v, v′) ≥ α+ ε.

Moreover, by (3.11), q(v, v′) = 1 − log ‖v−v′‖2
logN2 + oN (1) + O(ρ), where the term O(ρ) is

uniform in N . This shows that

EG×2
β,N,ρ[qα(v, v′); q(v, v′) ≥ α+ ε] = EG×2

β,N,ρ[q(v, v
′)− α; q(v, v′) ≥ α+ ε] + oN (1) +O(ρ) .

(3.13)
Finally, because q(v, v′)− α is bounded by 1, we have

0 ≤ EG×2
β,N,ρ [q(v, v′)− α; q(v, v′) ≥ α]− EG×2

β,N,ρ [q(v, v′)− α; q(v, v′) ≥ α+ ε]

≤ xβ,N,ρ(α+ ε)− xβ,N,ρ(α− ε) .
(3.14)

The conclusion follows from Equations (3.7) and (3.8) by combining Equations (3.12),
(3.13), and (3.14).

3.3 Proof of Theorem 1.1

By Equation (3.2), it suffices to prove that

lim
ρ→0

lim
N→∞

xβ,N,ρ(r) =

{
βc/β, if 0 ≤ r < 1,

1, if r = 1 .
(3.15)

Recall that the space of probability measures on [0, 1] is compact under the topology
induced by weak convergence. Consider a converging subsequence of the probability
measures on [0, 1] corresponding to the cumulative distribution functions xβ,N,ρ (when
N →∞ and then ρ→ 0). Write xβ for the cumulative distribution function of the limiting
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probability measure. The proof is reduced to show that xβ is given by the right-hand
side of (3.15). In fact, since xβ(1) = 1, it remains to show that xβ(r) = βc/β for 0 ≤ r < 1.
The points of continuity of xβ are dense in [0, 1] (because it is monotone) so it suffices to
show that xβ(r) = βc/β for all points of continuity of xβ in [0, 1). Let α be such a point of
continuity. Proposition 3.2 implies that, after taking the limits N →∞, ρ→ 0 and then
ε→ 0, ∫ 1

α

xβ(r)dr = lim
ρ→0

lim
N→∞

π

β2

∂

∂u
Ef

(α,σ)
N,ρ (β)

∣∣∣
u=0

,

for σ = (1, 1 + u). Recall Theorem 2.1. It is straightforward to check that u 7→ f
(α,σ)
N,ρ (β)

is a convex function. In particular,

lim
ρ→0

lim
N→∞

∂

∂u
Ef

(α,σ)
N,ρ (β) =

∂

∂u
f (α,σ)(β) , (3.16)

at any points u where f (α,σ)(β) is differentiable. We calculate the derivative at u = 0

by computing the right and left derivatives at 0. In our case σ1 = 1, σ2 = 1 + u and
Γ12 = α+ (1 + u)2(1− α). If u > 0, we are in the case σ1 < σ2. Since β > βc =

√
2π, we

can pick u small enough such that β >
√

2π/
√

Γ12. Therefore Theorem 2.1 gives

∂

∂u+
f (α,σ)(β)

∣∣∣
u=0

=

√
2

π
β

∂

∂u+

(
α+ (1 + u)2(1− α)

)1/2∣∣∣
u=0

=

√
2

π
β(1− α) . (3.17)

Similarly, for the left derivative, pick u < 0 so we are in the case σ1 > σ2. Since
β > βc =

√
2π, we can pick |u| small enough such that β >

√
2π/(1 + u). Therefore

Theorem 2.1 gives

∂

∂u−
f (α,σ)(β)

∣∣∣
u=0

=

√
2

π
β

∂

∂u−
(
α+ (1 + u)(1− α)

)∣∣∣
u=0

=

√
2

π
β(1− α) . (3.18)

Equations (3.16), (3.17) and (3.18) imply

∫ 1

α

xβ(r)dr =
βc
β

(1− α) . (3.19)

Since xβ must be non-decreasing, this gives xβ(α) ≤ βc/β. If xβ(α) < βc/β, there would
exist another point of continuity α′ > α such that xβ(α′) < βc/β by the right-continuity

of xβ. Therefore
∫ α′
α
xβ(r)dr < βc/β(α′ − α) contradicting (3.19). This means that

xβ(α) = βc/β at all points of continuity α and concludes the proof of the theorem.

4 The free energy of the (α,σ)-GFF: proof of Theorem 2.1

The computation of the expectation of the free energy of the (α,σ)-GFF is divided in
two steps. First, an upper bound is found by comparing the field ψ in AN,ρ to a standard
2-level GREM as in (2.7). Second, we get a matching lower bound using the trivial
inequality f (α,σ)

N,ρ (β) ≥ 1
logN2 log

∑
v∈V δN

eβψv . The limit of the expectation of the right
term is computed following the method of Daviaud [13].

4.1 Proof of the upper bound

For conciseness, we only prove the case σ1 ≥ σ2. This is done by comparing the free
energy of the field ψ in AN,ρ with a 2-level GREM as in (2.7). To account for the boundary

effect, the comparison is done via two intermediate Gaussian fields ψ̃ and ψ defined
below. The field ψ̃ will be a “non-homogeneous" GREM in the sense that σ1 in (2.7) will
depend on v. On the other hand, the field ψ will differ from (2.7) only by a factor ON (1)

in the variance. The case σ1 ≤ σ2 is done similarly by comparing with a REM.
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Divide the set AN,ρ into square boxes of side-length N1−α/100. (The factor 1/100 is a
convenient choice. We simply need these boxes to be smaller than the neighborhoods
[v]α, yet of the same order of length in N .) Pick the boxes in such a way that each
v ∈ AN,ρ belongs to one and only one of these boxes. The collection of boxes is denoted
by Bα and ∂Bα denotes

⋃
B∈Bα ∂B. For v ∈ AN,ρ, we write B(v) for the box of Bα to

which v belongs. For B ∈ Bα, denote by B̃ ⊃ B the square box given by the intersections
of all [u]α, u ∈ B, see figure 1. Remark that the side-length of B̃ is cN1−α, for some
constant c. For short, write φB̃ := E[φvB |FB̃c ] where vB is the center of the box B. The
idea in constructing the “non-homogeneous” GREM is to associate to each point v ∈ B
the same contribution at scale α, namely φB̃. One problem is that φB̃ will not have the
same variance for every B since it depends on the distance to the boundary. This is the
reason why the comparison with a 2-level GREM needs to be done using intermediate
fields.

v

v0

[v]↵

[v0]↵

eB

B

1

Figure 1: The box B ∈ Bα and the corresponding box B̃ which is the intersection of all
the neighborhoods [v]α, v ∈ B.

First, consider the hierarchical Gaussian field (ψ̃v, v ∈ AN,ρ):

ψ̃v = g
(1)
B(v) + g(2)

v , (4.1)

where the variables (g
(1)
B , B ∈ Bα) are independent centered Gaussians with variance

chosen to be σ2
1E[φ2

B̃
] + C (for some constant C ∈ R independent of B in Bα and

independent of N ) and (g
(2)
v , v ∈ AN,ρ) are independent centered Gaussians (also

independent from (g
(1)
B , B ∈ Bα)) with variance

E[(g(2)
v )2] = E[ψ2

v ]− E[(g
(1)
B(v))

2] .

(Equations (4.4) and (4.5) below will guarantee that the right-hand term is non-negative.)
Note that with this definition E[ψ2

v ] = E[ψ̃2
v ] for all v ∈ AN,ρ. The next lemma ensures

that
E[ψvψv′ ] ≥ E[ψ̃vψ̃v′ ] . (4.2)

Lemma 4.1. Consider the field (ψv, v ∈ AN,ρ) as in (2.3). Then E[ψvψv′ ] ≥ 0. Moreover,
if v and v′ both belong to B ∈ Bα, then

E[ψvψv′ ] ≥ σ2
1E[φ2

B̃
] + C ,

for some constant C ∈ R independent of N .

Proof. For the first assertion, write

ψv = (σ1 − σ2)φ[v]α + σ2φv .

EJP 20 (2015), paper 59.
Page 12/19

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v20-3077
http://ejp.ejpecp.org/


Poisson-Dirichlet statistics and 2D Gaussian free field

The representation φ[v]α =
∑
u∈∂[v]α

pα,v(u) φu of Lemma 5.1 and the fact that σ1 > σ2

imply that E[ψvψ
′
v] ≥ 0 since the field φ is positively correlated by (1.1).

Suppose now that v, v′ ∈ B where B ∈ Bα. The covariance can be written as

E[ψvψv′ ] = σ2
1E
[
φ[v]αφ[v′]α

]
+ σ2

2E
[
(φv − φ[v]α)(φv′ − φ[v′]α)

]

+ σ1σ2E
[
φ[v]α(φv′ − φ[v′]α)

]
+ σ1σ2E

[
φ[v′]α(φv − φ[v]α)

]
.

(4.3)

We first prove that the last two terms of (4.3) are positive. By Lemma 5.1, we can write
φ[v]α =

∑
u∈∂[v]α

pα,v(u) φu. Note that the vertices u that are in [v′]cα will not contribute

to the covariance E
[
φ[v]α(φv′ − φ[v′]α)

]
by conditioning. Thus

E
[
φ[v]α(φv′ − φ[v′]α)

]
=

∑

u∈∂[v]α∩[v′]α

pα,v(u) E
[
φu(φv′ − φ[v′]α)

]

=
∑

u∈∂[v]α∩[v′]α

pα,v(u) E
[
(φu − E[φu|F[v′]cα

])(φv′ − E[φv′ |F[v′]cα
])
]
.

Lemma 5.1 ensures that the covariances in the sum are positive (the field (φu −
E[φu|F[v′]cα

])u∈[v′]α has the law of a GFF on [v′]α).
For the first term of (4.3), the idea is to show that φ[v]α and φB̃ are close in the

L2-sense. Write

φv − φ[v]α = (φv − E[φv|FB̃c ]) + (E[φv|FB̃c ]− φ[v]α) ,

and observe that, since φv − E[φv|FB̃c ] is independent of FB̃c and E[φv|FB̃c ] − φ[v]α is
FB̃c -measurable (indeed F[v]cα

⊂ FB̃c), this implies

E[(φv − φ[v]α)2] = E[(φv − E[φv|FB̃c ])
2] + E[(E[φv|FB̃c ]− φ[v]α)2] .

Moreover, E[(φv −E[φv|FB̃c ])
2] and E[(φv − φ[v]α)2] are both equal to 1−α

π logN2 +ON (1)

by Lemma 5.1, Lemma 5.2 and the fact that distances of v to vertices in ∂B̃ and ∂[v]α
are both proportional to N1−α (here the condition ρ < α and the fact that the boxes in
Bα have side-length N1−α/100 are used). Therefore

E
[(
φ[v]α − E[φv|FB̃c ]

)2]
= ON (1) . (4.4)

Moreover, since v and vB are also at a distance smaller than N1−α/100 from each
other, Lemma 12 in [7] implies that

E
[(
φB̃ − E[φv|FB̃c ]

)2]
= ON (1) . (4.5)

Equations (4.4) and (4.5) give E[(φB̃ −φ[v]α)2] = ON (1) and similarly for v′. All the above
sum up to

σ2
1E
[
φ[v]αφ[v′]α

]
= σ2

1E[φ2
B̃

] +ON (1) . (4.6)

It remains to show that the second term of (4.3) is greater than ON (1). Since φ[v]α

and φ[v′]α are FB̃c -measurable by definition of the box B̃, we have the decomposition

E
[
(φv − φ[v]α)(φv′ − φ[v′]α)

]
= E[(φv − E[φv|FB̃c ])(φv′ − E[φv′ |FB̃c ])]
+ E[(E[φv|FB̃c ]− φ[v]α)(E[φv′ |FB̃c ]− φ[v′]α)] .

The first term is positive by Lemma 5.1. As for the second, Equation (4.4) shows that

E
[ (
E[φv|FB̃c ]− φ[v]α

) (
E[φv′ |FB̃c ]− φ[v′]α

) ]
= ON (1) .

This concludes the proof of the lemma.
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Equation (4.2) implies that the expectation of the free energy of ψ is smaller than the
one of ψ̃ by a standard comparison lemma, see Lemma 5.3 in the Appendix. It remains
to prove an upper bound for the expectation of the free energy of ψ̃.

The field ψ̃ is not a 2-level GREM as in (2.7) because the variances of g(1)
B , B ∈ Bα,

are not the same for every B, as it depends on the relative position of B to the boundary.
However, the variances of φB̃, B ∈ Bα, are uniformly bounded above by α

π logN2 +ON (1);
indeed

E
[
φ2
B̃

]
= E

[
φ2
vB

]
− E

[
(φvB − φB̃)2

]

= E
[
φ2
vB

]
− 1− α

π
logN2 +ON (1)

≤ 1

π
logN2 − 1− α

π
logN2 +ON (1) =

α

π
logN2 +ON (1),

where, in the second equality, Lemmas 5.1 and 5.2 imply that E[(φvB − φB̃)2] is equal

to 1−α
π logN2 + ON (1) (again the condition α > ρ guarantees that B̃ is a square of

side-length cN1−α), and the inequality comes from Equation (1.3).
Moreover, note that for v ∈ B,

E[(g(2)
v )2] = E[ψ2

v ]− E[(g
(1)
B )2] = σ2

1

(
E[φ2

[v]α
]− E[φ2

B̃
]
)

+ σ2
2

1− α
π

logN2 − Cσ2
1 .

The first term is of order ON (1) by Equations (4.4) and (4.5). Thus one has

E[(g(2)
v )2] = σ2

2

1− α
π

logN2 +ON (1) .

The important point is that the variance of g(2)
v of ψ̃ is uniform in v, up to lower order

terms. Now consider the Gaussian field (ψv, v ∈ AN,ρ)

ψv = g
(1)
B + g(2)

v (4.7)

where (g
(1)
B , B ∈ Bα) are i.i.d. centered Gaussians of variance σ2

1
α
π logN2 + ON (1) and

(g
(2)
v , v ∈ AN,ρ) are as before. This field is not exactly a 2-level GREM as in (2.7) since the

Gaussians at each level have an additional ON (1) term in their variances. It differs from

ψ̃ only from the fact that the variance of g(1)
B is the same for all B and is equal to the

maximal variance of (g
(1)
B , B ∈ Bα). The calculation of the free energy of (ψv, v ∈ AN,ρ)

is a standard computation (the ON (1) does not affect the free energy) and gives the
correct upper bound in the statement of Theorem 2.1. (We refer to [8] for the detailed
computation of the free energy of the GREM.) The fact that the expectation of the free
energy of ψ is larger than the one of ψ̃ follows from the next lemma showing that the
free energy of a hierarchical field is an increasing function of the variance of each point
at the first level.

Lemma 4.2. Consider N1, N2 ∈ N. Let (X
(1)
v1 , v1 ≤ N1) and (X

(2)
v1,v2 ; v1 ≤ N1, v2 ≤ N2) be

i.i.d. standard Gaussian random variables. Consider the Gaussian field of the form

Xv = σ1(v1)X(1)
v1 + σ2X

(2)
v1,v2 , v = (v1, v2) ,

where σ2 > 0 and σ1(v1) > 0, for all v1 ≤ N1. Then E
[
log
∑
v e

βXv
]

is an increasing
function in each variable σ1(v1).

Proof. Direct differentiation gives

∂

∂σ1(v1)
E

[
log
∑

v

eβXv

]
= βE

[∑
v2
Xv1e

βXv1,v2

ZN (β)

]
,
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where ZN (β) =
∑
v e

βXv . Gaussian integration by part then yields

βE

[∑
v2
Xv1e

βXv1,v2

ZN (β)

]
= β2σ1(v1)E



∑
v2
eβXv1,v2

ZN (β)
−
∑
v2,v′2

eβXv1,v2 e
βXv1,v′2

ZN (β)2


 .

The right side is clearly positive, hence proving the lemma.

4.2 Proof of the lower bound

Recall the definition of V δN given in the introduction. The two following propositions
are used to compute the log-number of high points of the field ψ in V δN . The treatment
follows the treatment of Daviaud [13] for the standard GFF. The lower bound for the free
energy is then computed using Laplace’s method. Recall that Γ12 = σ2

1α+ σ2
2(1− α).

Proposition 4.3.

lim
N→∞

P

(
max
v∈V δN

ψv ≥
√

2

π
γmax logN2

)
= 0,

where

γmax = γmax(α,σ) :=

{√
Γ12, if σ1 ≤ σ2,

σ1α+ σ2(1− α), if σ1 ≥ σ2.

Proof. The case σ1 ≤ σ2 is direct by a union bound. In the case σ1 ≥ σ2, note that the
field ψ̃ defined in (4.1) but restricted to V δN is of the form (2.7) (up to ON (1) terms in

the variance) with cN2α (for some c > 0) Gaussian variables of variance σ2
1α
π logN2 +

ON (1) at the first level. Indeed, for the field restricted to V δN , the variance of E[φ2
B̃

] is
σ2
1α
π logN2 +ON (1) by Lemma 5.2 since the distance to the boundary is a constant times
N . Therefore, by Lemma 5.3 and Equation (4.2), we have

P

(
max
v∈V δN

ψv ≥
√

2

π
γmax logN2

)
≤ P

(
max
v∈V δN

ψ̃v ≥
√

2

π
γmax logN2

)
.

Then, the study of the first order of the maximum of ψ̃ restricted to V δN is a standard
GREM result (indeed the additional ON (1) in the variance does not affect the first order
of the maximum). The proof is not hard and omitted for conciseness. The reader is
referred to Theorem 1.1 in [9] where a stronger result on the maximum is given.

Proposition 4.4. LetHψ,δN (γ) :=
{
v ∈ V δN : ψv ≥

√
2
πγ logN2

}
be the set of γ-high points

within V δN and define

if σ1 ≤ σ2 E(α,σ)(γ) := 1− γ2

Γ12
;

if σ1 ≥ σ2 E(α,σ)(γ) :=

{
1− γ2

Γ12
, if γ < Γ12

σ1
,

(1− α)− (γ−σ1α)2

σ2
2(1−α)

, if γ ≥ Γ12

σ1
.

Then, for all 0 < γ < γmax, and for any E < E(α,σ)(γ), there exists c such that

P
(
|Hψ,δN (γ)| ≤ N2E

)
≤ exp{−c(logN)2}. (4.8)

Proposition 4.4 is obtained by a two-step recursion. Two lemmas are needed. The
first is a straightforward generalization of the lower bound in Daviaud’s theorem (see
Theorem 1.2 in [13] and its proof). For all 0 < α < 1, denote by Πα the centers of the
square boxes in Bα (as defined in Section 4.1) which also belong to V δN .
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Lemma 4.5. Let α′, α′′ ∈ (0, 1] such that 0 < α′ < α′′ ≤ α or α ≤ α′ < α′′ ≤ 1. Denote by
σ the parameter σ1 if 0 < α′ < α′′ ≤ α and by σ the parameter σ2 if α ≤ α′ < α′′ ≤ 1.

Assume that the event

Ξ :=

{
#{v ∈ Πα′ : ψv(α

′) ≥ γ′
√

2

π
logN2} ≥ NE

′

}
,

is such that

P(Ξc) ≤ exp{−c′(logN)2},

for some γ′ ≥ 0, E ′ > 0 and c′ > 0.
Let

E(γ) := E ′ + (α′′ − α′)− (γ − γ′)2

σ2(α′′ − α′)
> 0.

Then, for any γ′′ such that E(γ′′) > 0 and any E < E(γ′′), there exists c such that

P

(
#{v ∈ Πα′′ : ψv(α

′′) ≥ γ′′
√

2

π
logN2} ≤ N2E

)
≤ exp{−c(logN)2}.

We stress that γ′′ may be such that E(γ′′) < E ′. The second lemma, which follows,
serves as the starting point of the recursion and is proved in [7] (see Lemma 8 in [7]).

Lemma 4.6. For any α0 such that 0 < α0 < α, there exists E0 = E0(α0) > 0 and c = c(α0)

such that

P
(
#{v ∈ Πα0

: ψv(α0) ≥ 0} ≤ NE0
)
≤ exp{−c(logN)2}.

Proof of Proposition 4.4. Let γ such that 0 < γ < γmax and choose E such that E <

E(α,σ)(γ). By Lemma 4.6, for α0 < α arbitrarily close to 0, there exists E0 = E0(α0) > 0

and c0 = c0(α0) > 0, such that

P
(
#{v ∈ Πα0

: ψv(α0) ≥ 0} ≤ N2E0
)
≤ exp{−c0(logN)2}. (4.9)

Moreover, let

E1(γ1) := E0 + (α− α0)− γ2
1

σ2
1(α− α0)

. (4.10)

Lemma 4.5 is applied from α0 to α. For any γ1 with E1(γ1) > 0 and any E1 < E1(γ1), there
exists c1 > 0 such that

P

(
#{v ∈ Πα : ψv(α) ≥ γ1

√
2

π
logN2} ≤ N2E1

)
≤ exp{−c1(logN)2}.

Therefore, Lemma 4.5 can be applied again from α to 1 for any γ1 with E1(γ1) > 0.
Define similarly E2(γ1, γ2) := E1(γ1) + (1−α)− (γ2− γ1)2/σ2

2(1−α). Then, for any γ2 with
E2(γ1, γ2) > 0, and E2 < E2(γ1, γ2), there exists c2 > 0 such that

P

(
#{v ∈ V δN : ψv ≥ γ2

√
2

π
logN2} ≤ N2E2

)
≤ exp{−c2(logN)2}. (4.11)

Observing that 0 ≤ E0 ≤ α0, Equation (4.8) follows from (4.11) if it is proved that
limα0→0 E2(γ1, γ) = E(α,σ)(γ) for an appropriate choice of γ1 (in particular such that
E1(γ1) > 0). It is easily verified that, for a given γ, the quantity E2(γ1, γ) is maximized
at γ∗1 = γσ2

1(α − α0)/(Γ12 − σ2
1α0). Plugging these back in (4.10) shows that E1(γ∗1) > 0

provided that γ < Γ12/σ1 =: γcrit, with α0 small enough (depending on γ). Furthermore,
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since E2(γ∗1 , γ) = E0 + (1−α0)− γ2/(Γ12− σ2
1α0), we obtain limα0→0 E2(γ∗1 , γ) = E(α,σ)(γ),

which concludes the proof in the case 0 < γ < γcrit.

If γcrit ≤ γ < γmax, the condition E1(γ∗1 ) > 0 is violated as α0 goes to zero. However,
the previous arguments can easily be adapted and we refer to subsection 3.1.2 in [4] for
more details.

Proof of the lower bound of Theorem 2.1. Define γi := iγmax/M for 0 ≤ i ≤ M (M will
be chosen large enough). Notice that Proposition 4.3, Proposition 4.4 and the symmetry
property of centered Gaussian random variables imply that the event

BN,M,ν :=

M−1⋂

i=0

{
|Hψ,δN (γi)| ≥ N2E(α,σ)(γi)−ν/3

}⋂{
max
v∈V δN

|ψv| ≤
√

2

π
γmax logN2

}

satisfies
P(BN,M,ν) −→ 1, N →∞,

for all M ∈ N∗ and all ν > 0. Since |Hψ,δN (γM )| = 0 on BN,M,ν , we have

Z
(α,σ)
N,ρ (β) ≥

∑

v∈V δN

eβψv ≥
M∑

i=1

(|Hψ,δN (γi−1)| − |Hψ,δN (γi)|)N2
√

2
π γi−1β

=

M−1∑

i=1

(
N2
√

2
π γiβ −N2

√
2
π γi−1β

)
|Hψ,δN (γi)|+ |Hψ,δN (γ0)|N2

√
2
π γ0β − |Hψ,δN (γM )|N2

√
2
π γM−1β

≥ 1

2

M−1∑

i=1

N2
√

2
π γiβ |Hψ,δN (γi)|,

where the last inequality holds for N large enough. Define Pβ(γ) := E(α,σ)(γ) +
√

2
πβγ.

On the event BN,M,ν , this estimate for the logarithm becomes

f
(α,σ)
N,ρ (β) ≥ 1

logN2
log

(
M−1∑

i=1

N2Pβ(γi)

)
− ν

6
+ oN (1)

≥ max
1≤i≤M−1

Pβ(γi)−
ν

6
+ oN (1) .

Using the expression of E(α,σ) in Proposition 4.4 on the different intervals, it is eas-
ily checked by differentiation that maxγ∈[0,γmax] Pβ(γ) = f (α,σ)(β). Furthermore, the
continuity of γ 7→ Pβ(γ) on [0, γmax] yields

max
1≤i≤M−1

Pβ(γi) −→ max
γ∈[0,γmax]

Pβ(γ) = f (α,σ)(β), M →∞.

Therefore, choosing M large enough yields the result.

5 Appendix

The conditional expectation of the GFF has nice features such as the Markov property,
see e.g. Theorems 1.2.1 and 1.2.2 in [19] for a general statement on Markov fields
constructed from symmetric Markov processes.

Lemma 5.1. Let B ⊂ A be subsets of Z2. Let (φv, v ∈ A) be a GFF on A. Then

E[φv|FBc ] = E[φv|F∂B ], ∀v ∈ B,

and
(φv − E[φv|F∂B ], v ∈ B)
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has the law of a GFF on B. Moreover, if Pv is the law of a simple random walk starting
at v and τB is the first exit time of B, we have

E[φv|F∂B ] =
∑

u∈∂B

Pv(SτB = u) φu .

The following estimate on the Green function can be found as Lemma 2.2 in [16] and
is a combination of Proposition 4.6.2 and Theorem 4.4.4 in [23].

Lemma 5.2. There exists a function a : Z2 ×Z2 7→ [0,∞) of the form

a(v, v′) =
2

π
log ‖v − v′‖+

2γ0 log 8

π
+O(‖v − v′‖−2)

(where γ0 denotes the Euler’s constant) such that a(v, v) = 0 and

GA(v, v′) = Ev [a(v′, SτA)]− a(v, v′) .

The following Slepian’s comparison lemma for the tail of the maximum and the
expectation of the log-partition function of two Gaussian fields can be found in [24] and
in [22].

Lemma 5.3. Let (X1, · · · , XN ) and (Y1, · · · , YN ) be two centered Gaussian vectors in N
variables such that

E[X2
i ] = E[Y 2

i ] ∀i, E[XiXj ] ≥ E[YiYj ] ∀i 6= j .

Then for all β > 0

E

[
log

N∑

i=1

eβXi

]
≤ E

[
log

N∑

i=1

eβYi

]
,

and for all λ > 0,

P

(
max

i=1,...,N
Xi > λ

)
≤ P

(
max

i=1,...,N
Yi > λ

)
.
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