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Abstract

We deal with a stochastic control problem subject to a stochastic variational inequality
with delay. By deriving the adjoint equation as an anticipated backward stochastic
differential equation, we are able to establish necessary conditions of optimality under
the form of a Pontryagin-Bensoussan stochastic maximum principle. This is achieved
first for càdlàg controls, by explicitly writing the coefficients of the adjoint equation in
terms of the local time of the state process. The general result is then obtained by
approximating the optimal control with continuous controls and applying Ekeland’s
variational principle to the approximating sequence.
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1 Introduction

In this paper we establish necessary conditions for the existence of an optimal control
u∗ minimizing the cost functional

J(u) := E

[ ∫ T

0

g(t, R(X)t, ut)dt+ h(Xu
T )

]
subject to the one-dimensional stochastic variational inequality (SVI) with delay{

dXt + ∂ϕ(Xt)dt 3 b(t, R(X)t, ut)dt+ 〈σ(t, R(X)t, ut), dWt〉 , t ∈ [0, T ];

Xt = η(t), t ∈ [−δ, 0].
(1.1)
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Maximum principle for a SVI with delay

where ∂ϕ is the subdifferential of a lower semi-continuous (l.s.c.) convex function ϕ and

R(X)t :=
∫ 0

−δXt+rλ(dr), t ∈ [0, T ]

is a delay term applied to the dynamics of the system. In order to reach this goal we
will employ one of the essential approaches in solving optimal control problems, the
maximum principle.

The maximum principle approach has been introduced by Pontryagin and his group
in the 1950’s to establish necessary conditions of optimality for deterministic controlled
systems. Since then, the number of papers on the subject sharply increased and a lot
of work has been done on different type of systems. One major difficulty that arises in
the extension to the stochastic controlled systems is that the adjoint equation becomes
an SDE with terminal conditions, called backward SDEs (BSDEs). Pioneering work in
this direction was achieved by Kushner [14], Bismut [6] or Haussman [12]. The results
therein concern the case where the diffusion does not depend on control. Peng removed
this restriction in [21], by establishing a maximum principle containing two adjoint
equations, both in the form of linear BSDEs, because one needs to take into account both
the first-order and second-order terms in the Taylor expansion. There is also another
possibility of treating the case where the diffusion is controlled: if the action space of
controls is convex, it is possible to derive the maximum principle in a local form. This is
accomplished by using a convex perturbation of the control instead of a spike variation.
Important results in this direction have been obtained by Bensoussan [3] or [4].

Variational inequalities, on the other hand, form an important class of problems
appearing in applications, ranging from electrostatics to optimization and game theory.
In the stochastic case, variational inequalities given by subdifferential operators were
introduced by Răşcanu [24]. General variational inequalities on non-convex domains
have been considered in [8]. Concerning the control of such systems, Barbu [2] initiated
systematic studies on controlled variational inequalities in the deterministic case. On
stochastic control, results have been obtained in the following directions: existence of
an optimal control ([25]) and the study of associated Hamilton-Jacobi-Bellman equation
([9], [26]).

For delayed stochastic controlled systems, the delay responses bring more difficulties
in solving control problems. One of the first results in this topic can be found in [13]. In
general the problem is by its nature infinite dimensional but nevertheless, it happens
that the delayed systems can be reduced to finite dimensional systems under certain
conditions. We refer to [11], [15] and [16] for contributions in this direction, mainly by
the dynamic programming principle approach. Concerning the maximum principle, a
general result was considered in [19], where the state system is an SDE driven by a

Wiener-Poisson process, with delay of the form R(X)t :=
(
Xt−δ,

∫ 0

−δ e
ρrXt+rdr

)
. The

authors establish sufficient and necessary stochastic maximum principle, where the
associated adjoint equation is a time-advanced backward stochastic differential equation.

The main difficulty we have to deal to in this paper is the lack of smoothness for
the subdifferential operator ∂ϕ; the only regularity which it possess is maximal mono-
tonicity (generalizing monotonicity and continuity for single-valued functions). In gen-
eral, in order to derive the maximum principle for the optimal control, one needs
C1-differentiability of the coefficients (when the control space is convex, otherwise we
need C2-differentiability). We are able to overcome this difficulty by considering the
second derivative of ϕ in a generalized form and write “∂2ϕ(Xt)” in terms of the local
time of X. In order to find the solution of the variation equation, corresponding heuris-
tically to “dX/du”, we adapt the standard approach for controlled SDEs (developed in
[3], for example) to solutions of a SDE with delay which approximate the solution of the
variational inequality (1.1) via Moreau-Yosida regularization of ϕ. Then, using an indirect
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method we obtain the weak derivative of the dynamics of the system with respect to the
control by passing to the limit in the approximated variation equation. However, this
works only for càdlàg controls, due to the extensive use of weak convergence of measures
on the real line. Also, the methods employed force us to restrict to the case where the
domain of ϕ is the whole real line and the diffusion is non-degenerate. We are able then
to show that optimal controls which are càdlàg satisfy a maximum principle, obtained by
the duality with the adjoint equation, following the main ideas encountered in [19]. In
order to pass to the case where the optimal control is not necessarily càdlàg, we use
Ekeland’s variational principle, by approximating the optimal control with continuous
controls and then passing to the limit. The difference to the càdlàg case is that now an
unknown parameter k appears in the adjoint equation.

This paper is organized as follows. In section 2, we introduce some notations and
recall some preliminary results concerning the well-posedness of stochastic variational
inequalities. Section 3 is devoted to the optimal control problem and is divided in three
parts: derivation of the variation equation, the maximum principle for near-optimal
controls and finally, the necessary conditions of optimality. The Appendix is concerned
with the proof of Proposition 3.8, which is the core result on the variation equation.

2 Preliminaries

Throughout this paper we fix a time horizon T > 0, a delay constant δ ∈ [0, T ] and
a vector of m finite positive finite scalar measures on B([−δ, 0]), λ = (λ1, . . . , λm)>. We
will denote by |λ| the measure λ1 + · · · + λm. The space of controls is a convex closed
set U ⊆ Rl. For the sake of simplicity, we will suppose that U is also bounded. This
assumption is quite natural, since in the literature it is often assumed that the control
space is compact, especially for existence purposes.

The Euclidean norm and the scalar product in an Euclidean space are denoted |·|,
respectively 〈·, ·〉. For a closed set E of an Euclidean space, −δ ≤ s ≤ t < +∞ and a
finite measure ν on [s, t], we will use the following (standard) notations:

• For p ≥ 1, Lpν([s, t];E) denotes the space (of equivalence classes) of E-valued,
p-integrable functions on [s, t], endowed with the p-norm

‖x‖Lpν([s,t];E) :=

[∫ t

s

|x(r)|p ν(dr)

]1/p

.

• C([s, t];E) is the space of E-valued continuous functions on [s, t], endowed with the
sup-norm1:

‖x‖C([s,t];E) := sup
r∈[s,t]

|x(r)| .

In order to shorten the formulae, we also denote ‖·‖s,t, ‖·‖t instead of ‖·‖C([s,t];E),
respectively ‖·‖C([0,t];E). Sometimes we extend this notation to càdlàg functions on
[s, t].

• By BV ([s, t];E) we denote the space of E-valued, bounded variation functions x on
[s, t]. The total variation of a function x ∈ BV ([s, t];E) is

‖x‖BV ([s,t];E) := sup

k−1∑
i=0

|x(ti+1)− x(ti)| ,

the supremum being taken on all k ∈ N∗ and s ≤ t0 < t1 < · · · < tk ≤ t.
1the p-norm and sup-norm are not really norms unless E is a linear space. However, these “norms" determine

complete metrics on Lpν([s, t];E), respectively C([s, t];E).
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Let (Ω,F ,P) be a complete probability space, W a d-dimensional standard Brownian
motion and F := {Ft}t≥0 the filtration generated by W augmented by the null-sets of F .
We prolong the filtration {Ft}t≥0 on [−δ, 0) by setting Ft := F0 for t ∈ [−δ, 0) (and we
still denote by F the filtration {Ft}t≥−δ).

Sometimes it is interesting to restrict the information available to the controller and
consider a subfiltration G := {Gt}t≥0 of F, instead of F.

For G, E, s, t, p and ν like above and q ≥ 1, LqG(Ω;E) is the space (of equiva-
lence classes) of G-progressively measurable E-valued processes Z on [s, t] such that
E ‖Z‖pE < +∞, for E denoting Lpν([s, t];E), C([s, t];E) or BV ([s, t];E). In the case that
E is an Euclidean space and E is Lpν([s, t];E) or C([s, t];E), LqG(Ω;E) is a Banach space

with respect to the norm (E ‖Z‖pE)
1/p

. We often denote LpG,ν(Ω × [s, t] ;E) instead of
LpG(Ω;Lpν([s, t];E)).

Since much of the work is done on the real line, in the case E = R we will simplify
the notations by denoting Lpν [s, t], C[s, t], BV [s, t] instead of Lpν([s, t];R), C([s, t];R), re-
spectively BV ([s, t];R). We can equally drop the subscript ν when ν is the Lebesgue
measure.

We say that a multivalued operator A : R→ 2R is a maximal monotone operator if it
is monotone, i.e.

(x∗ − y∗) (x− y) ≥ 0, ∀x, y ∈ R, ∀x∗ ∈ A(x), ∀y∗ ∈ A(y)

and is maximal with respect to monotonicity, i.e. if x, x∗ ∈ R satisfy

(x∗ − y∗) (x− y) ≥ 0, ∀y ∈ R, ∀y∗ ∈ A(y),

then x∗ ∈ A(x).
By [7], if ϕ : R → (−∞,+∞] is a l.s.c. convex function with Domϕ 6= ∅2, then its

subdifferential, defined by

∂ϕ(x) := {x∗ ∈ R | x∗(y − x) + ϕ(x) ≤ ϕ(y), ∀y ∈ R}

is a maximal monotone operator. The converse is also true: every maximal monotone
operator on R can be written as a subdifferential as above.

We consider the following SVI with delay{
dXt + ∂ϕ(Xt)dt 3 b(t, R(X)t, ut)dt+ 〈σ(t, R(X)t, ut), dWt〉 , t ∈ [0, T ];

Xt = η(t), t ∈ [−δ, 0].
(2.1)

where:

• u is an admissible control, i.e. u is an U -valued, progressively measurable process
with respect to G;

• R is the delay term defined by R(x)(t) :=

∫ 0

−δ
x(t + r)λ(dr) for x ∈ C[−δ, T ] and

t ∈ [0, T ];

• the measurable functions b : [0, T ]×Rm ×U → R, σ : [0, T ]×Rm ×U → Rd are the
coefficients of the equation;

• ϕ : R→ (−∞,+∞] is a l.s.c. convex function with int Domϕ 6= ∅;
• η represents the starting deterministic process, satisfying the following condition:

(A0) η ∈ C[−δ, 0] and η(0) ∈ Domϕ.
2the domain of ϕ is defined as Domϕ := {x ∈ R | ϕ(x) < +∞} .
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As a convention, we regard σ, u, λ (and hence R(·)) and W as column vectors.
We mention that coefficients depending also on the present state of the solution Xt

can be envisaged by replacing λ with λ′ := (λ, δ0), where δ0 is the Dirac measure on
[−δ, 0] concentrated in 0.

Definition 2.1. A pair of one-dimensional, continuous F-adapted processes (X,K) is
called a solution of (2.1) if the following hold P-a.s.:

(i) ||K||BV [0,T ] <∞; Kt = 0, ∀t ∈ [−δ, 0];

(ii) Xt = η(t), ∀t ∈ [−δ, 0];

(iii) Xt +Kt = η(0) +

∫ t

0

b(s,R(X)s, us)ds+

∫ t

0

〈σ(s,R(X)s, us), dWs〉 , ∀ t ∈ [0, T ];

(iv)

∫ T

0

(y(r)−Xr)dKr +

∫ T

0

ϕ(Xr)dr ≤
∫ T

0

ϕ(y(r))dr, ∀y ∈ C[0, T ].

Remark 2.2. In general, one cannot expect to show that K is an absolutely continuous
process such that dKr

dr ∈ ∂ϕ(Xr), dr-a.e.; the last condition (iv) is introduced as a
natural weakening and can be understood as the rigorous translation of the expression
“dKr ∈ ∂ϕ(Xr)dr”. The reader can find equivalent conditions to it in [1], for example.

As a consequence of (iv) and of the continuity of X, we have that Xt ∈ Domϕ, ∀t ∈
[0, T ] , P-a.s.

In order to have existence and uniqueness of strong solutions for equation (2.1), we
impose the following conditions on the coefficients:

(A1) there exists a constant L > 0 such that for every t ∈ [0, T ], y, ỹ ∈ Rm and u ∈ U :

(i) |b(t, y, u)− b(t, ỹ, u)| ≤ L |y − ỹ|;
(ii) |σ(t, y, u)− σ(t, ỹ, u)| ≤ L |y − ỹ|.

Theorem 2.3. Let p ≥ 2. Under assumptions (A0) and (A1), for each control u, equation
(2.1) has a unique solution (Xu,Ku) in the space LpF(Ω;C[−δ, T ]))×

(
LpF(Ω;C[−δ, T ])) ∩

L
p/2
F (Ω;BV [−δ, T ]))

)
.

This result is the generalization to the delay case of Theorem 2.1. in [1] and its
proof follows essentially the same lines. It was stated in a more general setting in
[25] (Theorem 2.3) and was proved in detail in [9] by the penalization method via the
Moreau-Yosida regularization of ϕ, though in the particular case where the delay has the

form R(X)t =
(
Xt−δ,

∫ 0

−δ e
ρrXt+r dr

)
. For the above reasons, we skip the proof.

In order to have continuous dependence on controls, we impose the supplementary
Lipschitz condition:

(A2) there exists a constant L̃ > 0 such that for every t ∈ [0, T ], y ∈ Rm and u, v ∈ U :

(i) |b(t, y, u)− b(t, y, v)| ≤ L̃ |u− v|;
(ii) |σ(t, y, u)− σ(t, y, v)| ≤ L̃ |u− v|.

Proposition 2.4. Under assumptions (A0)-(A2), for every p ≥ 2, there exists a constant
Cp > 0 such that

E ‖Xu −Xv‖pT + E ‖Ku −Kv‖pT ≤ CE
∫ T

0

|ut − vt|p dt,

for all admissible controls u, v.
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Proof. Since the proof involves only standard calculus, we give just a sketch, leaving the
details to the reader. Applying Itô’s formula to |Xu

t −Xv
t |

2, we get, for every t ∈ [0, T ]:

|Xu
t −Xv

t |
2

+ 2

∫ t

0

(Xu
s −Xv

s )d(Ku
s −Kv

s )

=2

∫ t

0

(Xu
s −Xv

s ) [b(s,R(Xu)s, us)− b(s,R(Xv)s, vs)] ds

+ 2

∫ t

0

〈(Xu
s −Xv

s ) [σ(s,R(Xu)s, us)− σ(s,R(Xv)s, vs)] , dWs〉

+

∫ t

0

|σ(s,R(Xu)s, us)− σ(s,R(Xv)s, vs)|2 ds.

The monotonicity of ∂ϕ implies that 2
∫ t

0
(Xu

s −Xv
s )d(Ku

s −Kv
s ) ≥ 0, ∀t ≥ 0. Hence, using

(A1), (A2) and Burkholder-Davis-Gundy’s inequality, we obtain

E||Xu −Xv||pt ≤CE
(∫ t

0

(
||Xu −Xv||2s + |us − vs|2

)
ds

)p/2
+ CE

[
||Xu −Xv||2t

∫ t

0

(
||Xu −Xv||2s + |us − vs|2

)
ds

]p/4
≤ 1

2E||X
u −Xv||pt +

(
C + C2

2

)
E

(∫ t

0

(
||Xu −Xv||2s + |us − vs|2

)
ds

)p/2
≤ 1

2E||X
u −Xv||pt +

(
C + C2

2

)
(2T )

p
2−1

E

∫ t

0

(||Xu −Xv||ps + |us − vs|p) ds,

where C is a constant depending only on p, L and L̃. We now use Gronwall’s inequality in
order to get the desired estimate for Xu −Xv. The one for Ku −Kv is obtained directly
from equation (2.1).

3 Necessary conditions of optimality

The purpose of this section is to give necessary conditions of optimality under the
form of a maximum principle for the optimal control. We recall that the problem is to
minimize the cost functional

J(u) := E

[ ∫ T

0

g(t, R(X)t, ut)dt+ h(Xu
T )

]
(3.1)

subject to the SVI with delay (2.1):{
dXt + ∂ϕ(Xt)dt 3 b(t, R(X)t, ut)dt+ 〈σ(t, R(X)t, ut), dWt〉 , t ∈ [0, T ];

Xt = η(t), t ∈ [−δ, 0].

From now on we assume that Domϕ = R. This implies that for every a ∈ R, there
exist the left-hand side and the right-hand side derivatives of ϕ in a, denoted ϕ′−(a),
respectively ϕ′+(a). It is clear that

ϕ′−(a) ≤ ϕ′+(a), ∀a ∈ R

and
∂ϕ(a) =

[
ϕ′−(a), ϕ′+(a)

]
, ∀a ∈ R.

Moreover, by the monotonicity of ∂ϕ, ϕ′+(a) ≤ ϕ′−(a′), if a < a′.
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Let us define the second-order generalized derivative of ϕ as the unique σ-finite
positive measure µ on B(R) such that

µ([a, a′]) = ϕ′+(a′)− ϕ′−(a), if a ≤ a′.

The name of µ is justified by the following fact: if ϕ is second-order differentiable, then
µ has ϕ′′ as density.

On the coefficients of the state equation and cost functional we impose the following
conditions:

(H0) b, g, σ are continuous in t ∈ [0, T ].

(H1) b, g, σ and h are C1 in (y, u) ∈ Rm × U with bounded derivatives.

By Theorem 2.3, for every control u we have, under conditions (A0) and (H1), the exis-
tence of a unique solution (Xu

t ,K
u
t )t∈[0,T ] in the space L2

F(Ω;C[0, T ])× (L2
F(Ω;C[0, T ]) ∩

L1
F(Ω;BV [0, T ])) for equation (2.1).

Also, as a straightforward consequence of Proposition 2.4 and the Lipschitz properties
of g and h, which are derived from condition (H1), we have the following result:

Proposition 3.1. As a mapping from L2
G(Ω × [0, T ];U) to R, the cost functional J is

continuous.

On σ we impose also the non-degeneracy condition:

(H2) σ(t, y, u) 6= 0, ∀(t, y, u) ∈ [0, T ]×Rm × U .

From now on, (A0), (H0)–(H2) are the standing assumptions.
For an admissible control u we introduce the local time of the process Xu by

La,ut := |Xu
t − a| − |Xu

0 − a| −
∫ t

0

sgn(Xu
s − a)dXu

s .

By [23, p. 213] we always can (and will) choose a version which is measurable in
(a, t, ω) ∈ R× [0, T ]× Ω, continuous and increasing in t ≥ 0, càdlàg in a ∈ R. We recall
here some properties of the local time:

Proposition 3.2. Let u be an admissible control. Then:

1. for every bounded, Borel function γ,∫
R

La,ut γ(a)da =

∫ t

0

γ(Xu
s ) |σ(s,R(Xu)s, us)|2 ds, ∀t ∈ [0, T ] , a.s.;

2. for every t ∈ [0, T ] and a ∈ R,

(Xu
t − a)+ − (Xu

0 − a)+ =

∫ t

0

1{Xus >a}dX
u
s +

1

2
La,ut , a.s.;

3. for every t ∈ [0, T ] and a ∈ R,

La,ut − La−,ut = 2

∫ t

0

1{Xus =a} [b(s,R(Xu)s, us)ds− dKu
s ] , a.s.

Formulas 1 and 2 are called occupation time density formula, respectively Tanaka
formula.

A consequence of (H2) is the absolute continuity of the bounded variation process
Ku:
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Proposition 3.3. For any admissible control u, the process Ku is absolutely continuous.
Moreover, P-a.s.,

dKu
t

dt
= ϕ′−(Xu

t ) = ϕ′+(Xu
t ), dt-a.e. (3.2)

and a 7→ La,ut is continuous for every t ∈ [0, T ].

Proof. The formula of occupation time density gives us∫ T

0

1{Xut =x}|σ(t, R(Xu)t, ut)|2dt =

∫
R

1{a=x}L
a,u
T da = 0 a.s.,

which yields ∫ T

0

1{Xut =x}dt = 0 a.s., ∀x ∈ R. (3.3)

Let us set Λ :=
{
x ∈ R | ϕ′+(x) > ϕ′−(x)

}
. Since Λ is at most countable, we obtain∫ T

0
1{Xut ∈Λ}dt = 0 a.s., hence∫ t

0

ϕ′−(Xu
s )ds =

∫ t

0

ϕ′+(Xu
s )ds a.s. (3.4)

On the other hand, according to [1, Proposition 1.2], a condition equivalent to (iv) of the
definition of the solution is that P-a.s., for every 0 ≤ s < t ≤ T and every y ∈ C[0, T ],∫ t

s

(y(r)−Xu
r )dKu

r +

∫ t

s

ϕ(Xu
r )dr ≤

∫ t

s

ϕ(y(r))dr.

Choosing y(r) := Xr + ε with arbitrary ε ∈ (−1, 1), we get

εKu
t ≤

∫ t

0

[ϕ(Xu
r + ε)− ϕ(Xu

r )] dr, ∀t ∈ [0, T ] , a.s.

Since

ϕ′−

(
min
s∈[0,t]

Xs − 1
)
≤ ϕ(Xu

r + ε)− ϕ(Xu
r )

ε
≤ ϕ′+

(
max
s∈[0,t]

Xs + 1
)
, ∀ε ∈ (−1, 1) \ {0},

we can apply Lebesgue’s dominated convergence theorem for ε converging to 0, both
from the left and right, in order to obtain∫ t

0

ϕ′−(Xu
s )ds ≤ Ku

t ≤
∫ t

0

ϕ′+(Xu
s )ds a.s.

Combining this inequality with relation (3.4) we deduce that Ku is absolutely continuous
with its derivative given by formula (3.2). From Proposition 3.2-(3.), this property implies
the continuity of L·,ut .

Remark 3.4. This result may seem in contradiction to the remark after the definition
of the solution, in which we claimed that the process Ku is in general with bounded
variation. However, in this particular case, the absolute continuity of Ku is due to the
non-degeneracy of σ (condition (H2)) and of the fact that Domϕ = R.

In the sequel we will need the following generalization of the occupation time density
formula (still called as such):

Lemma 3.5. Let u be an admissible control. Then, for every bounded (or positive) Borel
function γ : Ω× [0, T ]×R→ R,∫

R

∫ t

0

γ(s, a)La,u(ds)da =

∫ t

0

γ(s,Xu
s ) |σ(s,R(Xu)s, us)|2 ds, ∀t ∈ [0, T ] , a.s. (3.5)
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Proof. It is clear that the equality is true for functions γ of the form γ (ω, s, a) :=

1[t0,t1](s)1A(ω)γ̃(a), where 0 ≤ t0 ≤ t1 ≤ T , A ∈ F and γ̃ : R → R is a bounded
Borel function. By linearity, every linear combination of bounded Borel functions sat-
isfying (3.5) also satisfies this relation. Moreover, if γn : Ω × [0, T ] × R → R+ form an
increasing sequence of Borel measurable functions satisfying (3.5) and converging to
some function γ, then γ also satisfies (3.5), by the monotone convergence theorem. Since
F×({∅} ∪ {[t0, t1] | 0 ≤ t0 ≤ t1 ≤ T})×B(R) is a π-system generating F⊗B([0, T ])⊗B(R),
by the monotone class argument, it follows that every bounded Borel function satisfies
(3.5). The extension to positive Borel functions (or for which the integrals make sense) is
obvious.

Now, if ϕ were C2, then by the above Lemma we would have∫ t

0

ϕ′′(Xu
s )ds =

∫
R

∫ t

0

La,u(ds)

|σ(s,R(Xu)s, us)|2
ϕ′′(a)da =

∫
R

∫ t

0

La,u(ds)

|σ(s,R(Xu)s, us)|2
µ(da).

This serves as a motivation for introducing the increasing process:

Aut :=

∫
R

∫ t

0

La,u(ds)

|σ(s,R(Xu)s, us)|2
µ(da), t ∈ [0, T ].

Since the function s 7→ 1
|σ(s,R(Xu)s,us)|2

is bounded and La,ut = 0 if ‖Xu‖t ≤ |a|, it follows

that Au is also finite and continuous.

3.1 Variation equation

In order to approximate ϕ and ∂ϕ with smoother functions, we consider the Moreau-
Yosida regularization of ϕ, given by:

ϕε(x) := inf
{

1
2ε |z − x|

2 + ϕ(z) | z ∈ R
}
, x ∈ R,

for every ε > 0. We list below some useful properties of ϕε, which can be found, for
instance, in [7, Chap. II]:

• ϕε is a convex, C1-function;

• ϕε(x)↗ ϕ(x) as ε→ 0, ∀x ∈ R;

• |ϕ′ε(x)− ϕ′ε(y)| ≤ 1
ε |x− y|, ∀x, y ∈ R;

• ϕ′ε(x)→ (∂ϕ)0(x) as ε→ 0, ∀x ∈ R, where (∂ϕ)0(x) is the projection of 0 on ∂ϕ(x);

• ε→ |ϕ′ε(x)| is a decreasing function on (0,+∞) for every x ∈ R;

• ϕ′ε(x) ∈ ∂ϕ(x− εϕ′ε(x)), ∀x ∈ R, ∀ε > 0.

Since ϕε is not necessarily of class C2, we continue on approximating ϕ, by applying
a mollification procedure on ϕε. Let the function βε : R→ R be defined by

βε (x) :=
1√
2π

∫
R

ϕ′ε(x− ε2y) e−
y2

2 dy, x ∈ R.

Lemma 3.6. For every ε > 0, βε is an increasing C∞-function, with β′ε, β
′′
ε bounded. We

also have
|βε (x)− ϕ′ε (x)| < ε, ∀x ∈ R. (3.6)

Moreover, if ϕ is affine outside a compact interval, then (βε)ε∈(0,1] is uniformly bounded
and there exists another compact interval I such that

β′ε (x) ≤ ε, ∀x ∈ Ic, ∀ε ∈ (0, 1]. (3.7)
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Proof. The first part is obvious, since ϕ′ε is increasing and Lipschitz with constant 1/ε.
Given that ϕ′ε (x) → (∂ϕ)

0
(x) as ε ↘ 0 and that the mapping ε → |ϕ′ε(x)| is decreasing

for every x ∈ R, we have that

|βε (x)| ≤ |ϕ′ε(x)|+
√

2
π ε ≤ | (∂ϕ)

0
(x) |+ ε, ∀x ∈ R, ε ∈ (0, 1].

If ϕ is affine outside a compact interval, then (∂ϕ)
0 is bounded, hence (βε)ε∈(0,1] is

uniformly bounded. We also remark that ϕ′ε is constant beyond a compact interval
[−a0, a0] for ε ∈ (0, 1], because (ϕ′ε)ε>0 is bounded, ϕ is affine outside a compact interval
and ϕ′ε (x) ∈ ∂ϕ (x− εϕ′ε (x)) for ε > 0. Since ϕ′ε is Lipschitz (with constant 1/ε), ϕ′′ε exists
a.e. and is bounded by 1/ε, so we have

β′ε (x) = 1√
2π

∫
R

ϕ′′ε
(
x− ε2y

)
e−

y2

2 dy.

Therefore, for x > a0 + 1,

β′ε (x) ≤ 1
ε
√

2π

∫ +∞

1/ε2
e−

y2

2 dy = 1
ε
√

2π

∫ ε2

0

1
y2

e−
y2

2 dy ≤
√

2
π ε.

A similar inequality holds for x < −a0 − 1.

For the moment, let us fix two controls u0 and u1; let us set, for θ ∈ (0, 1),

uθt := u0
t + θ(u1

t − u0
t ), t ∈ [0, T ].

In order to simplify the notations, we write Xθ, Kθ, La,θ, Aθ instead Xuθ , Kuθ , La,u
θ

,
respectively Au

θ

. The reason for studying the behavior of Xθ as θ → 0 is that θ 7→ J(uθ)

has a minimum in θ = 0 if u0 is an optimal control, hence we can derive necessary
optimality conditions by calculating its derivative in 0. For that we need to study the
derivative of θ 7→ Xθ.

Let Xε,θ be the solution of the penalized equation

dXε,θ
t + βε(X

ε,θ
t )dt = b(t, R(Xε,θ)t, u

θ
t )dt+

〈
σ(t, R(Xε,θ)t, u

θ
t ), dWt

〉
, t ∈ [0, T ]; (3.8)

with initial condition Xε,θ
t = η(t) on [−δ, 0]. We set Kε,θ

t :=
∫ t

0
βε(X

ε,θ
s )ds, t ∈ [0, T ];

Kε,θ
t := 0, t ∈ [−δ, 0).

From the proof of [1, Theorem 2.1.] and relation (3.6), Xε,θ and Kε,θ converge as
ε↘ 0 in L2

F(Ω;C[0, T ]) to Xθ, respectively Kθ, uniformly with respect to θ.
We also consider, for ε > 0 and θ ∈ [0, 1], the solution Y ε,θ of the delay equation3,4

dY ε,θt + β′ε(X
ε,θ
t )Y ε,θt dt =

[
(∂yb

ε,θ
t )R(Y ε,θ)t + (∂ub

ε,θ
t )(u1

t − u0
t )
]
dt

+
〈
(∂yσ

ε,θ
t )R(Y ε,θ)t + (∂uσ

ε,θ
t )(u1

t − u0
t ), dWt

〉
, t ∈ [0, T ], (3.9)

with initial condition Y ε,θt = 0, t ∈ [−δ, 0]. We observe that the boundedness of β′ε as well
as condition (H1) imply existence and uniqueness of the solution in L2

F(Ω;C[0, T ]).
By formally differentiating with respect to θ in (3.8), we obtain an equation of the form

(3.9), suggesting that d
dθX

ε,θ
t = Y ε,θt . This can be done rigorously by using a standard

argument, developed in [3] for example, which gives that the differentiation takes place
in L2

F(Ω;C[0, T ]):

3We denote ∂zb
ε,θ
t , ∂zσ

ε,θ
t for ∂b

∂z
(t, R(Xε,θ)t, uθt ), respectively ∂σ

∂z
(t, R(Xε,θ)t, uθt ), where z stands for y

or u.
4We regard ∂b

∂y
, ∂b
∂u

, ∂g
∂y

, ∂g
∂u

as row vectors and ∂σ
∂y

, ∂σ
∂u

as matrices of size d×m, respectively d× l.
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lim
θ↘θ0

E sup
t∈[0,T ]

[∣∣∣∣∣Xε,θ
t −X

ε,θ0
t

θ − θ0
− Y ε,θ0t

∣∣∣∣∣
2

+

∣∣∣∣∣Kε,θ
t −K

ε,θ0
t

θ − θ0
−
∫ t

0

β′ε(X
ε,θ0
s )Y ε,θ0s ds

∣∣∣∣∣
2]

= 0;

(3.10)
for every θ0 ∈ [0, T ).

Our first task is to find an analogous derivative formula for Xθ and Kθ. For that,
suppose for one moment that ϕ is C2. Then, as before, we would have d

dθX
θ
t = Y θt , where

Y θ is the solution of the equation5

dY θt + Y θt ϕ
′′(Xθ

t )dt =
[
(∂yb

θ
t )R(Y θ)t + (∂ub

θ
t )(u

1
t − u0

t )
]
dt

+
〈
(∂yσ

θ
t )R(Y θ)t + (∂uσ

θ
t )(u

1
t − u0

t ), dWt

〉
, t ∈ [0, T ].

with Y θt = 0, t ∈ [−δ, 0]. But as already explained at page 9, in this case
∫ t

0
ϕ′′(Xθ

s )ds

equals Aθt , so we can write the above equation as

dY θt + Y θt dA
θ
t =

[
(∂yb

θ
t )R(Y θ)t + (∂ub

θ
t )(u

1
t − u0

t )
]
dt

+
〈
(∂yσ

θ
t )R(Y θ)t + (∂uσ

θ
t )(u

1
t − u0

t ), dWt

〉
, t ∈ [0, T ], (3.11)

with initial condition Y θt = 0, t ∈ [−δ, 0]. This makes sense even when ϕ is no longer
C2, which leads us to believe that equation (3.11) will deliver the derivative of Xθ

also for our general standing assumptions. In fact, we will show that the derivation
formula d

dθX
θ
t = Y θt is still valid, however in an weaker sense. First we have to prove the

existence of a solution to equation (3.11).

Proposition 3.7. Equation (3.11) has a unique solution Y θ ∈ L2
F(Ω;C[−δ, T ]).

Proof. Uniqueness follows by the monotonicity of t 7→ Aθt . Indeed, if we have two
solutions Y, Y ′ ∈ L2

F(Ω;C[0, T ]) of equation (3.11), then

|Yt − Y ′t |
2

+ 2

∫ t

0

|Ys − Y ′s |
2
dAθs

=2

∫ t

0

(∂yb
θ
s)R(Y − Y ′)s(Ys − Y ′s ) + (∂ub

θ
s)(u

1
s − u0

s)(Ys − Y ′s )ds

+

∫ t

0

[
(∂yσ

θ
s)R(Y − Y ′)s + (∂uσ

θ
s)(u

1
s − u0

s)
]2
ds

+ 2

∫ t

0

〈
(∂yσ

θ
s)R(Y − Y ′)s(Ys − Y ′s ) + (∂uσ

θ
s)(u

1
s − u0

s)(Ys − Y ′s ), dWs

〉
.

Standard estimates and Gronwall’s inequality allow us to conclude that Y = Y ′. In order
to prove existence, we let τθn := inf

{
t ∈ [0, T ] | Aθt > n

}
∧ T and An,θt := Aθt∧τn . Then the

equation

dȲ n,θt =
[
(∂yb

θ
t )R̄

n(Ȳ n,θ)t + eA
n,θ
t (∂ub

θ
t )(u

1
t − u0

t )
]
dt

+
〈
(∂yσ

θ
t )R̄

n(Ȳ n,θ)t + eA
n,θ
t (∂uσ

θ
t )(u

1
t − u0

t ), dWt

〉
, t ∈ [0, T ], (3.12)

where

R̄n(x)t :=

∫ 0

−δ
eA

n,θ
t −A

n,θ
t+r x(t+ r)λ(dr), t ∈ [0, T ]

5Here again, ∂zbθt , ∂zσθt stand for ∂b
∂z

(t, R(Xθ)t, uθt ), respectively ∂σ
∂z

(t, R(Xθ)t, uθt ).
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has a unique solution Ȳ n,θ ∈ L2
F(Ω;C[−δ, T ]) with initial condition Ȳ n,θt = 0, t ∈ [−δ, 0].

The transformation Y n,θt := e−A
n,θ
t Ȳ n,θt gives us a solution of the equation

dY n,θt + Y n,θt dAn,θt =
[
(∂yb

θ
t )R(Y n,θ)t + (∂ub

θ
t )(u

1
t − u0

t )
]
dt

+
〈
(∂yσ

θ
t )R(Y n,θ)t + (∂uσ

θ
t )(u

1
t − u0

t ), dWt

〉
, t ∈ [0, T ], (3.13)

with initial condition Y n,θt = 0, t ∈ [−δ, 0]. By uniqueness, it is clear that Y n,θt = Y m,θt

for t ∈
[
0, τθn

]
if n ≤ m. Since P(τθn = T ) ↗ 1 as n → ∞, we can define Y θt := Y n,θt for

t ∈
[
0, τθn

]
. Obviously, Y θ is a solution of equation (3.11). It remains only to show that

Y θ ∈ L2
F(Ω;C[−δ, T ]), which is done by applying Itô’s formula to

∣∣Y θt ∣∣2.

Since the convergence in formula (3.10) is not necessarily uniform in ε > 0 (the
speed of the convergence depends on the Lipschitz constants of the coefficients), we
cannot derive a similar relation for Xθ, Kθ and Y θ directly from that. In this regard, we
will adapt an idea from [17] concerning the Malliavin derivatives for processes without
control and we will define the derivative of θ → Xθ in a Sobolev space.

Proposition 3.8. If u0 and u1 are càdlàg, the following derivation formula holds:

lim
θ→0

E

[ ∫ T

0

∣∣∣∣Xθ
t −X0

t

θ
− Y 0

t

∣∣∣∣2 dt+

∣∣∣∣Xθ
T −X0

T

θ
− Y 0

T

∣∣∣∣2 ] = 0. (3.14)

The proof of this result is postponed to the Appendix, given its length and technicality.

3.2 Maximum principle for near optimal controls

As in the case of SDEs, the adjoint equation associated with our optimal control
problem is a linear BSDE. We define the Hamiltonian of the system H : [0, T ]×Rm ×U ×
R×Rd → R by

H(t, y, u, ζ, ϑ) = g(t, y, u) + ζb(t, y, u) + ϑσ(t, y, u)

For every control u, we consider the following anticipated BSDE6:{
−dPt + PtdA

u
t = EFt [f(t, R(Xu), u, P,Q)]dt−QtdWt, t ∈ [0, T ];

PT = h′(Xu
T ),

(3.15)

where7

f(t, y, u, ζ, ϑ) :=

∫ (t+δ)∧T

t

∂H

∂y
(s, y(s), u(s), ζ(s), ϑ(s))λ(t− ds)

for (t, y, u, ζ, ϑ) ∈ [0, T ]× C([0, T ] ;Rm)× L2([0, T ];U)× L2 [0, T ]× L2([0, T ];Rd).
The main problem in proving the well-posedness of the above equation is given by the

fact that the increasing process Au could be unbounded. However, it stands on the “right
side” in the equation, thus simplifying the estimates. Our strategy is to consider first
the case where Au is bounded and then to search for a solution as a limit of solutions of
approximating equations driven by bounded increasing processes.

It turns out that, using the mapping (P,Q) 7→ (e−A
u

P, e−A
u

Q), our equation can be
transformed into one of the following form:

−dPt = EFt [F (t, (Pt+s)s∈[0,δ] , (Qt+s)s∈[0,δ])]dt−QtdWt, t ∈ [0, T ] ;

Pt = G(t), t ∈ [T, T + δ] ;

Qt = G̃(t), t ∈ [T, T + δ] , a.e.,

(3.16)

6EGξ denotes the conditional expectation of a random variable ξ with respect to a subalgebra G of F .
7We regard Q, ∂H

∂y
, ∂H
∂u

as row vectors.
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where

F (t, ζ, ϑ) :=

∫ (t+δ)∧T

t

eA
u
s−A

u
t
∂H̃

∂y
(s,Aus , R(Xu)s, us, ζ(s− t), ϑ(s− t))λ(t− ds) (3.17)

with
H̃(t, a, y, u, ζ, ϑ) = e−a g(t, y, u) + ζb(t, y, u) + ϑσ(t, y, u)

and
G(t) := e−A

u
T h′(Xu

T ), G̃(t) := 0. (3.18)

We are now going to show the existence and uniqueness of the solution of equation
(3.16) for general driver F : Ω × [0, T ] × C[0, δ] × L2

ν([0, δ];Rd) → R and final states
(G, G̃) : Ω× [T, T + δ]→ R×Rd satisfying, for a finite measure ν on [0, δ] and p ≥ 2, the
following conditions:

(B1) F is measurable, a.s. continuous and there exists a constant L > 0 such that for
every (ω, t) ∈ Ω× [0, T ] and every (ζ, ϑ), (ζ̃, ϑ̃) ∈ C[0, δ]× L2

ν([0, δ];Rd):

(i) |F (ω, t, ζ, ϑ)− F (ω, t, ζ̃, ϑ̃)| ≤ L
(∥∥ζ − ζ̃∥∥

δ
+
∥∥ϑ− ϑ̃∥∥

L2
ν([0,δ];Rd)

)
;

(ii) |F (ω, t, 0, 0)| ≤ L.

(B2) G, G̃ are B([T, T + δ])⊗FT -measurable, G is a.s. continuous and

E

[
sup

t∈[T,T+δ]

|G(t)|p +

∫ T+δ

T

|G̃(t)|2dt

]
< +∞.

Remark 3.9. If Au is bounded, then the driver F introduced by (3.17) satisfies condition
(B1) with ν(ds) := |λ(−ds)|. Indeed, this is easily seen if we write F as

F (t, ζ, ϑ) =

∫ δ

0

eA
u
s+t−A

u
t
∂H̃

∂y
(s+ t, Aus+t, R(Xu)s+t, us+t, ζ(s), ϑ(s))λ(−ds),

where ∂H̃
∂y (·, a, y, u, ζ, ϑ), Au, R(Xu) and u are prolonged to (T, T + δ] by 0. Also, in this

case, if G and G̃ are defined by (3.18), then they satisfy (B2) with any p ≥ 2.

Equation (3.16) was already studied in [19], but we cannot use the existence result
stated there because ν is not so general: it is the sum of the Lebesgue measure and Dirac
measures concentrated on 0 and δ, respectively. Nevertheless, the proof of Theorem 5.3
in [19] can be easily adapted to our case in order to show the well-posedness of this
equation in Sp := LpF(Ω;C[0, T + δ])× L2

F(Ω× [0, T + δ] ;Rd).

Remark 3.10. For (P,Q) ∈ S2 and t ∈ [0, T ], it may be possible that the random vari-
able F (t, (Pt+s)s∈[0,δ] , (Qt+s)s∈[0,δ]) is not defined (since for fixed ω ∈ Ω, (Qt+s)s∈[0,δ] (ω)

does not necessarily belong to L2
ν([0, δ];Rd), but to L2([0, δ];Rd)), and even if it is,

E|F (t, (Pt+s)s∈[0,δ] , (Qt+s)s∈[0,δ])| could be infinite. However, due to (B1) and Fubini’s
theorem,∫ T

0

E
∣∣F (t, (Pt+s)s∈[0,δ] , (Qt+s)s∈[0,δ])

∣∣2dt ≤ 2L

∫ T

0

(
E ‖P‖2t,t+δ + E

∫ δ

0

|Qt+s|2 ν(ds)

)
dt

≤ 2LTE ‖P‖2T+δ + 2Lν([0, δ])E

∫ T+δ

0

|Qt|2 dt

< +∞;

therefore EFt [F (t, (Pt+s)s∈[0,δ] , (Qt+s)s∈[0,δ])] is defined dt-a.e. (the second inequality

from above also implies that (Qt+s)s∈[0,δ] ∈ L2
ν([0, δ];Rd), dtdP-a.e.). Moreover, it can
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be seen as an operator mapping S2 into L2
F(Ω× [0, T ]), meaning that there is no risk in

identifying processes P and Q with their equivalence classes.
We emphasize also that a final condition for Q is necessary for the uniqueness (indeed,

supposing that F does not depend on Q, one can modify Q on [T, T + δ] and still get a
solution).

Proposition 3.11. If p > 2, under conditions (B1) and (B2), equation (3.16) has a unique
solution (P,Q) ∈ Sp.

Proof. We will prove this result by applying twice the contraction principle, first in the
argument P and second in the argument Q.

Step I. Let us first suppose that F does not depend on P . Let H be the space of processes
Z ∈ L2

F(Ω× [0, T + δ] ;Rd) such that Zt = G̃(t), dt-a.e. on [T, T + δ]. If Z is an arbitrary
element of H, it follows from the martingale representation theorem (or the classical
theory of BSDEs, see [20]) that the following equation:

−dPt = EFt [F (t, (Zt+s)s∈[0,δ])]dt−QtdWt, t ∈ [0, T ] ;

Pt = G(t), t ∈ [T, T + δ] ;

Qt = G̃(t), t ∈ [T, T + δ] , a.e.

(3.19)

has a unique solution (P,Q) ∈ Sp. Let us prove that the mapping Φ : H → H, defined by
Φ(Z) := Q, is a contraction under an appropriate norm.

Let Z, Z̃ ∈ H and (P,Q), (P̃ , Q̃) be the solutions of equation (3.19) corresponding to
Z, respectively Z̃. Then, applying Itô’s formula to eγt |Pt − P̃t|2 for an arbitrary γ > 0, we
get

eγt |Pt − P̃t|2 + γ

∫ T

t

eγs |Ps − P̃s|2ds+

∫ T

t

eγs |Qs − Q̃s|2ds

= 2

∫ T

t

eγs(Ps − P̃s)EFs [F (s, (Zs+r)r∈[0,δ])− F (s, (Z̃s+r)r∈[0,δ])]ds

− 2

∫ T

t

eγs(Ps − P̃s)(Qs − Q̃s)dWs.

Since eγ·(P−P̃ )(Q−Q̃) ∈ L1
F

(
Ω;L2([0, T ];Rd)

)
, it follows that

∫ ·
0

eγs(Ps−P̃s)(Qs−Q̃s)dWs

is a martingale. Taking the expectance and using (B1), we obtain

eγtE|Pt − P̃t|2 + γ

∫ T

t

eγsE|Ps − P̃s|2ds+ E

∫ T

t

eγs |Qs − Q̃s|2ds (3.20)

≤ 2LE

∫ T

t

eγs |Ps − P̃s|
(∫ δ

0

|Zs+r − Z̃s+r|2ν(dr)

)1/2

ds

≤ L

α

∫ T

t

eγsE|Ps − P̃s|2ds+ LαE

∫ T

t

eγs
∫ δ

0

|Zs+r − Z̃s+r|2ν(dr)ds,

where α > 0 is a constant chosen such that Lαν([0, δ]) ≤ 1
2 . Now, since Z and Z̃ agree

dt-a.e. on [T, T + δ],

E

∫ T

t

eγs
∫ δ

0

|Zs+r − Z̃s+r|2ν(dr)ds = E

∫ δ

0

∫ T

t

eγs |Zs+r − Z̃s+r|2dsν(dr)

≤ E
∫ δ

0

∫ T

t

eγs |Zs − Z̃s|2dsν(dr)

= ν([0, δ])E

∫ T

t

eγs |Zs − Z̃s|2ds.
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Maximum principle for a SVI with delay

From (3.20) we deduce that, for γ large enough (γ ≥ L
α ), we have

E

∫ T

0

eγs |Qs − Q̃s|2ds ≤
1

2
E

∫ T

0

eγs |Zs − Z̃s|2ds;

therefore, Φ is a contraction on the Banach space H endowed with the norm

Z 7→

[
E

∫ T+δ

0

eγs |Zs|2 ds

]1/2

.

By Banach fixed-point theorem, the equation Φ(Q) = Q has a unique solution in H.

Step II. We pass now to the general case and consider the Banach space H̃ consisting in
those processes Z ∈ LpF(Ω;C[0, T + δ]) such that Zt = G(t), ∀t ∈ [T, T + δ]. For arbitrary
Z ∈ H̃, we consider the equation

−dPt = EFt [F (t, (Zt+s)s∈[0,δ] , (Qt+s)s∈[0,δ])]dt−QtdWt, t ∈ [0, T ] ;

Pt = G(t), t ∈ [T, T + δ] ;

Qt = G̃(t), t ∈ [T, T + δ] , a.e.

According to the previous step, it has a unique solution (P,Q) ∈ Sp and we denote
Φ̃(Z) := P .

Again, similarly to step I, we take two processes Z, Z̃ ∈ H̃ and the corresponding
solutions, (P,Q), respectively (P̃ , Q̃). Then, applying Itô’s formula to eγt |Pt − P̃t|2, we
get

eγt |Pt − P̃t|2 + γ

∫ T

t

eγs |Ps − P̃s|2ds+

∫ T

t

eγs |Qs − Q̃s|2ds

= 2

∫ T

t

eγs(Ps−P̃s)EFs [F (s, (Zs+r)r∈[0,δ], (Qs+r)r∈[0,δ])−F (s, (Z̃s+r)r∈[0,δ], (Q̃s+r)r∈[0,δ])]ds

− 2

∫ T

t

eγs(Ps − P̃s)(Qs − Q̃s)dWs.

Taking the conditional expectance with respect to Ft and using (B1), we obtain

eγt|Pt − P̃t|2 + γEFt
∫ T

t

eγs |Ps − P̃s|2ds+ EFt
∫ T

t

eγs |Qs − Q̃s|2ds

≤2LEFt
∫ T

t

eγs |Ps − P̃s|EFs
[
‖Z − Z̃‖s,s+δ +

(∫ δ

0

|Qs+r − Q̃s+r|2ν(dr)

)1/2]
ds

≤LEFt
∫ T

t

[
1

α
eγs |Ps − P̃s|2 + 2α eγsEFs‖Z − Z̃‖2s,s+δ

]
ds

+ 2LαEFt
∫ T

t

∫ δ

0

eγs |Qs+r − Q̃s+r|2ν(dr)ds

≤L
α
EFt

∫ T

t

eγs |Ps − P̃s|2ds+ 2LTαEFt
∥∥ e

γ
2 ·(Z − Z̃)

∥∥2

T

+ 2LαEFt
∫ T

t

eγs
∫ δ

0

|Qs+r − Q̃s+r|2ν(dr)ds

≤L
α
EFt

∫ T

t

eγs |Ps − P̃s|2ds+ 2LTαEFt
∥∥ e

γ
2 ·(Z − Z̃)

∥∥2

T
+

1

2
EFt

∫ T

t

eγs |Qs − Q̃s|2ds
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Maximum principle for a SVI with delay

by a similar argument as before, where α > 0 is chosen such that Lαν([0, δ]) ≤ 1
4 and

2LTαp
p−2 < 1. This implies that, for any t ∈ [0, T ],

eγt |Pt − P̃t|2 +
(
γ − L

α

)
EFt

∫ T

t

eγs |Ps − P̃s|2ds+
1

2
EFt

∫ T

t

eγs |Qs − Q̃s|2ds

≤ 2LTαEFt
∥∥ e

γ
2 ·(Z − Z̃)

∥∥2

T
.

By taking γ ≥ L
α , we obtain∥∥ e

γ
2 ·(P − P̃ )

∥∥2

T
≤ 2LTα sup

t∈[0,T ]

EFt
∥∥ e

γ
2 ·(Z − Z̃)

∥∥2

T
.

Since

EFt
∥∥ eγ·(Z − Z̃)2

∥∥
T
, t ∈ [0, T ]

is a martingale, it follows, by Doob’s maximal inequality, that

E
∥∥ e

γ
2 ·(P − P̃ )

∥∥p
T
≤ (2LTα)

p/2
E sup
t∈[0,T ]

(
EFt

∥∥ e
γ
2 ·(Z − Z̃)

∥∥2

T

)p/2
≤
(

2LTαp
p−2

)p/2
E
∥∥ e

γ
2 ·(Z − Z̃)

∥∥p
T
.

Since
(

2LTαp
p−2

)p/2
< 1, it follows that Φ̃ is a contraction on H̃, which is a Banach space

when endowed with the norm

Z 7−→
[
E
∥∥ e

γ
2 ·(Z − Z̃)

∥∥p
T+δ

]1/p
.

By the contraction principle, Φ̃ has a unique fixed point in H̃, which amounts to say that
equation (3.16) has a unique solution in Sp.

Let us now return to equation (3.15); we look for a solution in S := L2
F(Ω;C[0, T ])×

L2
F(Ω× [0, T ];Rd).

Theorem 3.12. Equation (3.15) has a unique solution (P,Q) ∈ S.

Proof. Uniqueness is straightforward, by applying Itô’s formula to |P − P ′|2, where
(P,Q) and (P ′, Q′) are two solutions in S. In order to prove existence, suppose first that
Au is bounded and let F , G and G̃ be defined by (3.17) and (3.18), respectively. Then the
equation {

−dP̃t = EFt [F (t, P̃ , Q̃)]dt− Q̃tdWt, t ∈ [0, T ];

P̃T = e−A
u
T h′(Xu

T )
(3.21)

has a unique solution (P̃ , Q̃) with (P̃ , Q̃) ∈ Sp for every p ≥ 2, according to Proposition
3.11. Applying Itô’s formula to the process eA

u
t P̃t, it is clear that (P,Q) := (eA

u

P̃ , eA
u

Q̃)

satisfies equation (3.15) and (P,Q) ∈ Sp for every p ≥ 2.

Suppose now that Au is bounded no more. Let, for n ∈ N∗, An· := Au· ∧ n. Since An is
bounded, there exists a solution (Pn, Qn) ∈ S of the equation{

−dPnt + Pnt dA
n
t = EFt [f(t, R(Xu), u, Pn, Qn)]dt−Qnt dWt;

PnT = h′(Xu
T ).

(3.22)
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Maximum principle for a SVI with delay

with E‖Pn‖pT < +∞, ∀p ≥ 2. Let us first prove that the sequence (Pn, Qn) is bounded.
By applying Itô’s formula to |Pnt |

2 we obtain

|Pnt |
2

+ 2

∫ T

t

|Pns |
2
dAns +

∫ T

t

|Qns |
2
ds

= |h′(Xu
T )|2 + 2

∫ T

t

Pns E
Fs [f(s,R(Xu), u, Pn, Qn)]ds− 2

∫ T

t

Pns Q
n
s dWs.

Since the term
∫ T
t
|Pns |

2
dAns is positive, ∂g

∂y , ∂b
∂y , ∂σ

∂y are bounded and the stochastic
integral is a martingale, taking the conditional expectation with respect to Ft yields

|Pnt |
2

+ EFt
∫ T

t

|Qns |
2
ds

≤c0 + c1E
Ft
∫ T

t

|Pns |
(

1 + EFs
∫ (s+δ)∧T

s

(|Pnr |+ |Qnr |) |λ|(s− dr)
)
ds

≤c0 +
c1T

2
+

(
1

2
+ |λ|([−δ, 0]) +

c1
4α

)
c1E

Ft
[ ∫ T

t

‖Pn‖2s,T ds
]

+ αEFt
∫ T

t

(∫ 0

−δ∨(s−T )

∣∣Qns−r∣∣ |λ|(dr))2

ds,

where c0, c1 are positive constants not depending on n and α > 0 is chosen such that
α
[
|λ|([−δ, 0])

]2 ≤ 1
2 . For the last term of the right-hand side of this inequality we have

the following estimate:

EFt
∫ T

t

(∫ 0

−δ∨(s−T )

∣∣Qns−r∣∣ |λ|(dr))2

ds ≤ |λ|([−δ, 0])EFt
∫ T

t

∫ 0

−δ∨(s−T )

∣∣Qns−r∣∣2 |λ|(dr)ds
= |λ|([−δ, 0])EFt

∫ 0

−δ∨(t−T )

∫ T+r

t

∣∣Qns−r∣∣2 ds|λ|(dr)
≤ |λ|([−δ, 0])EFt

∫ 0

−δ

∫ T

t

|Qns |
2
ds|λ|(dr)

=
[
|λ|([−δ, 0])

]2
EFt

∫ T

t

|Qns |
2
ds.

This implies that, for c̃0 := c0 + c1T
2 , c̃1 :=

(
1
2 + |λ|([−δ, 0]) + c1

4α

)
c1,

|Pnt |
2

+
1

2
EFt

∫ T

t

|Qns |
2
ds ≤ c̃0 + c̃1E

Ft
[ ∫ T

t

‖Pn‖2s,T ds
]
, (3.23)

hence

‖Pn‖2s,T ≤ c̃0 + c̃1 sup
s∈[t,T ]

EFs
[ ∫ T

t

‖Pn‖2r,T dr
]
.

Let now p > 1. Since

EFs
[ ∫ T

t

‖Pn‖2r,T dr
]
, s ∈ [0, T ]

is a martingale, it follows, by Doob’s maximal inequality, that

E sup
s∈[t,T ]

(
EFs

[ ∫ T

t

‖Pn‖2r,T dr
])p

≤
(

p
p−1

)p
E

[ ∫ T

t

‖Pn‖2r,T dr
]p

≤
(

p
p−1

)p
T p/2E

∫ T

t

‖Pn‖2pr,T dr.
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Therefore

E‖Pn‖2pt,T ≤ cp,T
(

1 +

∫ T

t

E‖Pn‖2pr,T dr
)
,

where cp,T is a constant independent of n. By Gronwall lemma (for t 7→ E‖Pn‖2pT−t,T ), we
get

sup
n≥1

E‖Pn‖2pT < +∞.

Inserting this into (3.23) with t = 0, we obtain

sup
n≥1

E

∫ T

0

|Qnt |
2
dt < +∞.

Having these estimates, we would like to pass to the limit in (3.22). Let us consider the
finite measure ρ on Ω× [0, T ], defined by

ρ(dωdt) =

[
dt+

dAut (ω)

AuT (ω)

]
P(dω)

(if AuT (ω) = 0 then dAut (ω) ≡ 0; we use the convention 0
0 = 0 in this case) and let

L2
F,ρ(Ω× [0, T ]) be the linear space of square-integrable processes on [0, T ] with respect

to the measure ρ which are progressively measurable. Since (Pn, Qn) is bounded in
L2
F(Ω;C[0, T ])×L2

F(Ω× [0, T ] ;Rd), it follows that (Pn, Qn) is also bounded in the Hilbert
space S ′ := L2

F,ρ(Ω × [0, T ]) × L2
F(Ω × [0, T ] ;Rd). Hence, there exists a sub-sequence,

still denoted by (Pn, Qn) and converging weakly to an element (P̄ , Q) of S ′. This has as
consequence the existence, by Mazur’s lemma, of a convex combination

(P̄n, Q̄n) =
∑Nn
i=n α

n
i (P i, Qi), αnn + ...+ αnNn = 1, αni ≥ 0, ∀n ≤ i ≤ Nn

converging strongly to (P̄ , Q). Without restricting the generality, we can suppose that
P̄n converges to P̄ , ρ-a.e. and Q̄n converges to Q, dtdP-a.e. We have that∣∣∣∣∣

Nn∑
i=n

αni

∫ t

0

P isdA
i
s −

∫ t

0

P̄sdA
u
s

∣∣∣∣∣ ≤
∫ T

0

∣∣P̄ns − P̄s∣∣ dAus +

Nn∑
i=n

αni ‖P i‖T (AuT −AiT ),

It is clear that the sequence
(∑Nn

i=n α
n
i ‖P i‖T (AuT −AiT )

)
converges to 0 a.s., since AuT −

AiT = 0 on {AuT ≤ i} for every i ≥ 1. On the other hand,

E
1

AuT

∫ T

0

∣∣P̄ns − P̄s∣∣ dAus ≤ ∫
Ω×[0,T ]

∣∣P̄ns − P̄s∣∣ dρ→ 0,

so we can extract a subsequence, still labelled
(
P̄n
)
, such that 1

AuT

∫ T
0

∣∣P̄ns − P̄s∣∣ dAus con-

verges a.s. to 0. Hence
∫ T

0

∣∣P̄ns − P̄s∣∣ dAus → 0. The two convergences we have obtained

imply that
∑Nn
i=n α

n
i

∫ t
0
P isdA

i
s converges to

∫ t
0
P̄sdA

u
s , ∀t ∈ [0, T ], a.s. Consequently, since

equation (3.22) is linear in (Pn, Qn) and
∫ ·

0
Pns dA

n
s , passing to the limit in the relation

P̄nt +
∑Nn
i=n α

n
i

∫ t

0

P isdA
i
s = h′(Xu

T ) +

∫ T

t

EFs [f(s,R(Xu), u, P̄n, Q̄n)]ds−
∫ T

t

Q̄ns dWs,

leads to

P̄t +

∫ T

t

P̄sdA
u
s = h′(Xu

T ) +

∫ T

t

EFs [f(s,R(Xu), u, P̄ , Q)]ds−
∫ T

t

QsdWs,
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dtdP-a.e. By denoting, for t ∈ [0, T ],

Pt := h′(Xu
T ) +

∫ T

t

EFs [f(s,R(Xu), u, P̄ , Q)]ds−
∫ T

t

QsdWs −
∫ T

t

P̄sdA
u
s ,

it is clear that P is a continuous process and Pt = P̄t a.s., dt-a.e. A first consequence is
that Pt is Ft-measurable dt-a.e., therefore P is adapted (by the properties of the filtration
F). The second one is that (P,Q) satisfies the equation

Pt +

∫ T

t

PsdA
u
s = h′(Xu

T ) +

∫ T

t

EFs [f(s,R(Xu), u, P,Q)]ds−
∫ T

t

QsdWs,

for every t ∈ [0, T ], a.s. We will prove now that P ∈ L2
F(Ω;C[0, T ]), i.e. (P,Q) ∈ S. By

applying Itô’s formula to |Pt|2 we obtain

|Pt|2 + 2

∫ T

t

|Ps|2 dAus +

∫ T

t

|Qs|2 ds = |h′(Xu
T )|2 + 2

∫ T

t

PsE
Fs [f(s,R(Xu), u, P,Q)]ds

+ 2

∫ T

t

PsQsdWs.

Then

E‖P‖2T ≤c0 + c1E

∫ T

0

|Ps|
(

1 + EFs
∫ (s+δ)∧T

s

(|Pr|+ |Qr|) |λ|(s− dr)
)
ds

+ 2E sup
t∈[0,T ]

∣∣∣∣ ∫ T

t

PsQsdWs

∣∣∣∣
≤c0 +

c1T

2
+ c1E

∫ T

0

|Ps|2 ds

+ c1|λ| ([−δ, 0])E

∫ T

0

∫ (s+δ)∧T

s

(
|Pr|2 + |Qr|2

)
|λ|(s− dr)ds

+ 4E sup
t∈[0,T ]

∣∣∣∣ ∫ t

0

PsQsdWs

∣∣∣∣.
We have that

E

∫ T

0

∫ (s+δ)∧T

s

(
|Pr|2 + |Qr|2

)
|λ|(s− dr)ds

= E

∫ T

0

∫ 0

−δ∨(s−T )

(
|Ps−r|2 + |Qs−r|2

)
|λ|(dr)ds

= E

∫ 0

−δ

∫ T+r

0

(
|Ps−r|2 + |Qs−r|2

)
ds|λ|(dr)

≤ |λ| ([−δ, 0])E

∫ T

0

(
|Ps|2 + |Qs|2

)
ds.

Also, by Burkholder-Davis-Gundy inequality,

E sup
t∈[0,T ]

∣∣∣∣ ∫ t

0

PsQsdWs

∣∣∣∣ ≤ c2E[ ∫ T

0

|PsQs|2 ds
]1/2

,

for a constant c2 > 0. Combining the two inequalities, we obtain

E‖P‖2T ≤ c0+
c1T

2
+c1

(
1+
[
|λ|([−δ, 0])

]2)
E

∫ T

0

(
|Ps|2+|Qs|2

)
ds+4c2E

[ ∫ T

0

|PsQs|2 ds
] 1

2

.
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We already know that (P,Q) ∈ L2
F(Ω × [0, T ]) × L2

F(Ω × [0, T ] ;Rd), so it remains to
show that PQ ∈ L1

F

(
Ω;L2([0, T ];Rd)

)
. Actually we will prove more: we will show

that PQ ∈ LpF
(
Ω;L2([0, T ];Rd)

)
for every p ∈ (1, 2). We recall that the sequence of

processes (P̄n, Q̄n) converges dtdP-a.e. to (P,Q). We also have that (P̄n, Q̄n) is bounded

in L
2p

2−p
F (Ω;C[0, T ])× L2

F(Ω× [0, T ] ;Rd); since, by Hölder inequality,

E

[ ∫ T

0

∣∣P̄ns Q̄ns ∣∣2 ds] p2 ≤ E
[

sup
s∈[0,T ]

∣∣P̄ns ∣∣p(∫ T

0

∣∣Q̄ns ∣∣2 ds) p
2

]

≤
[
E sup
s∈[0,T ]

∣∣P̄ns ∣∣ 2p
2−p

] 2−p
2

E

[ ∫ T

0

∣∣Q̄ns ∣∣2 ds] p2 ,
it follows that (P̄nQ̄n) is bounded in LpF

(
Ω;L2([0, T ];Rd)

)
, which is a reflexive Banach

space. Consequently, there exists a weak limit point Z ∈ LpF
(
Ω;L2([0, T ];Rd)

)
of the

sequence (P̄nQ̄n). But P̄nQ̄n converges dtdP-a.e. to PQ, so Z = PQ, dtdP-a.e. This
implies, of course, that PQ ∈ LpF

(
Ω;L2([0, T ];Rd)

)
.

Every control u can be approximated, in L2
G(Ω× [0, T ] ;U) by continuous controls uε:

for instance, we may take

uεt :=
1

ε

∫ t

t−ε
usds, t ∈ [0, T ] .

(we prolong u by 0 on the negative axis). Hence, if u∗ is an optimal control, since
J : L2

G(Ω × [0, T ] ;U) → R is continuous by Proposition 3.1, we can find continuous
controls ūn with ūn → u∗ in L2

G(Ω× [0, T ] ;U) and J(ūn) ≤ J(u∗) + n−1.
Let us recall Ekeland’s variational principle (see [10]):

Theorem 3.13. Let V be a complete metric space, and F : V → R ∪ {+∞} a proper,
l.s.c. function, bounded from below. For every ε, λ > 0 and every point u ∈ V such that
F (u) ≤ infw∈V F (w) + ε, there exists some point v ∈ V such that:

1. F (v) ≤ F (u);

2. d(u, v) ≤ λ;

3. F (v) < F (w) + ε
λd(v, w), ∀w 6= v.

We apply the above result with F = J , V = L2
G(Ω;C([0, T ] ;U)) endowed with the

metric
d(u, v) :=

(
E ‖u− v‖2T

)1/2
,

ε = n−1, λ = n−1/2 and u = ūn. Therefore, for every n ∈ N∗, there exist un ∈
L2
G(Ω;C([0, T ] ;U)) such that

E ‖un − ūn‖2T ≤ n
−1

and

J(un) ≤ Jn(u) := J(u) + n−1/2
(
E ‖un − u‖2T

)1/2
, ∀u ∈ L2

G(Ω;C([0, T ] ;U)),

meaning that un is an optimal control corresponding to the perturbed cost functional Jn.
Of course, since ūn approximates u∗, it is clear that un → u∗ in L2

G(Ω× [0, T ] ;U).
We now formulate the maximum principle for the near optimal controls un. Let

Xn := Xun , An := Au
n

and (Pn, Qn) be the solution of equation (3.15) with parameter
un.

Proposition 3.14. For every admissible control v we have

E

∫ T

0

∂H

∂u
(t, R(Xn)t, u

n
t , P

n
t , Q

n
t )(vt − unt )dt ≥ −

√
1

n
E sup
t∈[0,T ]

|vt − unt |
2
. (3.24)
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Proof. Suppose first that v is a continuous control and let Y n ∈ L2
F(Ω;C [0, T ]) be the

unique solution of equation (3.11) with u0 = un, u1 = v and θ = 0.
Applying Itô’s formula to the process (Pnt Y

n
t )t∈[0,T ] yields8

PnT Y
n
T =

∫ T

0

[(Pnt (∂ub
n
t ) +Qnt (∂uσ

n
t ))(vt − unt ) + (Pnt (∂yb

n
t ) +Qnt (∂yσ

n
t ))R(Y n)t] dt

−
∫ T

0

EFt [f(t, R(Xn), un, Pn, Qn)]Y nt dt

+

∫ T

0

〈Pnt (∂yσ
n)R(Y n)t + (∂uσ

n
t )(vt − unt ), dWt〉+

∫ T

0

Qnt Y
n
t dWt.

Consequently, since (Pn, Qn) ∈ S and Y n ∈ L2
F(Ω;C [0, T ]), the expectation of stochastic

integrals in the above relation is 0; therefore

EPnT Y
n
T =E

∫ T

0

[(Pnt (∂ub
n
t ) +Qnt (∂uσ

n
t ))(vt − unt )] dt (3.25)

+ E

∫ T

0

[(Pnt (∂yb
n
t ) +Qnt (∂yσ

n
t ))R(Y n)t] dt

− E
∫ T

0

f(t, R(Xn), un, Pn, Qn)Y nt dt.

Let us analyze the last term of the right-hand side of the above equality:

E

∫ T

0

f(t, R(Xn), un, Pn, Qn)Y nt dt

= E

∫ T

0

∫ (t+δ)∧T

t

[∂yg
n
s + Pns (∂yb

n
t ) +Qns (∂yσ

n
s )]λ(t− ds)Y nt dt

= E

∫ T

0

∫ 0

−δ∨(t−T )

[
∂yg

n
t−s + Pnt−s(∂yb

n
t−s) +Qnt−s(∂yσ

n
t−s)

]
λ(ds)Y nt dt

= E

∫ 0

−δ

∫ T

−s
[∂yg

n
t + Pnt (∂yb

n
t ) +Qnt (∂yσ

n
t )]Y nt+sdtλ(ds).

Since Y ns = 0 for s ∈ [−δ, 0] we have

E

∫ T

0

f(t, R(Xn), un, Pn, Qn)Y nt dt = E

∫ 0

−δ

∫ T

0

[∂yg
n
t + Pnt (∂yb

n
t ) +Qnt (∂yσ

n
t )]Y nt+sdtλ(ds)

= E

∫ T

0

∫ 0

−δ
[∂yg

n
t + Pnt (∂yb

n
t ) +Qnt (∂yσ

n
t )]R(Y n)tdt.

Inserting this relation into (3.25) we obtain

EPnT Y
n
T = E

∫ T

0

[(Pnt (∂ub
n
t ) +Qnt (∂uσ

n
t ))(vt − unt )− (∂yg

n
t )R(Y n)t] dt. (3.26)

On the other hand, since Jn(uθ) ≥ J(un), we have (as before, uθ denotes un + θ(v − un))

0 ≤ E
∫ T

0

[
g
(
t, R
(
Xuθ

)
t
, uθt
)
− g(t, R(Xn)t, u

n
t )
]
dt+ E

[
h
(
Xuθ

T

)
− h(Xn

T )
]

+
1√
n

(
E
∥∥uθ − un∥∥2

T

)1/2
8As before, ∂zbnt , ∂zσnx , ∂zgnt denote

∂b

∂z
(t, R(Xn)t, unt ),

∂σ

∂z
(t, R(Xn)t, unt ),

∂g

∂z
(t, R(Xn)t, unt ), respec-

tively, where z stands for y or u.
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Taking into account (3.14), we divide the right-hand side of this inequality by θ and take
the limit with θ going to 0. This gives

0 ≤ E
∫ T

0

[(∂yg
n
t )R(Y n)t + (∂ug

n
t )(vt − unt )] dt+ Eh′

(
Xn
T

)
Y nT +

1√
n

(
E ‖v − un‖2T

)1/2
.

By (3.26), the previous inequality takes the form

− 1√
n

(
E ‖v − un‖2T

)1/2 ≤ E∫ T

0

[Pnt (∂ub
n
t ) +Qnt (∂uσ

n
t ) + ∂ug

n
t ](vt − unt )dt. (3.27)

Now we want to show that this inequality takes place for every control v ∈ L2
G(Ω ×

[0, T ];U). Indeed, as before, we can approximate v by continuous controls

vεt := unt +
1

ε

∫ t

t−ε
(vs − uns )ds

(we prolong v and un by 0 on the negative axis). We then have vεt → vt dtdP-a.e. when ε
goes to 0, and

sup
t∈[0,T ]

|vεt − unt | ≤ sup
t∈[0,T ]

|vt − unt | .

Since the process vε verifies (3.27) by the previous step, the inequality will be also
verified for v, by passing to the limit.

3.3 Maximum principle

We are able to retrieve the necessary conditions of optimality for u∗ by passing to the
limit in inequality (3.24). Let X∗ denote the state of the system corresponding to the
optimal control u∗.

Theorem 3.15 (maximum principle). If u∗ is an optimal control, then there exists a
càdlàg process k ∈ L2

F(Ω;BV [0, T ]) such that, dtdP-a.e.,

EGt
[
P ∗t

∂b

∂u
(t, R(X∗)t, u

∗
t ) +Q∗t

∂σ

∂u
(t, R(X∗)t, u

∗
t ) +

∂g

∂u
(t, R(X∗)t, u

∗
t )

]
(v−u∗t ) ≥ 0, ∀v ∈ U,

where (P ∗, Q∗) ∈ L2
F(Ω× [0, T ])× L2

F(Ω× [0, T ];Rd) is a solution of the equation{
−dP ∗t = −dkt + EFt [f(t, R(X∗), u∗, P ∗, Q∗)] dt−Q∗t dWt, t ∈ [0, T ] ;

P ∗T = h′(X∗T ).
(3.28)

Proof. First we would like to pass to the limit in the equation{
−dPnt + Pnt dA

n
t = EFt [f(t, R(Xn), un, Pn, Qn)] dt−Qnt dWt, t ∈ [0, T ];

PnT = h′(Xn
T ),

(3.29)

whose solution exists and is unique thanks to Theorem 3.12. Exactly as in the proof of
this result, by applying Itô’s formula to |Pnt |

2, one can prove that (Pn, Qn)n≥1 is bounded
in L2

F(Ω;C [0, T ] ;Rd) × L2
F(Ω × [0, T ] ;Rd). In order to show that

( ∫ ·
0
|Pns | dAns

)
n≥1

is

bounded in L2
F(Ω× [0, T ]), we introduce the local time of Pn at 0:

LP
n,0

t := |Pnt | − |Pn0 | −
∫ t

0

|Pns | dAns +

∫ t

0

(sgnPns )EFs [f(s,R(Xn), un, Pn, Qn)] ds

−
∫ t

0

(sgnPns )Qns dWs.
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We know (see [23]) that LP
n,0

t is nonnegative, therefore, by condition (H1) and the
boundedness of (Pn, Qn),

E

(∫ T

0

|Pns | dAns
)2

≤ C

(
E |PnT |

2
+ E |Pn0 |

2
+ E

[ ∫ T

0

EFs [f(s,R(Xn), un, Pn, Qn)] ds

]2

+ E

∫ T

0

|Qns |
2
ds

)

≤ C + CE

[ ∫ T

0

EFs
∫ (s+δ)∧T

s

(1 + |Pnr |+ |Qnr |) |λ|(s− dr)ds
]2

≤ C + CE

∫ T

0

∫ 0

−δ∨(s−T )

(
1 + |Pns−r|2 + |Qns−r|2

)
|λ|(dr)ds

= C + CE

∫ 0

−δ∨(t−T )

∫ T+r

t

(
1 + |Pns−r|2 + |Qns−r|2

)
|λ|(dr)ds

≤ C + CE

∫ T

0

(
1 + |Pns |2 + |Qns |2

)
ds ≤ C.

Here and below C denotes a positive constant not depending on n, possibly changing
value from one occurrence to another. By the boundedness of the sequence

(
Pn, Qn,

∫ ·
0
(Pns )+dAns ,

∫ ·
0
(Pns )−dAns

)
n≥1

in S ′′ := L2
F(Ω × [0, T ]) × L2

F(Ω × [0, T ] ;Rd) × L2
F(Ω × [0, T ])2, it has a weak limit point

(P̄ , Q∗, k̄, k) ∈ S ′′. As in the proof of Theorem 3.12, we can suppose that there exists a
convex combination

∑Nn
i=n α

n
i

(
P i, Qi,

∫ ·
0
(P is)

+dAis,
∫ ·

0
(P is)

−dAis
)

converging strongly in S ′′
and dtdP-a.e. to (P̄ , Q∗, k̄, k). It is easy to show that k̄ and k admit càdlàg, increasing,
adapted modifications, so we can suppose that they are càdlàg and increasing. Let
k := k̄ − k; obviously k is càdlàg and k ∈ L2

F(Ω;BV [0, T ]). We want first to show
that (P̄ , Q∗, k) satisfies equation (3.28) dtdP-a.e. The main difference to the proof of
Theorem 3.12 is that the integral with respect to Lebesgue measure in (3.28) is no
longer stable to convex combinations. However, we will use the fact that un → u∗

in L2
G(Ω × [0, T ] ;U) and Xn → X∗ in L2

F(Ω;C [0, T ]), due to Proposition 2.4; we may
assume, without restricting the generality, that these convergences hold dtdP-a.e. We

claim that the sequence
(∑Nn

i=n α
n
i

∫ T
t
EFs

[
f(s,R(Xi), ui, P i, Qi)

]
ds
)
n≥1

converges to∫ T
t
EFs

[
f(s,R(X∗), u∗, P̄ , Q∗)

]
ds for every t ∈ [0, T ]. Indeed,

E sup
t∈[0,T ]

∣∣∣∣∣
Nn∑
i=n

αni

∫ T

t

EFs
[
f(s,R(Xi), ui, P i, Qi)

]
ds−

∫ T

t

EFs
[
f(s,R(X∗), u∗, P̄ , Q∗)

]
ds

∣∣∣∣∣
≤

Nn∑
i=n

αni E

∫ T

0

∣∣f(s,R(Xi), ui, P i, Qi)− f(s,R(X∗), u∗, P i, Qi)
∣∣ ds

+ E

∫ T

0

∣∣∣∑Nn
i=nα

n
i f(s,R(X∗), u∗, P i, Qi)− f(s,R(X∗), u∗, P̄ , Q∗)

∣∣∣ ds.
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For the first term of the right-hand side of the inequality, we have the estimate:

E

∫ T

0

∣∣f(s,R(Xi), ui, P i, Qi)− f(s,R(X∗), u∗, P i, Qi)
∣∣ ds

≤ E
∫ T

0

∫ (s+δ)∧T

s

∣∣∣∣∂H∂y (r,R(Xi)r, u
i
r, P

i
r , Q

i
r)−

∂H

∂y
(r,R(X∗)r, u

∗
r , P

i
r , Q

i
r)

∣∣∣∣ |λ|(s− dr)ds
= |λ|([−δ, 0])E

∫ T

0

∣∣∣∣∂H∂y (s,R(Xi)s, u
i
s, P

i
s , Q

i
r)−

∂H

∂y
(s,R(X∗)s, u

∗
s, P

i
s , Q

i
s)

∣∣∣∣ ds
≤ |λ|([−δ, 0])E

∫ T

0

[ ∣∣∂ygis − ∂ygis∣∣+
∣∣∂ybis − ∂yb∗s∣∣ ∣∣P is∣∣+

∣∣∂yσis − ∂yσ∗s∣∣ ∣∣Qis∣∣ ]ds
≤ CE

∫ T

0

[ ∣∣∂ygis − ∂yg∗s ∣∣+
∣∣∂ybis − ∂yb∗s∣∣2 +

∣∣∂yσis − ∂yσ∗s∣∣2 ]ds,
where ∂ygis stands for ∂g

∂y (s,R(Xi)s, u
i
s), etc. For the second term, we use the linearity of

f :

E

∫ T

0

∣∣∣∑Nn
i=nα

n
i f(s,R(X∗), u∗, P i, Qi)− f(s,R(X∗), u∗, P̄ , Q∗)

∣∣∣ ds
≤ E

∫ T

0

[
|∂yb∗s|

∣∣∣∑Nn
i=nα

n
i P

i
s − P̄s

∣∣∣+ |∂yσ∗s|
∣∣∣∑Nn

i=nα
n
i Q

i
s −Q∗s

∣∣∣] ds
≤ CE

∫ T

0

[∣∣∣∑Nn
i=nα

n
i P

i
s − P̄s

∣∣∣2 +
∣∣∣∑Nn

i=nα
n
i Q

i
s −Q∗s

∣∣∣2] ds.
Summing these inequalities and passing to the limit, we obtain the thesis. Since the
sequence (h′(Xn

T ))n≥1 is also converging a.s. to h′(X∗T ), we get from (3.29):

P̄t + kt − kT = h′(X∗T ) +

∫ T

t

EFs
[
f(s,R(X∗), u∗, P̄ , Q∗)

]
ds−

∫ T

t

Q∗sdWs, dtdP-a.e.

Let now, for t ∈ [0, T ],

P ∗t := kT − kt + h′(X∗T ) +

∫ T

t

EFs
[
f(s,R(X∗), u∗, P̄ , Q∗)

]
ds−

∫ T

t

Q∗sdWs.

It is clear that P ∗ is càdlàg and P ∗t = P̄t, dtdP-a.e. As in the proof of Theorem 3.12, this
implies that P ∗ is adapted and (P ∗, Q∗, k) satisfies equation (3.28) for every t ∈ [0, T ],
a.s. Now, let us prove the maximum principle for (P ∗, Q∗). By Proposition 3.14 and the
boundedness of U ,

E

∫ T

0

∂H

∂u
(t, R(Xn)t, u

n
t , P

n
t , Q

n
t )(vt − unt )dt ≥ − C√

n
, (3.30)

for every admissible control v. Since ∂H
∂u is linear in (Pn, Qn) and continuous in the other

terms, we can pass to the limit in relation (3.30) as we did for equation (3.29), in order
to obtain

E

∫ T

0

∂H

∂u
(t, R(X∗)t, u

∗
t , P

∗
t , Q

∗
t )(vt − u∗t )dt ≥ 0

for every v ∈ L2
G(Ω× [0, T ] ;U). It is now clear that for an arbitrary v ∈ U we must have

EGt
[
∂H

∂u
(t, R(X∗)t, u

∗
t , P

∗
t , Q

∗
t )

]
(v − u∗t ) ≥ 0, dtdP-a.e.

Since U is separable, this implies

EGt
[
∂H

∂u
(t, R(X∗)t, u

∗
t , P

∗
t , Q

∗
t )

]
(v − u∗t ) ≥ 0, ∀v ∈ U, dtdP-a.e.
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4 Appendix

This section is dedicated to the proof of Proposition 3.8.
For the moment we impose some restrictive assumptions:

(S1) ϕ is affine outside a compact interval;

(S2) there exists α > 0 such that |σ(t, y, u)| ≥ α, for every (t, y, u) ∈ [0, T ]×Rm × U .

Condition (S1) implies that µ is a finite measure having compact support.
First, we need a stability result for Au with respect to the control u:

Proposition 4.1. Let (un)n≥0 be a sequence of controls such that sup
t∈[0,T ]

∣∣unt − u0
t

∣∣2 → 0

in L∞(Ω). Suppose that conditions (S1)-(S2) hold and u0 is càdlàg. Then

E
∣∣Aunt −Au0

t

∣∣4 → 0, ∀t ∈ [0, T ] .

Proof. Let for simplicity Xn, Kn, La,n, An denote Xun , Kun , La,u
n

t , respectively Au
n

,
for n ∈ N. By Theorem 2.3 and Proposition 2.4, the sequence (Xn,Kn) converges to
(X0,K0) in L4

F(Ω;C[−δ, T ]))×L4
F(Ω;C[−δ, T ])). We will assume, without loss of generality,

that ‖Xn −X0‖T → 0, a.s.
In order to establish the boundedness of (La,n), we apply Tanaka’s formula:

1

2
La,nt = (Xn

t − a)+ − (η(0)− a)+ +

∫ t

0

1{Xns >a}dK
n
s

−
∫ t

0

1{Xns >a}b(s,R(Xn)s, u
n
s )ds−

∫ t

0

〈
1{Xns >a}σ(s,R(Xn)s, u

n
s ), dWs

〉
. (4.1)

As a consequence of the boundedness of (Xn,Kn) and condition (H1), we obtain

sup
a∈R, n≥0

E|La,nT |
4 < +∞, (4.2)

which gives, by (S1),
sup
n≥0

E|AnT |4 < +∞.

By the uniform convergence of Xn to X0, 1{Xnt >a} converges to 1{X0
t>a} dtdP-a.e.,

because {t ∈ [0, T ] | Xn
t = a} are negligible sets with respect to Lebesgue measure (see

formula (3.3)). Consequently, passing to the limit in (4.1), La,n converges to La,0 in
L4
F(Ω;C [0, T ]). Indeed, by Proposition 3.3,

sup
t∈[0,T ]

∣∣∣∣∫ t

0

1{Xns >a}dK
n
s −

∫ t

0

1{X0
s>a}dK

0
s

∣∣∣∣
≤
∫ T

0

ϕ′−(X0
s )
∣∣1{Xns >a} − 1{X0

s>a}
∣∣ ds+

∫ T

0

1{X0
s>a}

∣∣ϕ′−(Xn
s )− ϕ′−(X0

s )
∣∣ ds.

Since ϕ′− is increasing, the set of its discontinuity points is countable, so ϕ′−(Xn
s ) con-

verges to ϕ′−(X0
s ), ds-a.e. (again, by (3.3)). By Lebesgue’s dominated convergence

theorem,

E sup
t∈[0,T ]

∣∣∣∣∫ t

0

1{Xns >a}dK
n
s −

∫ t

0

1{X0
s>a}dK

0
s

∣∣∣∣4 → 0.

For the convergence of the other terms in (4.1) we use similar arguments (and the
inequality of Burkholder-Davis-Gundy for the stochastic integral).
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For k ∈ N∗, a ∈ R and n ∈ N we introduce the processes

La,k,nt := La,nt ∧ k, t ∈ [0, T ]

and

Ak,nt :=

∫
R

∫ t

0

La,k,n(ds)

|σ(s,R(Xn)s, uns )|2
µ(da), t ∈ [0, T ] .

Clearly, by conditions (S2) and (H1),

∣∣Ak,nt −Ak,0t
∣∣ ≤ ∫

R

∣∣∣∣ ∫ t

0

La,k,n(ds)

|σ(s,R(Xn)s, uns )|2
−
∫ t

0

La,k,0(ds)

|σ(s,R(X0)s, u0
s)|

2

∣∣∣∣µ(da)

≤
2 sup

[∣∣∂σ
∂y

∣∣+
∣∣∂σ
∂u

∣∣] [supt∈[0,T ]

∣∣unt − u0
t

∣∣+ ‖Xn −X0‖T
]

α3

∫
R

La,k,nt µ(da)

+

∫
R

∣∣∣∣ ∫ t

0

(La,k,n − La,k,0)(ds)

|σ(s,R(X0)s, u0
s)|

2

∣∣∣∣µ(da). (4.3)

Since ‖La,k,n − La,k,0‖T → 0 in probability, by Helly-Bray’s Theorem, La,k,n converges
weakly to La,k,0 in probability (meaning that ρ(La,k,n, La,k,0) → 0 in probability, where
ρ is the Prohorov’s metric of the weak convergence). Furthermore, the set of disconti-
nuities of 1

|σ(s,R(X0)s,u0
s)|2

is countable (u0 is càdlàg, σ continuous), therefore La,k,0(ds)-

negligible, µ(da)dP-a.e., so it follows (see, for instance, [5, Theorem 2.7]) that the

sequence

(∫ t

0

La,k,n(ds)

|σ(s,R(X0)s, u0
s)|

2

)
n≥1

converges to

∫ t

0

La,k,0(ds)

|σ(s,R(X0)s, u0
s)|

2 in probabil-

ity, for all a ∈ R and t ∈ [0, T ]. Consequently,

∫ t

0

(La,k,n − La,k,0)(ds)

|σ(s,R(X0)s, u0
s)|

2 converges to 0 in

measure with respect to µ⊗P. By Lebesgue’s dominated convergence theorem we infer
from (4.3) that

lim
n→∞

E
∣∣Ak,nt −Ak,0t

∣∣4 = 0, ∀t ∈ [0, T ] . (4.4)

On the other hand, Ak,nt ≤ Ant and

Ant −A
k,n
t =

∫
R

[ ∫ t

0

(La,n − La,k,n)(ds)

|σ(s,R(Xn)s, uns )|2

]
µ(da) ≤ 1

α2

∫
R

(La,nt − k)+µ(da),

which implies that

E
∣∣Ant −Ak,nt ∣∣4 ≤ µ(R)3

α8

∫
R

E
[
(La,nt − k)+

]4
µ(da). (4.5)

By combining this relation with (4.4), from Fatou’s Lemma and relation (4.2) we derive
for every k ∈ N∗ and t ∈ [0, T ]:

lim sup
n→∞

E
∣∣Ant −A0

t

∣∣4 ≤ 8µ(R)3

α8

∫
R

(
E
[
(La,0t − k)+

]4
+ lim sup

n→∞
E
[
(La,nt − k)+

]4)
µ(da)

=
8µ(R)3

α8

∫
R

E
[
(La,0t − k)+

]4
µ(da).

Letting k →∞, this yields that

lim
n→∞

E
∣∣Ant −A0

t

∣∣4 = 0, ∀t ∈ [0, T ] .
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Let H := L2
F,νT

(Ω × [−δ, T ]), where the measure νT (dt) := dt + δT (dt) is the sum of
the Lebesgue measure on [−δ, T ] and Dirac measure concentrated in T . We introduce
the space W 1,2([0, 1] ;H) of absolutely continuous functions (hence a.e. differentiable)
defined on [0, 1] and H-valued. Endowed with the scalar product 〈·, ·〉W 1,2([0,1];H) :=

〈·, ·〉L2([0,1];H) + 〈∇·,∇·〉L2([0,1];H), the vector space W 1,2([0, 1] ;H) is Hilbert; the reader is
referred to [7] for properties of this space.

If X is an element of W 1,2([0, 1] ;H), we will equally write ∇θX instead of dXdθ . A result
which we will use frequently in the sequel is:

Lemma 4.2 ([7]). If the sequence (Xn)n≥1 ⊆W 1,2([0, 1] ;H) is bounded and converges
in L2([0, 1] ;H) to some X ∈ L2([0, 1] ;H), then X ∈ W 1,2([0, 1] ;H) and ∇Xn converges
weakly to ∇X in L2([0, 1] ;H).

Relation (3.10) shows that Xε := (Xε,θ)θ∈[0,1] and Kε := (Kε,θ)θ∈[0,1] are elements of
W 1,2([0, 1] ;H); moreover, ∇θXε = Y ε,θ and

∇θKε =

∫ ·
0

β′ε(X
ε,θ
s )(∇θXε)sds, θ ∈ [0, 1] . (4.6)

Also, Xε and Kε converge in L2([0, 1] ;H) to X := (Xθ)θ∈[0,1] and K := (Kθ)θ∈[0,1],
respectively. By Lemma 4.2, it follows that∇Xε and∇Kε converge weakly in L2([0, 1] ;H)

to ∇X, respectively ∇K. Of course ∇X and ∇K are null on [−δ, 0].

By passing to the limit in equation (3.9) and using some a priori estimates, we have
the following preliminary result:

Lemma 4.3. We have νT (dt)dPdθ-a.e.

(∇θX)t + (∇θK)t =

∫ t

0

[
(∂yb

θ
s)R(∇θX)s + (∂ub

θ
s)(u

1
t − u0

t )
]
ds (4.7)

+

∫ t

0

〈
(∂yσ

θ
s)R(∇θX)s + (∂uσ

θ
s)(u

1
t − u0

t ), dWs

〉
.

Moreover, under conditions (S1)-(S2), ∇θX can be chosen to be càdlàg, ∇θK with
bounded variation and càdlàg, satisfying

esssup
θ∈[0,1]

E
[
‖∇θX‖40,T + ‖∇θK‖4BV [0,T ]

]
< +∞.

Proof. Relation (4.7) can be easily derived by passing to the limit in equation (3.9),
thanks to the continuity and the linearity of deterministic and stochastic integrals on
L2
F(Ω× [−δ, T ]). Let us first give some estimates on the limit processes. In this regard,

we remark first that, slightly modifying the proof of Theorem 2.1 in [1] we obtain

E
[
‖Xε,θ‖8t + ‖Kε,θ‖8t

]
≤ C, (4.8)

for every ε > 0, θ ∈ [0, 1]. Here and below C denotes a positive constant, independent of
ε and θ, which is allowed to change from line to line. By the positiveness of β′ε and by
applying Itô’s formula to |Y ε,θt |2, we obtain by the previous inequality that

E

[
‖Y ε,θ‖4T +

(∫ T

0

β′ε(X
ε,θ
t )|Y ε,θt |2dt

)4]
≤ C, (4.9)

for every ε > 0, θ ∈ [0, 1]. Let Bε be an anti-derivative of βε. Then, by Itô’s formula
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applied to Bε(X
ε,θ
t ), we get

1

2

∫ T

0

β′ε(X
ε,θ
s )

∣∣σ(s,R(Xε,θ)s, u
θ
s)
∣∣2 ds =

∫ T

0

βε(X
ε,θ
s )

[
βε(X

ε,θ
s )− b(s,R(Xε,θ)s, u

θ
s)
]
ds

−
∫ T

0

〈
βε(X

ε,θ
s )σ(s,R(Xε,θ)s, u

θ
s), dWs

〉
+Bε(X

ε,θ
T )−Bε(η(0)).

Since (S1) holds and (β′ε) is uniformly bounded by Lemma 3.6, by relation (4.8) and (S2),
we now obtain

E

(∫ T

0

β′ε(X
ε,θ
s )ds

)4

≤ C.

Hence, by (4.9),

E

(∫ T

0

β′ε(X
ε,θ
t )|Y ε,θt |dt

)4

≤ C, (4.10)

for every ε > 0, θ ∈ [0, 1]. Since the convergence of equation (3.9) to relation (4.7) is
obtained only almost everywhere, we need to look at the regularity properties of ∇θX
and ∇θK. For this purpose, we introduce the auxiliary processes

H̄ε,θ
t :=

∫ t

0

β′ε(X
ε,θ
s )(Y ε,θs )+ds, t ∈ [0, T ] ;

Hε,θ
t :=

∫ t

0

β′ε(X
ε,θ
s )(Y ε,θs )−ds, t ∈ [0, T ] .

We observe that H̄ε := (H̄ε,θ)θ∈[0,1] and Hε := (Hε,θ)θ∈[0,1] are bounded in L2([0, 1] ;H)

with respect to ε > 0 (see (4.10)). Hence, there exists a sequence εn ↘ 0 such that
(H̄εn)n≥1 and (Hεn)n≥1 converge weakly in L2([0, 1] ;H) to some elements H̄, respectively
H. Since ∇Kεn = H̄εn − Hεn , it follows that ∇K = H̄ − H. The processes H̄ε,θ and
Hε,θ, being increasing and positive for every ε > 0 and θ ∈ [0, 1], H̄(θ) and H(θ) admit
càdlàg, progressively measurable, increasing and positive modifications for almost
θ ∈ [0, 1]. Therefore we can suppose that H(θ) and H̄(θ) are positive, increasing and
càdlàg. Consequently, ∇θK is a càdlàg process with bounded variation for almost all
θ ∈ [0, 1]. This implies the existence of a càdlàg modification of ∇θX satisfying relation
(4.7). By (4.10) we have

E(H̄ε,θ
T )4 + E(Hε,θ

T )4 ≤ C, ∀θ ∈ [0, 1] .

From Mazur’s Lemma, we can choose a convex combination of elements of a subsequence
(Hεn)n≥1 (with εn ↘ 0),∑Nn

k=n α
n
kH

εk , αn1 + ...+ αnNn = 1, αnk ≥ 0, ∀n ≤ k ≤ Nn,

converging in L2([0, 1] ;H) to H. Therefore (at least on a subsequence),
∑Nn
k=n α

n
kH

εk,θ
T

converges dPdθ-a.e. to Hθ
T . By Fatou’s lemma, dθ-a.e.,

E(Hθ
T )4 ≤ lim inf

n→+∞
E(
∑Nn
k=n α

n
kH

εk,θ
T )4 ≤ lim inf

n→+∞

∑Nn
k=n α

n
kE(Hεk,θ

T )4 ≤ C. (4.11)

In a similar manner we can prove that

ess sup
θ∈[0,1]

E(H̄θ
T )4 < +∞;

so finally we get
E ‖∇θK‖4BV [0,T ] ≤ C, dθ-a.e.
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By (4.7) we have:

‖∇θX‖t ≤ H
θ
t + C

∫ t

0

[
|(∇θX)s|+ (1 + |Xθ

s |2)
∣∣u1
s − u0

s

∣∣] ds
+ sup
s∈[0,t]

∣∣∣∣∫ s

0

〈
(∂yσ

θ
r)R(∇θX)r + (∂uσ

θ
r)(u

1
r − u0

r), dWr

〉∣∣∣∣ .
Let, for n ∈ N∗,

τn := inf {t ∈ [0, T ] | |(∇θX)t| > n} .
By estimate (4.11) and Burkholder-Davis-Gundy inequality we obtain

E ‖∇θX‖4τn∧t ≤ C + C

∫ t

0

E ‖∇θX‖4τn∧s ds

for every t ∈ [0, T ] and n ∈ N∗. Therefore (since E ‖∇θX‖4τn is finite), applying Gronwall’s
inequality and letting n→∞, we get

E ‖∇θX‖4T ≤ C, dθ-a.e. (4.12)

We wish to transform relation (4.7) into a SDE by identifying ∇θK; therefore we
should be able to pass to the limit in relation (4.6). Since the weak convergence of
βε(a)da to µ(da) is involved, it is sufficient to impose that t 7→ σ(t, R(Xθ)t, u

θ
t ) has at

most countable many points of discontinuities, which is of course ensured under our
current assumption that u0 and u1 are càdlàg processes.

Lemma 4.4. Let

K̃ε,θ
t :=

∫ t

0

βε(X
θ
s )ds, t ∈ [0, T ] .

Suppose that conditions (S1)-(S2) hold. Then, K̃ε ∈W 1,2([0, 1] ;H),

∇θK̃ε =

∫ ·
0

β′ε(X
θ
s )(∇θX)sds (4.13)

and K̃ε converges weakly to K in W 1,2([0, 1] ;H).

Proof. For ε, δ > 0, let K̃ε,δ,θ :=
∫ ·

0
βε(X

δ,θ
s )ds. Then K̃ε,δ ∈W 1,2([0, 1] ;H) and ∇θK̃ε,δ =∫ ·

0
β′ε(X

δ,θ
s )Y δ,θs ds. Moreover, for every ε > 0, limδ→0 K̃

ε,δ = K̃ε in L2([0, 1] ;H) and

(∇K̃ε,δ)δ>0 is bounded in L2([0, 1] ;H). The application of Lemma 4.2 concludes the proof
of the first part. Since βε(x)→ (∂ϕ)0(x) := inf {|y| | y ∈ ∂ϕ(x)} for every x ∈ R (see [7],
for example), it follows that

K̃ε,θ
t → Kθ

t =

∫ t

0

(∂ϕ)0(Xθ
s )ds, ∀t ∈ [0, T ] , dPdθ-a.e.

Consequently, by Lebesgue’s dominated convergence theorem, K̃ε converges to K in
L2([0, 1] ;H). In order to prove the weak convergence of K̃ε to K in W 1,2([0, 1] ;H), it
is sufficient to show that (∇K̃ε)ε>0 is bounded in L2([0, 1] ;H). By Itô’s formula applied
to Bε(Xθ) (Bε was defined in the proof of Lemma 4.3 as the anti-derivative of βε), we
obtain

1

2

∫ T

0

β′ε(X
θ
s )
∣∣σ(s,R(Xθ)s, u

θ
s)
∣∣2 ds =

∫ T

0

βε(X
θ
s )
[
(∂ϕ)0(Xθ

s )− b(s,R(Xθ)s, u
θ
s)
]
ds

−
∫ T

0

〈
βε(X

θ
s )σ(s,R(Xθ)s, u

θ
s), dWs

〉
+Bε(X

θ
T )−Bε(η(0)),
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from which we get the uniform boundedness of
( ∫ T

0
β′ε(X

θ
s )ds

)
ε>0

in L4(Ω) with respect

to θ. Relation (4.12), used together with (4.13), shows that (∇K̃ε)ε>0 is bounded in
L2([0, 1] ;H). Applying once again Lemma 4.2, we obtain the weak convergence of ∇K̃ε

to ∇K in L2([0, 1] ;H) for ε→ 0.

Lemma 4.5. Suppose that u0 and u1 are càdlàg. Under (S1)-(S2), the derivative of the
mapping θ 7−→ Kθ in W 1,2([0, 1] ;H) is given by:

(∇θK)t =

∫ t

0

(∇θX)sdA
θ
s, νT (dt)dPdθ-a.e. (4.14)

Proof. Let µε be the measure on R defined by its density β′ε(a). Then (µε)ε>0 converges
weakly to µ. The continuity of La,θt in a ∈ R implies the weak continuity of measures
La,θ(ds) in a. Since s 7−→ σ(s,R(Xθ)s, u

θ
s) has a countable number of discontinuities, we

obtain the continuity in a of
∫ t

0
La,θ(ds)

|σ(s,R(Xθ)s,uθs)|2 , for every t ∈ [0, T ], dPdθ-a.e. We can find
a compact interval I such that:

• µε|I converges weakly to µI (see [5]);

• β′ε ≤ ε on Ic;

• the support of µ is included in I.

It follows that
∫
I

∫ t
0

La,θ(ds)
|σ(s,R(Xθ)s,uθs)|2µε(da) converges to Aθt . Let

Aε,θt :=

∫ t

0

β′ε(X
θ
s )ds, t ∈ [0, T ] .

By the occupation time density formula (Lemma 3.5) we derive the equality

Aε,θt =

∫
R

∫ t

0

La,θ(ds)

|σ(s,R(Xθ)s, uθs)|
2 β
′
ε(a)da.

Since∫
Ic

∫ t

0

La,θ(ds)

|σ(s,R(Xθ)s, uθs)|
2 β
′
ε(a)da ≤ ε

α2

∫
Ic
La,θt da ≤ ε

α2

∫ t

0

∣∣σ(s,R(Xθ)s, u
θ
s)
∣∣2 ds,

we obtain

lim
ε→0

Aε,θt = Aθt ,∀t ∈ [0, T ] , a.s., ∀θ ∈ [0, 1] .

Consequently, from (4.13),

(∇θK̃ε)t =

∫ t

0

(∇θX)sdA
ε,θ
s .

Since the set of discontinuity points of the function t 7→ (∇θX)t is at most countable
(recall that ∇θX is càdlàg), it follows that

lim
ε→0

(∇θK̃ε)t =

∫ t

0

(∇θX)sdA
θ
s, ∀t ∈ [0, T ] , dPdθ-a.e.

On the other hand, (∇θK̃ε)ε>0 converges weakly to ∇θK in L2([0, 1] ;H). Therefore
relation (4.14) is satisfied.
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Relations (4.7) and (4.14), combined with the uniqueness of the solution of equation
(3.11), give

(∇θX)t = Y θt , ∀t ∈ [0, T ] , dPdθ-a.e. (4.15)

Let us finally pass to the proof of Proposition 3.8.

Step I. Let us first suppose that (S1)-(S2) hold. By Itô’s formula applied to |Y θt |2 we
obtain Y θ ∈ L4

F(Ω;C [0, T ]).
Since we already have obtained (4.15), in order to prove that X is everywhere

derivable with respect to θ, it is sufficient to show that the function [0, 1] 3 θ 7→ Y θ ∈ H
is continuous.

For this, let, as in the proof of Proposition 3.7, τθn := inf
{
t ∈ [0, T ] |

∣∣Aθt ∣∣ > n
}

, An,θt :=

At∧τn and Y n,θ ∈ L2
F(Ω;C [−δ, T ]) solving the modified equation (3.13). Then Y n,θt = Y θt

on
[
0, τθn

]
.

By applying Itô’s formula to |Y n,θt |2, respectively to |Y θt |2 , we obtain the estimate

E‖Y n,θ‖4T + E‖Y θ‖4T ≤ C,

where C is a constant independent of n and θ.
Let θ0 ∈ [0, 1]. Since, by Proposition 4.1,

lim
θ→θ0

E|Aθt −A
θ0
t |4 = 0, ∀t ∈ [0, T ]

and An,θt is bounded by a constant, standard estimates allow to show that

lim
θ→θ0

E|Y n,θt − Y n,θ0t |2 = 0, ∀t ∈ [0, T ] . (4.16)

Indeed, returning to the proof of Proposition 3.7, we see that Ȳ n,θ := eA
n,θ
· Y n,θ is a

solution of the transformed equation (3.12); since Aθ and Aθ0 appear only as integrands,
one can establish without difficulty that

lim
θ→θ0

E|Ȳ n,θt − Ȳ n,θ0t |2 = 0, ∀t ∈ [0, T ] ,

by applying Itô’s formula to |Ȳ n,θt − Ȳ n,θ0t |2. Relation (4.16) then follows easily.
On the other hand,

E|Y n,θt − Y θt |2 = E|Y n,θt − Y θt |21{τθn>t} ≤ C
1/2
[
P(τθn > t)

]1/2
≤ C1/2

[
P(An,θ > n)

]1/2 ≤ C1/2

n
(E|Aθt |2)1/2.

Hence

E|Y θt − Y
θ0
t |2 ≤

3C1/2

n

[
(E|Aθt |2)1/2 + (E|Aθ0t |2)1/2

]
+ 3E|Y n,θt − Y n,θ0t |2.

Passing to the limit as θ → θ0 and n→∞, we get

lim
θ→θ0

E|Y θt − Y
θ0
t |2 = 0, ∀t ∈ [0, T ] .

This proves that Y ∈ C([0, 1] ;H).
Since Y = ∇X, it follows that X is differentiable on [0, 1], i.e.

lim
θ→θ0

E

[∫ T

0

∣∣∣∣Xθ
t −X

θ0
t

θ − θ0
− Y θ0t

∣∣∣∣2dt+

∣∣∣∣Xθ
T −X

θ0
T

θ − θ0
− Y θ0T

∣∣∣∣2
]

= 0, ∀θ0 ∈ [0, 1].
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In particular, for θ0 = 0 we obtain (3.14), which ends the proof under the conditions
imposed on ϕ and σ.

We pass now to the general case.

Step II. We set, for γ > 0,

ϕγ(x) :=


ϕ(−γ) + ϕ′−(−γ)(x+ γ), x < −γ;

ϕ(x), x ∈ [−γ, γ] ;

ϕ(γ) + ϕ′+(γ)(x− γ), x > γ

and we choose σγ satisfying (S2), (H0) and (H1) (with the same constants) such that
σγ(t, y, u) = σ (t, y, u) for every t ∈ [0, T ], u ∈ U and |y| ≤ γ|λ|([−δ, 0]).

Let (Xγ,θ,Kγ,θ) be the solution of the equation
dXγ,θ

t + ∂ϕγ(Xγ,θ
t )dt = b(t, R(Xγ,θ)t, u

θ
t )dt

+
〈
σγ(t, R(Xγ,θ)t, u

θ
t ), dWt

〉
, t ∈ [0, T ] ;

Xγ,θ
t = η(t), t ∈ [−δ, 0] .

(4.17)

We define, for every γ ≥ ‖η‖−δ,0, the stopping time (with convention inf ∅ = +∞)

τθγ := inf
{
t ∈ [0, T ] | |Xθ

t | ≥ γ
}
.

By the uniqueness of the solution of equation (2.1) we obtain

Xγ,θ
t = Xθ

t and Kγ,θ
t = Kθ

t , ∀t ∈
[
0, τθγ

]
, a.s.

Moreover, with La,θ,γt denoting the local time of Xγ,θ, the application of Proposition 3.2
gives

La,θt = La,γ,θt , ∀t ∈
[
0, τθγ

]
, a.s. and

La,θt = 0, ∀t ∈
[
0, τθγ

]
, a.s., if a /∈ [−γ, γ] .

We introduce now the process

Aγ,θt :=

∫
R

∫ t

0

La,γ,θ(ds)

|σγ(s,R(Xθ)s, uθs)|
2µγ(da), t ∈ [0, T ] ,

where µγ := µ(· ∩ [−γ, γ]) is the second order generalized derivative of ϕγ . Clearly,

Aθt = Aγ,θt , ∀t ∈
[
0, τθγ

]
, a.s.

By the first step of the proof, the equation
dY γt + Y γt dA

γ,0
t =

[
(∂yb

γ,0
t )(R(Y γ)t) + (∂ub

γ,0
t )(u1

t − u0
t )
]
dt

+
〈
(∂yσ

γ,0
t )R(Y γ)t + 〈(∂uσγ,0t )(u1

t − u0
t ), dWt

〉
, t ∈ [0, T ] ;

Y γt = 0, t ∈ [−δ, 0]

(4.18)

has a unique solution Y γ ∈ L2
F(Ω;C [−δ, T ]) and

lim
θ→0

E

[∫ T

0

∣∣∣∣Xγ,θ
t −Xγ,0

t

θ
− Y γt

∣∣∣∣2dt+

∣∣∣∣Xγ,θ
T −Xγ,0

T

θ
− Y γT

∣∣∣∣2
]

= 0. (4.19)

If γ′ > γ, then τθγ′ ≥ τθγ and we can apply Itô’s formula to |Y γ
t∧τθγ

− Y γ
′

t∧τθγ
|2 in order to

obtain
Y γt = Y γ

′

t , ∀t ∈
[
0, τθγ

]
, a.s.
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Therefore, we can uniquely define an adapted continuous process satisfying

Yt = Y γt , ∀t ∈ [0, τ0
γ ].

Since
sup
γ>0

E ‖Y γ‖2T < +∞

(see the previous step), the process Y belongs to L2
F(Ω;C [0, T ]). Moreover, Y is a solution

of the following equation:
dYt + YtdA

0
t =

[
(∂yb

0
t )R(Y )t + (∂ub

0
t )(u

1
t − u0

t )
]
dt

+
〈
(∂yσ

0
t )R(Y )t + (∂uσ

0
t )(u

1
t − u0

t ), dWt

〉
, t ∈ [0, T ] ;

Yt = 0, t ∈ [−δ, 0] .

By the uniqueness of the solution of this equation, Y = Y 0. Then, for t ∈ [0, τ0
γ ]:∣∣ 1

θ (Xθ
t −X0

t )− Yt
∣∣ ≤∣∣ 1θ (Xγ,θ

t −Xγ,0
t )− Y γt

∣∣+
∣∣ 1
θ (Xγ,θ

t −Xθ
t )
∣∣ (4.20)

=
∣∣ 1
θ (Xγ,θ

t −Xγ,0
t )− Y γt

∣∣+
∣∣ 1
θ (Xγ,θ

t −Xθ
t )
∣∣1{t>τθγ}

≤
∣∣ 1
θ (Xγ,θ

t −Xγ,0
t )− Y γt

∣∣+ 1
θ (|Xγ,θ

t −Xγ,0
t |

+ |Xθ
t −X0

t |)1{t>τθγ}.

Since E‖Xθ −X0‖2T converges to 0 (by Proposition 2.4), we have

lim
θ→0

P(τ0
γ > t > τθγ) = 0, ∀t ∈ [0, T ]. (4.21)

Indeed,

P
(
τ0
γ > t > τθγ

)
≤P

(
‖X0‖t < γ ≤ ‖Xθ‖t

)
≤ P

(
‖X0‖t + 1

n < γ ≤ ‖Xθ‖t
)

+ P
(
γ − 1

n ≤ ‖X
0‖t < γ

)
≤P

(
1
n ≤ ‖X

θ −X0‖t
)

+ P
(
γ − 1

n ≤ ‖X
0‖t < γ

)
≤n2E‖Xθ −X0‖2T + P

(
γ − 1

n ≤ ‖X
0‖t < γ

)
,

for every θ ∈ [0, 1] and n ∈ N∗. Hence

lim sup
θ→0

P
(
τ0
γ > t > τθγ

)
≤ P

(
γ − 1

n ≤ ‖X
0‖t < γ

)
, ∀n ∈ N∗,

from which we get relation (4.21).
Proposition 2.4 shows that

E

[∥∥∥∥Xγ,θ −Xγ,0

θ

∥∥∥∥2

T

+

∥∥∥∥Xθ −X0

θ

∥∥∥∥2

T

]
is uniformly bounded with respect to θ ∈ [0, 1] (the Lipschitz constant of σγ is the same
for all γ). Hence, by (4.19), (4.20) and (4.21) we derive, for each γ > 0,

lim sup
θ→0

E

[∫ T

0

∣∣∣∣Xθ
t −X0

t

θ
− Yt

∣∣∣∣2 dt+

∣∣∣∣Xθ
T −X0

T

θ
− YT

∣∣∣∣2
]
1{τ0

γ>T}

≤2 lim sup
θ→0

E

[∫ T

0

∣∣∣∣Xγ,θ
t −Xγ,0

t

θ
− Y γt

∣∣∣∣2dt+

∣∣∣∣Xγ,θ
T −Xγ,0

T

θ
− YT

∣∣∣∣2
]
1{τ0

γ>T}

+ 4 lim sup
θ→0

E

∫ T

0

|Xγ,θ
t −Xγ,0

t |2 + |Xθ
t −X0

t |2

θ2 1{τ0
γ>t>τ

θ
γ}dt

+ 4 lim sup
θ→0

E

∫ T

0

|Xγ,θ
T −Xγ,0

T |+ |Xθ
T −X0

T |
θ2 1{τ0

γ>T>τ
θ
γ}dt

=0.
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Consequently, since limγ→+∞P(τ0
γ ≤ T ) = 0, we obtain

lim
θ→0

E

[∫ T

0

∣∣∣∣Xθ
t −X0

t

θ
− Yt

∣∣∣∣2 dt+

∣∣∣∣Xθ
T −X0

T

θ
− YT

∣∣∣∣2
]

= 0, (4.22)

which ends the proof of this result.
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