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The importance sampling technique for understanding
rare events in Erdős-Rényi random graphs
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Abstract

In dense Erdős-Rényi random graphs, we are interested in the events where large
numbers of a given subgraph occur. The mean behavior of subgraph counts is known,
and only recently were the related large deviations results discovered. Consequently,
it is natural to ask, can one develop efficient numerical schemes to estimate the
probability of an Erdős-Rényi graph containing an excessively large number of a
fixed given subgraph? Using the large deviation principle we study an importance
sampling scheme as a method to numerically compute the small probabilities of large
triangle counts occurring within Erdős-Rényi graphs. We show that the exponential
tilt suggested directly by the large deviation principle does not always yield an optimal
scheme. The exponential tilt used in the importance sampling scheme comes from a
generalized class of exponential random graphs. Asymptotic optimality, a measure of
the efficiency of the importance sampling scheme, is achieved by a special choice of
the parameters in the exponential random graph that makes it indistinguishable from
an Erdős-Rényi graph conditioned to have many triangles in the large network limit.
We show how this choice can be made for the conditioned Erdős-Rényi graphs both in
the replica symmetric phase as well as in parts of the replica breaking phase to yield
asymptotically optimal numerical schemes to estimate this rare event probability.

Keywords: Erdős-Rényi random graphs; exponential random graphs; rare event simulation;
large deviations; graph limits.
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1 Introduction

In this paper we study the use of importance sampling schemes to numerically
estimate the probability that an Erdős-Rényi random graph contains an unusually large
number of triangles. A simple graph X on n vertices can be represented as an element
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Importance Sampling for rare events in Erdős-Rényi graphs

of the space Ωn = {0, 1}(
n
2). A graph X ∈ Ωn will be denoted by X = (Xij)16i<j6n with

the entry Xij indicating the presence or absence of an edge between vertices i and j.
For a given edge probability p ∈ [0, 1], an Erdős-Rényi random graph Gn,p is a graph on n
vertices such that any edge is independently connected with probability p. We shall use
Pn,p to represent the probability measure on Ωn induced by the Erdős-Rényi graph Gn,p.
The probability of a fixed graph X under the measure Pn,p can be explicitly computed as

P(Gn,p = X) = Pn,p(X) =
∏
i<j

pXij (1− p)1−Xij = (1− p)(
n
2) ehpE(X) (1.1)

where
hp := log

p

1− p
(1.2)

and E(X) :=
∑
i<j Xij is the number of edges in X. Let T (X) denote the number of

triangles in graph X:
T (X) =

∑
16i<j<k6n

XijXjkXik.

Also, let the event

Wn,t =

{
X ∈ Ωn | T (X) >

(
n

3

)
t3
}

denote the upper tails of triangle counts. Consider an Erdős-Rényi random graph Gn,p.
For p fixed, one can show that E[T (Gn,p)] ∼

(
n
3

)
p3 as n→∞. For t > p, the main aim of

this paper is the following question: can one develop efficient numerical schemes to
estimate the probability

µn = P

(
T (Gn,p) >

(
n

3

)
t3
)

(1.3)

that Gn,p has an atypically large number of triangles? Before addressing such questions,
one first needs to understand the structure of such random graphs, conditioned on this
rare event, more precisely the large deviation rate function for such events. The last
few years have witnessed a number of deep results in understanding such questions
including upper tails of triangle counts, along with more general subgraph densities
(see e.g., [3, 5, 6, 8, 9, 13, 17]). In the dense graph case, where the edge probability p
stays fixed as n → ∞, [6] derived a large deviation principle (LDP) for the rare event
{T (Gn,p) >

(
n
3

)
t3}, showing that for t within a certain subset of (p, 1],

P

(
T (Gn,p) >

(
n

3

)
t3
)

= exp
(
−n2Ip(t)(1 +O(n−1/2))

)
(1.4)

where the rate function Ip(t) is given by

Ip(t) =
1

2

(
t log

t

p
+ (1− t) log

1− t
1− p

)
. (1.5)

More recently [8] showed a general large deviation principle for dense Erdős-Rényi
graphs, using the theory of limits of dense random graph sequences developed recently
by Lovasz et al. [14, 16, 15, 3]. When specialized to upper tails of triangle counts, they
show that there exists a rate function φ(p, t)

1

n2
logP

(
T (Gn,p) >

(
n

3

)
t3
)
→ −φ(p, t), as n→∞. (1.6)

The function φ(p, t) coincides with Ip(t) for a certain parameter range of (p, t), and is
described in more detail in (2.5). The exponential decay of the probability of the event
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of interest makes it difficult to estimate this probability even for moderately large n.
Direct Monte Carlo sampling is obviously intractable. The central strategy of importance
sampling is to sample from a different probability measure, the tilted measure, under
which the event of interest is no longer rare; one obtains more successful samples falling
in the event of interest but each sample must then be weighted appropriately according
to the Radon-Nikodym derivative of the original measure against the tilted measure.
Importance sampling techniques have been used in many other stochastic systems, such
as SDEs and Markov processes and queuing systems, see e.g [4, 21, 12, 10, 2] and the
references therein. In particular, when a large deviations principle is known for the
stochastic system, the tilted measure commonly used is a change of measure arising
from the LDP. However, not every tilted measure associated with the LDP works well. It
is well known that a poorly chosen tilted measure can lead to an estimator that performs
worse than Monte Carlo sampling, or whose variance blows up [11]. Thus, a careful
choice of tilted measure is of utmost importance. Before describing the relevant tilts we
formally define our aims.

1.1 Importance sampling and asymptotic optimality

If {Xk}∞k=1 ⊂ Ωn is a sequence of Erdős-Rényi random graphs generated indepen-
dently from Pn,p, then for any integer K > 1,

MK =
1

K

K∑
k=1

1Wn,t
(Xk)

is an unbiased estimate of µn. By the law of large numbers, MK → µn with probability
one as K →∞. Although this estimate of µn is very simple, the relative error is√

Var(MK)

E(MK)
=

√
µn − (µn)2

µn
√
K

,

which scales like (Kµn)−1/2 as µn → 0. Hence the relative error may be very large in
the large deviation regime where µn � 1, unless we have at least K ∼ O(µ−1

n ) samples.
Therefore, it is desirable to devise an estimate of µn which, compared to this simple
Monte Carlo estimate, attains the same accuracy with fewer number of samples or lower
computational cost.

Importance sampling is a Monte Carlo algorithm based on a change of measure.
Suppose that Pn,p is absolutely continuous with respect to another measure Q on Ωn
with

dPn,p
dQ

= Y −1 : Ωn → R.

Then we have

µn = E[MK ] = E

[
1

K

K∑
k=1

1Wn,t
(Xk)

]
= EQ

[
1

K

K∑
k=1

1Wn,t
(X̃k)Y −1(X̃k)

]
(1.7)

where EQ denotes expectation with respect to Q, and we now use {X̃k}∞k=1 to denote a
set of random graphs sampled independently from the new measure Q. If we define

M̃K =
1

K

K∑
k=1

1Wn,t
(X̃k)Y −1(X̃k), (1.8)

then M̃K is also an unbiased estimate of µn, and the relative error is now:√
VarQ(MK)

EQ(MK)
=

√
EQ[(1Wn,t

(X)Y −1)2]− (µn)2

µn
√
K

, (1.9)
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Formally this is optimized by the choice Y = (µn)−11Wn,t
(X), in which case the relative

error is zero. Such a choice for Q is not feasible, however, since normalizing Y would
require a priori knowledge of µn = Pn,p(Wn,t). Intuitively, we should choose the tilted
measure Q so that X̃k ∈Wn,t occurs with high probability under Q.

We will refer to Y −1 as the importance sampling weights, and Q as the tilted measure,
or tilt. If Q arises naturally as the measure induced by a random graph Gn, we will also
refer to Gn as the tilt. In the cases where a large deviation principle holds, it gives us
an estimate of the relative error in the estimate M̃K . For any fixed K, it is clear from
(1.9) that minimizing the relative error is equivalent to minimizing the second moment
EQn [(1Wn,t

Y −1)2]. Since Jensen’s inequality implies that

EQn [(1Wn,t
Y −1)2] > EQn [1Wn,t

Y −1]2,

we have the following asymptotic lower bound:

lim inf
n→∞

1

n2
logEQn [(1Wn,tY

−1)2] > −2φ(p, t). (1.10)

Thus, the presence of a large deviation principle for the random graphs Gn,p as n→∞,
leads to a way to quantify the efficiency of the importance scheme in an asymptotic
sense, as is done in other contexts [4].

Definition 1.1. A family of tilted measures Qn onW is said to be asymptotically optimal
if

lim
n→∞

1

n2
logEQn [(1Wn,t

Y −1)2] = −2 inf
f∈Wn,t

[Ip(f)].

In contrast, the second moment of each term in the simple Monte Carlo method
satisfies

lim
n→∞

1

n2
logEPn [12

Wn,t
] = −φ(p, t) > −2φ(p, t).

Thus, the simple Monte Carlo method is not asymptotically optimal. Observe that
Jensen’s inequality for conditional expectation implies

Qn(Wn,t)
−1 = Pn(Wn,t)

−1

(
EPn(1Wn,t

Y )

Pn(Wn,t)

)−1

6 Pn(Wn,t)
−2EPn(1Wn,tY

−1) = Pn(Wn,t)
−2EQn(1Wn,tY

−2). (1.11)

So, if Qn is asymptotically optimal, we must have

lim inf
n→∞

1

n2
logQn(Wn,t) > lim inf

n→∞

2

n2
logPn(Wn,t) + lim inf

n→∞

−1

n2
logEQn(1Wn,t

Y −2) = 0,(1.12)

which is consistent with the intuition that a good choice of Qn should put X̃k ∈ Wn,t with
high probability.

To understand in this context the tilts that could be relevant, let us now describe in a
little more detail, properties of the rate function 1.6 as well as structural results of the
Erdős-Rényi model conditioned on rare events and their connections to a sub-family of
the famous exponential random graph models.

1.2 Edge and triangle tilts

In this article we consider tilted measures within a family of exponential random
graphs Gh,β,αn . For parameters h ∈ R, β > 0, and α > 0, these exponential random graphs
are defined via the Gibbs measure, Qn = Qh,β,αn on the space of simple graphs on n

vertices, where

Qh,β,αn (X) ∝ eH(X), where H(X) = hE(X) +
β

n

(
n3

6

)1−α

T (X)α. (1.13)
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E(X) is the number of edges in graph X. If β = 0, and h = hq = log q
1−q for some

q ∈ (0, 1), then Ghq,0,αn is an Erdős-Rényi graph with edge probability q (notice that α is
irrelevant when β = 0). In particular, the original graph Gn,p is an exponential random
graph with parameters h = hp and β = 0.

Given the rare event problem, Gn,p conditioned on T (Gn,p) >
(
n
3

)
t3, which we shall

henceforth parameterize by (p, t), we will focus on two strategies for choosing the tilted
measure. The first is to set β = 0 and h = hq for some q > p. The resulting tilted measure

Q
hq,0,α
n will be called an edge tilt ; compared to the original measure for Gn,p, this tilt

simply puts more weight on edges. The second strategy is to set h = hp but vary β > 0

and α > 0. We refer to the resulting tilted measure Q
hp,β,α
n as a triangle tilt ; compared

to the original measure, this tilt puts more weight on triangles, while leaving h = hp
unchanged.

That the two tilts above are natural candidates for the importance sampling scheme,
can be reasoned in light of the following concept of when two graphs are alike. In [8]
it is shown that for the range of (p, t) where one has (1.4), the Erdős-Rényi graph Gn,p
conditioned on the rare event {T (Gn,p) >

(
n
3

)
t3} is asymptotically indistinguishable from

another Erdős-Rényi graph Gn,t with edge probability t, in the sense that the typical
graphs in the conditioned Erdős-Rényi graph resembles a typical graph drawn from Gn,t
when n is large. (Asymptotic indistinguishability is explained more precisely at (2.7).)
Thus, choosing the tilted measure to resemble the typical conditioned graph is a natural
choice. While it may seem plausible for any t > p that the conditioned graph resembles
another Erdős-Rényi graph, since E[T (Gn,t)] ∼

(
n
3

)
t3 as n → ∞, it is not always the

case. Depending on p and t, it may be that the graph Gn,p conditioned on the event
{T (Gn,p) >

(
n
3

)
t3} tends to form cliques and hence does not resemble an Erdős-Rényi

graph. When the conditioned graph does resemble an Erdős-Rényi graph, we say that
(p, t) is in the replica symmetric phase. On the other hand, when the conditioned graph
is not asymptotically indistinguishable from an Erdős-Rényi graph we say that (p, t) is in
the replica breaking phase. (See Definition 2.2.)

The main question we wish to address is: given the parameters (p, t) for the rare
event problem, how can we choose the tilt parameters (hq for the edge tilt, or β and α
for the triangle tilt) so that the resulting importance sampling scheme is asymptotically
optimal? And, can an optimal importance sampling scheme be constructed for all values
of (p, t)?

Regarding the edge tilt, our first result (Prop 3.4) is that the edge tilt Q
hq,0,α
n can

be asymptotically optimal only if hq = ht (i.e. q = t). This is not very surprising since
E[T (Gn,q)] ∼

(
n
3

)
q3. On the other hand, we also will prove, in Proposition 3.5, the more

surprising result that for some values of (p, t) the importance sampling scheme based on
the edge tilt Qht,0,αn will not be asymptotically optimal. In particular, there is a subregime
of the replica symmetric phase for which the edge tilt with h = ht produces a suboptimal
estimator.

Regarding the triangle tilt Q
hp,β,α
n , our main result (Prop 3.3) is a necessary and

sufficient condition on the tilt parameters for the resulting importance sampling scheme
to be asymptotically optimal. Moreover, optimality can be achieved by a triangle tilt for
every (p, t) in the replica symmetric phase, and even for some choices of (p, t) in the
replica breaking phase, as we will show in Section 4. Thus, the triangle tilt succeeds
where the edge tilt fails, because the former appropriately penalizes samples with an
undesired number of triangles, whereas the latter inappropriately penalizes samples
with an undesired number of edges. As mentioned in the preceding paragraph, a crucial
property to be expected of such an optimal triangle tilt is that samples from the tilted
measure resemble the original graph Gn,p conditioned to have at least

(
n
3

)
t3 triangles.
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This is indeed the case for the optimal triangle tilt, thanks to Theorem 2.4.
Finally, we remark that Theorem 2.4 draws the connection between an exponential

random graph and a conditioned Erdős-Rényi graph, indicating how the parameters
for the two graphs must be related in order for them to resemble each other. This
relationship arises from the fact that the free energy of the exponential random graph
can be expressed in a variational formulation involving the LDP rate function for the
conditioned Erdős-Rényi graph. For (p, t) in the replica symmetric phase, this connection
has been observed by Chatterjee and Dey [6], Chatterjee and Diaconis [7], and Lubetzky
and Zhao [17]. In this paper, Theorem 2.4 generalizes this connection to include
parameters (p, t) in the replica breaking phase.

Organization of the paper: We start by giving precise definitions of the various
constructs arising in our study in Section 2. This culminates in Theorem 2.4 that
characterizes the limiting free energy of the exponential random graph model. The rest
of Section 2 is devoted to drawing a connection between the exponential random graph
and Erdős-Rényi random graph conditioned on an atypical number of triangles, leading
to the derivation of the triangle tilts. Section 3 discusses and proves our main results
on asymptotic optimality or non-optimality of the importance sampling estimators. An
explicit procedure for determining the optimal triangle tilt parameters, given (p, t), is
present in Section 4 and further expanded on in Appendix A. In Section 5, we carry out
numerical simulations on moderate size networks using the various proposed tilts to
illustrate and compare the viability of the importance sampling schemes. Additionally,
we also discuss alternative strategies for choosing the tilt measure, hybrid tilts and
conditioned triangle tilts, which are variants of the edge and triangle tilts.

2 Large deviations, importance sampling and exponential ran-
dom graphs

2.1 Large deviations for Erdős-Rényi random graphs

Before the proof of the main result, we start with a more detailed description of the
large deviations principle for Erdős-Rényi random graphs and introduce the necessary
constructs required in our proof. Chatterjee and Varadhan [8] have proved a general
large deviation principle which is based on the theory of dense graph limits developed
by [3] (See also Lovasz’s recent monograph, [14]). In this framework, a random graph is
represented as a function X(x, y) ∈ W̃, where W̃ is the set of all measureable functions
f : [0, 1]2 → [0, 1] satisfying f(x, y) = f(y, x). Specifically, a finite simple graph X on n

vertices is represented by the function, or graphon,

X(x, y) =

n∑
i,j=1
i 6=j

Xij1[ i−1
n , in )×[ j−1

n , jn )(x, y) ∈ W̃. (2.1)

Here we treat (Xij) as a symmetric matrix with entries in {0, 1} and Xii = 0 for all i. In

general, for a function f ∈ W̃, f(x, y) can be interpreted as the probability of having
an edge between vertices x and y. Then, we define the quotient space W under the
equivalence relation defined by f ∼ g if f(x, y) = g(σx, σy) for some measure preserving
bijection σ : [0, 1] → [0, 1]. Intuitively, an equivalence class contains graphons that
are equal after a relabelling of vertices. (See, e.g., [3, 8] for further exploration and
properties of the quotient space.)

By identifying a finite graph X with its graphon representation, we can consider the
probability measure Pn,p as a measure induced onW supported on the finite subset of
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graphons of finite graphs. For f ∈ W, denote

E(f) =

∫ 1

0

∫ 1

0

f(x, y) dx dt (2.2)

and

T (f) =

∫ 1

0

∫ 1

0

∫ 1

0

f(x, y)f(y, z)f(x, z) dx dy dz. (2.3)

We see that E(X) = n2

2 E(X) and T (X) = n3

6 T (X), so that E and T represent edge and
triangle densities of the graph X, respectively. Then, rather than considering the event
Wn,t, we shall equivalently consider the upper tails of triangle densities,

Wt := {f ∈ W | T (f) > t3}.

The large deviation principle of Chatterjee and Varadhan [8] implies for any p ∈ (0, 1)

and t ∈ [p, 1],

lim
n→∞

1

n2
logP

(
T (Gn,p) > t3

)
= −φ(p, t) (2.4)

where φ(p, t) is the large deviation decay rate given by a variational form,

φ(p, t) = inf
{
Ip(f) | f ∈ W, T (f) > t3

}
= inf
f∈Wt

[Ip(f)]. (2.5)

Here,

Ip(f) :=

∫ 1

0

∫ 1

0

Ip(f(x, y)) dx dy (2.6)

is the large deviation rate function, where Ip : [0, 1] → R is defined at (1.5). A further
important consequence of the large deviation principle concerns the typical behaviour of
the conditioned probability measure

Pn,p(A|Wt) = Pn,p(A ∩Wt)µ
−1
n .

When we refer to Gn,p conditioned on the eventWt =
{
T (f) > t3

}
, we mean the random

graph whose law is given by this conditioned probability measure.

Lemma 2.1. ([8, Theorem 3.1], Lemma C.1) Let F∗ ⊂ W be the non-empty set of graphs
that optimize the variational form in (2.5). Then the Erdős-Rényi graph Gn,p conditioned
on
{
T (f) > t3

}
is asymptotically indistinguishable from the minimal set F∗.

The term “asymptotically indistinguishable" in Lemma 2.1 roughly means that the
graphon representation of the graph converges in probability, under the cut distance
metric, to some function f∗ ∈ F∗ at an exponential rate as n→∞. Intuitively, this means
that the typical conditioned Erdős-Rényi graph resembles some graph f∗ ∈ F∗ for large
n. In order to give a more precise definition of asymptotic indistinguishability, we first
recall the cut distance metric δ�, defined for f, g ∈ W by

δ�(f, g) = inf
σ

sup
S,T⊂[0,1]

∣∣∣∣∫
S×T

(f(σx, σy)− g(x, y)) dx dy

∣∣∣∣ ,
where the infimum is taken over all measure-preserving bijections σ : [0, 1]→ [0, 1]. For
F1,F2 ⊂ W,

δ�(F1,F2) = inf
f1∈F1,f2∈F2

δ�(f1, f2).

It is known by [15] that (W, δ�) is a compact metric space.
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Figure 1: Phase diagram for t > p. The shaded region is the replica symmetric phase,
and the unshaded region to the left of the curve is the replica breaking phase.

We say that a family of random graphs Gn on n vertices, for n ∈ N, is asymptotically
indistinguishable from a subset F ⊂ W if: for any ε1 > 0 there is ε2 > 0 such that

lim sup
n→∞

1

n2
logP(δ�(Gn,F) > ε1) < −ε2. (2.7)

Further, we say that Gn is asymptotically indistinguishable from the minimal set F ⊂ W
if F is the smallest closed subset ofW that Gn is asymptotically indistinguishable from.
Clearly, if Gn is asymptotically indistinguishable from a singleton set F , then F is, trivially,
minimal. Finally, we say two random graphs G1

n, G2
n are asymptotically indistinguishable

if they are each asymptotically indistinguishable from the same minimal set F ⊂ W.
Intuitively, this means that the random behaviour, or the typical graphs, of G1

n resembles
that of G2

n for large n. (See [7] and [8] for a wide-ranging exploration of this metric in
the context of describing limits of dense random graph sequences.)

Using this terminology, we observe that an Erdős-Rényi graph Gn,u is asymptotically
indistinguishable from the singleton set containing the constant function f∗ ≡ u. A
special notion about whether the conditioned Erdős-Rényi graph is again an Erdős-Rényi
graph leads to the following definition.

Definition 2.2. The replica symmetric phase is the regime of parameters (p, t) for which
the large deviations rate satisfies

inf
f∈Wt

[Ip(f)] = Ip(t), (2.8)

and the infimum is uniquely attained at the constant function t.
The replica breaking phase is the regime of parameters (p, t) that are not in the

replica symmetric phase. �

The complete characterization of the replica symmetry phase was shown by [17], and
is illustrated in Figure 1.

The notion of replica symmetry is a property of the rare event problem, where the
Erdős-Rényi graph Gn,p conditioned on the event {T (f) > t3} is asymptotically indistin-
guishable from an Erdős-Rényi graph with the higher edge density, Gn,t, a consequence
of Lemma 2.1. In contrast, the conditioned graphs in the replica breaking phase are
not indistinguishable from any one Erdős-Rényi graph; instead, they may behave like
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a mixture of Erdős-Rényi graphs or exhibit a clique-like structure with edge density
less than t. The term “replica symmetric phase” is borrowed from [8], which in turn
was inspired by the statistical physics literature. However, we remark that this term
has been used differently from us by other authors to refer to other families of graphs
behaving like an Erdős-Rényi graph or a mixture of Erdős-Rényi graphs.

2.2 Asymptotic behavior of exponential random graphs

To find “good” importance sampling tilted measures, we focus on the class of expo-
nential random graphs. The exponential random graph is a random graph on n vertices
defined by the Gibbs measure

Q(X) = Qh,β,αn (X) ∝ en
2H(X) (2.9)

on Ωn, where for given h ∈ R, β ∈ R+, α > 0, the Hamiltonian is

H(X) =
h

2
E(X) +

β

6
T (X)α. (2.10)

We will use ψn = ψh,β,αn to denote the log of the normalizing constant (free energy)

ψn = ψh,β,αn =
1

n2
log

∑
X∈Ωn

en
2H(X),

so that Qh,β,αn (X) = exp(n2(H(X)− ψn)). We denote by Gh,β,αn the exponential random
graph defined by the Gibbs measure (2.9). The case where α = 1 is the “classical”
exponential random graph model that has an enormous literature in the social sciences,
see e.g. [20, 19] and the references therin and rigorously studied in a number of recent
papers, see e.g. [1, 7, 18, 17, 22, 23]. In this case, the Hamiltonian can be rewritten as
n2H(X) = hE(X) + β

nT (X). We will drop the superscripts in ψh,βn ,Qh,βn when α = 1. The
generalization to the exponential random graph with the parameter α was first proposed
in [17].

Observe that the Erdős-Rényi random graph is a special case of the exponential
random graph: if β = 0 and h = hp with hp defined by (1.2), then Q

hp,0,α
n = Pn,p

for any α > 0 and the edges are independent with probability p. On the other hand,
choosing β > 0 introduces a non-trivial dependence between the edges. By adjusting
the parameters (h, β, α), the Gibbs measure Qh,β,αn can be adjusted to favor edges and
triangles to varying degree.

The asymptotic behavior of the exponential random graph measures Qh,β,αn and the
free energy ψh,β,αn is partially characterized by the following result of Chatterjee and
Diaconis [7] and Lubetzky and Zhao [17]. In what follows, we will make use of the
functions

I(u) =
1

2
u log u+

1

2
(1− u) log(1− u) (2.11)

on u ∈ [0, 1] and, for f ∈ W,

I(f) :=

∫ 1

0

∫ 1

0

I(f(x, y)) dx dy. (2.12)

Theorem 2.3 (See [7] [17]). For the exponential random graph Gh,β,αn with parameters
(h, β, α) ∈ R× [0,+∞)× [2/3, 1], the free energy satisfies

lim
n→∞

ψh,β,αn = sup
06u61

[
β

6
u3α − I(u) +

h

2
u

]
. (2.13)

If the supremum in (2.13) is attained at a unique point v∗ ∈ [0, 1], then the exponential
random graph Gh,β,αn is asymptotically indistinguishable from the Erdős-Rényi graph
Gn,v∗ .
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The case α = 1 in Theorem 2.3 was proved by Chatterjee and Diaconis – Theorems
4.1, 4.2 of [7]; the cases α ∈ [2/3, 1] is due to Lubetzky and Zhao– Theorems 1.3, 4.3 of
[17].

Our main result in this section, stated next, is the generalization of the variational
formulation for the free energy of the Gibbs measure of any exponential random graph.
Our result emphasizes the connection between the exponential random graph and the
conditioned Erdős-Rényi graph. Before stating the result we will need some extra
notation. Extend the Hamiltonian defined in (2.10) to the space of graphons in the
natural way

H(f) :=
h

2
E(f) +

β

6
T (f)α (2.14)

where recall the definitions for the density of edges and triangles for graphons defined
respectively in (2.2) and (2.3). For fixed q ∈ (0, 1) recall the functions Iq(f) from (2.6)
and the function I(f) from (2.12). In particular, observe that

Iq(f) = I(f)− hq
2
E(f)− 1

2
log(1− q). (2.15)

with hq = log q
1−q .

Theorem 2.4. For the exponential random graph Gh,β,αn with parameters (h, β, α) ∈
R× [0,+∞)× [0, 1], the free energy satisfies

lim
n→∞

ψh,β,αn = sup
06u61

[
β

6
u3α − φq(u)− 1

2
log(1− q)

]
(2.16)

where q ∈ (0, 1) is such that h = hq = log q
1−q , and

φq(u) = inf
f∈∂Wu

[Iq(f)] (2.17)

and ∂Wu := {f ∈ W | T (f) = u3}.
If the supremum in (2.16) is attained at a unique point v∗ > q, then the exponential

random graph Ghq,β,αn is asymptotically indistinguishable from the conditioned Erdős-
Rényi graph, Gn,q conditioned on the event

{
T (f) > (v∗)3

}
.

Remark 2.5. [(i)]

1. If, in addition, (q, v∗) in Theorem 2.4 belongs to the replica symmetric phase, then

Ghq,β,αn is asymptotically indistinguishable from the Erdős-Rényi graph Gn,v∗ . This
follows from the remarks following Definition 2.2, that in the replica symmetric
phase, Gn,q conditioned on

{
T (f) > (v∗)3

}
is asymptotically indistinguishable from

the Erdős-Rényi graph Gn,v∗ . In this case, (2.16) reduces to (2.13).

2. Non-uniqueness of v∗ is possible. As will be apparent from the proof, if the supre-
mum in (2.16) is attained on the set U∗ ⊂ [0, 1], then the exponential random graph

Ghq,β,αn is asymptotically indistinguishable from the minimal set F∗ =
⋃
u∈U∗ F∗u,

where F∗u is the set of minimizers of (2.17). In particular, if U∗ contains more
than one element, then Gh,β,αn is asymptotically indistinguishable from a mixture of
different conditioned Erdős-Rényi graphs.

Proof. Theorem 3.1 in [7] implies that

lim
n→∞

ψhq,β,αn = sup
f∈W

[H(f)− I(f)]. (2.18)
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To show (2.16), suppose f ∈ ∂Wu, for u ∈ (0, 1). Recalling (2.15), we have

H(f)− I(f) =
hq
2
E(f) +

β

6
u3α − I(f)

=
β

6
u3α − Iq(f)− 1

2
log(1− q) (2.19)

6
β

6
u3α − inf

f∈∂Wu

[Iq(f)]− 1

2
log(1− q)

This implies that

sup
f∈∂Wu

[H(f)− I(f)] 6
β

6
u3α − inf

f∈∂Wu

[Iq(f)]− 1

2
log(1− q),

and

sup
f∈W

[H(f)− I(f)] = sup
06u61

sup
f∈∂Wu

[H(f)− I(f)]

6 sup
06u61

[
β

6
u3α − inf

f∈∂Wu

[Iq(f)]− 1

2
log(1− q)

]
Now we show the reverse inequality. Fix ε > 0. For each u ∈ (0, 1), let fu,ε ∈ ∂Wu be
such that

Iq(fu,ε) 6 inf
f∈∂Wu

[Iq(f)] + ε.

Therefore, for each u ∈ (0, 1) we have

H(fu,ε)− I(fu,ε) =
β

6
u3α − [Iq(fu,ε)]−

1

2
log(1− q)

>
β

6
u3α − inf

f∈∂Wu

[Iq(f)]− 1

2
log(1− q)− ε. (2.20)

Hence

sup
f∈W

[H(f)− I(f)] > sup
0<u<1

[
β

6
u3α − inf

f∈∂Wu

[Iq(f)]− 1

2
log(1− q)

]
− ε. (2.21)

Since ε > 0 is arbitrary, (2.16) follows.
To show the next statement, suppose the supremum in (2.16) is attained at a unique

point v∗ > q. Let F∗v∗ ⊂ ∂Wv∗ denote the set of functions that attains the infimum in
(2.17). We observe from the preceeding proof that, in fact, F∗v∗ is the set that attains

the infimum in (2.18), so that by [7, Theorem 3.2] and Lemma C.1, the graph Ghq,β,αn

is asymptotically indistinguishable from the minimal set F∗v∗ . On the other hand, since
F∗v∗ is also the set that attains the infimum in the LDP rate in (2.5) (due to [8, Theorem
4.2(iii)]), the conditioned Erdős-Rényi graph, Gn,q conditioned on

{
T (f) > (v∗)3

}
, is

also asymptotically indistinguishable from the set F∗v∗ . Thus, Ghq,β,αn is asymptotically
indistinguishable from the conditioned Erdős-Rényi graph, Gn,q conditioned on the event{
T (f) > (v∗)3

}
.

�

The mean behaviour of the triangle density of an exponential random graph Ghq,β,αn

can be deduced from the variational formulation in (2.16), and in special instances, so
can the mean behaviour of the edge density. This is shown in the next proposition, which
follows from [7, Theorem 4.2] and the Lipschitz continuity of the mappings f 7→ T (f)

and f 7→ E(f) under the cut distance metric δ� [3, Theorem 3.7]. The proof is left to the
appendix.
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Proposition 2.6. Let (hq, β, α) ∈ R × [0,+∞) × [0, 1]. If the supremum in (2.16) is
attained at a unique point v∗ ∈ [0, 1], then

lim
n→∞

E|T (Ghq,β,αn )− (v∗)3| = 0. (2.22)

Further, if (q, v∗) belongs to the replica symmetric phase, then

lim
n→∞

E|E(Ghq,β,αn )− v∗| = 0. (2.23)

3 Asymptotic Optimality

Recall that the edge tilt corresponds to the Gibbs measure (1.13) with β = 0 and
h > hp = log p

1−p . Thus, an edge tilt Qh,0n satisfies

dPn,p

dQh,0n
(X) = exp

[
−n2

(
h− hp

2
E(X) + ψhp,0n − ψh,0n

)]
. (3.1)

The triangle tilt corresponds to the Gibbs measure (1.13) with h = hp and β > 0, α > 0.

So, the triangle tilt Q
hp,β,α
n satisfies

dPn,p

dQ
hp,β,α
n

(X) = exp

[
−n2

(
β

6
T (X)α + ψhp,0n − ψhp,β,αn

)]
Here recall that T (X) = 6

n3T (X) is the density of triangles in X and E(X) = 2
n2E(X) is

the density of edges.
For any admissible parameters (h, β, α), the importance sampling estimator based on

the tilted measure Qh,β,αn is

M̃K =
1

K

K∑
k=1

1Wt
(X̃k)

dPn,p

dQh,β,αn

(X̃k)

=
1

K

K∑
k=1

1Wt
(X̃k) exp

{
n2

(
hp − h

2
E(X̃k)− β

6
T (X̃k)α + ψh,β,αn − ψhp,0n

)}
(3.2)

where X̃k are i.i.d. samples drawn from Qh,β,αn . Denote

q̂n = q̂n(X̃) = 1Wt
(X̃)

dPn,p

dQh,β,αn

(X̃).

For any (h, β, α), E[q̂n] = µn and so M̃K is an unbiased estimator for µn.
Our first result is a necessary condition for asymptotic optimality of the importance

sampling scheme:

Proposition 3.1. Given p < t, let (h, β, α) ∈ R × [0,+∞) × [0, 1] with h = hq = log q
1−q .

Suppose that the supremum in (2.16) is not attained at t:

sup
06u61

[
β

6
u3α − φq(u)− 1

2
log(1− q)

]
6= β

6
t3α − φq(t)−

1

2
log(1− q). (3.3)

Then the importance sampling scheme based on the Gibbs measure tilt Qh,β,αn is not
asymptotically optimal.

Corollary 3.2. Given p < t, let (h, β, α) ∈ R× [0,+∞)× [0, 1] with h = hq = log q
1−q . Sup-

pose that family of random graphs Gh,β,αn is not indistinguishable from Gn,p conditioned
on the event {T (X) > t3}. Then the importance sampling scheme based on the Gibbs
measure tilt Qh,β,αn is not asymptotically optimal.
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Our next result shows that for triangle tilts (i.e. h = hp), the necessary condition
described in Proposition 3.1 is also a sufficient condition for asymptotic optimality:

Proposition 3.3. Given p < t, let h = hp and (β, α) ∈ [0,+∞)× [0, 1]. Suppose that the
supremum in (2.16) is attained at t:

sup
06u61

[
β

6
u3α − φp(u)− 1

2
log(1− p)

]
=
β

6
t3α − φp(t)−

1

2
log(1− p). (3.4)

Then the importance sampling scheme based on the triangle tilt Q
hp,β,α
n is asymptotically

optimal.

In Section 4, we give a more explicit way to determine the tilt parameters that satisfy
the condition (3.4).

Next, we turn to the edge tilts (i.e. β = 0). Since φq(u) is minimized at u = q and (3.3)
holds if β = 0 and q 6= t, we have, as a corollary of Prop 3.1, the following necessary
condition for an edge tilt to produce an optimal scheme.

Proposition 3.4. Given p < t, let β = 0 and h = hq for some q 6= t. The importance

sampling scheme based on the edge tilt Q
hq,0,α
n is not asymptotically optimal.

Observe that for the edge tilt with h = ht and β = 0, the supremum in (2.16) is always
attained at t, since

inf
06u61

[φt(u)] = inf
f∈W

[It(f)] = φt(t) = 0. (3.5)

Thus, the edge tilt with h = ht always satisfies the necessary condition for asymptotic
optimality of the importance sampling scheme. Furthermore, if (p, t) is in the replica
symmetric phase, the tilted measure Qht,0,αn is indistinguishable from the conditioned
Erdős-Rényi graph. Nevertheless, the sampling scheme based on the edge tilt with
h = ht may still be suboptimal, even in the replica symmetric phase, as the next result
shows.

Proposition 3.5. Let 0 < p < e−1/2

1+e−1/2 and t ∈ (p, 1). If t is sufficiently close to 1 and (p, t)

belong to the replica symmetric phase, then the importance sampling scheme based on
the edge tilt Qht,0n is not asymptotically optimal.

Remark A.5 and Figure 3 indicate that there do exist parameters (p, t) belonging to
the replica symmetric phase for which the hypothesis of Prop 3.5 is satisfied.

3.1 Proofs of results.

We first prove the asymptotic optimality of the triangle tilts, Prop 3.3.

Proof of Proposition 3.3. Due to (1.10), it suffices to show that

lim
n→∞

1

n2
logEQ[q̂2

n] 6 −2 inf
f∈Wt

Ip(f). (3.6)

Let q ∈ (0, 1) be such that h = hq = log q
1−q . Recall that

Qh,β,αn (X) = exp

[
n2

(
h

2
E(X) +

β

6
T α(X)− ψh,β,αn

)]
.

Therefore, by definition of q̂n, we have

EQn [q̂2
n] = EPn,p

[
1Wt

dPn,p

dQ
hq,β,α
n

]

= EPn,p

[
1Wt

exp

{
n2

(
hp − hq

2
E(X)− β

6
T (X)α + ψhq,β,αn − ψhp,0n

)}]
.
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The mappings E , T :W 7→ R are bounded and continuous [3, Theorem 3.8]. Applying the
Laplace principle for the family of measures Pn,p, for which Ip(f) is the rate function [7,
Theorem 3.1], we obtain

lim
n→∞

1

n2
logEQn [q̂2

n] = lim
n→∞

1

n2
logEPn,p

[
1Wt exp

{
n2

(
hp − hq

2
E(X)− β

6
T (X)α

)}]
+ lim
n→∞

(
ψhq,β,αn − ψhp,0n

)
= − inf

f∈Wt

[
Ip(f) +

hq − hp
2

E(f) +
β

6
T (f)α

]
+ lim
n→∞

(
ψhq,β,αn − ψhp,0n

)
(3.7)

By (2.16),

lim
n→∞

ψhq,β,αn = V (u∗)

where u∗ = argsup06u61[V (u)] and

V (u) :=
β

6
u3α − inf

f∈∂Wu

[Iq(f)]− 1

2
log(1− q).

Also, limn→∞ ψ
hp,0
n = − 1

2 log(1− p). Hence,

lim
n→∞

1

n2
logEQ[q̂2

n] (3.8)

= − inf
f∈Wt

[
Ip(f) +

hq − hp
2

E(f) +
β

6
T (f)α

]
+
β

6
(u∗)3α − inf

f∈∂Wu∗
[Iq(f)]− 1

2
log

1− q
1− p

6 − inf
f∈Wt

[
Ip(f) +

hq − hp
2

E(f)

]
+
β

6

(
(u∗)3α − t3α

)
− inf
f∈∂Wu∗

[Iq(f)]− 1

2
log

1− q
1− p

The last inequality follows from the fact that T (f) > t3 for all f ∈ Wt. Since,

Iq(f) +
1

2
log

1− q
1− p

= Ip(f) +
hp − hq

2
E(f),

we conclude that

lim
n→∞

1

n2
logEQ[q̂2

n] 6 − inf
f∈Wt

[
Ip(f) +

hq − hp
2

E(f)

]
− inf
f∈∂Wu∗

[
Ip(f)− hq − hp

2
E(f)

]
+
β

6

(
(u∗)3α − t3α

)
(3.9)

The estimate (3.9) holds for any (hq, β, α) ∈ R × [0,+∞) × [0, 1]. However, under the
hypotheses of Proposition 3.3, we have u∗ = t and q = p. Therefore,

lim
n→∞

1

n2
logEQ[q̂2

n] 6 − inf
f∈Wt

[Ip(f)]− inf
f∈∂Wt

[Ip(f)] = −2 inf
f∈Wt

[Ip(f)]

Combined with the upper bound for the asymptotic second moment, we conclude that
the triangle tilt Q

hp,β,α
n yields an asymptotically optimal importance sampling estimator

if (3.4) holds. �

We now prove the necessary condition for optimality, Prop 3.1.
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Proof of Proposition 3.1. We recall from (2.18) that limn→∞ ψ
hq,β,α
n = supf∈W [H(f) −

I(f)]. Due to Theorem 2.4, there exists f∗ ∈ W such that f∗ minimizes the LDP rate
function inff∈Wt

[Ip(f)], and f∗ does not maximize supf∈W [H(f)− I(f)]. From (3.7),

lim
n→∞

1

n2
logEQn [q̂2

n]

= − inf
f∈Wt

[
Ip(f) +

h− hp
2
E(f) +

β

6
T (f)α

]
+ lim
n→∞

ψh,β,αn +
1

2
log(1− p)

= − inf
f∈Wt

[
Ip(f) +

h− hp
2
E(f) +

β

6
T (f)α

]
+ sup
f∈W

[H(f)− I(f)] +
1

2
log(1− p)

> −
[
Ip(f∗) +

h− hp
2
E(f∗) +

β

6
T (f∗)α

]
+
h

2
E(f∗) +

β

6
T (f∗)α − I(f∗) +

1

2
log(1− p)

= −2Ip(f∗) = −2 inf
f∈Wt

[Ip(f)]

Hence the importance sampling estimator is not asymptotically optimal. �

Proof of Proposition 3.5. For the edge tilt with h = ht, β = 0, we have from (3.8),

lim
n→∞

1

n2
logEQ[q̂2

n] = − inf
f∈Wt

[
Ip(f) +

(
ht − hp

2

)
E(f)

]
− Ip(t) +

(
ht − hp

2

)
t. (3.10)

Because (p, t) is in the replica symmetric phase, the term Ip(f) is minimized overWt by
the constant function,

ft(x, y) ≡ t = arg inf
f∈Wt

[Ip(f)].

On the other hand, the term E(f) is minimized overWt by the clique function

gt(x, y) = 1[0,t]2(x, y) = arg inf
f∈Wt

[E(f)]. (3.11)

This gt represents a graph with a large clique, in which there is a complete subgraph on
a fraction t of the vertices. Let V(f) = Ip(f) +

ht−hp
2 E(f) be the function to be infimized

in (3.10). We have

V(ft) = Ip(t) +

(
ht − hp

2

)
t,

and

V(gt) = t2Ip(1) + (1− t2)Ip(0) +

(
ht − hp

2

)
t2.

Thus, if we can show that

V(gt) < V(ft),

it will follow that from (3.10) that

lim
n→∞

1

n2
logEQ[q̂2

n] > −V(gt)− Ip(t) +

(
ht − hp

2

)
t

> −2Ip(t) = −2 inf
f∈Wt

Ip(f). (3.12)

We claim that for p < e−1/2

1+e−1/2 and t sufficiently close to 1, we have V(gt) < V(ft).
Indeed, let

G(t) := V(gt)− V(ft) (3.13)

= t2Ip(1) + (1− t2)Ip(0)− Ip(t) +

(
ht − hp

2

)
(t2 − t).
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Observe that G(1) = 0 and

G′(1) = 2Ip(1)− 2Ip(0)− 1/2 = − log

(
p

1− p

)
− 1/2.

So, G′(1) > 0 if hp < −1/2, i.e., if p < e−1/2

1+e−1/2 . So, for t sufficiently close to 1, we
have V(gt) < V(ft), and we conclude that (3.12) holds with strict inequality. Hence, the
importance sampling scheme associated with the edge tilt Qht,0n cannot be asymptotically
optimal.

�

4 Characterizing regimes for the triangle tilt

Proposition 3.3 describes the necessary and sufficient condition (3.4) on the parame-
ters (β, α) of a triangle tilt, that will produce an optimal importance sampling scheme.
Given (p, t), do these optimal tilt parameters (β, α) exist and how can they be found? In
this section, we describe in a pseudo-explicit procedure for determining the optimal tilt
parameters given (p, t).

An explicit determination of the optimal tilt parameters can be made when (p, t)

belongs to the replica symmetry phase.

Proposition 4.1. If (p, t) belongs to the replica symmetry phase, then there exists some
α ∈ [2/3, 1] for which the triangle tilt with parameters (hp, β, α) produces an optimal
scheme, where β satisfies

β =
ht − hp
αt3α−1

. (4.1)

It will turn out that if there exists some α ∈ [0, 1] and some β for which the triangle tilt
produces an optimal scheme, then for any α′ ∈ [0, α], and an appropriate β′ depending
on α′, the triangle tilt with parameters (hp, β

′, α′) also produces an optimal scheme (see
Lemma A.4). Thus, in Prop 4.1, we can always take α = 2/3.

It is also of interest to determine the tilt parameters when (p, t) belong to the replica
breaking phase. Our next result, Prop 4.3, states a more general characterization of the
optimal tilt parameters that applies to both the replica symmetry and breaking phases.
To state the result, we introduce the minorant condition.

We shall say that (p, t) satisfies the minorant condition with parameter α if the point
(t3α, φp(t)) lies on the convex minorant of the function x 7→ φp(x

1/3α). In this case,
subdifferential(s) of the convex minorant of x 7→ φp(x

1/3α) at x = t3α always exist and
are positive. Recall that the subdifferentials of a convex function f(x) at a point x are the
slopes of any line lying below f(x) that is tangent to f at x. The set of subdifferentials
of a convex function is non-empty; if the function is differentiable at x, then the set of
subdifferentials contains exactly one point, the derivative f ′(x).

The minorant condition is not an unattainable one, as shown in the next lemma.

Lemma 4.2. The parameters (p, t) that satisfy the minorant condition with some α

includes the replica symmetry phase as well as a non-empty subset of the replica
breaking phase.

Proposition 4.3. Suppose (p, t) satisfies the minorant condition for some α ∈ [0, 1]. Then
the triangle tilt with the parameters (hp, β, α) produces an optimal scheme, where β is
such that β

6 is a subdifferential of the convex minorant of x 7→ φp(x
1/3α) at x = t3α.

Moreover, if φp(u) is differentiable at t, then

β =
2φ′p(t)

αt3α−1
. (4.2)
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Combining Lemma 4.2 and Prop 4.3, there exists (p, t) belonging to the replica break-
ing phase for which a triangle tilt that produces an optimal scheme exists. In particular,
in the replica symmetry phase, since φp(t) = Ip(t) is differentiable at t, Prop 4.3 reduces
to Prop 4.1. Thus, Prop 4.1 gives an explicit construction of the tilt parameters when
(p, t) belong to the replica symmetry phase. In the replica breaking phase, we may need
to resort to numerical strategies to find the tilt parameters. Nonetheless, we emphasize
that it is possible in principle to construct an optimal importance sampling estimator in
the replica breaking phase even if the limiting behaviour of the conditioned graph is not
known exactly.

Proofs of results.

Notice that if t attains the supremum in (3.4), we may rewrite the condition as

t = arg sup
06u61

[
β

6
u3α − φp(u)

]
.

Together with Prop 3.3, the next lemma immediately implies Prop 4.3.

Lemma 4.4. Suppose (p, t) satisfies the minorant condition for some α > 0. Let β be
such that β

6 is a subdifferential of the convex minorant of x 7→ φp(x
1/3α) at x = t3α. Then

sup06u61[β6u
3α − φp(u)] is maximized at t.

Moreover, if φp(u) is differentiable at t, then β is defined in (4.2).

Proof. The proof follows a similar technique to [17]. Using the rescaling u 7→ x1/3α, the
variational form sup06u61[β6u

3α − φp(u)] can be rewritten as

sup
06x61

[
β

6
x− φp(x1/3α)].

Let φ̂p(x) denote the convex minorant of x 7→ φp(x
1/3α). The assumption that β

6 is a

subdifferential of φ̂p(x) at x = t3α implies that the maximum of supx[β6x − φ̂p(x)] is
attained at t3α. By the hypothesis of the lemma, we have assumed that (p, t) satisfies the
minorant condition for α, so that the point (t3α, φp(t)) lies on φ̂p(x). Thus we have that
φ̂p(t

3α) = φp(t) and so the maximum of supx[β6x − φp(x
1/3α)] is also attained at t3α. It

follows that the maximum of supu[β6u
3α−φp(u)] is attained at t. (However, this maximum

may not be unique. If the subtangent line defined by the subdifferential β6 touches φ̂p at
another point r3α, then r also a maximum.)

To prove the last part of the lemma, if φp(u) is differentiable at t, then the subdiffer-
ential is simply the derivative. Then we have

0 =
∂

∂x

∣∣∣
x=t3α

[
β

6
x− φp(x1/3α)] =

β

6
− φ′p(t)

t1−3α

3α

implies that β =
2φ′p(t)

αt3α−1 . �

Proof. (Proof of Lemma 4.2.) Recalling Definition 2.2 of the replica symmetric phase,
the it follows from [17, Theorems 1.1 and 1.3] that any (p, t) that belongs to the replica
symmetric phase satisfies the minorant condition for some α ∈ [2/3, 1].

We now show that there exists (p, t) belonging to the replica breaking phase that
satisfies the minorant condition for some α. Notice from Appendix A and Figure 3 that
there exists some a critical value pcrit such that when p > pcrit, (p, t) is replica symmetric
for all t ∈ [p, 1]; whereas when p 6 pcrit, there exists an interval (rp, rp) ⊂ (p, 1) where
(p, t) is replica breaking if t ∈ (rp, rp), and (p, t) is replica symmetric for all other values
of t.
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To see this, consider α = 1/3 and convex minorant of x 7→ φp(x
1/3α) = φp(x). For

each p < pcrit, there exists an interval (rp, rp) ⊂ (p, 1) where (p, t) is replica breaking if
t ∈ (rp, rp), and (p, t) is replica symmetric for the other values of t. Since φp(t) < Ip(t) if
t ∈ (rp, rp) and φp(t) = Ip(t) for other values of t, and since Ip(u) is convex, the convex
minorant of φp(x) must touch φp at at least one tp ∈ (rp, rp). So (p, tp) is replica breaking
and satisfies the minorant condition. �

5 Numerical simulations using importance sampling

We implement the importance sampling schemes to show the optimality properties
of the Gibbs measure tilts in practice. Although we have thus far been considering
importance sampling schemes that draw i.i.d. samples from the tilted measure Q, in
practice it is very difficult to sample independent copies of exponential random graphs.
This is because of the dependencies of the edges in the exponential random graph, unlike
the situation with an Erdős-Rényi graph where the edges are independent. Thus, to
implement the importance sampling scheme, we turn to a Markov chain Monte Carlo
method known as the Glauber dynamics to generate samples from the exponential
random graph. The Glauber dynamics refers to a Markov chain whose stationary
distribution is the Gibbs measure Qh,β,αn . The samples X̃k from the Glauber dynamics
are used to form the importance sampling estimator M̃K in (3.2). The variance of M̃K

clearly also depends on the correlation between the successive samples. However, in this
paper, rather than focus on the effect of correlation on the variance of M̃K , we instead
investigate and compare the optimality of the importance sampling schemes, and show
that importance sampling is a viable method for moderate values of n.

Glauber dynamics.

For the exponential random graph Gh,β,αn , the Glauber dynamics proceeds as follows.
Suppose we have a graph X = (Xij)16i<j6n. The graph X̃ is generated from X via

the following procedure.

1. Choose an edge Xij , for some (i, j), from X uniformly at random.

2. For the new graph X̃, fix all other edges X̃i′j′ = Xi′j′ , for (i′, j′) 6= (i, j).

3. Conditioned on all other edges fixed, pick

X̃ij ∼ Bern(ϕ)

where

ϕ =
eh+(β/n)(Lij+Mij)

α(n3/6)1−α

eh+(β/n)(Lij+Mij)α(n3/6)1−α + e(β/n)Mα
ij(n

3/6)1−α

and where

Lij =
∑
k 6=i,j

XikXjk, and Mij =
∑

(k,l,m)+(i,j)

XklXkmXlm,

is the number of 2-stars in X with a base at the edge Xij , and the number of
triangles in X not involving the edge Xij , respectively.

4. If conditioning on AJ is used, check if X̃ is in AJ . If not, revert to X.

In step 4, a conditioning of the Gibbs measure is discussed in Section 5.2.
For the classical exponential random graph with α = 1, the probability ϕ in the

Glauber dynamics has a neater expression,

ϕ =
eh+βLij/n

1 + eh+βLij/n
.
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At each MCMC step, if Xij 6= X̃ij , then E(X̃) differs from E(X) by one edge, and
T (X̃) differs from T (X) by nLij triangles. The stationary distribution of the Glauber
dynamics is the Gibbs measure Qh,β,αn that defines the exponential random graph Gh,β,αn .
Regarding the mixing time of the Glauber dynamics, [1] showed for the case α = 1 that
if the variational form for the free energy of the Gibbs measure Qh,β,1n ,

sup
06u61

[
h

2
u+

β

6
u3 − I(u)], (5.1)

has a unique local maximum, then the mixing time of the Glauber dynamics is O(n2 log n);
otherwise, the variational form has multiple local maxima, and the mixing time is O(en).

Clearly, the importance sampling tilt must be chosen so that the mixing time of the
Glauber dynamics is O(n2 log n).

5.1 Example 1

The importance sampling scheme was performed for p = 0.35, t = 0.4, in the replica
symmetry phase. We use the Glauber dynamics to draw samples from the edge tilt with
parameters h = ht, β = 0, as well as from the triangle tilt with parameters h = hp, α = 1

and β =
ht−hp
t2 as in (4.1). The mixing time for both tilts is O(n2 log n). In addition to the

edge and triangle tilts, we also consider a family of “hybrid” tilts with parameters h = hq
for q > p, and α = 1 and

β = βq =
ht − hq
t2

. (5.2)

With these parameters, the variational form for the free energy of the corresponding
Gibbs measure is uniquely maximized at t. Thus, the hybrid tilt satisfies the necessary
condition in Proposition 3.1 for optimality (i.e., (3.3) does not hold). By Theorem 2.4, the
corresponding exponential random graph Ghq,βq,1n is indistinguishable from the Erdős-
Rényi graph Gn,t and has a mean triangle density of t3, in the sense of (2.22).

In the simulations, we used the hybrid tilts with h = hq, for q = 0.35, 0.36, . . . , 0.4, and
βq satisfying (5.2). With this notation, in fact, q = p = 0.35 corresponds to the triangle
tilt while q = t = 0.4 corresponds to the edge tilt. Table 1 verifies the accuracy of the
importance sampling estimates for µn := P(Gn,p ∈ Wt) using the tilts Q

hq,βq,1
n . Also

shown is the estimate for the log probability, 1
n2 logP(Gn,p ∈ Wt), which can be seen to

approach the LDP rate

lim
n→∞

1

n2
logP(Gn,p ∈ Wt) = −Ip(t) ≈ −0.002694.

as n is increased. Table 2 shows the estimated values of the variance of the estimator,
V arQn(q̂n), where q̂n = 1Wt

dPn,p

dQh,βn
, as well as the log second moment 1

n2 logEQn [q̂2
n]. The

variance of the estimator for all the hybrid and edge tilts appear to be comparable to the
optimal triangle tilt, and the log second moment likewise appears to converge towards
−2Ip(t) ≈ −0.0053869. Notice that the parameters p = 0.35, t = 0.4 do not satisfy the
hypothesis of Proposition 3.5, so the assertion of non-optimality of the edge tilt may not
apply in this case. Regardless, non-optimality is not apparent for mid-sized graphs up to
n = 96.

For n = 16, 32, 64, the number of MCMC samples used was 5× 104 n2 log n, while for
n = 96, the number of MCMC samples used was 105 n2 log n.

Both the random graphs corresponding to the triangle or edge tilts are expected by
(2.22), (2.23) to have triangle density of t3 and edge density of t, on average. However,
there is a difference between the way that the triangle and edge tilts produce events
in
{
T (f) > t3

}
, which is that the edge tilt tends to produce more successful samples in{

T (f) > t3
}

with higher edge density, compared to the triangle tilt. (See Figure 2.) This
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q 0.35 0.36 0.37 0.38 0.39 0.4
n

16 0.12475 0.1247 0.12521 0.12425 0.12441 0.12435
(-0.008131) (-0.008132) (-0.008116) (-0.008146) (-0.008141) (-0.008143)

32 0.01107 0.011056 0.011116 0.010941 0.010972 0.010729
(-0.004398) (-0.004399) (-0.004394) (-0.004409) (-0.004407) (-0.004429)

64 2.1919e-06 2.0283e-06 2.6073e-06 5.3287e-07 1.3822e-06 3.5772e-06
(-0.003181) (-0.003200) (-0.003139) (-0.003527) (-0.003294) (-0.003062)

96 1.1036e-11 1.6868e-11 2.0805e-11 4.4039e-11 2.6124e-11 4.497e-11
(-0.002738) (-0.002692) (-0.002669) (-0.002587) (-0.002644) (-0.002585)

Table 1: Comparison of the estimates for the probability µn (top number) for varying tilts
with parameters (hq, β, 1), where β is defined in (5.2). Also shown is the log probability
1
n2 logP(Gn,p ∈ Wt) (lower number).

n \ q 0.35 0.36 0.37 0.38 0.39 0.4

16 0.030839 0.03007 0.030173 0.030553 0.031902 0.034105
(-0.01199) (-0.01206) (-0.01204) (-0.01203) (-0.01191) (-0.01173)

32 0.00039386 0.00038614 0.00040055 0.00042058 0.00047462 0.00052598
(-0.007391) (-0.007407) (-0.007377) (-0.007347) (-0.007253) (-0.00718)

64 2.9982e-11 2.5716e-11 4.6804e-11 2.3144e-12 1.9783e-11 1.8035e-10
(-0.005879) (-0.005917) (-0.005774) (-0.006513) (-0.005995) (-0.005461)

96 1.157e-21 2.7721e-21 4.9044e-21 2.8661e-20 1.4562e-20 6.8628e-20
(-0.005220) (-0.005125) (-0.005065) (-0.004876) (-0.004951) (-0.004785)

Table 2: Comparison of the estimates for the variance V arQ(q̂n) (top number) for varying
tilts with parameters (hq, β, 1), where β is defined in (5.2). Also shown is the log second
moment 1

n2 logEQ[q̂2
n] (lower number).
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Figure 2: Histogram of the number of edges in the samples obtained using the importance
sampling scheme based on the triangle tilt (solid red line) and edge tilts (dashed blue
line), conditioned on the rare event {T (X) >

(
n
3

)
t3}. The dotted green line in the top left

panel shows the histogram for direct Monte Carlo sampling. The vertical line indicates
the expected number of edges of the graph Gn,p conditioned on the rare event.

is attributable to the fact that the edge tilt penalizes successful samples that contain the
desired triangle density but with lower than expected edge density.

5.2 Example 2: Using α 6= 1 or conditioned Gibbs measures

The importance sampling scheme was next performed for p = 0.2, t = 0.3, in the
replica symmetric phase. We again use the Glauber dynamics to draw samples from the
edge tilt with parameters h = ht, β = 0; the mixing time here is O(n2 log n). In contrast
to the previous example, for the triangle tilt with α = 1, the variational form (5.1) has
two local maxima, resulting in a mixing time of O(en). Instead, we will use a triangle tilt
with α = 2/3. Thanks to the fact that (p, t) is in the replica symmetric phase and φp is
differentiable at t, Proposition 4.3 implies that for α = 2/3, we choose

β =
ht − hp
(2/3)t

.

The simulation results for the importance sampling scheme using the triangle tilt with
α = 2/3 is shown in Tables 3, 4 and compared with the results for the edge tilt. The
simulation using direct Monte Carlo sampling is also shown for n = 32. We see that
the triangle tilt with α = 2/3 outperforms both the edge tilt and direct Monte Carlo
simulation. Notice that the parameters p = 0.2, t = 0.3 do not satisfy the hypothesis of
Proposition 3.5, but the edge tilt already appears to be non-optimal for mid-sized graphs
up to n = 64.

Alternatively, we also consider a modification to the triangle tilt with α = 1 and
βp =

ht−hp
t2 as in (4.1). This modification draws samples from the Gibbs measure Q

hp,βp,1
n

conditioned on the event that the edge and triangle densities not exceed a given threshold
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n Triangle tilt α = 2/3 Conditioned triangle tilt Edge tilt Monte Carlo
16 0.0064 0.006474 0.006285

(-0.0197) (-0.0197) (-0.0198)
32 4.3148e-7 3.5488e-7 3.3878e-7 3.7758e-7

(-0.0143) (-0.0145) (-0.0145) (-0.0144)
48 1.3976e-13 1.1418e-14 1.2039e-12 —

(-0.0128) (-0.0139) (-0.0119) —
64 6.1882e-21 2.9076e-23 1.8316e-19 —

(-0.0136) (-0.0127) (-0.0105) —

Table 3: Estimates for the probability µn. In parenthesis is the estimator for the log
probability 1

n2 logµn.

n Triangle tilt α = 2/3 Conditioned triangle tilt Edge tilt Monte Carlo
16 1.5059e-4 2.4166e-4 1.0391e-3

(-0.0334) (-0.0319) (-0.0267)
32 1.5222e-12 1.9083e-12 6.7116e-11 3.7758e-7

(-0.0265) (-0.0263) (-0.0229) (-0.0144)
48 2.6058e-25 3.268e-27 2.4737e-20 —

(-0.0245) (-0.0265) (-0.0196) —
64 7.1703e-40 2.8806e-44 1.2806e-33 —

(-0.0220) (-0.0245) (-0.0185) —

Table 4: Estimates for the variance V arQn(q̂n). In parenthesis is the estimate for the log
second moment, 1

n2 logEQn [q̂2
n].

r. To be specific, let

Ar = {f ∈ W : T (f) 6 r3 and E(f) 6 r} (5.3)

for some r > t, and let the conditioned triangle tilt be defined by the Gibbs measure
conditioned on Ar,

Q̃
hp,βp,1
n,Ar

(X) ∝

{
en

2(h2 E(X)+ β
6 T (X)), if X ∈ Ar

0 if X /∈ Ar
. (5.4)

In the numerical simulations, the threshold is chosen to be r ≈ 0.4272 > t, which is a
local minimum of the variational form (5.1). The motivation for this choice of threshold
r is discussed in the Appendix. The results for the conditioned triangle tilt are shown
in Tables 3, 4, which indicate that both triangle tilts perform comparably and both
outperform the edge tilt.
Acknowledgments. We thanks a referee for providing many helpful comments which
significantly improved the paper. SB was partially supported by was partially supported
by NSF grants DMS-1105581, DMS-1310002 and SES grant 1357622. JH was partially
supported by NSF grants DMS-1016441 and DMS-1512945. JN was partially supported
by NSF grant DMS-1007572. This work was funded in part through the 2011-2012
SAMSI Program on Uncertainty Quantification, in which each of the authors participated
and which provided postdoctoral funding for CL.

A Characterizing the phase diagrams

We present in this appendix section a framework to define subregimes of the (p, t)

phase space, which extends the set up from [17].
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Figure 3: Phase diagram for t > p. S1 is the dark gray region to the right of the solid
curve. S2/3, the replica symmetric phase, covers both the light and dark gray regions.
The diagonal red dotted curve shows G(t) = 0, where G is the function in (3.13). For
parameters above this curve, the edge tilt does not give an optimal importance sampling
estimator.

Recall that (p, t) satisfies the minorant condition with parameter α if the point
(t3α, φp(t)) lies on the convex minorant of the function x 7→ φp(x

1/3α). Using the mi-
norant condition and Lemma 4.4, we define a parameterized family of subregimes of the
(p, t)-phase space.

Definition A.1. Let α ∈ [0, 1]. We define the regime Sα to be the set of parameters (p, t)

for which the minorant condition holds with α. �

[17] has characterized the replica symmetric phase in terms of Sα.

Lemma A.2. [17, Theorems 1.1 and 1.3] S2/3 is exactly the replica symmetric phase.

Figure 3 shows the replica symmetry phase S2/3, as well as the region S1. Using the
Definition A.1, we can rephrase Prop 4.3 and Lemma 4.2 as follows.

Corollary A.3. If (p, t) ∈ Sα, then there exists a triangle tilt that produces an optimal
scheme.

Moreover, the regime
⋃
α>0 Sα where an optimal triangle tilt exists is strictly larger

than the replica symmetric phase, and contains a nontrivial subset of the replica breaking
phase.

Finally, we show in the next lemma that the union,
⋃
α>0 Sα, is an increasing union as

α→ 0. A consequence of this lemma is that if (p, t) ∈ Sα for some α ∈ [0, 1], then for any
α′ ∈ [0, α], the triangle tilt with parameters (hp, β

′, α′) also produces an optimal scheme,
where β′ is appropriately chosen depending on α′.

Lemma A.4. Let Sα be defined in Definition A.1. Then Sα′ ⊂ Sα for 0 < α < α′.

Proof. Denote φαp (x) = φp(x
1/3α) and let φ̂αp (x) be the convex minorant of φαp (x). Then

φα
′

p (x) = φp(x
1/3α′) = φp

(
(xα/α

′
)1/3α

)
= φαp (xα/α

′
).

Define η(x) = φ̂α
′

p (xα
′/α). Let K be the set where η(x) = φα

′

p (xα
′/α) for x ∈ K. Then

η(x) 6 φα
′

p (xα
′/α) = φαp (x)
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with equality occurring iff x ∈ K. (The interpretation of K is that t3α ∈ K if and only if
(p, t) satisfies the minorant condition with α′.) Since α′

α > 1, the function η(x) is convex

and is less than φαp (x), hence it must be less than the convex minorant, η(x) 6 φ̂αp (x). For
x ∈ K,

φαp (x) = η(x) 6 φ̂αp (x) 6 φαp (x)

so (x, φαp (x)) lies on the convex minorant φ̂αp (x) for all x ∈ K. Hence, if (p, t) satisfying
the minorant condition with α′, then t3α ∈ K and (t3α, φp(t)) lies on the convex minorant
φ̂αp (x), implying that (p, t) satisfies the minorant condition with α.

Now let (p, t) satisfy the minorant condition with α′, and suppose that β′

6 is a subdif-

ferential of φ̂α
′

p (x) at the point t3α
′

such that sup[β
′

6 u
3α − φp(u)] is uniquely maximized at

t. According to the arguments in the proof of Lemma 4.4, this means that the subtangent
line

`α′(x) :=
β′

6
(x− t3α

′
)− φp(t)

lies below φα
′

p (x) and touches it at exactly one point t3α
′
. Let ν(x) = `α′(x

α′/α). We have

that ν(t3α) = φα
′

p (t3α
′
) = φαp (t3α) and ν′(t3α) = β′

6
α′

α t
3(α′−α). Since α′

α > 1, ν(x) is convex,
and the line

`α(x) :=
β

6
(x− t3α)− φp(t),

where β
6 = ν′(t3α), is tangent to ν(x) at the point t3α and lies below ν(x). For x 6= t3α,

ν(x) = `α′(x
α′/α) < φα

′

p (xα
′/α) = φαp (x),

so `α(x) lies below φαp (x) and touches it at exactly one point t3α. Moreover, since v(x) is a

convex function less than φαp (x), we have φ̂αp (x) > ν(x) > `α(x). So, β6 is a subdifferential

of φ̂αp (x) and sup[β6u
3α − φp(u)] is uniquely maximized at t. The proof is complete. �

Remark A.5. In Prop 3.5, the critical value, p̃ = e−1/2

1+e−1/2 ≈ 0.3775, corresponds to
hp̃ = −1/2. We see from Figure 3 that the conditions of the proposition are attained
when if p < p̃ and (p, t) is in the region above the red dotted line intersected with the
replica symmetric phase. In this region, we have G(t) < 0, where G is defined at (3.13).
The edge tilt Qht,0n does not produce an optimal estimator for the parameters in this
region.

B Sampling from a conditioned Gibbs measure

For exponential random graphs with α = 1, the Glauber dynamics is known to have an
exponential mixing time O(en) when the variational form (5.1) has multiple local maxima
[1]. When considering a triangle tilt whose variational form has multiple local maxima,
the slow mixing is one reason to preclude its feasibility as an importance sampling tilt.
Another reason to avoid this tilt is because the global maximum of the variational form
may not occur at t, even though its have a local maximum at t by definition. Due to
the second reason, such a tilt may produce a large number of samples with an over- or
under-abundance of triangles, where the triangle density is determined by the global
maximum of the variational form, rather than by the local minimum at t. This leads to a
poor estimator that is not optimal and has large variance.

We propose to circumvent these problems by modifying the triangle tilt so that the
sampled graphs are restricted to the subregion of the state space that has just the ‘right’
number of triangles.
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Conditioned Gibbs measure

Given a set A ⊂ W, the exponential random graph conditioned on A, denoted Gh,β,αn,A

has the conditional Gibbs measure

Q̃
h,β,α
n,A (X) ∝

{
en

2H(X), if X ∈ A
0 if X /∈ A

where the Hamiltonian H(X) is defined in (2.9). The asymptotic behaviour of the free
energy of the conditional Gibbs measure,

ψ̃h,β,αn,A =
1

n2
log

∑
X∈A

en
2H(X),

is described in the following proposition, which follows from a direct modification of [7,
Theorems 3.1, 3.2].

Proposition B.1. For any bounded continuous mapping H : W 7→ R, and any closed
subset A ⊂ W, let ψ̃n,A = ψ̃h,β,αn,A as above. Then

lim
n→∞

ψ̃n,A = sup
f∈A

[H(f)− I(f)]. (B.1)

Moreover, if the variational form is maximized on the set F̃ ⊂ A, then the corre-
sponding conditioned exponential random graph is asymptotically indistinguishable from
F̃ .

As a consequence of Proposition B.1, an argument akin to the proof of Theorem 2.4
implies that for (p, t) in the replica symmetric phase, the conditioned Gibbs measure
(5.4) conditioned on Ar has free energy given by

lim
n→∞

ψ̃n,Ar = sup
06u6r

[
hp
2
u+

β

6
u3 − I(u)

]
. (B.2)

By choosing r so that the supremum is attained at t, the corresponding exponential
random graph conditioned in Ar is asymptotically indistinguishable from the Erdős-Rényi
graph Gn,t. Thus, the necessary condition for asymptotic optimality of the importance
sampling estimator is satisfied.

Importance sampling using the conditioned Gibbs measure

The importance sampling scheme based on the conditioned Gibbs measure Q̃h,β,αn,A

gives the estimator

ν̂n =
1

K

K∑
k=1

1Wt(X̃k)
dP̃n,p,Ar

dQ̃h,β,αn,Ar

(X̃k), where X̃k ∼ i.i.d. Q̃h,β,αn,Ar
(B.3)

where P̃n,p,Ar is the measure of the Erdős-Rényi graph conditioned on Ar. Note that ν̂n is
an unbiased estimator for νn = P̃n,p,Ar (Wt), but it is a biased estimator for µn = Pn,p(Wt).
The bias can be corrected by

µ̂n = ν̂n · Pn,p(Ar) + Pn,p(Wt ∩Acr),

but the two probabilities on the RHS are not be easily computable or estimated. Nonethe-
less, the choice of the set Ar ensures the bias is small and vanishes exponentially faster
than the small probability µn. In fact, standard computations give that Pn,p(Ar)→ 1 as
n→∞, and

lim
n→∞

1

n2
logPn,p

(
Wt ∩Acr

)
� − inf

f∈Wt

[Ip(f)].
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The asymptotic optimality of the importance sampling scheme is stated in the follow-
ing result.

Corollary B.2. Given (p, t) in the replica symmetric phase, consider the conditioned

triangle tilt defined by the Gibbs measure Q
hp,βp,1
n,Ar

in (5.4), conditioned on Ar in (5.3)
with p < t < r. The importance sampling scheme based on this conditioned triangle tilt
is asymptotically optimal.

Choosing the set Ar.

We motivate the choice of the set Ar in the Example from Section 5.2, with p =

0.2, t = 0.3 in the replica symmetric phase. We had noted that for the triangle tilt with
Gibbs measure Q

hp,βp,1
n , the variational form V (u) =

hp
2 u+

βp
6 u

3 − I(u) has multiple local
maxima. This is illustrated in Figure 4 (inset), where t = 0.3 is a local maximum but not
a global maximum, whereas u∗ ≈ 0.989 is the global maximum. Without conditioning,
the exponential graph Ghp,βp,1n has a mean triangle density of (u∗)3, much greater than
the desired triangle density of t3; moreover, successive samples in the Glauber dynamics
take exponentially long time to move from the region with a high triangle density (u∗)3

to the region with a lower triangle density t3. The effect of conditioning on the set Ar
is to cap the triangle density at r3, and ensure faster mixing of the Glauber dynamics.
Thus, one convenient choice of r is to take r ≈ 0.4272 to be the local minimum of V (u)

which separates the two local maxima. Then, t is the unique global maximum on the
interval [0, r] and the conditioned Gibbs measure has a mean triangle density of t3.

Conditioning the Gibbs measure leads to a significant reduction in the asymptotic log
second moment of the importance sampling estimator. This reduction is best illustrated
by considering, besides the triangle tilt itself, the family of Gibbs measures with h =

hp, α = 1 and varying β > 0. Figure 4 illustrates that as β is increased from 0 up to a

transition point β ≈ 4.76, the variational form V (u;β) =
hp
2 u+ β

6u
3α − I(u) has a global

maximum within the range [0.2, 0.3]. For β > 4.76, the global maximum jumps up into
the range [0.9, 1], so that the exponential random graph transitions from a regime of
low edge density to one of high edge density. Near to the transition point, there is a
range of β for which V (u;β) has two local maxima and one local minimum. Observe
from the figure inset that the triangle tilt with β = βp lies in this range. It is for this
range of β that applying the conditioned Gibbs measure will lead to a reduction in the
asymptotic log second moment. Figure 5 shows the asymptotic log second moment,
both with and without conditioning of the Gibbs measure. For each β, the threshold r is
chosen as the local minimum of V (u;β). We see that conditioning the Gibbs measure
significantly reduces the asymptotic log second moment, and the conditioned triangle tilt
is asymptotically optimal. This is corroborated by the numerical simulations presented in
Section 5.2. In contrast, when no conditioning is performed, the IS estimator exhibits a
sharp decline in performance when β is increased beyond the transition point at β ≈ 4.76.

C Auxiliary lemmas and proofs

We present a lemma on the asymptotic indistinguishability of an exponential random
graph from a minimal set F∗, as well as the proof of Proposition 2.6.

Lemma C.1. [(i)]

1. Given (p, t), let F∗ be the set of functions that minimize the LDP rate function,
inff∈Wt

[Ip(f)] in (2.5). Then F∗ is the minimal set that the Erdős-Rényi graph Gn,p
conditioned on

{
T (f) > t3

}
is asymptotically indistinguishable from.

2. Given (h, β, α), let F∗ be the set of functions that maximize supf∈W [H(f)− I(f)].
Then F∗ is the minimal set that the exponential random graph Gh,β,αn is asymptoti-
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Figure 4: The phase curve denotes the values of the stationary points of the variational
form V (u) = h

2u+ β
6u

3α − I(u), as β varies, and given α = 1, hp = log p
1−p , p = 0.2. The

red solid line denotes when the stationary point is a global maximum of V (u); the red
dotted line denotes the local maximum; the blue dashed line denotes the local minimum.
At the phase transition point at β ≈ 4.76, the maximum of the variational form jumps
from u∗ ≈ 0.253 to u∗ ≈ 0.947. The inset shows the function V (u) for β = β∗ ≈ 5.99

attaining a local maximum at t = 0.3 and global maximum at u∗ ≈ 0.989.
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Figure 5: A plot of the asymptotic second moment, limn→∞
1
n2 logEQ̃[q̂2

n,Ar
], of the

importance sampling estimator based on the conditioned Gibbs tilt for fixed h = hp and
varying β. The insert is a zoom-in to show that the smallest variance is attained at β = β∗.
The dotted line shows the rapid deterioration of the asymptotic second moment of the
estimator without the use of conditioning. Parameters used are p = 0.2 and t = 0.3.

EJP 20 (2015), paper 107.
Page 27/30

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v20-2696
http://ejp.ejpecp.org/


Importance Sampling for rare events in Erdős-Rényi graphs

cally indistinguishable from.

Proof. The proofs of asymptotic indistinguishability of F∗ was shown in [8, Theorem 3.1]
for (i) and [7, Theorem 3.22] for (ii). The proofs naturally extend to give the minimality
of F∗, and we state them here for the record.

Observe that for any random graph Gn that is asymptotically indistinguishable from
a set F∗, to show that F∗ is minimal, it suffices to show that, for any relatively open
non-empty subset F0 ⊂ F∗ such that F∗ \ F0 is non-empty, there exists ε > 0 such that

lim inf
n→∞

1

n2
logP(δ�(Gn,F∗ \ F0) > ε) = 0. (C.1)

Let F0 ⊂ F∗ be any relatively open non-empty subset, with F∗\F0 non-empty. Denote,
for ε > 0,

Fε = {f ∈ W | δ�(f,F∗ \ F0) > ε} .

(i) Since F0 is relatively open in F∗, δ�(f,F∗ \F0) > 0 for any f ∈ F0. So, there exists
an ε > 0 sufficiently small such that (Fε ∩Wt)

◦ contains at least one element of F0. (A◦

denotes the interior of A.) It follows that

inf
f∈(Fε∩Wt)◦

[Ip(f)] = inf
f∈Wt

[Ip(f)].

Since

P(Gn,p ∈ Fε | Gn,p ∈ Wt) =
P(Gn,p ∈ Fε ∩Wt)

P(Gn,p ∈ Wt)
,

from the large deviation principle in [8, Theorem 2.3] implies that

lim inf
n→∞

1

n2
logP(Gn,p ∈ Fε | Gn,p ∈ Wt)

= lim inf
n→∞

1

n2
logP(Gn,p ∈ Fε ∩Wt)−

1

n2
logP(Gn,p ∈ Wt)

> − inf
f∈(Fε∩Wt)◦

[Ip(f)] + inf
f∈Wt

[Ip(f)]

= 0.

(ii) Since F0 is relatively open in F∗, there exists an ε > 0 sufficiently small such that
F◦ε contains at least one element of F0, and

inf
f∈F◦ε

[H(f)− I(f)] = inf
f∈W

[H(f)− I(f)].

Since the Hamiltonian H is bounded, for any η > 0, there is a finite set A ⊂ R such
that the intervals {(a, a+ η), a ∈ A} cover the range of H. Let Faε = Fε ∩H−1([a, a+ η]),
and let Fa,nε = Faε ∩ Ωn be the functions corresponding to a simple finite graph. Then

P(Gn ∈ Fε) >
∑
a∈A

en
2(a−ψn)|Fa,nε | > e−n

2ψn sup
a∈A

[
en

2a|Fa,nε |
]

and

1

n2
logP(Gn ∈ Fε) > −ψn + sup

a∈A
[a− 1

n2
log |Fa,nε |].

By an observation in [7, Eqn. (3.4)], for any open set U ⊂ W, and Un = U ∩ Ωn,

lim inf
n→∞

1

n2
log |Un| > − inf

f∈U
[I(f)].
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Then, since

sup
f∈Faε

[H(f)− I(f)] 6 sup
f∈Faε

[a+ η − I(f)] = a+ η − inf
f∈Faε

[I(f)]

we have that

lim inf
n→∞

1

n2
logP(Gn ∈ Fε) > − sup

f∈W
[H(f)− I(f)] + sup

a∈A
[a− inf

f∈(Faε )◦
[I(f)]]

> − sup
f∈W

[H(f)− I(f)] + sup
a∈A

sup
f∈(Faε )◦

[H(f)− I(f)]− η

> − sup
f∈W

[H(f)− I(f)] + sup
f∈F◦ε

[H(f)− I(f)]− η

= 0.

The proof is complete. �

Proof of Proposition 2.6.

Proof. Let ε1 > 0 be arbitrary. As in Theorem 2.4, let F∗v∗ be the set of minimizers of
inff∈∂Wv∗ [Iq(f)].

EQn |T (X)− (v∗)3|

=

∫
{δ�(X,F∗

v∗ )>ε1}
|T (X)− (v∗)3| dQn(X) +

∫
{δ�(X,F∗

v∗ )6ε1}
|T (X)− (v∗)3| dQn(X)

= (I) + (II)

(We have dropped the superscripts, Qn = Q
hq,β,α
n .) We estimate the two terms. To

estimate (I), by [7, Theorem 4.2], there exists C, ε2 > 0 such that for sufficiently large n

Qn(δ�(X,F∗v∗) > ε1) 6 C2e
−n2ε2 .

Since |T (X)− (v∗)3| 6 1,

(I) 6 Qn(δ�(X,F∗v∗) > ε1) 6 C2e
−n2ε2 .

To estimate (II), for any X ∈ {δ�(X,F∗v∗) 6 ε1}, let the function f∗X ∈ F∗v∗ be such that
δ�(X, f∗X) 6 ε1. Note that T (f∗X) = (v∗)3 by definition. By Lipschitz continuity of the
mapping f 7→ T (f) under the cut distance metric δ� [3, Theorem 3.7],

|T (X)− (v∗)3| = |T (X)− T (f∗X)| 6 C1δ�(X, f∗X) 6 C1ε1.

So

(II) =

∫
{δ�(X,F∗

v∗ )6ε1}
|T (X)− (v∗)3| dQn(X)

6 C1ε1Qn(δ�(X,F∗v∗) 6 ε1)

6 C1ε1.

Hence,
lim
n→∞

EQn |T (X)− (v∗)3| 6 lim
n→∞

C2e
−n2ε2 + C1ε1 = C1ε1.

Since ε1 is arbitrary, (2.22) follows.
If (q, v∗) belongs to the replica symmetric phase, we have by Theorem 2.4 that F∗v∗

consists uniquely of the constant function f∗(x, y) ≡ v∗. Then since E(f∗) = v∗, the above
proof follows identically to yield that

lim
n→∞

EQn |E(X)− v∗| 6 lim
n→∞

C2e
−n2ε2 + Cε1 = Cε1.

�
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