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Abstract

We consider the parabolic Anderson model with Weibull potential field, for all values
of the Weibull parameter. We prove that the solution is eventually localised at a
single site with overwhelming probability (complete localisation) and, moreover, that
the solution has exponential shape around the localisation site. We determine the
localisation site explicitly, and derive limit formulae for its distance, the profile of the
nearby potential field and its ageing behaviour. We also prove that the localisation
site is determined locally, that is, by maximising a certain time-dependent functional
that depends only on: (i) the value of the potential field in a neighbourhood of fixed
radius around a site; and (ii) the distance of that site to the origin.

Our results extend the class of potential field distributions for which the parabolic
Anderson model is known to completely localise; previously, this had only been estab-
lished in the case where the potential field distribution has sub-Gaussian tail decay,
corresponding to a Weibull parameter less than two.
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1 Introduction

1.1 The parabolic Anderson model

We consider the Cauchy equation on the lattice (Zd, | · |`1)

∂u(t, z)

∂t
= (∆ + ξ)u(t, z) , (t, z) ∈ [0,∞)×Zd (1.1)

u(0, z) = 1{0}(z) , z ∈ Zd

where ∆ is the discrete Laplacian on Zd defined by (∆f)(z) =
∑
y∼z f(y), the set

{ξ(z)}z∈Zd is a collection of independent identically distributed (i.i.d.) random variables
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Complete localisation in the PAM with Weibull potential

known as the random potential field, and 1{0} is the indicator function of the origin. For
a large class of distributions ξ(·), equation (1.1) has a unique non-negative solution (see
[6]).

Equation (1.1) is often called the parabolic Anderson model (PAM), named after
the physicist P.W. Anderson who used the random Schrödinger operator H̄ := ∆ + ξ to
model electron localisation inside a semiconductor (Anderson localisation; see [1]). The
Cauchy form of the problem in equation (1.1) arises naturally in a system consisting of a
single particle undergoing diffusion while branching at a rate determined by a (random)
potential field (see [6][Section 1.2]).

The PAM and its variants are of great interest in the theory of random processes
because they exhibit intermittency, that is, unlike other commonly studied random pro-
cesses such as diffusions, their long-term behaviour cannot be described with an aver-
aging principle. The PAM is said to localise if, as t → ∞, the total mass of the process
U(t) :=

∑
z∈Zd u(t, z) is eventually concentrated on a small number of sites, i.e. if there

exists a (random) localisation set Γt such that∑
z∈Γt

u(t, z)

U(t)
→ 1 in probability . (1.2)

The most extreme form of localisation is complete localisation, which occurs if the total
mass is eventually concentrated at just one site, i.e. if Γt can be chosen in equation (1.2)
such that |Γt| = 1.

It turns out that complete localisation cannot hold almost surely, since the local-
isation site will switch infinitely often and so, at certain times, the solution must be
concentrated on at least two distinct sites (see, e.g., [11] for an example of almost sure
convergence in the PAM on exactly two sites).

Note that elsewhere in the literature (see, e.g., [14]) the convention (∆f)(z) :=∑
y∼z(f(y) − f(z)) is used to define the discrete Laplacian in the PAM. This is equiva-

lent to shifting the random potential field by the constant 2d, and makes no qualitative
difference to the model.

1.2 Localisation classes

It is known that the strength of intermittency and localisation in the PAM is governed
by the thickness of the upper-tail of the potential field distribution ξ(·), and in particular
the asymptotic growth rate of

gξ(x) := − log(P(ξ(·) > x)) .

Depending on this growth rate, the PAM can exhibit distinct types of localisation be-
haviour, which are often categorised along two qualitative dimensions: (1) the number
of connected components of Γt (localisation islands) in the limit (i.e. single, bounded or
growing); and (2) the size of each localisation island in the limit (i.e. single, bounded or
growing).

Universality classes with respect to the size of each localisation island are well-
understood (see, e.g., [9] and [5]). It was proven in [5] that the double-exponential dis-
tribution forms the critical threshold between these classes. More precisely, if gξ(x) =

O(ex
χ

) for some χ < 1 (i.e. tails heavier than double-exponential) then localisation is-
lands consist of a single site. This class includes Weibull-like tails, where gξ(x) ∼ xγ

for γ > 0, and Pareto-like tails, where gξ(x) ∼ γ log x for γ > d (recall from [6] that if
γ < d then the solution to equation (1.1) is not well-defined; if γ = d then the solution
is well-defined only for d > 1). Conversely, if ex

χ

= O(gξ(x)) for some χ > 1 (i.e. tails
lighter than double-exponential, including bounded tails), then the size of localisation
islands grow to infinity.
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Complete localisation in the PAM with Weibull potential

On the other hand, universality classes with respect to the number of localisation
islands are not at all well-understood. In particular, it is not known whether the PAM
with gξ(x) = O(ex

χ

) for some χ < 1 always exhibits complete localisation. Indeed,
this was conjectured to be false in [11]. Up until now, complete localisation has only
been exhibited for the PAM with Pareto potential (in [11]) and Weibull potential with
parameter γ < 2 (in [14]), which includes the case of exponential tails. This has left
open the question as to whether the PAM with Weibull potential with parameter γ ≥ 2,
which includes the important class of normal tails, also exhibits complete localisation.

1.3 Main results

We consider the PAM with Weibull potential, that is, where ξ(·) satisfies gξ(x) = xγ ,
for some γ > 0. We prove that the PAM with Weibull potential is eventually localised at
a single site with overwhelming probability (complete localisation) and, moreover, that
the renormalised solution has exponential shape around this site. We determine the
localisation site explicitly, and derive limit formulae for its distance, the profile of the
nearby potential field and its ageing behaviour. We also prove that the localisation site
is determined locally, that is, by maximising a certain time-dependent functional that
depends only on: (i) the values of ξ(·) in a neighbourhood of fixed radius ρ := b(γ−1)/2c+
around a site, where x+ := max{x, 0}; and (ii) the distance of that site to the origin.
In particular, if γ < 3 then ρ = 0 and so the localisation site is determined only by
maximising a certain time-dependent functional of the pair (ξ(·), | · |`1). We shall refer
to ρ as the radius of influence.

In order to state these results explicitly, we introduce some notation. Define a large
‘macrobox’ Vt := [−Rt, Rt]d ⊆ Zd, with Rt := t(log t)

1
γ , identifying its opposite faces so

that it is properly considered a d-dimensional torus. Further, for each a ≤ 1, define
the associated macrobox level Lt,a := ((1 − a) log |Vt|)

1
γ and let the subset Π(Lt,a) :=

{z ∈ Vt : ξ(z) > Lt,a} consist of sites within the macrobox Vt at which ξ-exceedences of
the level Lt,a occur. Define also, for each z ∈ Vt and n ∈ N, the ball B(z, n) := {y ∈ Vt :

|y − z|`1 ≤ n}, considered as a subset of Vt (i.e. with the metric acting on the torus).
Henceforth, for simplicity, we simply write | · | in place of | · |`1 when denoting distances
on Zd or Vt.

Fix a constant 0 < θ < 1/2, and abbreviate Lt := Lt,θ. Let ξ̃ := ξ1Vt\Π(Lt) be the
Lt-punctured potential field. For each z ∈ Vt and n ∈ N, define the Lt-punctured
Hamiltonian H̃(z)

n on B(z, n) with Dirichlet boundary conditions

H̃(z)
n :=

(
∆Vt + ξ̃ + (ξ − ξ̃)1{z}

)
1B(z,n) (1.3)

where ∆Vt denotes ∆ restricted to the torus Vt; and let λ̃(n)
t (z) denote the principal

eigenvalue of H̃(z)
n . To be clear, equation (1.3) means that H̃(z)

n acts as

(H̃(z)
n f)(x) =


ξ(x)f(x) +

∑
{y∈B(z,n):|y−x|=1} f(y) if x ∈ {z} ∪ (B(z, n) \Π(Lt))∑

{y∈B(z,n):|y−x|=1} f(y) if x ∈ B(z, n) ∩ (Π(Lt) \ {z})
0 if x /∈ B(z, n)

with all distances being on the torus Vt.

We shall call λ̃(n)
t (z) the n-local principal eigenvalue at z and remark that it is a

certain function of the set ξ(n)(z) := {ξ(y)}y∈B(z,n). Note that the {λ̃(n)
t (z)}z∈Vt are

identically distributed, and have a dependency range bounded by 2n, i.e. the random
variables λ̃(n)

t (y) and λ̃
(n)
t (z) are independent if and only if |y − z| > 2n. Remark also

that in the special case n = 0, λ̃(0)
t (z) is simply the potential ξ(z).
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For any sufficiently large t, define a penalisation functional Ψ̃
(n)
t : Vt → R by

Ψ̃
(n)
t (z) := λ̃

(n)
t (z)− |z|

γt
log log t

and let Z(1,n)
t := argmaxz∈VtΨ̃

(n)
t (z) and T

(n)
t := inf{s > 0 : Z

(1,n)
t+s 6= Z

(1,n)
t }. Note that,

for any t, the site Z(1,n)
t is well-defined almost surely, since Vt is finite. Moreover, as we

shall see, Z(1,n)
t will turn out to be independent of the choice of θ.

Define a function q : N→ [0, 1] by

q(x) :=

(
1− 2x

γ − 1

)+

using the convention that 0/0 := 0. Introduce the scales

rt :=
t(d log t)

1
γ−1

log log t
, at := (d log t)

1
γ and dt :=

1

γ
(d log t)

1
γ−1

and an auxiliary scaling function κt → 0 that decays arbitrarily slowly. Finally, let Bt
denote the ball {z ∈ Zd : |z − Z(1,ρ)

t | < rtκt}, considered as a subset of Zd.

Our main results can then be summarised by the following:

Theorem 1.1 (Profile of the renormalised solution). As t→∞, the following hold:

(a) For each z ∈ Bt uniformly,

log
(
u(t,z)
U(t)

)
1
γ |z − Z

(1,ρ)
t | log log t

→ −1 in probability ;

(b) Moreover,

etdtκt
∑
z/∈Bt

u(t, z)

U(t)
is bounded in probability .

Corollary 1.2 (Complete localisation). As t→∞,

u(t, Z
(1,ρ)
t )

U(t)
→ 1 in probability .

Theorem 1.3 (Description of the localisation site). As t→∞, the following hold:

(a) (Localisation distance)

Z
(1,ρ)
t

rt
⇒ X in law

where X is a random vector whose coordinates are independent and Laplace dis-
tributed random variables with absolute-moment one;

(b) (Local profile of the potential field)
For each z ∈ B(Z

(1,ρ)
t , ρ) uniformly,

ξ(z)

a
q(|z−Z(1,ρ)

t |)
t

→ 1 in probability ;
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(c) (Ageing of the localisation site)

T
(ρ)
t

t
⇒ Θ in law

where Θ is a nondegenerate almost surely positive random variable.

Corollary 1.4 (Ageing of the renormalised solution). For any sufficiently small ε > 0,
as t→∞,

T εt
t
⇒ Θ in law

where

T εt := inf

{
s > 0 :

∣∣∣∣u(t, ·)
U(t)

− u(t+ s, ·)
U(t+ s)

∣∣∣∣
`∞

> ε

}
and Θ is the same almost surely positive random variable as in Theorem 1.3.

Remark 1.5. The localisation site Z(1,ρ)
t is the maximiser of the penalisation functional

Ψ̃
(ρ)
t (z), which balances the magnitude of the ρ-local principal eigenvalue at a site with

the distance of that site from the origin. Heuristically, this may be explained as the
solution favouring sites with high local principal eigenvalue but being ‘penalised’ for
diffusing too quickly.

As claimed, Ψ̃
(ρ)
t (z) depends only on the set ξ(ρ)(z) and on the distance |z|. Indeed,

in order to determine Z(1,ρ)
t explicitly, a finite path expansion is available for λ̃(ρ)

t (z) (see
Proposition 4.1 for a precise formulation):

λ̃
(ρ)
t (z) = ξ(z) +

∑
2≤k≤2j

∑
Γ∗k(z,ρ)

∏
0<i<k

1

λ̃
(ρ)
t (z)− ξ̃(yi)

+ o(dt)

where j := [γ/2] ∈ {ρ, ρ + 1} and Γ∗k(z, ρ) is the set of all length k nearest neighbour
paths

z =: y0 → y1 → . . .→ yk := z in B(z, ρ)

such that yi 6= z for all 0 < i < k. This path expansion can be iteratively evaluated to get
an expression for λ̃(ρ)

t (z) as an explicit function of ξ(ρ)(z). Note that j is chosen precisely
to be the smallest non-negative integer such that a−2j−1

t = o(dt), which ensures that
paths with more than 2j steps contribute at most o(dt) to the sum. Since we show

in Section 4 that the gap between the maximisers of Ψ̃
(ρ)
t is on the scale dt, such an

expression is sufficient to determine Z(1,ρ)
t .

Remark 1.6. Our limit theorem for the profile of the renormalised solution holds within
a distance rtκt of the localisation site, where κt may be chosen to decay arbitrarily
slowly. At or beyond this scale, the profile will be interrupted by ‘bumps’ in the renor-
malised solution around other high values of the functional Ψ̃

(ρ)
t , which occur at dis-

tances on the scale rt. In this region, we simply bound the renormalised solution by the
height of these bumps, although we also expect a weaker global exponential decay to
hold.

Remark 1.7. The ageing of the renormalised solution in Corollary 1.4 is a natural
consequence of complete localisation of the renormalised solution (Corollary 1.2) and
the ageing of the localisation site (Theorem 1.3). The proof of this result is essentially
the same as in [13][Proposition 2.1] for the corresponding result in the case of Pareto
potential field; we defer to that paper for the proof. Note also that Corollary 1.4 is a
quenched ageing result along the lines of [13], as opposed to the annealed (i.e. averaged
over all realisations of the random environment) ageing studied in [8].
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Remark 1.8. Recall that it was previously shown in [14] that complete localisation
holds in the case γ < 2. The analysis in that paper is broadly similar to ours, but uses
the penalisation functional

Ψ∗t (z) := ξ(z)− |z|
γt

log log t

which equals Ψ̃
(ρ)
t (z) in the special case ρ = 0. This restricts the validity of the analysis

to where there is an exact correspondence between the top order statistics of the fields
ξ and λ̃

(ρ)
t in Vt. Clearly this holds for γ < 3, since then ρ = 0. On the other hand, the

exact correspondence has been shown to be false if γ ≥ 3 (in [4]), and so an analysis
based on the functional Ψ∗t = Ψ̃

(0)
t fails in that case.

Remark 1.9. We briefly mention the strong possibility that our results can be extended
to the case of fractional-double-exponential potential field, i.e. where gξ(x) = ex

χ

for
some χ < 1. The main difference in that case is that the radius of influence ρ grows
with t, which presents a technical difficulty in extending the results in Proposition 4.2.
Nevertheless, we strongly believe such an extension is valid, and since the rest of our
proof holds essentially unchanged, we expect complete localisation to also hold in the
fractional-double-exponential case.

The paper is organised as follows. In Section 2 we give an outline of the proof, and
establish Theorem 1.1 subject to an auxiliary Theorem 2.3. In Section 3 we establish
some preliminary results. In Section 4 we use a point process approach to study the
random variables Z(1,ρ)

t and Ψ̃
(ρ)
t (Z

(1,ρ)
t ) (and generalisations thereof), and in doing so

complete the proof of Theorem 1.3. In Section 5 we collect results from spectral theory
that we will apply in Section 6. In Section 6 we complete the proof of the auxiliary
Theorem 2.3.

2 Outline of the Proof

In the literature, the usual approach to study u(t, ·) is with probabilistic methods
via the Feynman-Kac representation (for instance, in [5]). Our primary approach is
different, applying spectral theory methods to the Hamiltonian H̄ (as is done in [2], for
instance). We note, however, that these approaches are very similar, and we do at times
make use of the Feynman-Kac representation.

2.1 Spectral representation of the solution

The basic idea that underlies our proof is that the solution u(t, ·) is well-approximated
by a spectral representation in terms of the eigenfunctions of the Hamiltonian H̄ re-
stricted to a suitably chosen domain. It turns out that this spectral representation is
asymptotically dominated by just one eigenfunction, which is eventually localised with
exponential decay away from the localisation site.

In order to apply this idea, we restrict H̄ to the macrobox Vt (i.e. with periodic
boundary conditions, recalling that Vt is a torus), on which the solution u(t, ·) turns out
to be essentially concentrated. So let uVt(s, z) be the solution to the PAM restricted to
Vt, that is, defined by the Hamiltonian H := ∆Vt + ξ, with uVt(s, z) := 0 outside Vt by
convention, and let UVt(t) :=

∑
z∈Vt uVt(t, z).

Proposition 2.1 (Correspondence between uVt(t, z) and u(t, z)). As t→∞ and for any
z,

|uVt(t, z)− u(t, z)| = o
(
e−Rt

)
and |UVt(t)− U(t)| = o

(
e−Rt

)
,

where both hold almost surely.
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Remark 2.2. Since the error in Proposition 2.1 is of lower order than the bounds in
Theorem 1.1, it will be sufficient to prove that Theorem 1.1 holds for uVt(t, ·). Proposi-
tion 2.1 is proved in Section 3.

Denote by λt,i and ϕt,i the i’th largest eigenvalue and corresponding eigenvector of
H, with each ϕt,i taken to be `2-normalised with ϕt,i(z) := 0 outside Vt by convention.
Since Vt is bounded, the solution uVt(t, ·) permits a spectral representation in terms of
the eigenfunctions of H:

uVt(t, ·) =

|Vt|∑
i=1

etλt,iϕt,i(0)ϕt,i(·) . (2.1)

Define a functional Ψt : {1, 2, . . . , |Vt|} → R ∪ {−∞} by

Ψt(i) := λt,i +
log |ϕt,i(0)|

t

and remark that this is chosen so that the magnitude of the i’th term in the sum in
equation (2.1) is etΨt(i)|ϕt,i(·)|, using the convention that exp{−∞} := 0.

We refer to {Ψt(·)} as the penalised spectrum, noting that it represents a trade-off
between the magnitude of the eigenvalue and the (absolute) magnitude of the eigen-
vector at the origin; the intuition here is the same as in Remark 1.5. We prove that,
with overwhelming probability, a gap exists between the largest two values in the
penalised spectrum, which implies that the spectral representation in equation (2.1)
is dominated by just one eigenfunction. Moreover, we prove that this eigenfunction
is eventually localised at Z(1,ρ)

t . To make this precise, let i(1)
t := argmaxiΨt(i) and

i
(2)
t := argmax

i 6=i(1)
t

Ψt(i), and abbreviate ϕ(1)
t := ϕ

t,i
(1)
t

and λ
(1)
t := λ

t,i
(1)
t

for notational

convenience. Moreover, introduce auxiliary scaling functions ft, ht, et → 0 and gt → ∞
as t→∞ such that

max{1/ log log t, κt} � ftht � ft � ht � et/gt

where at � bt is notational shorthand for at = o(bt).

Theorem 2.3 (Auxiliary theorem). As t→∞, the following hold:

(a) (Gap in the penalised spectrum)

P
(

Ψt(i
(1)
t )−Ψt(i

(2)
t ) > dtet

)
→ 1 ;

(b) (Profile of the dominating eigenfunction)

(i) The sets Bt and Vt satisfy
P(Bt ⊆ Vt)→ 1 ;

(ii) For each z ∈ Bt uniformly,

logϕ
(1)
t (z)

1
γ |z − Z

(1,ρ)
t | log log t

→ −1 in probability ;

(iii) Moreover,

etdtκt
∑

z∈Vt\Bt

|ϕ(1)
t (z)| is bounded in probability .
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In Section 2.2 immediately below we finish the proof of Theorem 1.1 subject to
the auxiliary Theorem 2.3; the other sections of the paper are dedicated to proving
Theorems 1.3 and 2.3.

Our proof of Theorem 2.3 is based on the observation that Ψt(i) is asymptotically ap-

proximated by Ψ̃
(ρ)
t (zt,i), where zt,i := argmaxzϕt,i(z). This is useful, since it is simpler

to study the maximisers of Ψ̃
(ρ)
t than it is to analyse Ψt(i

(1)
t ) − Ψt(i

(2)
t ) directly. Using a

point process approach, we demonstrate a gap between the top two maximisers of Ψ̃
(ρ)
t

(and generalisations thereof), and also describe the location and the neighbouring po-
tential field of the maximiser Z(1,ρ)

t , proving Theorem 1.3. We then establish the validity
of the approximation, which requires both a correspondence between eigenvalues and
local principal eigenvalues, and an analysis of the decay of eigenfunctions, in particu-
lar finding bounds on the value of eigenfunctions at zero; here we draw heavily on the
methods in [2] and [3].

2.2 Proof of Theorem 1.1 subject to the auxiliary Theorem 2.3

Starting from the spectral representation in equation (2.1), we pull out the term
involving the maximising index i(1)

t , and bound the remainder in the `1-norm:

∣∣∣∣∣ uVt(t, ·)
etλ

(1)
t ϕ

(1)
t (0)

− ϕ(1)
t (·)

∣∣∣∣∣
`1

=

∣∣∣∣∣∣∣∣
|Vt|∑
i=1
i 6=i(1)

t

etλt,iϕt,i(0)

etλ
(1)
t ϕ

(1)
t (0)

ϕt,i(·)

∣∣∣∣∣∣∣∣
`1

≤
|Vt|∑
i=1
i 6=i(1)

t

exp
{
t
(

Ψt(i)−Ψt(i
(1)
t )
)}
|ϕt,i(·)|`1 .

Bounding each |ϕt,i(·)|`1 by the Cauchy-Schwarz inequality and each summand by the
maximum gives∣∣∣∣∣ uVt(t, ·)

etλ
(1)
t ϕ

(1)
t (0)

− ϕ(1)
t (·)

∣∣∣∣∣
`1

≤ |Vt|
3
2 exp

{
t
(

Ψt(i
(2)
t )−Ψt(i

(1)
t )
)}

.

and so, applying part (a) of Theorem 2.3, eventually with overwhelming probability∣∣∣∣∣ uVt(t, ·)
etλ

(1)
t ϕ

(1)
t (0)

− ϕ(1)
t (·)

∣∣∣∣∣
`1

< |Vt|
3
2 exp {−tdtet} . (2.2)

By the triangle inequality, this implies that∣∣∣∣∣ UVt(t)

etλ
(1)
t ϕ

(1)
t (0)

−
∑
z∈Vt

ϕ
(1)
t (z)

∣∣∣∣∣ < |Vt| 32 exp{−tdtet}

and so, applying part (b) of Theorem 2.3 we have that

etλ
(1)
t ϕ

(1)
t (0) = UVt(t)(1 + o(1)) . (2.3)

Consider now any z ∈ Bt. Combining part (b) of Theorem 2.3 with equations (2.2)
and (2.3) we have that, with overwhelming probability

uVt(t, z)

UVt(t)
=

uVt(t, z)

etλ
(1)
t ϕ

(1)
t (0)

(1 + o(1))

= exp

{
− 1

γ
|z − k(1)

t | log log t (1 + o(1))

}
(1 + o(1))
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Complete localisation in the PAM with Weibull potential

where o(1) does not depend on z, recalling that |z − Z(1,ρ)
t | log log t = o(tdtet) for z ∈ Bt

since ht = o(et). Remark that the correspondence in Proposition 2.1 implies that, for
any z and with overwhelming probability,∣∣∣∣u(t, z)

U(t)
− uVt(t, z)

UVt(t)

∣∣∣∣ ≤ 1

U(t)

(
|u(t, z)− uVt(t, z)|+

uVt(t, z)

UVt(t)
|U(t)− UVt(t)|

)
= o(exp{−Rt}) = o(exp{−tdtet}) .

and so, putting these together, we have

log

(
uVt(t, z)

UVt(t)

)
= − 1

γ
|z − Z(1,ρ)

t | log log t (1 + o(1))

where o(1) does not depend on z, which proves part (a) of Theorem 1.1.
On the other hand, combining part (b) of Theorem 2.3 with Proposition 2.1 and

equation (2.3), we have that

etdtκt
∑
z/∈Bt

u(t, z)

U(t)
< etdtκt

∑
z∈Vt\Bt

u(t, z)

U(t)
+ o(1)

< etdtκt

 ∑
z∈Vt\Bt

uVt(t, z)

etλ
(1)
t ϕ

(1)
t (0)

 (1 + o(1))

which is bounded in probability. Theorem 1.1 is proved.

3 Preliminaries

In this section we establish some preliminary results. Denote by ξt,i the i’th highest
value of ξ in Vt.

Lemma 3.1 (Almost sure asymptotics for ξ). For any 0 ≤ a ≤ 1,

ξt,b|Vt|ac ∼ Lt,a and |Π(Lt,a)| ∼ |Vt|a

hold almost surely.

Proof. These follow from well-known results on sequences of i.i.d. random variables;
they are proved in a similar way as [10, Lemma 4.7].

Lemma 3.2 (Almost sure separation of high points; see [2, Lemma 1]). For any ε < θ,
and for each n ∈ N, eventually

r
(

Π(Lt)
)
> |Vt|

1−2ε
d > n

almost surely, where r (S) := minx 6=y∈S{|x− y|}.

Lemma 3.3 (Bounds on principal eigenvalues). For each n ∈ N and z ∈ Vt,

ξ(z) ≤ λ̃(n)
t (z) ≤ max{Lt, ξ(z)}+ 2d

Moreover,

λt,1 ≤ ξt,1 + 2d .

Proof. These follow from the min-max theorem for the principal eigenvalue.
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Proof of Proposition 2.1

Note that the weaker statement that |UVt(t) − U(t)| → 0 is proved in [7, Section
2.5] (although for a slightly different macrobox); we need to control the error more
precisely.

For z ∈ Zd, let [z]Vt denote the site in Vt that belongs to the equivalence class of z in
the quotient space Zd \ Vt. Further, define a field ξper

Vt
on Zd by ξper

Vt
(·) := ξ([·]Vt). For a

fixed t > 0, consider the Feynman-Kac representations of u(t, z) and uVt(t, z):

u(t, z) = E

[
exp

{∫ t

0

ξ(Xs) + 2d ds

}
1{Xt=z}

]
(3.1)

uVt(t, z) = E

[
exp

{∫ t

0

ξper
Vt

(Xs) + 2d ds

}
1{[Xt]Vt=z}

]
(3.2)

where {Xs}s∈R+ denotes the continuous-time random walk on the lattice Zd based at
the origin, 1A denotes the indicator function for the event A, and where the expectation
E is taken over the trajectories of the random walk Xs.

For each n ∈ N, let en(X) denote the event that maxs<t |Xs|`∞ = n. Let un(t, z) and
unVt(t, z) denote, respectively, the expectations in (3.1) and (3.2) restricted to the event
en(X), and define Un(t) :=

∑
z∈Zd u

n(t, z) and UnVt(t) :=
∑
z∈Zd u

n
Vt

(t, z) by analogy with
U(t) and UVt(t) respectively. Then it is clear, for each z, that∑

n<Rt

un(t, z) =
∑
n<Rt

unVt(t, z) . (3.3)

Further, if ξ(n)
1 is the largest value of ξ in the box {z ∈ Zd : |z|`∞ ≤ n}, then

max{Un(t), UnVt(t)} ≤ e
t(ξ

(n)
1 +2d)P(en(X)) .

As n→∞, we can bound ξ(n)
1 + 2d almost surely with Lemma 3.1:

ξ
(n)
1 + 2d ∼ (d log n)

1
γ .

For n ≥ Rt and by Stirling’s approximation, we can also bound the probability P(en(X))

by
logP(en(X)) ≤ log Pn2dt(n) < −n log n+ n log t+O(n)

where Pna(n) denotes the probability mass function for the Poisson distribution with
mean a, evaluated at n. Combining these bounds, for n ≥ Rt and as t→∞ eventually

max{Un(t), UnVt(t)} < exp{t(d log n)
1
γ (1 + ε)− n log n+ n log t+ Cn)}

almost surely, for any ε > 0 and for some C > 0. Since n ≥ Rt = t(log t)
1
γ , for t large

enough this can be further bounded as

max{Un(t), UnVt(t)} < exp{−(1− ε)n log n} .

This implies that, eventually∑
n≥Rt

max{Un(t), UnVt(t)} < e−(1−ε)Rt logRt
∑
n≥0

e−(1−ε)n logRt = o
(
e−Rt

)
(3.4)

holds almost surely. Combining equations (3.3) and (3.4), we get that

|u(t, z)− uVt(t, z)| =

∣∣∣∣∣∣
∑
n≥Rt

un(t, z)− unVt(t, z)

∣∣∣∣∣∣ ≤
∑
n≥Rt

un(t, z) + unVt(t, z)

≤
∑
n≥Rt

Un(t) + UnVt(t) ≤ 2
∑
n≥Rt

max{Un(t), UnVt(t)} = o(e−Rt)
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and, similarly,

|U(t)− UVt(t)| ≤
∑
n≥Rt

Un(t) + UnVt(t) = o(e−Rt)

as required.

4 A Point Process Approach

In this section, we use point process techniques to study the random variables Z(1,ρ)
t

and Ψ̃
(ρ)
t (Z

(1,ρ)
t ), and generalisations thereof; the techniques used are similar to those

found in [14]. In the process, we complete the proof of Theorem 1.3.

4.1 Point process asymptotics

Fix an 0 < ε < θ and an 0 < η < 2ρ − γ + 3, remarking that the latter is possible by
the definition of ρ. Recall also the definition j := [γ/2] ∈ {ρ, ρ+ 1}. For each n ∈ N such
that n ≤ j, define the annuli B̄1 := B(0,min{n, ρ}) \ {0} and B̄2 := B(0, j) \ (B̄1 ∪ {0}),
and the following |B̄1 ∪ B̄2|-dimensional rectangles:

E(n) := E
(n)
1 × E(n)

2 :=
∏
y∈B̄1

(1− ft, 1 + ft)×
∏
y∈B̄2

(0, aηt )

and, after rescaling E(n)
1 in each dimension,

S(n) :=
∏
y∈B̄1

a
q(|y|)
t πy(E

(n)
1 )× E(n)

2

where πy is the projection map with respect to y. Finally, for each z ∈ Vt, define the
event

S(n)
t (z) := {ξ(z) ∈ at(1− ft, 1 + ft)} ∪

{
{ξ(z + y)}y∈B̄1∪B̄2

∈ S(n)
}

with S̄(n)
t (z) its complement.

Proposition 4.1 (Path expansion for λ̃(n)
t ). As t → ∞, for each n ∈ N and z ∈ Π(Lt,ε)

uniformly,

λ̃
(n)
t (z) = ξ(z) +

∑
k≥2

∑
Γ∗k(z,n)

∏
0<i<k

1

λ̃
(n)
t (z)− ξ(yi)

= ξ(z) +
∑

2≤k≤2j

∑
Γ∗k(z,n)

∏
0<i<k

1

λ̃
(n)
t (z)− ξ(yi)

+ o(dtet)

almost surely, where Γ∗k(z, n) is the set of all length k nearest neighbour paths

z =: y0 → y1 → . . .→ yk := z in B(z, n)

such that yi 6= z for all 0 < i < k.

Proof. As in [2, Lemma 2], the eigenvalue λ̃(n)
t (z) satisfies

1

ξ(z)
=
∑
k≥0

∑
Γk(z,n)

∏
0≤i≤k

1

λ̃
(n)
t (z)− ξ̃(yi)

=
1

λ̃
(n)
t (z)

∑
k≥0

∑
Γk(z,n)

∏
0≤i<k

1

λ̃
(n)
t (z)− ξ̃(yi)

(4.1)
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where Γk(z, n) is the set of all length k nearest neighbour paths

z =: y0 → y1 → . . .→ yk := z in B(z, n)

i.e. including paths that return to z multiple times; Γ0(z, n) is understood to consist of

a single degenerate path. Remark that the factor 1/λ̃
(n)
t (z) in equation (4.1) appears

since ξ̃(yk) = ξ̃(z) = 0. Noticing that, by Lemma 3.3, λ̃(n)
t (z) ≥ ξ(z) > Lt,ε, we may

define

A :=
∑
k≥2

∑
Γ∗k(z,n)

∏
0≤i<k

1

λ̃
(n)
t (z)− ξ̃(yi)

= o(1) .

By decomposing each path in ∪k≥0Γk,n into a sequence of paths in ∪k≥0Γ∗k,n, we get that
the right hand side of equation (4.1) is equal to

1

λ̃
(n)
t (z)

∑
l≥0

Al =
1

λ̃
(n)
t (z)

1

1−A

and so equation (4.1) gives

λ̃
(n)
t (z) = ξ(z) + λ̃

(n)
t (z)A = ξ(z) +

∑
k≥2

∑
Γ∗k(z,n)

∏
0<i<k

1

λ̃
(n)
t (z)− ξ̃(yi)

.

Noticing that (Lt,ε −Lt)−(2j−1) = o(dtet), this yields the result by truncating the infinite
sum after paths of length 2j, and since, by Lemma 3.2, eventually ξ̃ = ξ on B(z, n) \ {z}
almost surely.

Proposition 4.2 (Extremal theory for λ̃(n)
t ; see [3, Section 6]). For each n ∈ N such

that n ≤ j, there exists a scaling function A
(n)
t = at + o(1) such that, as t → ∞ and for

each fixed x ∈ R, the following are satisfied:

tdP
(
λ̃

(n)
t (0) > A

(n)
t + xdt

)
→ e−x

and
tdP

(
λ̃

(n)
t (0) > A

(n)
t + xdt , S̄(n)

t (0)
)
→ 0 .

Remark 4.3. In the case γ < 4, full asymptotics (i.e. up to order dt) forA(j)
t can be found

in [3, Section 6]; otherwise, a recurrence formula for A(j)
t is available. Remark also that

the same asymptotics hold for each z ∈ Zd; we choose the origin for convenience.

Proof. Proposition 4.2 is a minor extension of the results in [3, Section 6]. We prove it
in a similar manner to [3, Theorem 6.3], by writing the probability as a certain integral
and approximating it using Laplace’s method. Denote by fξ(x) the density function of
ξ(0). For a scaling function Ct ≥ at and a positive field

s(n) := (s
(n)
1 ; s

(n)
2 ) := ({sy : y ∈ B̄1}; {sy : y ∈ B̄2})

define the function

Q
(n)
t (Ct; s

(n)) :=
∑
k≥2

∑
Γ∗k(0,n)

∏
0<i<k

1

Ct − Cq(|yi|)t syi

if the sum converges and Q(n)
t (Ct; s

(n)) := 0 otherwise, and the functions

R
(n)
t (Ct; s

(n)) :=
(
Ct −Q(n)

t (Ct; s
(n))
)γ
−
∑
y∈B̄1

(
log fξ(C

q(|y|)
t sy) + logC

q(|y|)
t

)
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and

P
(n)
t (Ct; s

(n)) := R
(n)
t (Ct; s

(n))−
∑
y∈B̄2

log fξ(sy) .

To motivate these definitions, consider the first statement of Proposition 4.2. Notice
that, by Lemma 3.3, as t→∞, eventually

λ̃
(n)
t (0) > Ct + xdt ≥ at + xdt =⇒ ξ(0) > Lt,ε .

This means that we can apply the path expansion in Proposition 4.1 to λ̃
(n)
t (0). Then,

since λ̃(n)
t (0) is strictly increasing in ξ(0), we may write the probability as the following

integrals of P (n)
t and R(n)

t (note the change of variables):

P
(
λ̃

(n)
t (0) > Ct

)
=

∫
R
|B̄1∪B̄2|
+

exp
{
−P (n)

t (Ct; s
(n))
}
ds(n) + o(1) (4.2)

=

∫
R
|B̄2|
+

∏
y∈B̄2

fξ(sy)

[∫
R
|B̄1|
+

exp
{
−R(n)

t (Ct; s
(n))
}
ds

(n)
1

]
ds

(n)
2 + o(1) . (4.3)

with the o(1) bound taking care of the contribution from the s(n) for which Q(n)
t (Ct; s

(n))

does not converge, by Lemma 3.2.
To approximate these integrals, we state some properties of the functions P (n)

t and

R
(n)
t . Similarly to as in [3, Section 6], for a fixed s

(n)
2 ∈ E(n)

2 , the function R
(n)
t (Ct; s

(n))

achieves a minimum at some s
(n)
1 ∈ E(n)

1 . Moreover, for any s(n) ∈ E(n), the fact that
η − 2(ρ+ 1) < 1− γ implies that

R
(n)
t

(
Ct; s

(n)
)

= R
(n)
t

(
Ct; (s

(n)
1 ; 0)

)
+ o(a−const.

t ) (4.4)

for a positive constant, where 0 here denotes the zero vector. The function R(n)
t (Ct; s

(n))

is also strictly increasing in Ct, satisfying

min
s
(n)
1 ∈E

(n)
1

R
(n)
t

(
Ct; (s

(n)
1 ; 0)

)
= Cγt +O(Cγ−2

t )

and, for each y ∈ B̄(n)
1 ,

∂2
syR

(n)
t |(Ct;(1;0)) = O(Cγ−2

t )

where 1 here denotes the vector of ones. In particular, this implies that there exists a
scaling factor A(n)

t = at + o(1) that satisfies

min
s
(n)
1 ∈E

(n)
1

R
(n)
t

(
A

(n)
t ; (s

(n)
1 ; 0)

)
+

1

2

∑
y∈B̄1

[
log
(
∂2
syR

(n)
t |(A(n)

t ;(1;0))

)
− log(2π)

]
= aγt .

Remark that if n = 0, then R
(0)
t

(
Ct; s

(0)
)

= Cγt and so A
(0)
t = at. Finally, by a similar

calculation as in [3, Lemma 6.8], if s(n) /∈ E(n), then

P
(n)
t (A

(n)
t + xdt; s

(n))− aγt − x > ac
t min
y∈B̄1∪B̄2

|sy − 1|2 (4.5)

eventually, for some constant c > 0.
Consider now the integral in equation (4.3) restricted to the domain E(n). As in [3,

Theorem 6.3], we may first use equation (4.4) to integrate out over s(n)
2 , and then apply
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Laplace’s method to approximate the resulting integral over s(n)
1 :∫

E
(n)
2

∏
y∈B̄2

fξ(sy)

[∫
E

(n)
1

exp
{
−R(n)

t (A
(n)
t + xdt; s

(n))
}
ds

(n)
1

]
ds

(n)
2

=

∫
E

(n)
1

exp
{
−R(n)

t (A
(n)
t + xdt; (s

(n)
1 ; 0)

}
ds

(n)
1 (1 + o(1)) = t−de−x(1 + o(1))

with the last line following from an application of Laplace’s method to the integral,
noticing that the determinant of the Hessian matrix of R(n)

t with respect to s(n)
1 , evalu-

ated at a point in E(n)
1 × {0}, is asymptotically

∏
y∈B̄1

∂2
syR

(n)
t |(A(n)

t ;(1;0))
.

Similarly, by equation (4.5), the integral in equation (4.2) over the domain excluding
E(n) can be bounded above by

t−de−x
∫
R
|B̄1∪B̄2|
+ \E(n)

exp

{
−ac

t min
y∈B̄1∪B̄2

|sy − 1|2)

}
ds(n) = o(t−de−x) .

Together, these two bounds give Proposition 4.2.

4.2 Constructing the point processes

We now construct the point processes we shall need to consider. For each n ∈ N
such that n ≤ j and each z ∈ Vt, denote

X
(n)
t,z :=

λ̃
(n)
t (z)−A(n)

rt

drt
and N (n)

t :=
∑
z∈Vt

1
(zr−1

t ,X
(n)
t,z )

.

For each τ ∈ R and q > 0 let

Hq
τ := {(x, y) ∈ Ṙd × (−∞,∞] : y ≥ q|x|+ τ}

where Ṙd denotes the one-point compactification of Euclidean space.

Proposition 4.4. For each n ∈ N such that n ≤ j, as t→∞,

N (n)
t |Hqτ ⇒ N in law

where N is a point process on Hq
τ with intensity measure χ(dx, dy) = dx⊗ e−ydy.

Proof. As in [2, Lemma 6], this follows from Proposition 4.2 after checking Leadbetter’s
mixing conditions modified for random fields ([12, Theorem 5.7.2]). Again as in [2,
Lemma 6], since the set {λ̃(n)

t (0)} has a dependency range 2n, it is sufficient to check
the following local dependence condition:

|Vt|
∑

z:0<|z|≤2n

P
(
λ̃

(n)
t (0) > A(n)

rt + xdrt , λ̃
(n)
t (z) > A(n)

rt + xdrt

)
→ 0

as t→∞, for any x ∈ R. This is satisfied, since by Lemma 3.2 the set Π(Lt) is eventually
2n-separated almost surely, and so either λ̃(n)

t (0) or λ̃(n)
t (z) is bounded above by Lt <

A
(n)
rt +xdrt eventually, for any x. Observe also that the restriction of N (n)

t to Hq
τ ensures

that the intensity measure of the limit process N is such that every relatively compact
set has finite measure.

We transform the point process N to a new point process involving Ψ̃
(n)
t . For techni-

cal reasons, we shall need to consider a certain generalisation of the functionals Ψ̃
(n)
t .
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So for each n ∈ N such that n ≤ j, c ∈ R and sufficiently large t, define the functional
Ψ̃

(n)
t,c : Vt → R by

Ψ̃
(n)
t,c (z) := λ̃

(n)
t (z)− |z|

γt
log log t+ c

|z|
t
.

Let Z(1,n)
t,c := argmaxzΨ

(n)
t,c and Z

(2,n)
t,c := argmax

z 6=Z(1,n)
t,c

Ψ
(n)
t,c . Note that for any t these

are well-defined almost surely, since Vt is finite. Further, for each z ∈ Vt define

Y
(n)
t,c,z :=

Ψ̃
(n)
t,c (z)−A(n)

rt

drt
and M(n)

t,c :=
∑
z∈Vt

1
(zr−1

t ,Y
(n)
t,c,z)

.

Finally, for each τ ∈ R and α > −1 let

Ĥα
τ := {(x, y) ∈ Ṙd+1 : y ≥ α|x|+ τ} .

Proposition 4.5. For each n ∈ N such that n ≤ j and c ∈ R, as t→∞,

M(n)
t,c |Ĥατ ⇒M in law

whereM is a point process on Ĥα
τ with intensity measure ν(dx, dy) = dx⊗ e−y−|x|dy.

Remark 4.6. Although we prove Proposition 4.5 for each c ∈ R, we shall only apply it
to c = 0 and one other value of c that will be determined in Corollary 5.7.

Proof. This follows as in [14, Lemma 3.1] (although note that, due to a different choice
of dt, the intensity of the point process in [14, Lemma 3.1] differs by a constant). First
choose a pair α′ and q such that 0 < α′ + 1 < q < α+ 1 and notice that

M(n)
t,c |Ĥατ =

(
N (n)
t |Hqτ ◦K

−1
t,c

)
|Ĥατ

where Kt,c : Hq
τ → Ĥα′

τ is defined by

Kt,c(x, y) 7→

{
(x, y − (1 + o(1))|x|), if x, y 6=∞
∞ otherwise

.

It was proved in [10, Lemma 2.5] that one can pass to the limit simultaneously in the
mapping Kt,c and the point process N (n)

t to obtain

M(n)
t,c |Ĥατ ⇒M :=

(
N ◦K−1

)
|Ĥατ

in law, where K : Hq
τ → Ĥα′

τ is defined by

K(x, y) 7→

{
(x, y − |x|), if x, y 6=∞
∞ otherwise

.

The density ofM is then χ ◦K−1 = ν, restricted to Ĥα
τ .

We now use the point process M to analyse the joint distribution of the random
variables Z(1,n)

t,c , Z(2,n)
t,c , Ψ̃

(n)
t,c (Z

(1,n)
t,c ) and Ψ̃

(n)
t,c (Z

(2,n)
t,c ).

Proposition 4.7. For each n ∈ N such that n ≤ j and each c ∈ R, as t→∞(
Z

(1,n)
t,c

rt
,
Z

(2,n)
t,c

rt
,

Ψ̃
(n)
t,c (Z

(1,n)
t,c )−A(n)

rt

drt
,

Ψ̃
(n)
t,c (Z

(2,n)
t,c )−A(n)

rt

drt

)
converges in law to a random vector with density

p(x1, x2, y1, y2) = exp{−(y1 + y2)− |x1| − |x2|)− 2de−y2}1{y1>y2} .

Proof. Proposition 4.7 follows from the point process density in Proposition 4.5 using
the same computation as in [14, Proposition 3.2].
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4.3 Properties of the localisation site

In this subsection we use the results from the previous subsection to analyse the
localisation sites Z(1,j)

t,c and Z
(1,ρ)
t , and in the process complete the proof of Theorem

1.3.
For each c ∈ R, introduce the events

G(n)
t,c := {Ψ̃(n)

t,c (Z
(1,n)
t,c )− Ψ̃

(n)
t,c (Z

(2,n)
t,c ) > dtet} ,

H(n)
t := {rtft < |Z(1,n)

t | < rtgt} and I(n)
t := {Ψ(n)

t (Z
(1,n)
t ) > at(1− ft)}

and the event

Et,c := S(j)
t (Z

(1,j)
t ) ∩ S(ρ)

t (Z
(1,ρ)
t ) ∩ G(j)

t,0 ∩ G
(j)
t,c ∩H

(j)
t ∩ I

(j)
t (4.6)

which act to collect the relevant information that we shall later need.

Corollary 4.8. For each c ∈ R, as t→∞

P(Et,c)→ 1 .

Proof. This follows from Propositions 4.2 and 4.7, since A(n)
rt ∼ at and drt ∼ dt.

Proposition 4.9. For any c ∈ R, on the event Et,c

Z
(1,j)
t,c = Z

(1,j)
t

holds eventually.

Proof. Assume that Z(1,j)
t,c 6= Z

(1,j)
t and recall that 1/ log log t < et/gt eventually. On the

event Et,c, the statements

Ψ̃
(j)
t (Z

(1,j)
t )− Ψ̃

(j)
t (Z

(1,j)
t,c ) > dtet and Ψ̃

(j)
t,c (Z

(1,j)
t,c )− Ψ̃

(j)
t,c (Z

(1,j)
t ) > dtet

and, eventually,

|Ψ̃(j)
t (Z

(1,j)
t )− Ψ̃

(j)
t,c (Z

(1,j)
t )| = |c| |Z

(1,j)
t |
t

< γ
dtgt

log log t
< dtet

all hold, giving a contradiction.

Lemma 4.10. For any c ∈ R, on the event Et,c

λ̃
(j)
t (Z

(1,j)
t ) ≥ λ̃(ρ)

t (Z
(1,j)
t ) and λ̃

(j)
t (Z

(1,ρ)
t ) ≥ λ̃(ρ)

t (Z
(1,ρ)
t )

and (
λ̃

(j)
t (Z

(1,j)
t )− λ̃(ρ)

t (Z
(1,j)
t )

)
−
(
λ̃

(j)
t (Z

(1,ρ)
t )− λ̃(ρ)

t (Z
(1,ρ)
t )

)
< dtet

all hold eventually.

Proof. The first two statements follow from the min-max theorem for the principal
eigenvalue, since j ≥ ρ. For the third statement, we only need consider the case that
j = ρ + 1. Then, the event Et,c implies that ξ(y) < aηt for all y such that |y − Z(1,j)

t | = j

or |y − Z(1,ρ)
t | = j. By considering the path expansions in Proposition 4.1 for a constant

C > 0,(
λ̃

(j)
t (Z

(1,j)
t )− λ̃(ρ)

t (Z
(1,j)
t )

)
−
(
λ̃

(j)
t (Z

(1,ρ)
t )− λ̃(ρ)

t (Z
(1,ρ)
t )

)
<

Caηt
(Lt,ε − Lt)2j

< dtet

eventually, with the last equality holding since η − 2j < 1− γ.
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Corollary 4.11. For any c ∈ R, on the event Et,c

Z
(1,j)
t = Z

(1,ρ)
t .

Proof. Assume that Z(1,j)
t 6= Z

(1,ρ)
t . On the event Et,c, Lemma 4.10 implies that

Ψ̃
(j)
t (Z

(1,j)
t ) ≥ Ψ̃

(ρ)
t (Z

(1,j)
t ) and Ψ̃

(j)
t (Z

(1,ρ)
t ) ≥ Ψ̃

(ρ)
t (Z

(1,ρ)
t )

and (
Ψ̃

(j)
t (Z

(1,j)
t )− Ψ̃

(ρ)
t (Z

(1,j)
t )

)
−
(

Ψ̃
(j)
t (Z

(1,ρ)
t )− Ψ̃

(ρ)
t (Z

(1,ρ)
t )

)
=
(
λ̃

(j)
t (Z

(1,j)
t )− λ̃(ρ)

t (Z
(1,j)
t )

)
−
(
λ̃

(j)
t (Z

(1,ρ)
t )− λ̃(ρ)

t (Z
(1,ρ)
t )

)
< dtet

all hold eventually. On the other hand, on the event Et,c and by the definition of Z(1,ρ)
t ,

Ψ̃
(j)
t (Z

(1,j)
t )− Ψ̃

(j)
t (Z

(1,ρ)
t ) > dtet and Ψ̃

(ρ)
t (Z

(1,ρ)
t ) ≥ Ψ̃

(ρ)
t (Z

(1,j)
t )

also hold, giving a contradiction.

4.4 Proof of Theorem 1.3

Fix a constant c as will be defined in Corollary 5.7. We prove Theorem 1.3 on the
event Et,c, since by Corollary 4.8 this event holds with overwhelming probability even-
tually. Parts (a) and (b) of theorem 1.3 are implied directly by Proposition 4.7 and the
definition of the event Et,c. Part (c) is proved in an identical manner to the correspond-
ing result in [14, Section 6]. As in [14, Lemmas 6.2, 6.3], we have that

lim
t→∞

P
({
Z

(1,ρ)
t+ωt = Z

(1,ρ)
t

})
= lim
n→∞

lim
t→∞

P (A(n, ω, t))

=

∫
Rd×R

exp {−ν(Dω(x, y))} ν(dx, dy) <∞

where A(n, ω, t) is the event

A(n, ω, t) :=
{
Y

(ρ)

t,0,Z
(1,ρ)
t

≥ −n
} ⋂
z:Y

(ρ)
t,0,z≥−n

{
Ψ̃

(1,ρ)
t+ωt(z) ≤ Ψ̃

(1,ρ)
t+ωt(Z

(1,ρ)
t )

}

and Dω(x, y) is the set

Dω(x, y) :=

{
(x̄, ȳ) ∈ Rd ×R : y +

ω|x|
1 + ω

≤ ȳ +
ω|x̄|

1 + ω

}
∪
(
Rd × [y,∞)

)
.

The random variable Θ can then be defined by

P(Θ > ω) = lim
t→∞

P
(
T

(ρ)
t /t ≤ ω

)
= 1− lim

t→∞
P
({
Z

(1,ρ)
t = Z

(1,ρ)
t+ωt

})
.

5 Spectral Theory

In this section we establish results from spectral theory which we will apply in Sec-
tion 6. The section draws heavily on [2] and [3].
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5.1 Notation

Fix ε, ε′′, ε′ and θ′ such that 0 < ε′′ < ε < ε′ < θ < θ′ < 1/2. Along with the
usual Hamiltonian H := ∆Vt + ξ, define the Lt-punctured Hamiltonian H̃ := ∆Vt +

ξ̃, and further, for any z ∈ Π(Lt), define the ‘single punctured’ and the ‘single peak’
Hamiltonians

H(z) := H− ξ1{z} and H̃(z) := H̃+ ξ1{z} .

Let G(λ;x, y), G̃(λ;x, y), G(z)(λ;x, y) and G̃(z)(λ;x, y) denote the Green’s functions of H,
H̃, H(z) and H̃(z) respectively.1 Let λ̃t(z) denote the principal eigenvalue of H̃(z) and let
λ̃t,i denote the i’th largest such λ̃t(z) among z ∈ Vt. Recall also the definitions of λt,i,
ϕt,i and zt,i from Section 2.

Moreover, for any λ > Lt + 2d and u ∈ Vt define

A(λ) := log
λ− Lt

2d

and

B(λ, u) := b(λ)λ−2

∣∣∣∣ 1

ξ(u)
− G̃(λ;u, u)

∣∣∣∣−1

, where b(λ) :=
(λ− Lt)2

λ− Lt − 2d
.

Note that B(λ, u) =∞ for some u ∈ Vt and λ. Finally, introduce the scaling function

δt :=
|Vt|

1−2θ′
d

log(1 + (Lt,ε′ − Lt)/2d)r
(
Π(Lt)

) .
Remark 5.1. By Lemma 3.2, almost surely δt = o(ht).

5.2 Ancillary results on eigenvalues

Proposition 5.2 (Correspondence between local and global eigenvalues). The follow-
ing hold eventually almost surely:

(a) For all 1 ≤ i ≤ |Vt|ε,
λ̃t,i = λ̃t(zt,i)

(b)

max
1≤i≤|Vt|ε

|λt,i − λ̃t,i| < exp
{
−|Vt|

1−2θ′
d

}
Proof. These are proved in [3], as a consequence of the third and first statements of
Theorem 4.1 respectively (keeping in mind the definition in (4.3) of that paper).

Remark 5.3. The correspondence in Proposition 5.2 indicates that the i’th highest
eigenvalue of H is closely approximated by the principal eigenvalue of the ‘single peak’
Hamiltonian H̃(zt,i). In physical terms, this can be interpreted as a lack of ‘resonance’
between the regions in Vt where the potential field ξ is high, i.e. the regions which give
rise to a high local principal eigenvalue.

Lemma 5.4 (Almost sure asymptotics for eigenvalues). The following hold eventually
almost surely:

(a) λt,i < Lt,−ε′ for all 1 ≤ i ≤ |Vt|ε

(b) λt,i > Lt,ε′ for all 1 ≤ i ≤ |Vt|ε

1We use the following convention for the Green’s functions: (λ−H)G(λ; ·, y) = 1{y}(·).
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(c) λt,i < Lt,ε′′ for all |Vt|ε ≤ i ≤ |Vt|

(d) λ̃(zt,i) < Lt,ε′′ for all |Vt|ε ≤ i ≤ |Vt|

Proof. For part (a), it is sufficient to show that eventually λt,1 < Lt,−ε′ , which follows
by combining Lemma 3.3 with the asymptotics in Lemma 3.1. For parts (b)– (d), by the
correspondence in Proposition 5.2 it is sufficient to show that eventually

Lt,ε′ + 1 < λ̃t,b|Vt|εc < Lt,ε′′ − 1 .

As in Lemma 3.3, by the min-max theorem, for each z ∈ Vt,

ξ(z) ≤ λ̃t(z) ≤ max{Lt, ξ(z)}+ 2d .

The result then follows from the asymptotics in Lemma 3.1

5.3 Exponential decay of eigenfunctions and upper bound on eigenfunctions
at zero

In this subsection, we prove that the eigenfunctions ϕt,i corresponding to the largest
eigenvalues of H eventually localise with exponential decay away from the localisation
site zt,i. As a corollary, we bound the value of these eigenfunctions at the origin. Note
that these results mimic [3, Theorem 4.1], but with tighter control over the rate of the
exponential decay.

Proposition 5.5 (See [3, Theorem 4.1]). Eventually, for all 1 ≤ i ≤ |Vt|ε,

|ϕt,i(z)| ≤ 4

(
1 +

2d

Lt,ε′ − Lt

)
exp

(
−(1− δt) log

(
λt,i − Lt

2d

)
|z − zt,i|

)
almost surely.

Proof. Proposition 5.5 is an application of [3, Theorem B.3] with the following notation:

L← Lt , Π← Π(Lt) , h← Lt,ε′ − Lt

δ ← δt, µ← d(1 + θ)

1− 2θ′
and K ← |Vt|ε .

Note that for this application the assumptions [3, (B.25)-(B.29)] are implicitly verified
in the proof of [3, Theorem 4.1], since δt agrees with the δ used in that proof.2

Corollary 5.6 (Exponential decay of eigenfunctions). Eventually, for all 1 ≤ i ≤ |Vt|ε,

log |ϕt,i(z)| ≤ −
|z − zt,i|

γ
(1− ft) log log t almost surely .

Proof. For all 1 ≤ i ≤ |Vt|ε, the asymptotics in part (b) of Lemma 5.4 imply that

log(λt,i − Lt) >
1

γ
log log t+O(1)

almost surely. Applying Proposition 5.5 we get that, eventually,

log |ϕt,i(z)| ≤ −
1− δt
γ
|zt,i − z| log log t

(
1− const.

log log t

)
≤ −|zt,i − z|

γ
(1− ft) log log t

almost surely, since 1/ log log t = o(ft) and δt = o(ft).

2Note, however, that the δ used in the proof of [3, Theorem 4.1] is not explicit, but can be inferred by jointly
considering [3, Lemma 4.3] and [3, B.28]. Note also that δ depends on µ.
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Corollary 5.7 (Upper bound on eigenfunctions at zero). There exists a c > 0 such that
eventually, for all 1 ≤ i ≤ |Vt|ε,

log |ϕt,i(0)| ≤ −|zt,i|
γ

log log t+ c|zt,i|

almost surely.

Proof. Again, applying Proposition 5.5 and part (b) of Lemma 5.4 we have that

log |ϕt,i(0)| ≤ |zt,i| (−(1− δt) log(Lt,ε′ − Lt) + log(2d)) + o(1)

≤ −|zt,i|
γ

log log t+ c′|zt,i|+O(|zt,i|δt log log t)

almost surely, which yields the result since δt log log t = o(1), replacing c′ with some
c > c′.

5.4 Lower bound on eigenfunctions at zero

In this subsection, we prove a lower bound on the value of certain eigenfunctions
at zero. We only do this for very specific eigenfunctions, which satisfy an assumption
defined below. It will turn out that the eigenfunction associated to the localisation site
Z

(1,ρ)
t satisfies this assumption.

Assumption 5.8. Introduce an auxiliary set

H(λ) =
{
x ∈ Vt|λ̃t(x) ≥ λ

}
.

An index i satisfies Assumption 5.8 if

min
x∈H(λt,i)

|x| > |zt,i|(1 + ht) .

Before embarking on the proof of a lower bound, we need to introduce some well-
known tools from spectral theory, which are proved, for instance, in [3].

Lemma 5.9 (Path expansion over ∆Vt ; see [3, Lemma A.2]). Consider the Hamiltonian
Hζ := ∆Vt + ζ on Vt, where ζ is any potential field. Denote by Gζ(λ;x, y) the Green’s
function associated with Hζ . Then for any x, y ∈ Vt,

Gζ(λ;x, y) =
∑

Γ(x,y)

∏
v∈Vt

(λ− ζ(v))
−nv(Γ(x,y)) (5.1)

provided the series converges. Here the sum
∑

Γ(x,y) is taken over all paths

Γ : x = v0 → v1 → · · · → vm := y in Vt

such that |vi − vi−1| = 1 for each 1 ≤ i ≤ m and each m ∈ N (i.e. the nearest neighbour
paths in Vt starting at x and ending at y); nv(Γ(x, y)) denotes the number of times the
path Γ(x, y) visits the site v ∈ Vt; |Γ(x, y)| :=

∑
v∈Vt nv(Γ(x, y)) ≥ |x − y|. Note that if

x = y and Γ(x, x) = 0, then the corresponding summand in equation (5.1) is equal to
(λ− ζ(x))

−1.

Lemma 5.10 (Cluster expansion; see [3, Lemma A.1]). Fix a non-empty subset Π ⊆ Vt.
For a positive field ζ and any u ∈ Π let Gζ(λ;x, y), G̃ζ(λ;x, y) and G̃(u)

ζ (λ;x, y) denote the
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Green’s functions of the Hamiltonians Hζ := ∆Vt + ζ, H̃ζ := ∆Vt +
∑
x∈Vt\Π ζ(x)1{x} and

H̃(u)
ζ := H̃ζ + ζ1{u} respectively. Then for any x, y ∈ Vt,

Gζ(λ;x, y) = G̃ζ(λ;x, y)

+
∑
k∈N

∑
γ:u1→···→uk

G̃(u1)
ζ (λ;x, u1)ζ(u1)

(
k∏
l=2

G̃(ul)
ζ (λ;ul−1, ul)ζ(ul)

)
G̃ζ(λ;uk, y)

provided that the series converges. Here the sum
∑
γ is taken over all ordered sets

γ : u1 → u2 → · · · → uk in Π

such that ui−1 6= ui for each 2 ≤ i ≤ k, having length |γ| = k − 1.

Below we show that the series in Lemma 5.9 converges in our setting, and results in
a lower bound on ϕt,i(x) for certain indices i and sites x. However, to achieve this lower
bound, we need to apply the cluster expansion to the auxiliary set H(λt,i) since paths
that hit H(λt,i) might contribute negative terms in the path expansion with respect to
λt,i.

Proposition 5.11. For any λt,i such that 1 ≤ i ≤ |Vt|ε, and for any u /∈ H(λ) and any
x ∈ Vt,

G̃(u)(λt,i;x, u) > 0 .

Proof. As in Proposition 5.5, [3, Theorem B.3] is valid for all 1 ≤ i ≤ |Vt|ε. Moreover,
from the proof of [3, Theorem B.3], we conclude that [3, Theorem B.1] is also valid for
the same i’s. Hence, by [3, Theorem B.1(ii)], we have that λt,i /∈ σ(H(zt,i)) so we can
apply the cluster expansion in Lemma 5.10 with Π ← {u} and ζ ← ξ1Vt\Π(Lt)∪{u} to
obtain the following resolvent identity:

G̃(u)(λt,i;x, u) = G̃(λt,i;x, u)/
(

1− ξ(u)G̃(λt,i;u, u)
)
. (5.2)

Note that the series in Lemma 5.9 converges for G̃(λt,i;x, u) by Lemma 5.4 and hence
the numerator in (5.2) is positive. It then suffices to show that

u /∈ H(λt,i) =⇒ ξ(u)G̃(λt,i;u, u) < 1 . (5.3)

Recall that, for u /∈ H(λt,i), we have that λt,i > λ̃t(u). Moreover, by [3, Remark B.5] we
know that λ̃t(u) is the principal eigenvalue of H̃(u) if and only if λ̃t(u) is the maximal
solution of the equation

G̃(λ;u, u) = 1/ξ(u) .

Finally, by Lemma 5.9 it follows that G̃(λ;u, u) is monotonically decreasing with λ. These
three facts give us equation (5.3).

Proposition 5.12. For all 1 ≤ i ≤ |Vt|ε and any x ∈ B(zt,i, ht|zt,i|/3) ∪ {0},

G̃(λt,i;x, zt,i) ≥
1

(λt,i)
|zt,i−x|+1

.

Proof. Proposition 5.12 follows from Lemma 5.9 since the sum in equation (5.1) is con-
vergent by the asymptotics in Lemma 5.4 and the definition of H̃. Moreover, every sum
along any path is positive, so we may bound the sum in equation (5.1) by the contribu-
tion from the shortest path x→ · · · → zt,i.
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Proposition 5.13. Fix u ∈ Π(Lt) and v ∈ Π(Lt) \ {u}. Then for all 1 ≤ i ≤ |Vt| and any
x ∈ Vt, the following hold:

|G̃(λt,i;x, u)| ≤ b(λt,i)

λt,i(λt,i − Lt)
e−A(λt,i)|x−u| and

|G̃(u)(λt,i; v, u)| ≤ B(λt,i, u)

ξ(u)
e−A(λt,i)|v−u| .

Proof. This follows from Lemma 5.10 and Lemma 5.9; see [3, Lemma B.2].

Lemma 5.14. For all 1 ≤ i ≤ |Vt|ε satisfying Assumption 5.8, and any x ∈ Vt such that
x ∈ B(zt,i, ht|zt,i|/3) ∪ {0},

G(zt,i)(λt,i;x, zt,i) ≥ G̃(λt,i;x, zt,i) + o
(
G̃(λt,i;x, zt,i)

)
.

Proof. From the proof of [3, Theorem 4.1] it follows that the series in the cluster expan-
sion in Lemma 5.10 is convergent with Π← Π(Lt) \ {zt,i} and ζ ← ξ1Vt\{zt,i}. Denote by

u1 → · · · → uk an ordered set consisting of points from a set Π(Lt) \ {zt,i}

G(zt,i)(λt,i;x, zt,i) = G̃(λt,i;x, zt,i)

+

∞∑
k=1

∑
γ:u1→···→uk
γ∩H(λt,i)=∅

G̃(u1)(λt,i;x, u1)ξ(u1)

(
k∏
l=2

G̃(ul)(λt,i, ul−1, ul)ξ(ul)

)
G̃(λt,i;uk, zt,i)

+

∞∑
k=1

∑
γ:u1→···→uk
γ∩H(λt,i)6=∅

G̃(u1)(λt,i;x, u1)ξ(u1)

(
k∏
l=2

G̃(ul)(λt,i;ul−1, ul)ξ(ul)

)
G̃(λt,i;uk, zt,i).

The first summation on the right hand side is positive by Proposition 5.11. It remains to
show that the second summation is negligible, i.e. that

∣∣∣ ∞∑
k=1

∑
γ:u1→···→uk
γ∩H(λt,i) 6=∅

G̃(u1)(λt,i;x, u1)ξ(u1)

(
k∏
l=2

G̃(ul)(λt,i;ul−1, ul)ξ(ul)

)
G̃(λt,i;uk; zt,i)

∣∣∣
= o

(
G̃(λt,i;x, zt,i)

)
.

First apply Proposition 5.13, which gives that this summation is bounded above by

b(λt,i)

λt,i(λt,i − Lt)
∑
k∈N

∑
γ:u1→···→uk
γ∩H(λt,i) 6=∅

B(λt,i, u1)e−A(λt,i)|u1−x|

×

(
k∏
l=2

B(λt,i, ul)e
−A(λt,i)|ul−1−ul|

)
e−A(λt,i)|uk−zt,i| .

Now use the bound A(λt,i)|uj−1−uj | > (1−δt)A(λt,i)|uj−1−uj |+δtr(Π
(Lt)) for each j in

the product, and let ul ∈ H(λt,i) for the ordered set γ in the above summation. Applying
|u1 − x| + |u1 − u2| + · · · + |ul−1 − ul| > |ul − x|, |ul+1 − ul+2| + · · · + |uk − zt,i| > 0, and
the fact that the number of ordered sets is bounded above by |Π(Lt)|k, we have that the
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summand is bounded above by

b(λt,i)

λt,i(λt,i − Lt)
e−(1−δt)A(λt,i)|ul−x|

×
∑
k∈N

(
|Π(Lt)| max

u∈Π(Lt)\{zt,i}
B(λt,i, u)e−δtA(λt,i)r(Π

(Lt))

)k
≤ b(λt,i)

λt,i(λt,i − Lt)
e−(1−δt)A(λt,i)|ul−x| .

Note that the last step is justified by [3, B.6], which is valid since [3, Theorem B.1] is
applicable, as in Proposition 5.11. There are now two cases to consider: (i) x = 0; and
(ii) x ∈ B(zt,i, ht|zt,i|/3).

Case (i). Assumption 5.8 implies that |ul| > |zt,i|(1 + ht), and so by Proposition 5.12
we get that

1

G̃(λt,i;x, zt,i)
× b(λt,i)

λt,i(λt,i − Lt)
e−A(λt,i)(1−δt)(1+ht)|zt,i|

= O

(
const.|zt,i|

(
2d

λt,i − Lt

)|zt,i|(ht−δt−δtht))

= O

[
exp

{
|zt,i|

(
log(const.)− (ht − δt − δtht)

γ
log log t

)}]
= o(1),

since ht log log t→∞ and δt = o(ht). Note that in the last step we also bounded λt,i−Lt
from below using the asymptotics in part (b) of Lemma 5.4.

Case (ii). Apply the bound

|ul − x| ≥ |ul − zt,i| − |zt,i − x| ≥ ht|zt,i| − |zt,i − x|

then, similarly to as in Case (i), by Proposition 5.12 we get that

1

G̃(λt,i;x, zt,i)
× b(λt,i)

λt,i(λt,i − Lt)
e−A(λt,i)(1−δt)(ht|zt,i|−|zt,i−x|)

= O

(
const.|zt,i−x|

(
2d

λt,i − Lt

)(1−δt)ht|zt,i|−(2−δt)|zt,i−x|
)

= O

(
const.|zt,i|

(
2d

λt,i − Lt

) 1
3ht(1+o(1))|zt,i|

)
= o(1)

since |zt,i − x| ≤ ht|zt,i|/3.

Proposition 5.15 (See [3, Theorem B.1(iii)]). For all 1 ≤ i ≤ |Vt|ε and x ∈ Vt,

|G(zt,i)(λt,i;x, zt,i)| ≤
2b(λt,i)

λt,i(λt,i − Lt)
e−(1−δt)A(λt,i)|x−zt,i| .

Proof. As in Proposition 5.11, [3, Theorem B.1] is valid for all 1 ≤ i ≤ |Vt|ε.

Proposition 5.16 (Lower bound on eigenfunctions). For all 1 ≤ i ≤ |Vt|ε satisfying
Assumption 5.8 and any x ∈ B(zt,i, ht|zt,i|/3) ∪ {0}, eventually

log |ϕt,i(x)| > −|zt,i − x|
γ

(1 + ft) log log t .
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Proof. Again, as in Proposition 5.11, [3, Theorem B.1] is valid for all 1 ≤ i ≤ |Vt|ε, and
so we have that λt,i /∈ σ(H(zt,i)) and

ϕt,i(x) = G(zt,i) (λt,i;x, zt,i)

( ∑
y∈Vt

(G(zt,i)(λt,i; y, zt,i))
2

)− 1
2

.

Note that Proposition 5.12 and Lemma 5.14 imply that

log G(zt,i)(λt,i;x, zt,i) > −(|zt,i − x|+ 1) log λt,i + o(1)

and Proposition 5.15 implies that( ∑
y∈Vt

(G(zt,i)(λt,i; y, zt,i))
2

) 1
2

≤ 4b(λt,i)

λt,i(λt,i − Lt)
=

4(λt,i − Lt)
λt,i(λt,i − Lt − 2d)

.

Combining all the above we conclude that

log |ϕt,i(x)| > −|zt,i − x| log λt,i +O(1) .

The result then follows from part (a) of Lemma 5.4, since 1/ log log t = o(ft).

Corollary 5.17 (Lower bound on eigenfunctions at zero). For any 1 ≤ i ≤ |Vt|ε satisfy-
ing Assumption 5.8 such that |zt,i| < rtgt,

log |ϕt,i(0)| > −|zt,i|
γ

log log t+ o(tdtet) .

Proof. This follows from Proposition 5.16 since rtgtft log log t = o(tdtet).

6 Completing the Proof

In this section, we complete the proof of the auxiliary Theorem 2.3 using the results
obtained in Sections 4 and 5. Throughout this section we fix the constant c from Corol-
lary 5.7, and also fix constants 0 < ε′′ < ε < θ as in Sections 4 and 5. For notational
convenience, abbreviate z(j)

t := z
t,i

(j)
t

for j = 1, 2. Recall also the event Et,c from (4.6),

whose probability goes to 1 by Corollary 4.8.

6.1 Ancillary lemmas

Lemma 6.1 (Correspondence with j-local eigenvalues). Almost surely,

max
z∈Π(Lt,ε)

|λ̃t(z)− λ̃(j)
t (z)| = o(dtet) .

Proof. As in Proposition 4.1, there is a path expansion for λ̃t(z) with z ∈ Π(Lt,ε):

λ̃t(z) = ξ(z) +
∑

2≤k≤2j

∑
Γ∗k(z)

∏
0<i<k

1

λ̃t(z)− ξ(yi)
+ o(dtet) (6.1)

where Γ∗k(z) is the set of all length k nearest neighbour paths

z =: y0 → y1 → . . .→ yk := z in Vt

such that yi 6= z for all 1 < i < k. Since paths in Γ∗k(z) that are not also in Γ∗k(z, j)

must have length at least 2j + 2, and since j was chosen precisely so that 1/(Lt,ε −
Lt)

2j+1 = o(dt), comparing equation (6.1) to the path expansion in Proposition 4.1 yields
the result.
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Lemma 6.2 (Validity of Assumption 5.8). On the event Et,c, each

z ∈ B
(

0, |Z(1,ρ)
t |(1 + ht)

)
\ {Z(1,ρ)

t }

satisfies

λ̃t(Z
(1,ρ)
t )− λ̃t(z) > dtet + o(dtet) .

Proof. On the event Et,c, and by the correspondence in Lemma 6.1, for such a z,

dtet < Ψ̃
(j)
t (Z

(1,ρ)
t )− Ψ̃

(j)
t (z) = λ̃t(Z

(1,ρ)
t )− λ̃t(z) +

|z| − |Z(1,ρ)
t |

γt
log log t+ o(dtet) .

Moreover, for such a z, we also have that

|z| − |Z(1,ρ)
t |

γt
log log t <

|Z(1,ρ)
t |ht
γt

log log t <
rtgtht
γt

log log t = o(dtet)

since gtht = o(et), which yields the result.

Lemma 6.3 (Application of lower bound). On the event Et,c, the following hold:

(a) There exists an index kt ≤ |Vt|ε such that, eventually,

zt,kt = Z
(1,ρ)
t ;

(b) Moreover,

Ψt(kt) > Ψ̃
(j)
t (Z

(1,ρ)
t ) + o(dtet) > at(1− ft) + o(dtet) .

Proof. On the event Et,c and from the correspondence in Lemma 6.1 we have

λ̃t(Z
(1,ρ)
t ) > λ̃

(j)
t (Z

(1,ρ)
t ) + o(dtet) > Ψ̃

(j)
t (Z

(1,ρ)
t ) + o(dtet) > at(1− ft) + o(dtet) .

On the other hand, by the asymptotics in part (d) of Lemma 5.4,

λ̃t,b|Vt|εc < Lt,ε′′ < at(1− ft) + o(dtet) .

Hence there exists an index kt ≤ |Vt|ε such that λ̃t,kt = λ̃t(Z
(1,ρ)
t ) and by the correspon-

dence in Proposition 5.2 this implies that zt,kt = Z
(1,ρ)
t . By Lemma 6.2, it can be seen

that kt satisfies Assumption 5.8, and since |Z(1,ρ)
t | < rtgt on the event Et,c, we may apply

the lower bound in Corollary 5.17 to the index kt. Along with the correspondence in
Lemma 6.1 we get that

Ψt(kt) = λt,kt +
log |ϕt,kt(0)|

t
> λ̃

(j)
t (Z

(1,ρ)
t )− |Z

(1,ρ)
t |
γt

log log t+ o(dtet)

= Ψ̃
(j)
t (Z

(1,ρ)
t ) + o(dtet) > at(1− ft) + o(dtet) .

Lemma 6.4 (Application of upper bound). On the event Et,c, the following hold:

(a) The index i(1)
t satisfies

i
(1)
t ≤ |Vt|ε ;

(b) Moreover,

Ψt(i
(1)
t ) < Ψ̃

(j)
t,c (z

(1)
t ) + o(dtet) .

EJP 19 (2014), paper 58.
Page 25/27

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v19-3203
http://ejp.ejpecp.org/


Complete localisation in the PAM with Weibull potential

Proof. Combining Lemma 6.3 with the event Et,c implies that

λ
t,i

(1)
t
≥ Ψt(i

(1)
t ) ≥ Ψt(kt) > Ψ̃

(j)
t (Z

(1,ρ)
t ) + o(dtet) > at(1− ft) + o(dtet) .

On the other hand, by the asymptotics in part (c) of Lemma 5.4,

λt,b|Vt|εc < Lt,ε′′ < at(1− ft) + o(dtet)

and so i(1)
t ≤ |Vt|ε. We may then apply the upper bound in Corollary 5.7 to the index i(1)

t .
Combining this with the correspondence in Lemma 6.1 we get

Ψt(i
(1)
t ) < λ̃

(j)
t (z

(1)
t )− |z

(1)
t |
γt

log log t+
c|z(1)

t |
t

log log t+ o(dtet)

= Ψ̃
(j)
t,c (z

(1)
t ) + o(dtet) .

Lemma 6.5 (Correspondence between z(1)
t and Z(1,ρ)

t ). On the event Et,c,

z
(1)
t = Z

(1,ρ)
t

eventually.

Proof. Let kt be as in Lemma 6.4 and assume that z(1)
t 6= Z

(1,ρ)
t = zt,kt . Combining the

lower bound from Lemma 6.3 and the upper bound from Lemma 6.4, we have

Ψ̃
(j)
t,c (Z

(1,ρ)
t ) > Ψ̃

(j)
t,c (z

(1)
t ) + dtet > Ψt(i

(1)
t ) + dtet + o(dtet)

> Ψt(kt) + dtet + o(dtet) > Ψ̃
(j)
t (Z

(1,ρ)
t ) + dtet + o(dtet) .

On the other hand, on the event Et,c

|Ψ̃(j)
t (Z

(1,ρ)
t )− Ψ̃

(j)
t,c (Z

(1,ρ)
t )| = |c| |Z

(1,ρ)
t |
t

log log t = o(dtet)

giving a contradiction.

6.2 Completion of the proof of the auxiliary Theorem 2.3

We are now in a position to establish the auxiliary Theorem 2.3, which we prove sub-
ject to the event Et,c, since this event holds eventually with overwhelming probability.

First, consider part (a) of Theorem 2.3. Let kt be as in Lemma 6.4, and remark
that Lemma 6.5 implies that kt = i

(1)
t . There are two cases to consider: (i) i(2)

t > |Vt|ε;
and (ii) i(2)

t ≤ |Vt|ε. In the first case, combine the lower bound in Lemma 6.3 with the
asymptotics in part (c) of Lemma 5.4 to get that

Ψt(i
(1)
t )−Ψt(i

(2)
t ) > at(1− ft)− Lt,ε′′ + o(dtet) > dtet

which yields the result. In the second case, we may apply the upper bound in Corollary
5.7 to the index i(2)

t . Combining this bound with the correspondence in Lemma 6.1 and
the lower bound in Lemma 6.3, we get that eventually

Ψt(i
(1)
t )−Ψt(i

(2)
t ) > Ψ̃

(j)
t (z

(1)
t )− Ψ̃

(j)
t,c (z

(2)
t ) + o(dtet)

> dtet − |c|
|Z(1,ρ)
t |
t

log log t+ o(dtet) > dtet + o(dtet) .

Consider now part (b) of Theorem 2.3. The first statement follows trivially from the
fact that |Z(1,ρ)

t | < rtgt. The second statement is proved by applying the upper bound
on eigenfunctions in Corollary 5.6 and the lowerbound on eigenfunctions in Proposition
5.16 to the index i(1)

t , which is valid since i(1)
t satisfies Assumption 5.8. Then, make the

correspondence in Lemma 6.5, and remark that κtrt = o(ht|Z(1,ρ)
t |). The third statement

follows by applying the upperbound on eigenfunctions in Corollary 5.6 to the index i(1)
t ,

and summing over all z ∈ Vt \Bt.
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