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Abstract

We introduce a class of random compact metric spaces .%, indexed by o € (1,2)
and which we call stable looptrees. They are made of a collection of random loops
glued together along a tree structure, and can informally be viewed as dual graphs
of a-stable Lévy trees. We study their properties and prove in particular that the
Hausdorff dimension of .4, is almost surely equal to . We also show that stable
looptrees are universal scaling limits, for the Gromov-Hausdorff topology, of various
combinatorial models. In a companion paper, we prove that the stable looptree of
parameter % is the scaling limit of cluster boundaries in critical site-percolation on
large random triangulations.
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Figure 1: An o = 1.1 stable tree, and its associated looptree %, ;, embedded non
isometrically in the plane (this embedding of % 1 contains intersecting loops, even
though they are disjoint in the metric space).
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Random stable looptrees

1 Introduction

In this paper, we introduce and study a new family (.%,)1<a<2 of random compact
metric spaces which we call stable looptrees (in short, looptrees). Informally, they
are constructed from the stable tree of index « introduced in [17, 26] by replacing
each branch-point of the tree by a cycle of length proportional to the “width” of the
branch-point and then gluing the cycles along the tree structure (see Theorem 2.3
below). We study their fractal properties and calculate in particular their Hausdorff
dimension. We also prove that looptrees naturally appear as scaling limits for the
Gromov-Hausdorff topology of various discrete random structures, such as Boltzmann-
type random dissections which were introduced in [23].

Perhaps more unexpectedly, looptrees appear in the study of random maps decorated
with statistical physics models. More precisely, in a companion paper [15], we prove
that the stable looptree of parameter % is the scaling limit of cluster boundaries in
critical site-percolation on large random triangulations and on the uniform infinite planar
triangulation of Angel & Schramm [2]. We also conjecture a more general statement for

O(n) models on random planar maps.
In this paper « € (1,2).

Stable looptrees as limits of discrete looptrees. In order to explain the intuition
leading to the definition of stable looptrees, we first introduce them as limits of random
discrete graphs (even though they will be defined later without any reference to discrete
objects). To this end, with every rooted oriented tree (or plane tree) 7, we associate a
graph denoted by Loop(7) and constructed by replacing each vertex u € 7 by a discrete
cycle of length given by the degree of v in 7 (i.e. number of neighbors of ) and gluing all
these cycles according to the tree structure provided by 7, see Figure 2 (by discrete cycle
of length k£, we mean a graph on k vertices vy, ..., v, with edges vive, ..., vp_1Vk, Vkv1).
We endow Loop(7) with the graph distance (every edge has unit length).

Figure 2: A discrete tree 7 and its associated discrete looptree Loop(7).

Fix a € (1,2) and let 7,, be a Galton-Watson tree conditioned on having n vertices,
whose offspring distribution y is critical and satisfies u([k,00)) ~ |T(1 — )|~ - k= as
k — oo. The stable looptree .Z, then appears (Theorem 4.1) as the scaling limit in
distribution for the Gromov-Hausdorff topology of discrete looptrees Loop(,):

n e, Loop(7,) L Z., (1.1)

n—oo

where ¢ - M stands for the metric space obtained from M by multiplying all distances
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by ¢ > 0. Recall that the Gromov-Hausdorff topology gives a sense to convergence of
(isometry classes) of compact metric spaces, see Section 3.2 below for the definition.

It is known that the random trees 7, converge, after suitable scaling, towards the
so-called stable tree 7, of index « (see [16, 17, 26]). It thus seems natural to try to
define .%,, directly from 7, by mimicking the discrete setting (see Figure 1). However
this construction is not straightforward since the countable collection of loops of .Z,
does not form a compact metric space: one has to take its closure. In particular, two
different cycles of .Z,, never share a common point. To overcome these difficulties, we
define %, by using the excursion X (%) of an a-stable spectrally positive Lévy process
(which also codes 7,).

Properties of stable looptrees. Stable looptrees possess a fractal structure whose
dimension is identified by the following theorem:

Theorem 1.1 (Dimension). For every a € (1,2), almost surely, .%,, is a random compact
metric space of Hausdorff dimension «.

The proof of this theorem uses fine properties of the excursion X¢(®)  We also
prove that the family of stable looptrees interpolates between the circle of unit length
C; := (27)~1 - $; and the 2-stable tree 7 which is the Brownian Continuum Random Tree
introduced by Aldous [1] (up to a constant multiplicative factor).

Theorem 1.2 (Interpolation loop-tree). The following two convergences hold in distribu-
tion for the Gromov-Hausdorff topology

0 2 Doa ) % D m

See Figure 3 for an illustration. The proof of (i) relies on a new “one big-jump
principle” for the normalized excursion of the a-stable spectrally positive Lévy process
which is of independent interest: informally, as « | 1, the random process X&(®)
converges towards the deterministic affine function on [0, 1] which is equal to 1 at time
0 and 0 at time 1. We refer to Theorem 3.6 for a precise statement. Notice also the
appearance of the factor 3 in (ii).

Figure 3: On the left .Z; o1, on the right £ 9.

Scaling limits of Boltzmann dissections. Our previously mentioned invariance prin-
ciple (Theorem 4.1) also enables us to prove that stable looptrees are scaling limits of
Boltzmann dissections of [23]. Before giving a precise statement, we need to introduce
some notation. For n > 3, let P,, be the convex polygon inscribed in the unit disk of the
complex plane whose vertices are the n-th roots of unity. By definition, a dissection is the
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union of the sides of P,, and of a collection of diagonals that may intersect only at their
endpoints, see Figure 11. The faces are the connected components of the complement of
the dissection in the polygon. Following [23], if u = (;);>0 is a probability distribution
on {0,2,3,4,...} of mean 1, we define a Boltzmann-type probability measure P# on the
set of all dissections of P,,t; by setting, for every dissection w of P, :

1
Pr(w)=—- || 2t

n f face of w

where deg(f) is the degree of the face f, that is the number of edges in the boundary of
f, and Z,, is a normalizing constant. Under mild assumptions on p, this definition makes
sense for every n large enough. Let D be a random dissection sampled according to IP%.
In [23], the second author studied the asymptotic behavior of DA viewed as a random
closed subset of the unit disk when n — oo in the case where p has a heavy tail. Then the
limiting object (the so-called stable lamination of index «) is a random compact subset of
the disk which is the union of infinitely many non-intersecting chords and has faces of
infinite degree. Its Hausdorff dimension is a.s.2 — a~!.

In this paper, instead of considering D/ as a random compact subset of the unit disk,
we view D as a metric space by endowing the vertices of D% with the graph distance
(every edge of DX has length one). From this perspective, the scaling limit of the random
Boltzmann dissections DK is a stable looptree (see Figure 4):

Corollary 1.3. Fix o € (1,2) and let u be a probability measure supported on {0,2,3, ...}
of mean 1 such that u([k,o0)) ~ ¢- k=% as k — oo, for a certain ¢ > 0. Then the following
convergence holds in distribution for the Gromov-Hausdorff topology

nVepn 0 (epll(1 - a)) Y

n—roo

Figure 4: A large dissection and a representation of its metric space.

Looptrees in random planar maps. Another area where looptrees appear is the
theory of random planar maps. The goal of this very active field is to understand
large-scale properties of planar maps or graphs, chosen uniformly in a certain class
(triangulations, quadrangulations, etc.), see [2, 11, 27, 25, 30]. In a companion paper
[15], we prove that the scaling limit of cluster boundaries of critical site-percolation on
large random triangulations and the UIPT introduced by Angel & Schramm [2] is .Z3/,
(by boundary of a cluster, we mean the graph formed by the edges and vertices of a
connected component which are adjacent to its exterior; see [15] for a precise definition
and statement). We also give a precise conjecture relating the whole family of looptrees
(Zu)aeq,2) to cluster boundaries of critical O(n) models on random planar maps. We
refer to [15] for details.
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Looptrees in preferential attachment. As another motivation for introducing loop-
trees, we mention the subsequential work [13], which studies looptrees associated with
random trees built by linear preferential attachment, also known in the literature as
Barabasi-Albert trees or plane-oriented recursive trees. As the number of nodes grows,
it is shown in [13] that these looptrees, appropriately rescaled, converge in the Gromov-
Hausdorff sense towards a random compact metric space called the Brownian looptree,
which is a quotient space of Aldous’ Brownian Continuum Random Tree.

Finally, let us mention that stable looptrees implicitly appear in [27], where Le Gall
and Miermont have considered scaling limits of random planar maps with large faces.
The limiting continuous objects (the so-called a-stable maps) are constructed via a
distance process which is closely related to looptrees. Informally, the distance process of
Le Gall and Miermont is formed by a looptree .Z,, where the cycles support independent
Brownian bridges of the corresponding lengths. However, the definition and the study
of the underlying looptree structure is interesting in itself and has various applications.
Even though we do not rely explicitly on the article of Le Gall and Miermont, this work
would not have been possible without it.

Outline. The paper is organized as follows. In Section 2, we give a precise definition
of %, using the normalized excursion of the a-stable spectrally positive Lévy process.
Section 3 is then devoted to the study of stable looptrees, and in particular to the proofs
of Theorems 1.1 and 1.2. In the last section, we establish a general invariance principle
concerning discrete looptrees from which Theorem 1.3 will follow.

2 Defining stable looptrees

This section is devoted to the construction of stable looptrees using the normalized
excursion of a stable Lévy process, and to the study of their properties. In this section,
a € (1,2) is a fixed parameter.

2.1 The normalized excursion of a stable Lévy process

We follow the presentation of [16] and refer to [5] for the proof of the results
mentioned here. By a-stable Lévy process we will always mean a stable spectrally
positive Lévy process X of index «, normalized so that for every A > 0

Elexp(—AX;)] = exp(tA¥).

The process X takes values in the Skorokhod space D(RR4,R) of right-continuous with
left limits (cadlag) real-valued functions, endowed with the Skorokhod topology (see [8,
Chap. 3]). The dependence of X in a will be implicit in this section. Recall that X enjoys
the following scaling property: For every ¢ > 0, the process (cfl/o‘Xct,t > 0) has the
same law as X. Also recall that the Lévy measure II of X is
O(dr) = ?E;_;;rallmm)dr. (2.1)
Following Chaumont [12] we define the normalized excursion of X above its infimum
as the re-normalized excursion of X above its infimum straddling time 1. More precisely,
set
g, = sup{s < 1; X; = [ionsf] X} and d; =inf{s>1; X; = [ionsf] X}.

Note that X, = Xg1 since a.s. X has no jump at time g L and X has no negative jumps .
Then the normalized excursion X*¢ of X above its infimum is defined by
X5 = (d - g,) (X,

sd—g,) ~ Xﬁl) for every s € [0, 1]. (2.2)

EJP 19 (2014), paper 108. ejp.ejpecp.org
Page 5/35


http://dx.doi.org/10.1214/EJP.v19-2732
http://ejp.ejpecp.org/

Random stable looptrees

We shall see later in Section 3.1.2 another useful description of X®*¢ using the It6
excursion measure of X above its infimum. Notice that X°*¢ is a.s.a random cadlag
function on [0, 1] such that X§* = X*® = 0 and X > 0 for every s € (0,1). If Y is a
cadlag function, we set AY; = Y; — Y;_, and to simplify notation, for 0 < ¢ < 1, we write

_ exc exc
Ay = X — X

and set Ay = 0 by convention.

2.2 The stable Lévy tree

We now discuss the construction of the a-stable tree 7,, which is closely related to
the a-stable looptree. Even though it possible to define .%,, without mentioning 7, this
sheds some light on the intuition hiding behind the formal definition of looptrees.

2.2.1 The stable height process

By the work of Le Gall & Le Jan [26] and Duquesne & Le Gall [17, 18], it is known that
the random excursion X°*¢ encodes a random compact R-tree 7, called the a-stable
tree. To define 7,, we need to introduce the height process associated with X°*¢. We
refer to [17] and [18] for details and proofs of the assertions contained in this section.
First, for 0 < s <t <1, set
I! = inf X°*.
[s,t]
The height process H* associated with X®*¢ is defined by the approximation formula

1
foc — g]i]’(l) g A dS ]]_{ngc<[é+€}, te [0, 1],
where the limit exists in probability. The process (H{*)o<;<1 has a continuous modifica-
tion, which we consider from now on. Then H®* satisfies H{*® = H{*® = 0 and H{* > 0
for t € (0,1). It is standard to define the R-tree coded by H**¢ as follows. For every
h:[0,1] 5 Ry and 0 < s,t < 1, we set

dp(s,t) = h(s) + h(t) — 2 [min(s,tl)l,lelax(s,t)] h. (2.3)
Recall that a pseudo-distance d on a set X isamap d: X x X — R such that d(z,2) =0
and d(z,y) < d(z, z)+d(z,y) for every z, y, z € X (it is a distance if, in addition, d(z,y) > 0
if z # y). It is simple to check that dj, is a pseudo-distance on [0,1]. In the case h = H®*,
for z,y € [0,1], set x ~ y if dgexc(x,y) = 0. The random stable tree 7, is then defined as
the quotient metric space ([0, 1]/ ~,d Hexc), which indeed is a random compact R-tree
[18, Theorem 2.1]. Let 7 : [0,1] — 7, be the canonical projection. The tree 7, has a
distinguished point p = 7(0), called the root or the ancestor of the tree. If u,v € T,
we denote by [[u,v]] the unique geodesic between u and v. This allows us to define a
genealogical order on 7,: For every u,v € T,, set u g v if u € [[p,v]. If u,v € T,, there
exists a unique z € 7, such that [[p,u]] N [[p,v] = [[p, z]|, called the most recent common
ancestor to v and v, and is denoted by z = u A v.

2.2.2 Genealogy of 7, and X

The genealogical order of 7, can be easily recovered from X°* as follows. We define
a partial order on [0, 1], still denoted by =, which is compatible with the projection
7 :[0,1] — T, by setting, for every s,t € [0, 1],

sxt if s<t and X<
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where by convention X§*® = 0. It is a simple matter to check that < is indeed a partial
order which is compatible with the genealogical order on 7, meaning that a point a € 7,
is an ancestor of b if and only if there exist s < ¢ € [0,1] with a = n(s) and b = 7 (¢). For
every s,t € [0,1], let s A ¢t be the most recent common ancestor (for the relation < on
[0,1]) of s and ¢. Then 7(s A t) also is the most recent common ancestor of 7(s) an 7 (¢) in
the tree 7.

We now recall several well-known properties of 7,. By definition, the multiplicity
(or degree) of a vertex u € 7, is the number of connected components of 7,\{u}.
Vertices of 7,\{p} which have multiplicity 1 are called leaves, and those with multiplicity
at least 3 are called branch-points. By [18, Theorem 4.6], the multiplicity of every
vertex of 7, belongs to {1,2,c0}. In addition, the branch-points of 7, are in one-to-one
correspondence with the jumps of X°* [29, Proposition 2]. More precisely, a vertex
u € T, is a branch-point if and only if there exists a unique s € [0, 1] such that u = 7 (s)
and AX$* = Ag > 0. In this case A intuitively corresponds to the “number of children”
(although this does not formally make sense) or width of 7(s).

We finally introduce a last notation, which will be crucial in the definition of stable
looptrees in the next section. If s,¢ € [0,1] and s < ¢, set

vo=1I - X €[0,Al].

Roughly speaking, = is the “position” of the ancestor of 7 (¢) among the A “children” of

7(s).

2.3 Definition of stable looptrees

Informally, the stable looptree .7, is obtained from the tree 7, by replacing every
branch-point of width x by a metric cycle of length z, and then gluing all these cycles
along the tree structure of 7, (in a very similar way to the construction of discrete
looptrees from discrete trees explained in the Introduction, see Figures 1 and 2). But
making this construction rigorous is not so easy because there are countably many loops
(non of them being adjacent).

Recall that the dependence in « is implicit through the process X“*°. For every
t € [0,1] we equip the segment [0, A;] with the pseudo-distance §; defined by

6i(a,b) = min{la—b,Ar—|a—bl},  a,be0,A].

Note that if A; > 0, ([0, A;), d;) is isometric to a metric cycle of length A, (this cycle will
be associated with the branch-point 7 (¢) in the looptree %, as promised in the previous
paragraph).

For s <t € [0,1], we write s < t if s < t and s # ¢. It is important to keep in mind that
< does not correspond to the strict genealogical order in 7, since there exist s < ¢t with
7(s) = n(t). The stable looptree .%, will be defined as the quotient of [0, 1] by a certain
pseudo-distance d involving X°*¢, which we now define. First, if s < ¢, set

do(s,t) = Y 6,(0,2b). (2.4)

s<rxt

In the last sum, only jump times give a positive contribution, since §,.(0,zt) = 0 when
A, = 0. Note that even if ¢ is a jump time, its contribution in (2.4) is null since §;(0, z}) = 0
and we could have summed over s < r < t. Deliberately, we do not allow r = s in (2.4).
Also, it could happen that there is no r € (s, ] such that both s < r and r < ¢ (e.g. when
s = t) in which case the sum (2.4) is equal to zero. Heuristically, if s < r < ¢, the term
5,(0,x!) represents the length of the portion of the path going from (the images in the

EJP 19 (2014), paper 108. ejp.ejpecp.org
Page 7/35


http://dx.doi.org/10.1214/EJP.v19-2732
http://ejp.ejpecp.org/

Random stable looptrees

looptree of) s to t belonging to the loop coded by the branch-point r (see Figure 5). Then,
for every s,t € [0,1], set

d(s,t) = Sspt(@ing, ¥ing) +do(s AL, s) 4+ do(s At,t). (2.5)

Loop of length A,
corresponding to the branch point 7(r)

Loop corresponding to the branch point (s A t)

Figure 5: Illustration of the definition of d. The geodesic between the images of s and ¢
in the looptree is in bold. Here, s At < r < t. This is a simplified picture since in stable
looptrees no loops are adjacent.

Let us give an intuitive meaning to this definition. The distance d(s,t¢) contains
contributions given by loops which correspond to branch-points belonging to the geodesic
[[7(s),7(¢)] in the tree: the third (respectively second) term of the right-hand side of (2.5)
measures the contributions from branch-points belonging to the interior of [[r(sAt), 7 (t)]]
(respectively [[7(s A t),n(s)])), while the term ds,¢ (22, 7% ,,) represents the length of the
portion of the path going from (the images in the looptree of) s to ¢ belonging to the
(possibly degenerate) loop coded by 7(s A t) (this term is equal to 0 if 7(s A t) is not a
branch-point), see Figure 5.

In particular, if s < ¢, note that

d(s,t) = 0u(0,2!) +do(s,t) = D 5:(0,ab). (2.6)

Lemma 2.1 (Bounds on d). Let r,s,t € [0,1]. Then:
(i) (Lower bound) If s < r < t, we have d(s,t) > min(al, A, — al).
(ii) (Upper bound) If s < t, we have d(s,t) < X 4 X — 2]t,
Proof. The first assertion is obvious from the definition of d :
d(s,t) > 6,(0,2L) > min(z!, A, — 2%)
For (ii), let us first prove that if s < ¢ then
do(s,t) < XX — I (2.7)

(Note that Xf* — I > 0 because s # t.) To this end, remark that if s < r < ¢ and
s<r' <t thenr <7 orr’ < r. It follows thatif s < 9 < r; < -+ < r, = t, using the

EJP 19 (2014), paper 108. ejp.ejpecp.org
Page 8/35


http://dx.doi.org/10.1214/EJP.v19-2732
http://ejp.ejpecp.org/

Random stable looptrees

fact that I;» = I;;*" for 0 <i < n —1, we have

Z 6r, (0, x;?) < Z -TT" + 0., (0, mT")
=0
n—1
= > (I - xRE) +0
=0
n—1
< 3 (e xme) = xme - am <X

T0—
=0

where for the last inequality we have used the fact that I! < Xﬁ;‘i since s < rg < t. Since
do(s,t) = >, < 0-(0,x}.), this gives (2.7).

Let us return to the proof of (ii). Let s < ¢. If s < ¢, then by (2.6) and treating the
jump at s separately we can use (2.7) to get

d(s,t)

85(0,2) + do(s,t)
(A —af) + (XX = 1Y)

S

— (XL A, —TH) 4 (X2 — If) = X 4 X — 2],

IN

Otherwise s At < s. It is then easy to check that I? = I!,,. In addition, dsa¢ (2%, 25,,) <
xi, — b =15 —It,, =1I%,, —I'. Then by (2.5) and (2.7) we have

d(s,t) < Iiny — Io+ (X750 = Iop) + (X3 = I05,) = X3+ X7 — 210
This completes the proof. O

Proposition 2.2. Almost surely, the function d(-,-) : [0,1] x [0,1] — R is a continuous
pseudo-distance.

Proof. By definition of d and Theorem 2.1, for every s,t € [0,1], we have d(s,t) <
2sup X*° < oco. The fact that d satisfies the triangular inequality is a straightforward
but cumbersome consequence of its definition (2.5). We leave the details to the reader.

Let us now show that the function d(-,-) : [0, 1] x [0, 1] — R is continuous. To this end,
fix (s,t) € [0,1])? and let s,,t,(n > 1) be real numbers in [0, 1] such that (sp,t,) — (s,t)
as n — oo. The triangular inequality entails

|d(s,t) = d(sn, tn)| < d(s,sn) +d(t,tn).

By symmetry, it is sufficient to show that d(s, s,,) — 0 as n — co. Suppose for a moment
that s,, T s and s,, < s, then by Theorem 2.1 (ii) we have

A(sp,8) < X4 XS 2[5 5 X4 X - 2XC = 0.

n—r oo

The other case when s, | s and s,, < sis treated similarly. This proves the proposition. O

We are finally ready to define the looptree coded by X “*°.

Definition 2.3. For z,y € [0,1], set x ~ y if d(z,y) = 0. The random stable looptree of
index « is defined as the quotient metric space

Zo = ([0,1]/ ~,d).
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We will denote by p the canonical projection p : [0,1] — %,. Since d: [0,1] x [0,1] —
R is a.s.continuous by Theorem 2.2, it immediately follows that p : [0,1] — %, is
a.s.continuous. The metric space .%, is thus a.s.compact, as the image of a compact
metric space by an a.s. continuous map.

With this definition, it is maybe not clear why .%,, contains loops. For sake of clarity,
let us give an explicit description of these. Fix s € [0, 1] with A; > 0, and for u € [0, A,]
let s, = inf{t > s : X{*® = X{* —u}. It is easy to check that the image of {s, },c[0,a.] by
p in .Z, is isometric to a circle of length A, which corresponds to the loop attached to
the branch-point 7(s) in the tree 7.

To conclude this section, let us mention that it is possible to construct .Z,, directly
from the stable tree 7, in a measurable fashion. For instance, if v = n(s), one can
recover the jump A, as follows (see [29, Eq. (1)]):

a.s. . 1
A, = gg’)% gl\/lass {v e Tadr, (u,v) <e}, (2.8)

where Mass is the push-forward of the Lebesgue measure on [0, 1] by the projection
7 : [0,1] — T,. However, we believe that our definition of .%, using Lévy processes is
simpler and more amenable to computations (recall also that the stable tree is itself
defined by the height process H*¢ associated with X°*¢).

3 Properties of stable looptrees

The goal of this section is to prove Theorems 1.1 and 1.2. Before doing so, we
introduce some more background on spectrally positive stable Lévy processes. This will
be our toolbox for studying fine properties of looptrees. The interested reader should
consult [4, 5, 12] for additional details.

Let us stress that, to our knowledge, the limiting behavior of the normalized excursion
of a-stable spectrally positive Lévy processes as « | 1 (Theorem 3.6) seems to be new.

3.1 More on stable processes

3.1.1 Excursions above the infimum

In Section 2.1, the normalized excursion process X°*¢ has been introduced as the
normalized excursion of X above its infimum straddling time 1. Let us present another
definition X°*¢ using It6’s excursion theory (we refer to [5, Chapter IV] for details).

If X is an a-stable spectrally positive Lévy process, denote by X, = inf{X, : 0 < s < t}
its running infimum process. Note that X is continuous since X has no negative jumps.
The process X — X is strong Markov and 0 is regular for itself, allowing the use of
excursion theory. We may and will choose —X as the local time of X — X at level 0. Let
(95.d;),j € T be the excursion intervals of X — X away from 0. For every j € Z and s > 0,
set wl = X(g;+s)nd; — Xg;- We view w’ as an element of the excursion space &, defined
by:

E={weDR4,R;); w(0) =0and ((w) :=sup{s > O;w(s) >0} € (0,00)}.

Ifw € &, we call ((w) the lifetime of the excursion w. From It6’s excursion theory, the
point measure
N(dtdw) = Z 5(7§y,~ w3
JE€T
is a Poisson measure with intensity din(dw), where n(dw) is a o-finite measure on the set

£ called the It6 excursion measure. This measure admits the following scaling property.
For every A > 0, define SV : € — € by SN (w) = (AY/°w(s/A), s > 0). Then (see [12] or
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[5, Chapter VIII.4] for details) there exists a unique collection of probability measures
(Q(a), a > 0) on the set of excursions such that the following properties hold:

(i) For every a >0, n, (¢ =a)=1.
(ii) For every A > 0and a > 0, we have S (1)) = 1)
(#i1) For every measurable subset A of the set of all excursions:
e da
A) = A .
n(4) /0 B )aI‘(l —1/a)al/ot+1

In addition, the probability distribution ey, which is supported on the cadlag paths
with unit lifetime, coincides with the law of X®*¢ as defined in Section 2.1, and is also
denoted by n(-|¢ = 1). Thus, informally, n(:|¢ = 1) is the law of an excursion under the
It6 measure conditioned to have unit lifetime.

3.1.2 Absolute continuity relation for X

We will use a path transformation due to Chaumont [12] relating the bridge of a stable
Lévy process to its normalized excursion, which generalizes the Vervaat transformation
in the Brownian case. If U is a uniform variable over [0, 1] independent of X*, then the
process X' defined by

thr:{ X, ifU+t<1,

f 1
xes iU 4es1 ertel0dl

is distributed according to the bridge of the stable process X, which can informally be
seen as the process (X;; 0 <t < 1) conditioned to be at level zero at time one. See [5,
Chapter VIII] for definitions. In the other direction, to get X*° from X br we just re-root
X" by performing a cyclic shift at the (a.s.unique) time u,(X") where it attains its
minimum.

We finally state an absolute continuity property between X" and X®*°. Fix a € (0, 1).
Let F' : D(]0,a],R) — R be a bounded continuous function. We have (see [5, Chapter
VIII.3, Formula (8)]):

plfa(_Xa)
p1(0)

where p; is the density of X;. Note that by time reversal, the law of (X; — X(1_t)_)0§t§1
satisfies the same property.

The previous two results will be used in order to reduce the proof of a statement
concerning X®* to a similar statement involving X (which is usually easier to obtain).
More precisely, a property concerning X will be first transferred to X" by absolute
continuity, and then to X°* by using the Vervaat transformation.

E[F(X0<t<a)|=E|F(X;0<t<a)

3.1.3 Descents

Let Y : R — R be cadlag function. For every s,t € R, we write s <y t ifand only if s <t
and Y, <infj; 1Y, and in this case we set

24 (1)

S

t =1 — > t -
2 (Y)=infY —Y,_ >0, and wu,(Y) AY.

[s.t] ®

€10,1].

We write s <y if s <y t and s # t. When there is no ambiguity, we write = instead of
2t (Y), etc. For t€ R, the collection {(z%(Y),u’(Y)) : s < t} is called the descent of t in Y.

S
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As the reader may have noticed, this concept is crucial in the definition of the distance
involved in the definition of stable looptrees.

We will describe the law of the descents (from a typical point) in an a-stable Lévy
process by using excursion theory. To this end, denote X; = sup{X, : 0 < s < t} the
running supremum process of X. The process X — X is strong Markov and 0 is regular
for itself. Let (L;,t > 0) denote a local time of X — X at level 0, normalized in such a way
that IE [exp(—AX 1-1(4))] = exp(—tA“~!). Note that by [5, Chapter VIII, Lemma 1], L' is

a stable sgborﬁinator of index 1 — 1/«. Finally, to simplify notation, set x; = X, — Xs_

and u, = % for every s > 0 such that X, > X,_. In order to describe the law of

s

descents from a fixed point in an a-stable process we need to introduce the two-sided
stable process. If X' and X? are two independent stable processes on R, set X; = X}
fort > 0and X, = —X(2_t)_ for ¢t < 0.

Proposition 3.1. The following assertions hold.

(1) Let (X; : t € R) be a two-sided spectrally positive a-stable process. Then the
collection
{(=s,22(X),ul(X)) : 5 < 0}

S

has the same distribution as

{(s,xs,us);s >0s.t. Xy > Ys,}.

(7i) The point measure

Y Oz (3.1)

Xe>Xoo
is a Poisson point measure with intensity dl - xI(dx) - 1o 1)(r)dr.

Proof. The first assertion follows from the fact that the dual process X, defined by
X, = —X(_S)_ for s > 0, has the same distribution as X and that

((EgS(X)’ ugS(X)) = <Xs - }577 M)
X

for every s > 0 such that —s < 0, or equivalently ES > ES,.
For (ii), denote by (g;,d;);es the excursion intervals of X — X above 0. It is known
(see [4, Corollary 1]) that the point measure

> (Lg,, AXq,, AX )
jeJd
is a Poisson point measure with intensity dl-II(dz)- 19 5)(r)dr. The conclusion follows. [

We now state a technical but useful consequence of the previous proposition, which
will be required in the proof of the lower bound of the Hausdorff dimension of stable
looptrees.

Corollary 3.2. Fixn > 0. Let (X, : t € R) be a two-sided a-stable process. For ¢ > 0, set

2(X) > Ve
A; =1 3se[—¢,0l withs <0 and
AX, —20(X) > gl/etn

Then P(A¢) < C¢ for certain constants C,~y > 0 (depending on « and 7).
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Proof. Set B. = {3s € [0,¢] : X, > ¢'/*™" and AX, — z, > £'/*+7}. By Theorem 3.1 (i),
it is sufficient to establish the existence of two constants C,~y > 0 such that P(B¢) < Ce".
To simplify notation, set @ = 1 — 1/ and ¢, = ¢"(®~1)/2, Then write:

P(BY) < P(BS L. > ce®) + P(L. < cec®)
< P(Vss.t Ly <cee® 1 ay < /et or AX, — 4 < 51/0‘+") +P(L. < ce13.2)

Using the fact that (3.1) is a Poisson point measure with intensity dl - 2II(dx) - 1y 1;(r)dr,
it follows that the first term of (3.2) is equal to

exp <_C€ / d’l"/ {Tz>51/0¢+ﬂ and z(1— r)>51/a+n}> = €xp (_Ceea . Ce—n(a—l))

for a certain constant ¢ > 0. In addition,

a — € — —na
P(L. < cee )<IP<L11>(CEGQ)1/Q> <P(L7Y > e/,
The conclusion follows since P(L;* > u) = O(u™%) as u — oo. O

We conclude this section by a lemma which will be useful in the proof of Theorem 4.1.
See also [27, Proof of Proposition 7] for a similar statement.

Lemma 3.3. Almost surely, for every t > 0 we have

—infX = Zm (3.3)
[Of st
s>0

Proof. The left-hand side of the equality appearing in the statement of the lemma is
clearly a cadlag function. It also simple, but tedious, to check that the right-hand side
is a cadlag function as well. It thus suffices to prove that (3.3) holds almost surely for
every fixed ¢t > 0.

Set X, = X(t—s)— — X¢— for 0 < s < t, and to simplify notation set S, = SUP[g, ) X.In
particular, (X;,0 < s <t) and (XS, 0 < s <'t) have the same distribution. Hence

(5, > as) @ (thmeQ :xg(X)). (3.4)
0<s<t ot
s>0

Then notice that ladder height process (S —1,t > 0) is a subordinator without drift [5,
Chapter VIII, Lemma 1], hence a pure Jump process. This implies that S; is the sum of
its jumps, i.e. a.s Sy = > (., AS,. This completes the proof of the lemma. O

The following result is the analog statement for the normalized excursion.
Corollary 3.4. Almost surely, for everyt € [0, 1] we have
X?xc _ Z ch; (XEXC)'
0<s<t

Proof. This follows from the previous lemma and the construction of X“*¢ as the normal-
ized excursion above the infimum of X straddling time 1 in Section 2.1. We leave details
to the reader. O

In particular Theorem 3.4 implies that almost surely, for every 0 <t¢ <1,
Xtexc _ Z AXexc . XeXC) (3.5)
0<s<t

By (2.6), a similar equality, which will be useful later, holds almost surely for every
0<t<1:
d(0,t) = Y AXT - min (uf(X), 1 - ul (X™)). (3.6)

0sxt
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3.1.4 Limiting behavior of the normalized excursion as o | 1 and o 1 2

In this section we study the behavior of X“*“ as @ — 1 or a — 2. In order to stress the
dependence in «, we add an additional superscript (%), e.g. X (@), Xbr(a) xexc.(a) wi]]
respectively denote the a-stable spectrally positive process, its bridge and normalized
excursion, and II(®) n(®) will respectively denote the Lévy measure and the excursion
measure above the infimum of X (),

Limiting case o 1 2. We prove that X®%(® converges, as o 1 2, towards a multiple of
the normalized Brownian excursion, denoted by e (see Figure 6 for an illustration). This
is standard and should not be surprising, since the o = 2 stable Lévy process is just v/2
times Brownian motion.

Proposition 3.5. The following convergence holds in distribution for the topology of
uniform convergence on every compact subset of R,

e, (@) % V2 e (3.7)

Proof. We first establish an unconditioned version of this convergence. Specifically, if B
is a standard Brownian motion, we show that

x@ 95 (3.8)
at2

where the convergence holds in distribution for the uniform topology on D(][0, 1], R).
Since B is almost surely continuous, by [33, Theorems V.19, V.23] it is sufficient to check
that the following three conditions hold as « 1 2:

(a) The convergence Xéo‘) —V/2- By holds in distribution,

(b) For every 0 < s < t, the convergence Xt(a) - X® —+2.(B; — B,) holds in
distribution,

(c) For every d > 0, there exist ,e¢ > 0 such that for 0 < s <t < 1:

t—sl<n = ]P(|X§“)7X§a>\§5/2)ze.

It is clear that Condition (a) holds. The scaling property of X (@) entails that Xt(a) - X S(O‘)
has the same law as (¢ — 5)1/0‘ . X{a). On the other hand, for every u € R, we have

E [exp(iqua))} a—ﬁ) exp(—u?) = E [exp(iuﬁBl)} .

Condition (b) thus holds. The same argument gives Condition (c). This establishes (3.8).
The convergence (3.7) is then a consequence of the construction of X exc,(a) from

the excursion of X (®) above its infimum straddling time 1 (see Section 2.1). Indeed, by
Skorokhod’s representation theorem, we may assume that the convergence (3.8) holds
almost surely. Then set

gga) =sup{s <1: X = [inf] X1 and dga) =inf{s>1: X = [mf] X (@1

- 0,s 0,s
Similarly, define g(*, d'? when X(@ is replaced by v/2- B. Since local minima of Brownian
motion are almost surely distinct, we get that gﬁ“) — gf) a.s.as a T 2. On the other

side, since for every a € (1, 2], a.s.dgz) is not a local minimum of B (this follows from the
Markov property applied at the stopping time d@) we get that dga) — dgz) in distribution
as a 1 2. The desired convergence (3.7) then follows from (2.2). O
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Limiting case « | 1. The limiting behavior of the normalized excursion X*¢(®) ag
a | 1 is very different from the case o 1 2. Informally, we will see that in this case,
Xexe:(@) converges towards the deterministic affine function on [0, 1] which is equal to 1
at time 0 and 0 at time 1. Some care is needed in the formulation of this statement, since
the function x — lo<z<1(1 — ) is not cadlag. To cope up with this technical issue, we
reverse time:

Proposition 3.6. The following convergence holds in distribution in D([0,1],R):

(Xg‘j’t(f‘j,o <t< 1) % (thpp1y,0 <t < 1).
Remark 3.7. Let us mention here that the case o | 1 is not (directly) related to Neveu’s
branching process [32] which is often considered as the limit of a stable branching
process when a — 1. Indeed, contrary to the latter, the limit of X**“* when o | 1
is deterministic. The reason is that Neveu’s branching process has Lévy measure
r_QJI(O,OO)dr, but recalling our normalization (2.1), in the limit « | 1, the Lévy measure
11(®) does not converge to 7"*2]1(0700)(17“.

Theorem 3.6 is thus a new “one-big jump principle” (see Figure 6 for an illustration),
which is a well-known phenomenon in the context of subexponential distributions (see
[20] and references therein). See also [3, 19] for similar one-big jump principles.

Figure 6: Simulations of X () for respectively o = 1.00001 and a = 1.99.

The strategy to prove Theorem 3.6 is first to establish the convergence of X®*(®) on
every fixed interval of the form [e, 1] with € € (0, 1) and then to study the behavior near 0.

Lemma 3.8. Foreverye € (0,1),
(X7 e <t <1) =5 (1-te<t<l),
where the convergence holds in probability for the uniform norm.

Proof of Theorem 3.8. Following the spirit of the proof of Theorem 3.5, we first establish
an analog statement for the unconditioned process X (® by proving that

X@ 5 (—tt>0), (3.9

where the convergence holds in distribution for the uniform convergence on every
compact subset of R,. To establish (3.9), we also rely on [33, Theorems V.19, V.23]
and easily check that Conditions (a), (b) and (c) hold, giving (3.9). Fix ¢ € (0,1/10). We
shall use the notation [a £ ] := [a — b,a + b] for a € R and b > 0. We also introduce the

EJP 19 (2014), paper 108. ejp.ejpecp.org
Page 15/35


http://dx.doi.org/10.1214/EJP.v19-2732
http://ejp.ejpecp.org/

Random stable looptrees

functions ¢(s) =1 — s and 4.(s) =1 — e — s for s € [0,1]. To prove the lemma, we show
that for every € > 0 we have

n({w e [l—txe], Vteel]} | =1) — 1.

By the scaling property of the measure n(® (see property (iii) in Section 3.1.1), it is

sufficient to show that

@(a)< sup |w; —£(t)] <10 [ (€1 :i:s]) — 1. (3.10)
tele (] ol

For ¢ > 0, denote by qﬁa)(dx) the entrance measure at time ¢ under n(*), defined by
relation

n“Wﬂwﬂ@»ﬂ=Awfmmwww

for every measurable function f : R, — R, Then, using the fact that, for every
t > 0, under the conditional probability measure n(® (-|¢ > t), the process (Wits)s>0
is Markovian with entrance law qt (dm) and transition kernels of X(® stopped upon
hitting 0, we get

Q(a)< sup |wy —£(t)] <10e|¢ €[l :t&])

1 o0
S @) (@ P ( sup [X* —¢_(t)] < 10e and R
q x) P, sup <10e¢ and 7 € exel),
wcenza ), @ (,sup 1XE7 — £ett) | )

(3.11)

where ngo‘) denotes the distribution of a standard a-stable process X (@) started from z
and stopped at the first time 7 when it touches 0. From (3.9) it follows that for every
0 € (0,¢) the convergence

nga)(sumX(a) — (| <10cand 7 € [1 —sis]) !
0.7 i

holds uniformly in z € [1 — e &+ (¢ — §)]. Consequently
/ qé“)(daz)ngo‘)(sup | X — ¢ <10cand 7€ 1 —e=+ 5])
0

lim in 10.7] >1. (3.12)
' /0 (a)(dl‘) z€[l—e£(e—9)]

On the other hand, we can write provided that 20 < ¢ (notice that 1 — e + 2§ > ¢)

0 (¢ €1+ (e - 25)]) = /OOO ol (da) P (7 € [1— e % (= - 26)]).

Convergence (3.9) then entails that g(z,«) := pL) (1 € [1 —e =+ (e — 29)]) also tends
towards 0 as « | 1, uniformly for x € Ry\[l — ¢ £+ (¢ — 0)]. Since the total mass
fo d:z: = n(®(¢ > ¢) is finite, the dominated convergence theorem implies that

/ ¢ (dz)g(z,a) — 0.
Ry \[1—e£(e—0)] all

Finally, as g(z, ) is bounded by 1 we get by dominated convergence and the last display
that

/ (a)(dl“) z€[l—ex(e—6)] / (a)(dﬂ?) z€[l—ex(e—6)]

lim inf = liminf > 1(3.13)
(a) _ =z
it m(Ce L £ (e -20)) o / ¢\ (dx)g(w, o)
0
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Combining (3.12) and (3.13) with (3.11) we deduce that

) > n(C e 1+ (e —29)) (3.14)

. () _
hI;lillan ( sup |wy —£(t)] <10e [ ¢ € [1 £ ¢] n(@(¢ e[l +¢])

756[5(]

Since n(*)(¢ > t) =t~/*/T(1 — 1/a) by property (iii) in Section 3.1.1, it follows that the
right-hand side of (3.14) tends to 1 as 6 — 0. This completes the proof. O

We have seen in Theorem 3.8 that X®%(®) converges to the deterministic function
x +— 1 — x over every interval [¢, 1] for every € > 0. Still, this does not imply Theorem 3.6
because, as a | 1, the difference of magnitude roughly 1 between times 0 and ¢ could
be caused by the accumulation of many small jumps of total sum of order 1 and not by
a single big jump of order 1. We shall show that this is not the case by using the Lévy
bridge X"*(®) and and a shuffling argument.

Proof of Theorem 3.6. Fore > 0and Y : [0,1] — R, let J(Y,¢) be the set defined by

Wye) = {Hu cp: YOI vefou) }

Y(t) — (1-t)| <e Vi€ [u+e 1]N[0,1]

Applying the Vervaat transformation to X""(®), we deduce from Theorem 3.8 that for
every € > 0 we have

]P(J(Xb"(“),g)) — L (3.15)

We then rely on the following result:

Lemma 3.9. For every o € (1,2), let (Bfa);o <t < 1) be a cadlag process with 0 =
B = B\*) and such that the following two conditions hold:

(i) For every e > 0, we have ]P(J(B(a),a)) —lasall;

(ii) For every a € (1,2) and every n > 1, the increments

{(Bt(zz/n o Bz‘(;lrz)ogtgl/n 0<i<n- 1}
are exchangeable.
Then
B (%* (Lwey -0t <1), (3.16)

where the convergence holds in distribution for the Skorokhod topology on D([0, 1], R)
and where U is an independent uniform variable over [0, 1].

If we assume for the moment this lemma, the proof of Theorem 3.6 is completed
as follows. The Lévy bridges XP"(®) satisfy the assumptions of Lemma 3.9. Indeed,
(i) is satisfies thanks to (3.15) and (ii) follows from absolute continuity. Lemma 3.9
entails that XPr (@) (ﬂ{Ugt} - 0<t< 1) the convergence holds in distribution for
the Skorokhod topology as « | 1. It then suffices to apply the Vervaat transform to the
latter convergence to get the desired result. O

It remains to establish Lemma 3.9.
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Proof of Lemma 3.9. Fix a € (1,2) and n > 1. We introduce the following shuffling
operation on B(®): cut the bridge B(® into n pieces between times [i/n, (i + 1)/n]
for 0 < i < n — 1. Then “shuffle” these n pieces uniformly at random, meaning that
these n pieces are concatenated after changing their order by using an independent
uniform permutation of {1,2,...,n}. Denote by B(@)n the process obtained in this way.
Assumption (ii) garantees that B(®)" has the same distribution as B(®. In particular, for
every € > 0, P(J(B(" ¢)) — 1 as a | 1, uniformly in n.

First step: at most one large jump. We first show that for every § > 0, the probability
that there are two jumps in B(®) larger than J tends to 0 as « | 1. To this end, argue by
contradiction and assume that there exists n > 0 such that along a subsequence oy, | 1
with probability at least 7 the bridge B(®*) has two jump times Tl(k) =+ TQ(k) at which
A(@+) is greater than 6. Now, choose n; — oo so that

P (‘Tf’” - Tgk)‘ >1/m) — 1.
— 00

But, conditionally on the event {|T1(k) - Tz(k)| > 1/ni} , with probability tending to one as
k — oo, these two jumps will fall in different time intervals of the form [i/ng, (i + 1)/nk]
in the shuffled process B(®*)"+ Hence, we deduce that with probability ¢ asymptotlcally
larger than 7/100 (this value is not optimal), there exist two jump times T k) and T k) of
B(@r):me guch that

T 7 1 ag),mn ag),n
i7" — TM