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Abstract

Kardar-Parisi-Zhang (KPZ) equation is a quasilinear stochastic partial differential
equation(SPDE) driven by a space-time white noise. In recent years there have been
several works directed towards giving a rigorous meaning to a solution of this equa-
tion. Bertini, Cancrini and Giacomin [2, 3] have proposed a notion of a solution
through a limiting procedure and a certain renormalization of the nonlinearity. In
this work we study connections between the KPZ equation and certain infinite di-
mensional forward-backward stochastic differential equations. Forward-backward
equations with a finite dimensional noise have been studied extensively, mainly mo-
tivated by problems in mathematical finance. Equations considered here differ from
the classical works in that, in addition to having an infinite dimensional driving noise,
the associated SPDE involves a non-Lipschitz (specifically, a quadratic) function of the
gradient. Existence and uniqueness of solutions of such infinite dimensional forward-
backward equations is established and the terminal values of the solutions are then
used to give a new probabilistic representation for the solution of the KPZ equation.
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1 Introduction

In [16] probabilistic representations for solutions of certain quasilinear stochastic
partial differential equations(SPDE) in terms of finite dimensional forward-backward
stochastic differential equations have been studied. The driving noise in the SPDE
of [16] is a finite dimensional Brownian motion. The paper shows that such representa-
tions can be used to prove existence and uniqueness results for the associated quasilin-
ear equation. In recent years there have been many works that have established simi-
lar probabilistic representations for more general partial differential equations; see for
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Forward-backward SDE and KPZ equation

example [23] for such results for fully nonlinear equations. Backward stochastic differ-
ential equations have a long history of applications in financial mathematics; see [13]
for a survey of the field; also see [12] or [17] for some modern applications. They have
also motivated numerical methods for nonlinear partial differential equations; see for
example [6] or [21].

In this work we are interested in a quasilinear SPDE driven by a space-time white
noise of the following form

∂th(t, x) = ∂2xh(t, x)/2− (∂xh(t, x))2/2 + Wt(x), t ∈ [0, T ], x ∈ R. (1.1)

Here W is the formal white noise field:

EWt(x)Ws(y) = δ(t− s)δ(x− y),

where δ is the Dirac delta function. The above equation, known as the Kardar-Parisi-
Zhang (KPZ) equation has been proposed in [10] to describe the long scale behav-
ior of interface fluctuations in certain random polymer growth models. The solution
h(t, x) ≡ ht(x) represents the height of the interface at time t and location x. The equa-
tion (1.1) is ill posed in that, due to lack of spatial regularity of the noise, differentiable
solutions do not exist and the nonlinear term on the right side of the equation does
not allow a weak sense formulation of a solution. In [2] and [3] an interpretation of a
solution of (1.1) is proposed through a limiting procedure and a certain ‘Wick renormal-
ization’ of the nonlinear term. The Bertini-Cancrini-Giacomin (BCG) solution of (1.1)
was shown in [3] to arise as a scaling limit of the fluctuation field for a microscopic
interface model known as the ‘weakly asymmetric single step solid on solid process’. In
recent years there have been several interesting papers that have studied scaling limits
for similar particle models characterizing them through equations of the form (1.1); see
for example [1], [7], [4] and references therein. In a different direction, a recent paper
[8] has proposed a notion of a solution of (1.1) using rough path theory.

In this work we give a probabilistic representation of the BCG solution of (1.1)
through solutions of certain infinite dimensional forward-backward stochastic differ-
ential equations. Although it is not clear whether the formulation of a solution to (1.1)
given in this work enables one to prove new scaling limit theorems for stochastic parti-
cle systems, we believe that the probabilistic representations obtained here are natural
for the study of nonlinear SPDE of the form (1.1). They can be regarded as extensions
of classical Feynman-Kac formulae for solutions of linear SPDE[14, 15, 19]. One use of
such probabilistic representations is in proving existence and uniqueness of solutions
of quasilinear SPDE. Indeed the classical work of Pardoux and Peng[16] proves well-
posedness of certain nonlinear SPDE driven by a finite dimensional noise using prob-
abilistic representations of the form (1.1). Furthermore, such representations can be
used to obtain numerical schemes to solve nonlinear equations. There is an extensive
literature (cf. [13, 5] and references therein) that takes probabilistic representations
for solutions of partial differential equations as a starting point to develop numerical
schemes and to show their convergence properties. The current work extends the mod-
els studied in [16] to a setting where the driving noise is infinite dimensional. Another
significant difference from the setting considered in [16] is that the equation (1.1) in-
volves a quadratic function of the gradient while [16] considers the case of a Lipschitz
non-linearity. Quadratic non-linearity has been studied by several authors in the set-
ting of finite dimensional backward stochastic differential equations; see for example
[11], [22]. However, none of these works treat equations involving both forward and
backward stochastic integrals or the setting of an infinite dimensional noise.

A precise description of the representation obtained in this work requires some
mathematical notation and background, which is given in Section 2, however below
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we proceed formally in order to describe the basic idea. Denote by Gt the standard
heat kernel on R×R. Then a solution of (1.1) can formally be expressed as

h(S, x) = GS ?h0(x)− 1

2

∫ S

0

GS−r ?(∂xh(r, ·))2 (x)dr+

∫
R×[0,S]

GS−r(x, y)W (dy, dr), (1.2)

for S ∈ [0, T ] and x ∈ R, and where ? denotes the convolution in space and h0(x) =

h(0, x) is the initial condition for (1.1). Fix S ∈ [0, T ] and x ∈ R. Let W be a standard
Brownian Motion independent of W and XS

r (x) = x+W (S)−W (r), for r ∈ [0, S] . Then
one can rewrite the expression in the above display as

h(S, x) = E

[
h0(XS

0 (x))− 1

2

∫ S

0

(
∂xh(r,XS

r (x))
)2
dr +

∫ S

0

W (XS
r (x), dr)

∣∣∣∣∣ FW

]
, (1.3)

where FW denotes the σ-field generated by W . The stochastic integral on the right
side above is of course entirely formal (as is much of this description). Define stochastic
processes

zS(r, x) = ∂xh(r,XS
r (x)), yS(r, x) = h(r,XS

r (x)), r ∈ [0, S]. (1.4)

Note that the values of these processes at time r depend on the past values (i.e. val-
ues over [0, r]) of W and the future increments (those over [r, S]) of W . Also note
that yS(S, x) = h(S, x). Let, for 0 ≤ r ≤ S, FW

r ∨ FW
r,S be the σ -field generated by

{W (s, x), s ≤ r, x ∈ R} and {W (S)−W (u), 0 ≤ r ≤ u ≤ S}. Then (1.3) can be written as

h(S, x) =yS(S, x)

=E

[
h0(XS

0 (x))− 1

2

∫ S

0

zS(r, x)2dr +

∫ S

0

W (XS
r (x), dr)

∣∣∣∣∣ FW
S ∨FW

S,S

]
.

The above formula suggests an evolution equation for yS(u, x), 0 ≤ u ≤ S of the follow-
ing form

yS(u, x) = h0(XS
0 (x))− 1

2

∫ u

0

zS(r, x)2dr+

∫ u

0

W (XS
r (x), dr)+MS(u, x), 0 ≤ u ≤ S, (1.5)

where the process MS(u, x), u ∈ [0, S], is such that

E
[
MS(u, x)

∣∣ FW
u ∨FW

u,S

]
= 0,

Thus if one can make (1.5) rigorous, one can then obtain a solution h(S, x) of (1.1) by
evaluating the solution of (1.5) at u = S. The goal of this work is to show that after a
suitable mollification of the infinite dimensional noise, the above equation can indeed
be interpreted in a rigorous manner. The stochastic process MS(u, x) in the mollified
equation (see (2.5)) is given as a backward stochastic integral with respect to W . Our
main result (Theorem 2.2) says that there is a unique pair of processes (zS(·, x), yS(·, x))

(in a suitable class) that satisfy equation (2.5). This equation is a forward-backward
SDE with a quadratic nonlinearity on the right side. The non-Lipschitz feature of the
nonlinearity makes the uniqueness proof somewhat challenging. Our proof relies on
certain truncation arguments along with Tanaka’s formula and properties of local times
of backward semimartingales. Denoting the solution of (2.5) as (ykS , z

k
S), where k ∈

N is a mollification parameter, we also give a Feynman-Kac formula for ykS(t, x) that
involves the two noise processes W and W (see Lemma 3.1). When t = S, this formula
after some simplification reduces to the formula for the logarithm of the solution of the
mollified stochastic heat equation given in [2] (see (2.17) in [2] and also the proof of
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Theorem 2.2 in the current work). More generally, for 0 ≤ t ≤ S, we have that ykS(t, x) =

− logψk(t, x + W (S) −W (t)), where ψk is the solution of the mollified stochastic heat
equation with the mollification parameter k (see (4.2)). Let ST = {(t, S) : 0 ≤ t ≤ S ≤
T}. Then, letting yk = {ykS(t, x) : (t, S) ∈ ST , x ∈ R} we have that {yk}k≥1 is a sequence
of random variables with values in C(ST × R : R) (the space of continuous functions
from ST × R to R equipped with the usual topology of local uniform convergence). It
then follows, using Theorem 2.1 of [3], that yk converges in distribution to a limit y
and, letting h(S, x) = yS(S, x), S ∈ [0, T ], h is the solution of (1.1) (see Theorem 2.3).
In contrast to the Feynman-Kac formula, equation (2.5) gives a stochastic differential
equation which can in principle be (numerically) solved in a dynamic fashion to yield an
approximation for the solution of the KPZ equation.

In the next section, we give a precise formulation and present our main results.

2 Mathematical Preliminaries and Main Results.

In order to state our precise representation for the BCG solution of (1.1) we need
some notation. Let H = L2(R, dx), i.e. the Hilbert space of square integrable (with
respect to the Lebesgue measure) functions on the real line. We will denote the inner
product and the norm on H by 〈·, ·〉 and ‖ · ‖, respectively. Let (Ω,F ,P) be a complete
probability space on which is given a collection of continuous real stochastic processes
{Bt(h); t ≥ 0}h∈H that defines a cylindrical Brownian motion (c.B.m) on H. Namely,

• Bt(0) = 0 and for each nonzero h ∈ H, Bt(h)〈h, h〉−1/2 is a one dimensional stan-
dard Wiener process.

• For each h ∈ H, {Bt(h)}t≥0 is a FBt martingale, where FBt = σ{Bs(v) : s ≤ t, v ∈
H} ∨ N and N is the collection of all P null sets.

Next, following [3], we consider a regularized version of (1.1). Let ζ ∈ C∞0 (R) [ space of
smooth functions on the real line with compact support] be a nonnegative even function
such that

∫
R
ζ(x)dx = 1. For k ∈ N, let ζk(y) = kζ(ky), y ∈ R. For x ∈ R, define

ζkx ∈ C∞0 (R) as ζkx(y) = ζk(x− y), y ∈ R. Consider the Gaussian random field

Bk(t, x) = Bt(ζ
k
x), t ≥ 0, x ∈ R

with covariance

EBk(t, x)Bk
′
(s, y) = (t ∧ s)Ck(x− y), x, y ∈ R, t, s ∈ [0,∞),

where

Ck(x) = ζk ? ζk(x) ≡
∫
R

ζkx(y)ζk(y)dy.

Note that Ck(0) = k‖ζ‖2.
The mollified KPZ equation (see [3]) is given as follows.

hk(t, x) = h0(x) +
1

2

∫ t

0

(
∂2xh

k(s, x)−
(
(∂xh

k(s, x))2 − Ck(0)
))
ds+Bk(t, x). (2.1)

The initial condition h0 is a C(R) valued random variable, independent of B, satisfying
the following integrability condition

for every p > 0 there exist ap > 0 such that sup
x∈R

e−ap|x|Eep|h0(x)| ≡ bp <∞. (2.2)

The hypothesis imposed on the initial condition in (2.4) of [3] is weaker than the inte-
grability condition in (2.2), but the condition we impose covers all classical cases, in
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particular the combinations of the so called Brownian and Flat geometries (see last col-
umn of Table 5 in [4]). Note also that the assumption in (2.2) (and also condition (2.4)
of [3]) exclude the model setting considered in [1], and [20] where the initial condition
is a distribution.

Solution of (2.1) over any fixed time interval [0, T ] is understood in the weak sense,
namely, it is a {FBt }- adapted stochastic process {hk(t, ·)}0≤t≤T ≡ {hkt }0≤t≤T with sam-
ple paths in C([0, T ] : C(R)) ∩ C((0, T ] : C1(R)), such that for every smooth function ϕ

on R with a compact support

hkt (ϕ) = h0(ϕ) +
1

2

∫ t

0

[
hks(ϕ′′)−

(
(∂xh

k
s)2 − Ck(0)

)
(ϕ)
]
ds+Bkt (ϕ)

where for a function g on R (with suitable integrability properties), and a smooth func-
tion ϕ, g(ϕ) =

∫
R
g(x)ϕ(x)dx. Here C(R) [resp. C1(R)] is the space of continuous [resp.

continuously differentiable] functions on the real line.

The paper [3] shows that there is a unique solution of (2.1) in the class of processes
that satisfy

sup
t∈[0,T ],r∈R

e−a|r|E
[
e−2h

k
t (r)
]
<∞ for some a ∈ (0,∞).

Furthermore, the paper [3] shows that as k → ∞, hk converges in distribution (as a
C([0, T ] : C(R)) valued random variable) to a limit process h, which is defined to be the
solution of (1.1). Throughout this work, this process (strictly speaking – its probability
law on C([0, T ] : C(R))) will be referred to as the BCG solution of the KPZ equation.

We will now introduce a forward - backward stochastic differential equation asso-
ciated with (2.2). Assume, without loss of generality, that we are given on (Ω,F ,P)

another real standard Brownian motion W that is independent of (B, h0). For S > 0 and
0 ≤ t ≤ S, we denote

FWt,S = σ{W (s)−W (t) : s ∈ [t, S]} ∨ N , and FSt = FWt,S ∨ FBt ∨ σ{h0}.

Note that FS ≡ {FSt : t ∈ [0, S]} is not a filtration since the σ-fields in this collection
are neither increasing nor decreasing in t. However, abusing terminology, we will say a
stochastic process {Vt}t∈[0,S] is FS adapted if Vt is FSt measurable for every t ∈ [0, S].

Throughout we will fix a complete orthonormal system {γm}m∈N in H and denote
B(γm) = βm. Note that {βm}m∈N is a sequence of independent standard Brownian
motions, independent of W . For a FS adapted H-valued process {ϕ(t)}0≤t≤S satisfying

E
∫ S
0
‖ϕ(t)‖2dt <∞, the Itô stochastic integral

∫ t
0
〈ϕ(r), dBr〉 for t ∈ [0, S] is well defined

and is given as ∫ t

0

〈ϕ(r), dBr〉 =
∑
m∈N

∫ t

0

〈ϕ(r), γm〉dβm(r),

where the series on the right converges in L2(P).

For a family of sigma algebras {Gt; 0 ≤ t ≤ S}, let H p
S (G) [ resp. H ∞

S (G)] be the
space of measurable [resp. continuous] processes {φ(t) : t ∈ [0, S]} such that φ(t) is Gt
measurable for every t, and

E

∫ S

0

|φ(t)|pdt <∞ [ resp. E sup
t∈[0,S]

|φ(t)|2 <∞.]

For H ∈ H 2
S (FS), we denote the backward stochastic integral of H with respect to

W by
∫ S
t
H(r) ↓ dW . See Appendix for a brief review of such stochastic integrals.

EJP 19 (2014), paper 40.
Page 5/21

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v19-2709
http://ejp.ejpecp.org/


Forward-backward SDE and KPZ equation

Let XS
t (x) ≡ XS(t, x) = x+W (S)−W (t), for 0 ≤ t ≤ S and x ∈ R. Define

Zk(t, x) =

∫ t

0

〈ζkXS(r,x), dBr〉, (t, x) ∈ [0, S]×R. (2.3)

Note that ‖ζkx‖2 = ‖ζk0 ‖2 = Ck(0) for all x and consequently∫ t

0

‖ζkXS(r,x)‖
2dr = tCk(0) for all t ∈ [0, S]. (2.4)

Also, {ζkXS(t,x)}0≤t≤S is FS adapted and so the stochastic integral in (2.3) is well defined
and has the representation

Zk(t, x) =
∑
m∈N

∫ t

0

〈ζkXS(r,x), γm〉dβm(r)

with the series converging in L2(P). We now consider the following doubly backward
SDE

ykS(t, x) = h0(XS
0 (x))− 1

2

∫ t

0

(
zkS(r, x)2 − Ck(0)

)
dr + Zk(t, x)

−
∫ t

0

zkS(r, x) ↓ dW (r). (2.5)

Definition 2.1. We say the collection {ykS(t, x), zkS(t, x), 0 ≤ t ≤ S, x ∈ R} of real random
variables is a solution of (2.5) if for every x ∈ R, (ykS(·, x), zkS(·, x)) ∈H ∞

S (FS)×H 2
S (FS)

and the equation is satisfied for all (t, x) ∈ [0, S] × R, almost surely. We say that the
equation has a unique solution if {ỹkS(t, x), z̃kS(t, x), 0 ≤ t ≤ S, x ∈ R} is another such
collection then (ykS(t, x), zkS(t, x)) = (ỹkS(t, x), z̃kS(t, x)) a.s., for all (t, x) ∈ [0, S]×R.

Frequently, when clear from the context, we will suppress x and denote the solution
as {ykS(t), zkS(t)}0≤t≤S or merely as (ykS , z

k
S). The first result in this work establishes

wellposedness of the above equation.

Theorem 2.2. Fix k ∈ N and S > 0. Suppose that h0 is a C(R) valued random variable,
independent of (B,W ), satisfying (2.2). Then there exists a unique solution to (2.5).

Our second result concerns the asymptotic behavior of ykS , as k → ∞, and relation
with the KPZ equation. Let yk = {ykS(t, x) : (t, S) ∈ ST , x ∈ R}. Then {yk}k≥1 is a
sequence of random variables with values in C(ST × R : R) (the space of continuous
functions from ST × R to R equipped with the usual topology of local uniform conver-
gence).

Theorem 2.3. Fix x ∈ R and k ∈ N. Let h0 be as in Theorem 2.2 and, for k ≥ 1 and
S > 0, (ykS , z

k
S) be as obtained from Theorem 2.2. Then, the sequence yk converges in

distribution as k → ∞ to a C(ST × R : R) valued random variable y ≡ {yS(t, x), (t, S) ∈
ST , x ∈ R}. Furthermore, letting h(t, x) = yt(t, x), (t, x) ∈ [0, T ] × R, h is a solution of
(1.1).

We remark that from the formal discussion in the introduction (see (1.4)) one expects
that there is a modification of the random field (ykS , z

k
S) (denoted once more by the same

symbols) such that ykS is differentiable in x, the derivative is jointly continuous in (t, x)

and ∂xy
k
S(t, x) = zks (t, x). Although, this does not follow from the proof of Theorem

2.2, one can see from the arguments in the proof of Theorem 2.3 that in fact such a
modification is available. In fact as (4.3) shows that such a modification of ykS can be
obtained by solving a regularized stochastic heat equation.

The rest of this work is devoted to the proof of the above two results.
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3 Proof of Theorem 2.2.

Fix k ∈ N and S > 0. Suppose that (ykS , z
k
S) solves equation (2.5). Define

ukS(t, x) = exp(−ykS(t, x)), vkS(t, x) = ukS(t, x)zkS(t, x), 0 ≤ t ≤ S, x ∈ R. (3.1)

A formal application of Itô’s formula (Lemma 5.4) yields the following equation for
(ukS , v

k
S).

ukS(t, x) = u0(XS(0, x))−
∫ t

0

ukS(r, x)dZk(r, x) +

∫ t

0

vkS(r, x) ↓ dW (r), (3.2)

where u0(x) = exp(−h0(x)). The transformation in (3.1) thus motivates the study of
equation (3.2), and as a first step we will now establish the wellposedness of (3.2).
Namely, we first prove the existence and uniqueness of a pair (ukS , v

k
S), with appropriate

integrability and measurability properties, which satisfies (3.2). Note that the integrals
on the right side of (3.2) are well defined if (ukS , v

k
S) ∈H ∞

S (FS)×H 2
S (FS).

Lemma 3.1. Fix x ∈ R, k ∈ N and S > 0. Then there is a unique pair (ukS , v
k
S) ∈

H ∞
S (FS)×H 2

S (FS) that satisfies equation (3.2). Furthermore,

ukS(t, x) = E

[
u0(XS(0, x)) exp

{
−Zk(t, x)− 1

2
Ck(0)t

} ∣∣∣∣ FS
t

]
. (3.3)

Finally, for any p ≥ 2, there is a C(p, k) ∈ (0,∞) such that, for all x ∈ R,

E sup
t≤S

ukS(t, x)p + E

(∫ t

0

vkS(r, x)2dr

)p/2
≤ C(p, k)(1 + Eu0(XS(0, x))4p). (3.4)

Proof. Since x, k and S are fixed, we omit them from the notation throughout this
proof. In particular we write Zk(t, x) and XS(t, x) as Z(t) and X(t) respectively. For a
stochastic process H = {H(t)}0≤t≤S , we define its time reversed path

H̃(t) = H(S − t)−H(S), 0 ≤ t ≤ S.

In particular,

B̃t(f) = BS−t(f)−BS(f), f ∈ H, and W̃ (t) = W (S − t)−W (S).

Define X̂(r) = x− W̃ (r). Then note that

Z̃(t) =Z(S − t)− Z(S) = −
∫ S

S−t
〈ζkX(r), dBr〉

=−
∑
m

∫ S

S−t
〈ζkX(r), γm〉dβm(r) =

∑
m

∫ t

0

〈ζk
X̂(r)

, γm〉dβ̃m(r)

=

∫ t

0

〈ζk
X̂(r)

, dB̃r〉, (3.5)

where the next to last equality follows on noting that

X̂(S − r) = x− W̃ (S − r) = x−W (r) +W (S) = X(r).

Let, for 0 ≤ t ≤ s ≤ S,

F B̃t,s = σ{B̃s(v)− B̃u(v) : u ∈ [t, s], v ∈ H} ∨ N
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and
FW̃t = σ{W̃ (s) : 0 ≤ s ≤ t} ∨ N = FWS−t,S . (3.6)

Note in particular that

F B̃t,S =σ{B̃S(v)− B̃u(v) : u ∈ [t, S], v ∈ H} ∨ N
=σ{Bu(v) : u ∈ [0, S − t], v ∈ H} ∨ N = FBS−t (3.7)

Also, let
F̃St = FW̃t ∨ F B̃t,S ∨ σ{h0} = FWS−t,S ∨ FBS−t ∨ σ{h0} = FSS−t. (3.8)

From Corollary 5.2 in the Appendix it follows that in order to prove the first statement of
the lemma it suffices to show that there exists a unique pair (û, v̂) ∈H ∞

S (F̃S)×H 2
S (F̃S)

that solves the time reversed equation

û(t) = u0(X̂(S)) +

∫ S

t

û(r) ↓ dZ̃(r)−
∫ S

t

v̂(r)dW̃ (r). (3.9)

The unique solution (u, v) of (3.2) can then be obtained on taking (u(t), v(t)) = (û(S −
t), v̂(S− t)). We now consider the unique solvability of (3.9). Let Gt = FW̃t ∨F B̃0,S ∨σ{h0}.
Recalling that ‖ζkx‖2 = Ck(0) for all x ∈ R and elementary properties of Brownian
motions, we see that

E sup
0≤t≤S

exp{m|Z(t)|} <∞, E exp{m|X̂(S)|} <∞, for all m ∈ N. (3.10)

Combining this with the integrability condition (2.2) and an application of Cauchy-
Schwarz inequality we have

E
[
u0(X̂(S)) exp{Z̃(S)}

]2
<∞.

Consequently,

M(t) = E

[
u0(X̂(S)) exp{Z̃(S)− 1

2
Ck(0)S} | Gt

]
, 0 ≤ t ≤ S, (3.11)

is a square integrable Gt - martingale. From a straightforward extension of the classi-
cal martingale representation theorem, there is a Gt-progressively measurable process
{J(t); 0 ≤ t ≤ S} such that E

∫ S
0
J(r)2dt <∞, and

M(t) = M(0) +

∫ t

0

J(r)dW̃ (r), 0 ≤ t ≤ S. (3.12)

Define, for 0 ≤ t ≤ S,

E(t) = exp{−Z̃(t) +
1

2
Ck(0)t}, V (t) = E(t)J(t), U(t) = E(t)M(t). (3.13)

We now show that (U, V ) ∈ H ∞
S (F̃S) ×H 2

S (F̃S). More precisely, for the process V we
will show that there is a Ṽ ∈ H 2

S (F̃S) such that Ṽ (t) = V (t) for a.e. t, a.s. Consider U
first. Note that U can be rewritten as

U(t) =E(t)

(
M(S)−

∫ S

t

J(r)dW̃ (r)

)
(3.14)

=u0(X̂(S))
E(t)

E(S)
− E(t)

∫ S

t

J(r)dW̃ (r).
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Forward-backward SDE and KPZ equation

From (3.13) and (3.5) it follows that U is {Gt} adapted. Next, using the independence

between Z̃(S) − Z̃(t) and F B̃0,t and that {M(t)} is a {Gt} martingale, we see from the
above display that

U(t) =E(U(t) | Gt)

=E

[
u0(X̂(S))

E(t)

E(S)
| Gt
]

(3.15)

=E

[
u0(X̂(S))

E(t)

E(S)
| FW̃t ∨ F B̃t,S ∨ σ{h0}

]
. (3.16)

Thus U is F̃S - adapted. We now argue that there is a Ṽ that is F̃S - adapted and such
that V (t) = Ṽ (t), for a.e. t, a.s. For c ∈ (0,∞), define Jc(r) = J(r)1|J(r|≤c. Let, for ε > 0

F cε =
1√
ε

∫ t+ε

t

Jc(r)dW̃ (r).

By Itô’s isometry, we have that

E

[
F cε

W̃ (t+ ε)− W̃ (t)√
ε

| Gt

]
= E

[
1

ε

∫ t+ε

t

Jc(r)dr | Gt
]
.

Sending ε→ 0, c→∞, and recalling that J(t) is Gt measurable, we have that

lim sup
c→∞

lim sup
ε→0

E

[
F cε

W̃ (t+ ε)− W̃ (t)√
ε

| Gt

]
= J(t) =

V (t)

E(t)
, a.e. t, a.s.

and therefore since E(t) is Gt measurable

V (t) = lim sup
c→∞

lim sup
ε→0

E

[
E(t)F cε

W̃ (t+ ε)− W̃ (t)√
ε

| Gt

]
a.e. t, a.s. . (3.17)

Define U c by replacing J with Jc on the right side of (3.14). Then a calculation similar
to the one leading to (3.16) shows that U c is F̃S - adapted.

Also note that

√
εE(t)F cε = exp{Z̃(t+ ε)− Z̃(t)− 1

2
Ck(0)ε}U c(t+ ε)− U c(t)

and consequently
√
εE(t)F cε is independent of F B̃0,t. Thus the right side of (3.17) equals

lim sup
c→∞

lim sup
ε→0

E

[
E(t)F cε

W̃ (t+ ε)− W̃ (t)√
ε

| F̃St

]

and so Ṽ defined by the right side of (3.17) is F̃S - adapted.
We now prove the stated integrability properties of (U, V ). From (3.15), for m ∈ N,

E sup
0≤t≤S

U(t)m ≤ E

[
sup

0≤t≤S
E

[(
u0(X̂(S))m

E(S)m
sup

0≤r≤S
E(r)m

)
| Gt

]]
. (3.18)

From (3.10) it follows that, for any m ≥ 1,

E

[
u0(X̂(S))m

E(S)m
sup

0≤r≤S
E(r)m

]
<∞.
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Standard martingale inequalities now show that the right side of (3.18) is finite, indeed
we have that, for every m ∈ N there are C1(m), C2(m) ∈ (0,∞) such that

E sup
0≤t≤S

U(t)m ≤C1(m)

(
1 + E

[
u0(X̂(S))2m

E(S)2m
sup

0≤r≤S
E(r)2m

])
≤C2(m)

(
1 + Eu0((X̂(S))4m

)
(3.19)

<∞.

Next consider V . By classical martingale inequalities (cf. Proposition 3.3.26 of [9]), for
every m ∈ N there is a bm ∈ (0,∞) such that

E

(∫ S

0

J(r)2dr

)m
≤ bm

(
EM(S)2m + EM(0)2m

)
.

Thus, recalling the definition of {M(t)} (see (3.11) ) and using (3.10) once more, we
have that for every m ∈ N there is a C3(m) ∈ (0,∞), such that

E

(∫ S

0

J(r)2dr

)m
≤C3(m)

(
1 + E(u0(X̂(S))4m)

)
(3.20)

<∞.

Next,

E

(∫ S

0

V (r)2dr

)m
=E

(∫ S

0

E(r)2J(r)2dr

)m

≤E

[(
sup

0≤r≤S
E(r)2m

)(∫ S

0

J(r)2dr

)m]
.

Finiteness of the last term is immediate from (3.10) and (3.20). In fact we have that for
every m ∈ N there is a C4(m) ∈ (0,∞), such that

E

(∫ S

0

V (r)2dr

)m
≤ C4(m)

(
1 + E(u0(X̂(S))8m)

)
. (3.21)

Combining (3.19), (3.21) and the F̃S adaptedness of (U, V ) we have in particular that
(U, V ) ∈ H ∞

S (F̃S) ×H 2
S (F̃S). By an application of Itô’s formula, we now see that, for

t ∈ [0, S]

U(t) = U(S) +

∫ S

t

U(r) ↓ dZ̃(r)−
∫ S

t

V (r)dW̃ (r). (3.22)

For completeness, we give a proof of the above equality in the Appendix.
Thus we have shown that (U, V ) is a solution of (3.9) and therefore, as noted earlier

(ukS(t), vkS(t)) ≡ (U(S − t), V (S − t)) (3.23)

defines a solution of (3.2). Representation (3.3) for the solution ukS is immediate from
the definition of Z̃ and (3.16). Also, it follows from (3.19) and (3.21) that the solution
satisfies (3.4) for any p ≥ 2.

We now prove uniqueness. Let (u, v), (u′, v′) ∈H ∞
S (F̃S)×H 2

S (F̃S) be two solutions
of (3.9). Then, the differences ξ = u− u′, and η = v − v′ satisfy

ξ(t) =

∫ T

t

ξ(r) ↓ dZ̃(r)−
∫ T

t

η(r)dW̃ (r).
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Using Lemma 5.4 (ii) in the Appendix, we get that

ξ(t)2 +

∫ S

t

η(r)2dr = 2

∫ S

t

ξ(r)2 ↓ dZ̃(r)− 2

∫ S

t

η(r)ξ(r)dW̃ (r) + Ck(0)

∫ S

t

ξ(r)2dr.

Taking expectations and using Gronwall’s inequality it follows that

Eξ(t)2 + E

∫ S

t

η(r)2dr = 0,

The unique solvability of (3.9), and consequently that of (3.2) follows. This completes
the proof of the lemma. 2

Proof of Theorem 2.2. As in the proof of Lemma 3.1, we will suppress n, k, S from the
notation, unless necessary. Let (u, v) ∈ H ∞

S (FS) ×H 2
S (FS) be the solution of (3.2).

We will obtain a solution of (2.5) by taking the logarithmic transform of u. We begin by
showing that

inf
0≤t≤S

u(t) > 0, a.s. (3.24)

Recall from (3.13) that u(t) = E(S− t)M(S− t), 0 ≤ t ≤ S. Clearly inf0≤t≤S E(S− t) > 0.
Also, from the expression of M(t) given in (3.11) we see that, for each t, M(t) > 0

a.s., since the random variable inside the conditional expectation is strictly positive
a.s. Also, since M is continuous, we have that inf0≤t≤SM(t) > 0 a.s. Combining these
observations we see that (3.24) holds. Define

y(t) = − log u(t), and z(t) =
v(t)

u(t)
. (3.25)

We now argue that (y, z) ∈H ∞
S (FS)×H 2

S (FS). For y note that

E sup
t∈[0,S]

y(t)2 ≤ E sup
t∈[0,S]

y(t)21u(t)≤1 + E sup
t∈[0,S]

y(t)21u(t)>1

≡ T1 + T2, (3.26)

Using the inequality 0 < log θ < θ for all θ > 1,

T2 ≤ E sup
t∈[0,S]

u(t)2 <∞.

Next consider T1. From (3.15), (3.23) and an application of Jensen’s inequality we have
that

|y(S − t)|1u(S−t)≤1 = − log
(
U(t)1U(t)≤1 + 1U(t)>1

)
= − logE

[
u0(X̂(S))

E(t)

E(S)
1U(t)≤1 + 1U(t)≥1

∣∣∣∣ Gt]
≤ −E

[
log

(
u0(X̂(S))

E(t)

E(S)
1U(t)≤1 + 1U(t)>1

) ∣∣∣∣ Gt]
= −E

[
log

(
u0(X̂(S))

E(t)

E(S)

) ∣∣∣∣ Gt]1U(t)≤1.

Recalling that u0 = exp{−h0}, we have

|y(S − t)|1u(S−t)≤1 ≤ E
[
|h0(X̂(S))|

∣∣∣ Gt]+ E
[
|Z̃(t)− Z̃(S)|

∣∣∣ Gt]+
1

2
Ck(0)(S − t).

Recalling that {Gt} is a filtration and that from (3.10) and (2.2)

E

(
sup

0≤t≤S
|Z̃(t)|2 + |h0(X̂(S))|2

)
<∞,
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we have by an application of Doob’s inequality that for some C1 ∈ (0,∞)

T1 = E sup
t∈[0,S]

y(t)21u(t)≤1 = E sup
t∈[0,S]

y(S − t)21u(S−t)≤1 <∞.

Using the above estimates on T1 and T2 in (3.26) we see that y ∈H ∞
S (FS).

We now consider z. Let p ≥ 2 and q be such that p−1 + q−1 = 1. Then using Holder’s
inequality

E

∫ S

0

z(r)2dr = E

∫ S

0

(
v(r)

u(r)

)2

dr

≤ E sup
t∈[0,S]

u(t)−2
∫ S

0

v(r)2dr

≤

(
E sup
t∈[0,S]

u(t)−2p

)p−1 (
E

(∫ S

0

v(r)2dr

)q)q−1

. (3.27)

From (3.15) and Jensen’s inequality

U(t)−2p = (E [U(t) | Gt])−2p

=

(
E

[
u0(X̂(S))

E(t)

E(S)

∣∣∣∣ Gt])−2p
≤ E

[(
u0(X̂(S))

)−2p E(S)2p

E(t)2p

∣∣∣∣ Gt] . (3.28)

Recalling (3.23), we have that

E sup
0≤t≤S

u(t)−2p = E sup
0≤t≤S

U(t)−2p

≤ E sup
0≤t≤S

E

[(
u0(X̂(S))

)−2p
E(S)2p sup

0≤r≤S
E(r)−2p

∣∣∣∣ Gt] . (3.29)

Also, from (3.10) and (2.2)

E

[(
u0(X̂(S))

)−4p
E(S)4p sup

0≤r≤S
E(r)−4p

]
<∞.

Since {Gt} is a filtration, we have that the conditional expectation in (3.29) is a martin-
gale and so by Doob’s maximal inequality it follows that

E sup
0≤t≤S

u(t)−2p <∞.

Combining this estimate with (3.21), (3.27) and recalling (3.23), we have that z ∈
H 2
S (FS).
To finish the proof of existence of solutions, we now verify that (y, z) defined in

(3.25) satisfy (2.5). We will apply Lemma 5.4 (i) with α = u, β = 0, γ = −u, δ = v,
and φ(x) = − log(x). Note that although φ is only C2 on (0,∞), (3.24) guarantees the
applicability of Itô’s formula. Representation (3.2), and Lemma 5.4 imply that

y(t) = y(0) +

∫ t

0

u(r)

u(r)
dZ(r)−

∫ t

0

v(r)

u(r)
↓ dW (r) +

∫ t

0

u(r)2

2u(r)2
Ck(0)dr −

∫ t

0

v(r)2

2u(r)2
dr

= y(0) + Z(t)−
∫ t

0

v(r)

u(r)
↓ dW (r)− 1

2

∫ t

0

((
v(r)

u(r)

)2

− Ck(0)

)
dr.
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From the fact that z(t) = v(t)/u(t), and y(0) = h(XS(0, x)) we see that this equation is
the same as (2.5). This completes the proof of existence.

We now prove uniqueness. Suppose (y, z), (ỹ, z̃) ∈ H ∞
S (FS) × H 2

S (FS) are two
solutions of (2.5). Let (ȳ, z̄) = (y−ỹ, z−z̃). ForM ∈ (0,∞), define ψM : R×R→ [−M,M ]

as ψM (a, b) = 1
2 (2a − b)1|2a−b|≤M . Let ϕM (r) = ψM (z(r), z̄(r)), r ∈ [0, S] and let yM be a

continuous process defined as

yM (t) = −
∫ t

0

z̄(r)ϕM (r)dr −
∫ t

0

z̄(r) ↓ dW (r). (3.30)

We will now show that

yM (t) = 0, a.s. for all t ∈ [0, S] and M ∈ (0,∞). (3.31)

Note that if (3.31) holds, we have on sending M →∞, and observing that yM (t)→ ȳ(t)

in probability, for every t ∈ [0, S], that y and ỹ are indistinguishable. Moreover, an
application of Itô’s formula (see Lemma 5.4(i)) shows that

y2M (t) = −2

∫ t

0

yM (r)z̄(r)ϕM (r)dr − 2

∫ t

0

yM (r)z̄(r) ↓ dW (r)−
∫ t

0

z̄2(r)dr

and so if (3.31) holds, we have that z(t) = z̃(t), a.e. t ∈ [0, S], a.s. Combining the above
observations we see that in order to prove uniqueness, it suffices to verify (3.31).

From Tanaka’s formula (cf. Theorem IV.68 in [18]) it follows that

(yM (t))+ = −
∫ t

0

1{yM (r)>0}z̄(r)ϕM (r)dr

−
∫ t

0

1{yM (r)>0}z̄(r) ↓ dW (r)− 1

2
L0(t),

where y+ = max {y, 0}, and L0 is the local time at 0 process for yM (see Chapter IV of
[18]). In particular, L0 is non-decreasing, non-negative process such that∫

[0,∞)

1{yM (t)>0}dL
0(t) = 0. (3.32)

We remark that the cited theorem establishes the above formula for equations with
forward stochastic integrals, however the version with backward integrals used here
follows by straightforward modifications of the proof.

Define for n ∈ N, ξn : [0,∞)→ [0,∞) as

ξn(u) = (u ∧ n)2 + 2n(u− n)+, u ∈ [0,∞).

Then ξn is a C1- convex function with

ξ′n(u) = 2(u ∧ n), u ∈ [0,∞). (3.33)

By Meyer-Itô formula (cf. Theorem IV.70 in [18])

ξn((yM (t))+) = −
∫ t

0

ξ′n((yM (s))+)1{yM (s)>0}z̄(r)ϕM (r)dr (3.34)

−
∫ t

0

ξ′n((yM (s))+)1{yM (s)>0}z̄(r) ↓ dW (r)

− 1

2

∫ t

0

ξ′n((yM (s))+)dL0(s)− 1

2

∫ ∞
−∞

La(t)µ(da).
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where La is the local time process of (yM )+ at level a and µ represents the second
derivative of ξn in the generalized function sense. Since ξn is convex, µ is a (non-
negative) measure and in fact equals

µ(da) = 21[0,n](a)da.

Thus (cf. Corollary IV.1 of [18])∫ ∞
−∞

La(t)µ(da) = 2

∫ n

0

La(t)da = 2

∫ t

0

1(0,n]((yM (s))+)z̄2(s)ds.

Combining this with the fact that the third term on the right side of (3.34) is zero, we
have from (3.33) that

ξn(yM (t)+) +

∫ t

0

1(0,n]((yM (r))+)z̄2(r)dr (3.35)

= −2

∫ t

0

1(0,n]((yM (r))+)(yM (r))+z̄(r)ϕM (r)dr

− 2n

∫ t

0

1(n,∞)((yM (r))+)z̄(r)ϕM (r)dr

−
∫ t

0

1{yM (r)>0}ξ
′
n((yM (r))+)z̄(r) ↓ dW (r).

Using Young’s inequality we have that, for any α > 0,∫ t

0

1(0,n]((yM (r))+)(yM (r))+|z̄(r)| |ϕM (r)|dr ≤ α

2

∫ t

0

1(0,n]((yM (r))+)|z̄(r)|2dr

+
1

2α

∫ t

0

(yM (r))2+|ϕM (r)|2dr.

Using the above estimate with α < 1 in (3.35), we have

ξn(yM (t)+) ≤ M2

α

∫ t

0

(yM (r))2+dr (3.36)

+ 2nM

∫ t

0

1(n,∞)((yM (r))+)|z̄(r)|dr

−
∫ t

0

1{yM (r)>0}ξ
′
n((yM (r))+)z̄(r) ↓ dW (r).

Next, from (3.30), using that |ϕM (r)| ≤M and Doob’s inequality, we have

E sup
t∈[0,T ]

y2M (t) ≤ 2M2SE

∫ S

0

z̄2(r)dr + 8E

∫ S

0

z̄2(r)dr ≡ C1 <∞. (3.37)

Let
τM,n = inf {t ∈ [0, S] : yM (t) ≥ n} , n ∈ N,

where infimum over an empty set, by convention, is taken to be S. Then

nE

∫ t

0

1(n,∞)((yM (r))+)|z̄(r)|dr ≤ nE1{τM,n<S}

∫ t

τM,n∧t
|z̄(r)|dr (3.38)

≤ n

(
P( sup

t∈[0,S]
yM (t) ≥ n)

)1/2
E

(∫ t

τM,n∧t
z̄(r)dr

)2
1/2

≤ C1/2
1

(
E

[
(t− τM,n ∧ t)

∫ S

0

z̄2(r)dr

])1/2

,
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where the third inequality is a consequence of (3.37). Since (t− τM,n ∧ t) converges to

0 as n → ∞ and E
∫ S
0
z̄2(r)dr < ∞, we have that the expression on the last line of the

above display converges to 0 as n→∞. Thus we have shown that

lim
n→∞

nE

∫ t

0

1(n,∞)((yM (r))+)|z̄(r)|dr = 0. (3.39)

Taking expectations in (3.36) and noting that since ξ′n is bounded, the expectation of
the third term on the right side of (3.36) is zero, we have

lim sup
n→∞

Eξn(yM (t)+) ≤ M2

α

∫ t

0

E(yM (s)+)2ds.

Finally, noting that ξn(u) → u2 as n → ∞, for all u ∈ [0,∞), we have by Fatou’s lemma
that

E(yM (t)+)2 ≤ M2

α

∫ t

0

E(yM (s)+)2ds.

Gronwall’s lemma now yields that (yM (t))+ = 0 for all t ∈ [0, S]. A similar argument
shows that (yM (t))− and consequently (3.31) follows. As argued earlier, this proves the
desired uniqueness.

4 Proof of Theorem 2.3

Fix 0 ≤ t ≤ S ≤ T . The representation in Lemma 3.1 and (3.25) give

ykS(t, x) = − logE

[
e−h0(X

S(0,x)) exp{−Zk(t, x)− 1

2
Ck(0)t}

∣∣∣∣ FS
t

]
= − logE

[
E

[
e−h0(X

S(0,x)) exp{−Zk(t, x)− 1

2
Ck(0)t}

∣∣∣∣ FS
t ∨ σ{W (t)}

] ∣∣∣∣ FS
t

]
.

(4.1)

Define a C([0, t] : R) valued random variable XS,t as

XS,t(r) = XS(r, x), r ∈ [0, t]

and a C([0, S] : R∞) valued random variable β as

β(r) = (βm(r))m≥1, r ∈ [0, S].

Then there is a measurable map

Ψ : C([0, t] : R)× C([0, S] : R∞)→ R+

such that

Ψ(XS,t, β) = exp{−Zk(t, x)− 1

2
Ck(0)t}.

In fact one has the following characterization of Ψ. For ω ∈ C([0, t] : R) define

Mk
ω(t) =

∑
m∈N

∫ t

0

〈ζkω(r), γm〉dβm(r).

Then Ψ satisfies

Ψ(ω, β) = exp{−Mk
ω(t)− 1

2
Ck(0)t}, for all ω ∈ C([0, t] : R), a.s.
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Let Pµ,νt denote the Brownian bridge measure on C([0, t] : R) with starting point µ and
ending point ν. Define Ψ0 : [0, S]×R×R× C([0, S] : R∞)→ R+ as

Ψ0(t, µ, ν, ϑ) =

∫
C([0,t]:R)

Ψ(ω, ϑ)dPµ,νt (ω).

In particular

Ψ0(t, µ, ν, β) =

∫
C([0,t]:R)

Ψ(ω, β)dPµ,νt (ω)

=

∫
C([0,t]:R)

exp{−Mk
ω(t)− 1

2
Ck(0)t}dPµ,νt (ω)

≡Eµ,νt
[
exp{−Mk

• (t)− 1

2
Ck(0)t}

]
.

Next, using the independence of W (t) and FS
t we have

E

[
exp{−Zk(t, x)− 1

2
Ck(0)t}

∣∣∣∣ FS
t ∨ σ{W (t)}

]
=E

[
Ψ(XS,t, β)

∣∣ FS
t ∨ σ{W (t)}

]
=Ψ0(t, γ +Wt, γ, β)

=Eγ+Wt,γ
t

[
exp{−Mk

• (t)− 1

2
Ck(0)t}

]
,

where γ = x+W (S)−W (t). Therefore

E

[
e−h0(X

S(0,x)) exp{−Zk(t, x)− 1

2
Ck(0)t}

∣∣∣∣ FS
t

]
=E

[
e−h0(γ+W (t))E

γ+W (t),γ
t

[
exp{−Mk

• (t)− 1

2
Ck(0)t}

] ∣∣∣∣ FS
t

]
=

∫
R

e−h(y)Gt(γ − y)Ey,γt

[
exp{−Mk

• (t)− 1

2
Ck(0)t}

]
dy,

where Gt is the standard Heat Kernel. The last expression is seen from expression
(2.17) of [2] to be same as ψkt (γ), where ψkt is the solution of the regularized stochastic
heat equation.

ψkt (x) = Gt ? ψ0(x) +

∫ t

0

〈Gt−s ? ψks , dBks 〉. (4.2)

(See Section 2.2 of [2].) Therefore

ykS(t, x) = − logψkt (x+W (S)−W (t)), 0 ≤ t ≤ S ≤ T. (4.3)

The result now follows from Theorem 2.2 of [2]. 2

5 Appendix.

In this section we collect some basic results on forward-backward stochastic inte-
grals that are used at various places in this work. Most of the statements follow by
minor modifications of classical results (eg. [16]) and thus only partial sketches are
provided. Throughout this section we will fix S ∈ (0,∞), x ∈ R and k ∈ N. As previ-
ously, we will suppress k and z from the notation when writing Zk(t, x), Z̃k(t, x) etc.

Define σ-fields

GSr = FWr,S ∨ FBS , HSr = FW0,S ∨ FBr , G̃Sr = FW̃S ∨ F B̃r,S , H̃Sr = FW̃r ∨ F B̃0,S .
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Abusing terminology, we say a stochastic process {A(r)}0≤r≤S is adapted to a collection
of σ-fields {Ur}0≤r≤S if A(r) is Ur measurable for every r ∈ [0, S]. For such a family
of σ-fields we denote by A2(U) the collection of all adapted processes {A(r)} such that∫ S
0
|A(r)|2dr <∞ a.s. Then the following stochastic integrals are well defined:∫ t

0

A(r) ↓ dW (r), A ∈ A2(GS);

∫ t

0

A(r)dZ(r), A ∈ A2(HS),∫ t

0

A(r) ↓ dZ̃(r), A ∈ A2(G̃S);

∫ t

0

A(r)dW̃ (r), A ∈ A2(H̃S), t ∈ [0, S].

Indeed, consider for example the first stochastic integral. If A is of the form A(r) =

ζ1[a,b)(r), where ζ is a bounded GSb measurable random variable and 0 ≤ a < b ≤ S, then∫ t

0

A(r) ↓ dW (r) ≡ ζ (W (b ∧ t)−W (a ∧ t)) .

The integral is extended to linear combinations of such elementary processes by linear-
ity, and then by denseness and L2-isometry to all A ∈ A2(GS) satisfying E

∫ S
0
|A(r)|2dr <

∞; and finally by localization to all A ∈ A2(GS).
The following elementary lemma gives a basic relation between forward and back-

ward integrals.

Lemma 5.1. Let K ∈ A2(HS) and H ∈ A2(H̃S). Let

K̃(t) = K(S − t), H̃(t) = H(S − t), t ∈ [0, S].

Then K̃ ∈ A2(G̃S) and H̃ ∈ A2(GS). Furthermore, for t ∈ [0, S],∫ t

0

H(r)dW̃ (r) =−
∫ S

S−t
H̃(r) ↓ dW (r),∫ t

0

K(r)dZ(r) =−
∫ S

S−t
K̃(r) ↓ dZ̃(r)

Proof. The first statement in the lemma is an immediate consequence of (3.6) and (3.7).
Of the two equalities in the above display, we only prove the first one. The proof of the
second identity follows by a similar argument. Consider first the case where H(t) =

ζ1(a,b](t), where ζ is a bounded H̃Sa measurable random variable, and 0 ≤ a < b ≤ S. In
that case, note that

H̃(r) = H(S − r) = ζ1[a,b)(S − r) = ζ1[S−b,S−a)(r),

and, ∫ S

S−t
H̃(r) ↓ dW (r)

= ζ [(W ((S − a) ∨ (S − t)))− (W ((S − b) ∨ (S − t)))]
= ζ [(W ((S − a) ∨ (S − t))−W (S))− (W ((S − b) ∨ (S − t))−W (S))]

= ζ
(
W̃ (t ∧ a)− W̃ (t ∧ b)

)
= −

∫ t

0

H(r)dW̃ (r).

The general case follows by linearity, denseness (along with L2 isometry) and a local-
ization argument. Details are omitted.
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As an immediate consequence of the lemma we have the following corollary.

Corollary 5.2. A pair of processes (û, v̂) ∈H ∞
S (F̃S)×H 2

S (F̃S) solves (3.9) if and only
if (u, v), defined as (u(t), v(t)) = (u(S − t), v(S − t)), t ∈ [0, S], solves (3.2).

Proof. The proof is immediate from Lemma 5.1.

The following elementary lemma will be used in the proof of (3.22).

Lemma 5.3. Let ϕ be a C1 function on R and ψ : [0, S] → R be a continuous func-
tion. Suppose that for all t ∈ [0, T ], ϕ(Z̃(t)) = ϕ1(Z̃(t) − Z̃(T ))ϕ2(Z̃(T )), a.s., for some
continuous functions ϕ1, ϕ2. Then for all t ∈ [0, S],∫ t

0

ϕ(Z̃(r))ψ(r)dZ̃(r) =ϕ2(Z̃(T ))

∫ t

0

ϕ1(Z̃(r)− Z̃(T ))ψ(r) ↓ dZ̃(r)

−Ck(0)

∫ t

0

ϕ′(Z̃(r))ψ(r)dr. (5.1)

Proof. Fix t ∈ [0, S] and let Πn = {0 = t
(n)
0 < t

(n)
1 < t

(n)
2 · · · < t

(n)
k = t} be a partition of

[0, t] such that |Πn| → 0 as n → ∞. Then (suppressing n) letting ∆iZ̃ = Z̃(ti+1) − Z̃(ti),
we see that ϕ2(Z̃(T ))

∫ t
0
ϕ1(Z̃(r)− Z̃(T ))ψ(r) ↓ dZ̃(r) is the limit in probability of

ϕ2(Z̃(T ))

k−1∑
i=0

ϕ1(Z̃(ti+1)− Z̃(T ))ψ(ti+1)∆iZ̃

=

k−1∑
i=0

ϕ(Z̃(ti+1))ψ(ti+1)∆iZ̃

=

k−1∑
i=0

ϕ(Z̃(ti))ψ(ti+1)∆iZ̃

+

k−1∑
i=0

(
ϕ(Z̃(ti+1))− ϕ(Z̃(ti))

)
ψ(ti+1)∆iZ̃. (5.2)

From standard arguments it follows that, in probability,

lim
n→∞

k−1∑
i=0

(
ϕ(Z̃(ti+1))− ϕ(Z̃(ti))

)
ψ(ti+1)∆iZ̃ = Ck(0)

∫ t

0

ϕ′(Z̃(r))ψ(r)dr.

Likewise, it is easily seen that

lim
n→∞

k−1∑
i=0

ϕ(Z̃(ti))ψ(ti+1)∆iZ̃ =

∫ t

0

ϕ(Z̃(r))ψ(r)dZ̃(r),

in probability. These two identities combined with (5.2) give the result.

We now present a variation of Itô’s formula that is used in our work.

Lemma 5.4. Let φ ∈ C2(R).
(i) Let processes α ∈H ∞

S (FS), β, γ, δ ∈H 2
S (FS) be such that

α(t) = α(0) +

∫ t

0

β(r)dr +

∫ t

0

γ(r)dZk(r) +

∫ t

0

δ(r) ↓ dW (r), 0 ≤ t ≤ T.
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Then, for all t ∈ [0, S]

φ(α(t)) = φ(α(0)) +

∫ t

0

φ′(α(r))β(r)dr +

∫ t

0

φ′(α(r))γ(r)dZk(r)

+

∫ t

0

φ′(α(r))δ(r) ↓ dW (r) +
Ck(0)

2

∫ t

0

φ′′(α(r))γ(r)2dr

− 1

2

∫ t

0

φ′′(α(r))δ(r)2dr.

(ii) Let processes α ∈H ∞
S (F̃S), β, γ, δ ∈H 2

S (F̃S) be such that

α(t) = α(0) +

∫ t

0

β(r)dr +

∫ t

0

γ(r) ↓ dZ̃k(r) +

∫ t

0

δ(r)dW̃ (r), 0 ≤ t ≤ T.

Then, for all t ∈ [0, S]

φ(α(t)) = φ(α(0)) +

∫ t

0

φ′(α(r))β(r)dr +

∫ t

0

φ′(α(r))γ(r) ↓ dZ̃k(r)

+

∫ t

0

φ′(α(r))δ(r)dW̃ (r)− Ck(0)

2

∫ t

0

φ′′(α(r))γ(r)2dr

+
1

2

∫ t

0

φ′′(α(r))δ(r)2dr.

Proof. We will only consider (i). The statement in (ii) follows similarly. The proof follows
using standard arguments (cf. Theorem 3.3.3 in [9]). We merely comment on one key
point. Suppose that φ′′ is bounded. (The general case can be reduced to such a setting
by localization.) Fix t ∈ [0, S] and let Πn = {0 = t

(n)
0 < t

(n)
1 < t

(n)
2 · · · < t

(n)
k = t} be a

partition of [0, t] such that |Πn| → 0 as n→∞. Then the only change to standard proofs
is in the treatment of the term

k∑
i=1

φ′′(αi−1)∆iW∆iZ, (5.3)

where for a process ζ, we write ∆iζ = ζ(ti) − ζ(ti−1). One needs to argue that the
expression in (5.3) approaches 0 as n→∞, which follows on noting that

E

[
k∑
i=1

φ′′(αi−1)∆iW∆iZ

]2
=E

[
k∑
i=1

(φ′′(αi−1))
2

(∆iW )2(∆iZ)2

]

≤ sup
x
|φ′′(x)|2E

[
k∑
i=1

(∆iW )2E
[
(∆iZ)2

∣∣∣ FBti−1
∨ FWS

]]

= sup
x
|φ′′(x)|2Ck(0)

k∑
i=1

(ti − ti−1)E(∆iW )2

= sup
x
|φ′′(x)|2Ck(0)

k∑
i=1

(ti − ti−1)2,

where the first equality follows on noting that by a conditioning argument the cross-
product terms do not contribute while the next to last equality follows from (2.4).

Finally, we give the proof of (3.22).
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Proof of (3.22). Note that {Z̃(t)}t∈[0,S] is a martingale with respect to the filtration

G̃t = F B̃0,t∨FW̃S , with quadratic variation given as 〈Z〉t = Ck(0)t. Thus, by an application
of Itô’s formula, we have that

E(S)− E(t) = −

[∫ S

t

E(r)dZ̃(r)− Ck(0)

∫ S

t

E(r)dr

]

= −E(T )

∫ S

t

E(r)

E(T )
↓ dZ̃(r), (5.4)

where the second equality is a consequence of Lemma 5.3 on taking ϕ(x) = ϕ1(x) =

ϕ2(x) = e−x and ψ(t) = exp{ 12C
k(0)t}. Also, recall from (3.12) that

M(t) = M(S)−
∫ S

t

J(r)dW̃ (r), 0 ≤ t ≤ S. (5.5)

Let Πn = {t = t
(n)
0 < t

(n)
1 < t

(n)
2 · · · < t

(n)
k = S} be a partition of [t, S] such that |Πn| → 0

as n→∞. Then, suppressing n in the notation

U(t)− U(S) =−
k∑
i=1

(U(ti)− U(ti−1))

=−
k∑
i=1

(M(ti)E(ti)−M(ti−1)E(ti−1))

=−
k∑
i=1

M(ti)(E(ti)− E(ti−1))−
k∑
i=1

E(ti−1)(M(ti)−M(ti−1))

The equality in (3.22) now follows from (5.4) and (5.5) on taking limit as n → ∞ in the
last line.
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