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Abstract

A recursion for the joint moments of the external branch lengths for coalescents
with multiple collisions (Λ-coalescents) is provided. This recursion is used to derive
asymptotic results as the sample size n tends to infinity for the joint moments of the
external branch lengths and for the moments of the total external branch length of
the Bolthausen–Sznitman coalescent. These asymptotic results are based on a dif-
ferential equation approach, which is as well useful to obtain exact solutions for the
joint moments of the external branch lengths for the Bolthausen–Sznitman coales-
cent. The results for example show that the lengths of two randomly chosen external
branches are positively correlated for the Bolthausen–Sznitman coalescent, whereas
they are negatively correlated for the Kingman coalescent provided that n ≥ 4.
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1 Introduction and main results

Let Π = (Πt)t≥0 be a coalescent process with multiple collisions (Λ-coalescent). For
fundamental information on Λ-coalescents we refer the reader to [23] and [24]. For
n ∈ N := {1, 2, . . .} we denote with Π(n) = (Π

(n)
t )t≥0 the coalescent process restricted

to [n] := {1, . . . , n}. Note that Π(n) is Markovian with state space En, the set of all
equivalence relations (partitions) on [n]. For ξ ∈ En we write |ξ| for the number of
equivalence classes (blocks) of ξ. For m ∈ {1, . . . , n − 1} let gnm be the rate at which

the block counting process N (n) := (N
(n)
t )t≥0 := (|Π(n)

t |)t≥0 jumps at its first jump time
from n to m. It is well known (see, for example, [21, Eq. (13)]) that

gnm =

(
n

m− 1

)∫
[0,1]

xn−m−1(1− x)m−1 Λ(dx) (1.1)
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External branches of coalescents

for all n,m ∈ N with m < n. We furthermore introduce the total rates

gn :=

n−1∑
m=1

gnm =

∫
[0,1]

1− (1− x)n − nx(1− x)n−1

x2
Λ(dx), n ∈ N. (1.2)

We are interested in the external branches of the restricted coalescent process Π(n).
More precisely, for n ∈ N and i ∈ {1, . . . , n} let

τn,i := inf{t > 0 : {i} is a singleton block of Π
(n)
t }

denote the length of the ith external branch of the restricted coalescent Π(n). Note that
τ1,1 = 0. Our first main result (Theorem 1.1) provides a general recursion for the joint
moments

µn(k1, . . . , kj) := E(τk1
n,1 · · · τ

kj

n,j), j ∈ {1, . . . , n}, k1, . . . , kj ∈ N0 := {0, 1, . . .}, (1.3)

of the external branch lengths. The proof of Theorem 1.1 is provided in Section 2.

Theorem 1.1 (Recursion for the joint moments of the external branch lengths).
For all n ≥ 2, j ∈ {1, . . . , n} and k = (k1, . . . , kj) ∈ Nj the joint moments µn(k) :=

E(τk1
n,1 · · · τ

kj

n,j) of the lengths τn,1, . . . , τn,n of the external branches of a Λ-coalescent

Π(n) satisfy the recursion

µn(k) =
1

gn

j∑
i=1

ki µn(k − ei) +

n−1∑
m=j+1

pnm
(m− 1)j

(n)j
µm(k), (1.4)

where ei, i ∈ {1, . . . , j}, denotes the ith unit vector in Rj , pnm := gnm/gn and gnm and
gn are defined via (1.1) and (1.2).

Remark 1.2. The recursion (1.4) works as follows. Let us call d := k1 + · · · + kj the
order (or degree) of the moment µn(k1, . . . , kj). Provided that all the moments of order
d−1 are already known, (1.4) is a recursion on n for the joint moments of order d, which
can be solved iteratively. So one starts with d = 1 (and hence j = 1), in which case (1.4)
reduces to µn(1) = 1/gn +

∑n−1
m=2 pnm((m − 1)/n)µm(1), n ≥ 2. Since µ2(1) = E(τ2,1) =

1/g2 = 1/Λ([0, 1]), this recursion determines the moments of order 1 completely. Now
choose d = 2 in (1.4) leading to a recursion for the second order moments. Iteratively,
one can move to higher orders. Note that for j = 2 and k1 = k2 = 1 the recursion (1.4)
reduces to

E(τn,1τn,2) =
2

gn
E(τn,1) +

n−1∑
m=2

pnm
(m− 1)2

(n)2
E(τm,1τm,2), n ∈ {2, 3, . . .}. (1.5)

Note that Theorem 1.1 holds for arbitrary Λ-coalescents. For particular coalescents
the recursion (1.4) can be used to derive exact solutions and asymptotic expansions
for the joint moments of the lengths of the external branches. In the following we
briefly discuss the star-shaped coalescent and the Kingman coalescent. Afterwards we
intensively study the Bolthausen–Sznitman coalescent. For related results on external
branches for beta-coalescents we refer the reader to [8], [9] and [19].

Example 1.3. (Star-shaped coalescent) For the star-shaped coalescent, where Λ is the
Dirac measure at 1, the time Tn of the first jump of Π(n) is exponentially distributed
with parameter gn = 1, n ∈ {2, 3, . . .}. Furthermore, pnm = δm1 for n,m ∈ N with m < n.
Thus, (1.4) reduces to µn(k) =

∑j
i=1 ki µn(k − ei) with solution µn(k) = (k1 + · · · + kj)!,

which is obviously correct, since τn,i = Tn for all i ∈ {1, . . . , n} and, therefore, µn(k) =

E(T
k1+···+kj
n ) = (k1 + · · ·+ kj)!, n ≥ 2, j ∈ {1, . . . , n}, k1, . . . , kj ∈ N.
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External branches of coalescents

Example 1.4. (Kingman coalescent) For the Kingman coalescent [20], where Λ is the
Dirac measure at 0, the time Tn of the first jump of Π(n) is exponentially distributed
with parameter gn = n(n− 1)/2, n ∈ {2, 3, . . .}. Furthermore, pnm = δm,n−1 for m,n ∈ N
with m < n. Caliebe et al. [6, Theorem 1] verified that nτn,1 → Z in distribution
as n → ∞, where Z has density x 7→ 8/(2 + x)3, x ≥ 0. Janson and Kersting [17,
Theorem 1] showed that the total external branch length Lexternal

n :=
∑n

i=1 τn,i satisfies
(1/2)

√
n/(log n)(Lexternal

n − 2) → N(0, 1) in distribution as n → ∞. We are instead
interested here in the moments of τn,1. The recursion (1.4) for j = 1 reduces to

µn(k) =
2k

n(n− 1)
µn(k − 1) +

n− 2

n
µn−1(k), n ∈ {2, 3, . . .}, k ∈ N.

Rewriting this recursion in terms of an(k) := n(n− 1)µn(k) yields an(k) = 2k µn(k− 1) +

an−1(k), n ∈ {2, 3, . . .}, k ∈ N, with solution an(k) = 2k
∑n

m=2 µm(k − 1). Thus,

µn(k) =
2k

n(n− 1)

n∑
m=2

µm(k − 1), n ∈ {2, 3, . . .}, k ∈ N.

The first two moments are therefore E(τn,1) = µn(1) = 2/(n(n− 1))
∑n

m=2 1 = 2/n and

E(τ2n,1) = µn(2) =
4

n(n− 1)

n∑
m=2

2

m
=

8(hn − 1)

n(n− 1)
= 8

log n

n2
+

8(γ − 1)

n2
+O

(
log n

n3

)
,

where γ ≈ 0.577216 denotes the Euler constant and hn :=
∑n

i=1 1/i the n-th harmonic
number, n ∈ N. Note that these results are in agreement with those of Caliebe et al. [6,
Eq. (2)] and Janson and Kersting [17, p. 2205]. For the third moment we obtain

µn(3) =
6

n(n− 1)

n∑
m=2

8(hm − 1)

m(m− 1)
=

48

n(n− 1)

n∑
m=2

hm − 1

m(m− 1)
.

Since hm+1 − hm = 1/(m+ 1), the last sum simplifies considerably to

n∑
m=2

hm − 1

m(m− 1)
=

n∑
m=2

(
hm
m− 1

− hm
m
− 1

m(m− 1)

)

=

n−1∑
m=1

hm+1

m
−

n∑
m=2

hm
m
−
(

1− 1

n

)

= h2 +

n−1∑
m=2

1

m(m+ 1)
− hn

n
− 1 +

1

n
= 1− hn

n
,

Thus, the third moment of τn,1 is

E(τ3n,1) = µn(3) =
48

n(n− 1)

(
1− hn

n

)
=

48

n2
− 48

log n

n3
+O

(
1

n3

)
.

For the fourth moment we obtain

E(τ4n,1) = µn(4) =
8

n(n− 1)

n∑
m=2

µm(3) =
384

n(n− 1)

n∑
m=2

1− hm/m
m(m− 1)

,

a formula which does not seem to simplify much further. One may also introduce the
generating functions gk(t) :=

∑∞
n=2 µn(k)tn, k ∈ N, |t| < 1. For all k ≥ 2 we have

t2g′′k (t) =

∞∑
n=2

n(n− 1)µn(k)tn =

∞∑
n=2

2k

n∑
m=2

µm(k − 1)tn

= 2k

∞∑
m=2

µm(k − 1)tm
∞∑

n=m

tn−m =
2k

1− t
gk−1(t),
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so these generating functions satisfy the recursion

gk(t) = 2k

∫ t

0

∫ s

0

gk−1(u)

u2(1− u)
duds, k ≥ 2, 0 ≤ t < 1,

with initial function g1(t) =
∑∞

n=2(2/n)tn = −2t − 2 log(1 − t). Using this recursion,
gk(t) can be computed iteratively, however, the expressions become quite involved with
increasing k. For example, g2(t) = 8t− 4(1− t) log2(1− t)− 8(1− t)Li2(t), |t| < 1, where
Li2(t) := −

∫ t

0
(log(1 − x))/xdx =

∑∞
k=1 t

k/k2 denotes the dilogarithm function. In prin-
ciple higher order moments and as well joint moments can be calculated analogously,
however the expressions become more and more nasty with increasing order. In the fol-
lowing we exemplary derive an exact formula for µn(1, 1) = E(τn,1τn,2). The recursion
(1.4) for j = 2 and k1 = k2 = 1 reduces to (see (1.5))

µn(1, 1) =
2

gn
µn(1)+

(n− 2)2
(n)2

µn−1(1, 1) =
8

n2(n− 1)
+

(n− 2)(n− 3)

n(n− 1)
µn−1(1, 1), n ≥ 2.

It is readily checked by induction on n that this recursion is solved by µ2(1, 1) = 2 and

µn(1, 1) =
4(n2 − 5n+ 4hn)

n(n− 1)2(n− 2)
, n ∈ {3, 4, . . .}.

In particular, µn(1, 1) = 4/n2 − 4/n3 +O((log n)/n4), n→∞. Moreover, Cov(τn,1, τn,2) =

µn(1, 1)− (µn(1))2 = 4(n2 − 5n+ 4hn)/(n(n− 1)2(n− 2))− 4/n2 < 0 for all n ≥ 4. Thus,
for the Kingman coalescent, the lengths of two randomly chosen external branches are
(slightly) negatively correlated for all n ≥ 4. We have used the derived formulas to
compute the following table.

n µn(1) = E(τn,1) µn(1, 1) = E(τn,1τn,2) Cov(τn,1, τn,2)

2 1 2 1

3 0.666667 0.444444 0

4 0.5 0.240741 −0.009259

5 0.4 0.152222 −0.007778

10 0.2 0.038096 −0.001904

100 0.02 0.000396 −0.000004

n→∞ 2
n

4
n2 − 4

n3 +O( logn
n4 ) − 4

n3 +O( logn
n4 )

Table 1: Covariance of τn,1 and τn,2 for the Kingman coalescent

In the following we focus on the Bolthausen–Sznitman coalescent [5], where Λ is
the uniform distribution on [0, 1]. Our second main result (Theorem 1.5) provides the
asymptotics of all the joint moments of the external branch lengths for the Bolthausen–
Sznitman coalescent.

Theorem 1.5 (Asymptotics of the joint moments of the external branch lengths).
For the Bolthausen–Sznitman coalescent, the joint moments µn(k) := E(τk1

n,1 · · · τ
kj

n,j),

j ∈ N, k = (k1, . . . , kj) ∈ Nj
0, of the lengths τn,1, . . . , τn,n of the external branches satisfy

µn(k) ∼ k1! · · · kj !
logk1+···+kj n

, n→∞. (1.6)

Remark 1.6. For j = 2 and k1 = k2 = 1 Eq. (1.6) implies that E(τn,1τn,2) = µn(1, 1) ∼
1/ log2 n ∼ (µn(1))2 as n → ∞, which does not provide much information on the covari-
ance Cov(τn,1, τn,2) = µn(1, 1) − (µn(1))2. With some more effort (see Corollary 3.2 and
the remark thereafter) exact solutions for E(τn,1) and E(τn,1τn,2) are obtained and it fol-
lows that τn,1 and τn,2 are positively correlated for all n ≥ 2, in contrast to the situation
for the Kingman coalescent, where τn,1 and τn,2 are slightly negatively correlated for all
n ≥ 4.
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The following two corollaries are a direct consequence of Theorem 1.5.

Corollary 1.7 (Weak limiting behavior of the external branch lengths).
For the Bolthausen–Sznitman coalescent, (log n)(τn,1, . . . , τn,n, 0, 0, . . .) → (τ1, τ2, . . .) in
distribution as n→∞, where τ1, τ2, . . . are independent and all exponentially distributed
with parameter 1.

The following result concerns the asymptotics of the total external branch length
Lexternal
n :=

∑n
i=1 τn,i of the Bolthausen–Sznitman coalescent.

Corollary 1.8 (Asymptotics of the total external branch length).
Fix k ∈ N. For the Bolthausen–Sznitman coalescent, the kth moment of Lexternal

n satis-
fies

E((Lexternal
n )k) ∼ nk

logk n
, n→∞. (1.7)

In particular, logn
n Lexternal

n → 1 in probability as n→∞.

The moments of Lexternal
n do not provide much information on the distributional limit-

ing behavior of Lexternal
n as n→∞. Let Ln denote the total branch length (the sum of the

lengths of all branches) of the Bolthausen–Sznitman n-coalescent. Kersting et al. [18,
Theorem 1.1] recently showed that the internal branch length Linternal

n := Ln−Lexternal
n

satisfies
log2 n

n
Linternal
n → 1

in probability. Combining this result with [10, Theorem 5.2] it follows that (see [18,
Corollary 1.2])

log2 n

n
Lexternal
n − log n− log log n → L− 1 (1.8)

in distribution as n → ∞, where L is a 1-stable random variable with characteristic
function t 7→ exp(it log |t| − π|t|/2), t ∈ R.

Remark 1.9. The same scaling and, except for the additional shift −1 on the right hand
side in (1.8), the same limiting law as in (1.8) is known for the number of cuts needed to
isolate the root of a random recursive tree ([11], [16]). Essentially the same scaling and
convergence result has been obtained for random records and cuttings in binary search
trees by Holmgren [14, Theorem 1.1] and more generally in split trees (Holmgren [13,
Theorem 1.1] and [15, Theorem 1.1]) introduced by Devroye [7]. The logarithmic height
of the involved trees seems to be one of the main sources for the occurrence of such
scalings and of 1-stable limiting laws. To the best of the authors knowledge the distri-
butional limiting behavior of Linternal

n , properly centered and scaled, is so far unknown
for the Bolthausen–Sznitman coalescent.

2 Proof of Theorem 1.1

Let T = Tn denote the time of the first jump of the block counting process N (n) and
let I = In denote the state of N (n) at its first jump. Note that T and I are independent,
T is exponentially distributed with parameter gn and pnm := P(I = m) = gnm/gn,
m ∈ {1, . . . , n− 1}. For i ∈ {1, . . . , n} and h > 0 define τ ′i := τn,i − h ∧ T . By the Markov
property, for h→ 0,

E(τk1
n,1 · · · τ

kj

n,j1{T>h}) = E((τ ′1 + h)k1 · · · (τ ′j + h)kj1{T>h})

= E(τk1
n,1 · · · τ

kj

n,j)P(T > h) + h

j∑
i=1

kiE(τk1
n,1 · · · τ

ki−1

n,i−1τ
ki−1
n,i τ

ki+1

n,i+1 · · · τ
kj

n,j) + o(h).
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Also for h→ 0,

E(τk1
n,1 · · · τ

kj

n,j1{T≤h}) = E((τ ′1 + T )k1 · · · (τ ′j + T )kj1{T≤h})

= E((τ ′1)k1 · · · (τ ′j)kj1{T≤h}) + o(h).

Now at time T either the event A := {one of the individuals 1 to j is involved in the
first collision} occurs, in which case τ ′i = 0 for some i ∈ {1, . . . , j}, and the above
expectation vanishes since k1, . . . , kj > 0, or none of these j individuals is involved in
the first collision. Then, by the strong Markov property,

E((τ ′1)k1 · · · (τ ′j)kj1{T≤h,I=m,Ac}) = E(τk1
m,1 · · · τ

kj

m,j)P(T ≤ h, I = m,Ac),

where Ac denotes the complement of A. Adding both expectations yields

E(τk1
n,1 · · · τ

kj

n,j) = E(τk1
n,1 · · · τ

kj

n,j)P(T > h) + h

j∑
i=1

kiE(τk1
n,1 · · · τ

ki−1

n,i−1τ
ki−1
n,i τ

ki+1

n,i+1 · · · τ
kj

n,j)

+

n−1∑
m=j+1

E(τk1
m,1 · · · τ

kj

m,j)P(T ≤ h)P(I = m)
(m− 1)j

(n)j
+ o(h).

Collecting both terms involving E(τk1
n,1 · · · τ

kj

n,j) on the left hand side and letting h → 0

gives the claim, since P(T ≤ h) = 1− e−gnh ∼ gnh as h→ 0. 2

3 Differential equations approach

A differential equations approach is provided, which is used in the proof of Theorem
1.5 given in the following Section 4. This approach furthermore yields for example an
exact expression for E(τn,1τn,2) in terms of Stirling numbers (see Corollary 3.2). Let
D := {z ∈ C : |z| < 1} denote the open unit disc in the complex plane. For j ∈ N and
k = (k1, . . . , kj) ∈ Nj

0 define the generating function

fk(z) :=

∞∑
n=j

E(τk1
n,1 · · · τ

kj

n,j)z
n−1 =

∞∑
n=j

anz
n−1, z ∈ D,

where, for n ≥ j, we use the abbreviation an := µn(k) := E(τk1
n,1 · · · τ

kj

n,j) for convenience.
Note that, due to the natural coupling property of n-coalescents, the sequence (an)n≥j
is non-increasing. Thus, fk and all its derivatives f ′k, f

′′
k , . . . are analytic functions on D.

In order to state the following result it is convenient to introduce L(z) := − log(1 − z),
z ∈ D, and to define the functions gk : D → C, k = (k1, . . . , kj) ∈ Nj , via g1(z) := z/(1−z)
and

gk(z) :=

j∑
i=1

kif
(j−1)
k−ei (z) (3.1)

for all z ∈ D and all k = (k1, . . . , kj) ∈ Nj satisfying k1 + · · · + kj > 1, where ei,
i ∈ {1, . . . , j}, denotes the ith unit vector in Rj .

Lemma 3.1. Let k = (k1, . . . , kj) ∈ Nj . For the Bolthausen–Sznitman coalescent, the
function fk satisfies the differential equation

d

dz

(
(L(z))j−1f

(j−1)
k (z)

)
=

(L(z))j−2

1− z
gk(z), z ∈ D \ {0}, (3.2)

with solution

f
(j−1)
k (z) =

1

(L(z))j−1

∫ z

0

(L(t))j−2

1− t
gk(t) dt, z ∈ D \ {0}. (3.3)
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In particular,

f1(z) =

∫ z

0

t

(1− t)2L(t)
dt and f ′(1,1)(z) =

2

L(z)

∫ z

0

t

(1− t)3L(t)
dt, z ∈ D \ {0}.

(3.4)

Proof. For the Bolthausen–Sznitman coalescent, gnm = n/((n − m)(n − m + 1)), m ∈
{1, . . . , n−1} and gn = n−1, n ∈ N. Thus, pnm := gnm/gn = n/((n−1)(n−m)(n−m+1)),
m,n ∈ N with m < n. Fix j ∈ N and k = (k1, . . . , kj) ∈ Nj and, for n ∈ N, define
an := µn(k) for convenience. For n ≥ max(2, j) the recursion (1.4) reads

an = qn +

n−1∑
m=j+1

pnm
(m− 1)j

(n)j
am = qn +

n

(n− 1)(n)j

n−1∑
m=j+1

(m− 1)j
(n−m)(n−m+ 1)

am,

where qn := g−1n

∑j
i=1 kiµn(k − ei) for all n ≥ max(2, j). Thus,

(n− 1)(n− 1)j−1an = (n− 1)(n− 1)j−1qn +

n−1∑
m=j+1

(m− 1)j
(n−m)(n−m+ 1)

am. (3.5)

Before we come back to the recursion (3.5) let us first verify that

∞∑
n=max(2,j)

(n− 1)(n− 1)j−1qnz
n−j = gk(z), z ∈ D. (3.6)

Obviously (3.6) holds for j = 1 and k1 = 1, since in this case qn = 1/gn = 1/(n − 1) and
g1(z) = z/(1− z) by definition. For k = (k1, . . . , kj) ∈ Nj with k1 + · · ·+ kj > 1 we have

∞∑
n=max(2,j)

(n− 1)(n− 1)j−1qnz
n−j =

∞∑
n=max(2,j)

(n− 1)j−1

j∑
i=1

kiµn(k − ei)zn−j

=
( d

dz

)j−1 j∑
i=1

ki

∞∑
n=max(2,j)

µn(k − ei)zn−1 =

j∑
i=1

kif
(j−1)
k−ei (z) = gk(z).

Thus, (3.6) is established. In view of (n− 1)(n− 1)j−1 = (n− 1)j + (j − 1)(n− 1)j−1 and
(3.6), by multiplying both sides in (3.5) with zn−j and summing over all n ≥ max(2, j),
the recursion (3.5) translates to

zf
(j)
k (z) + (j − 1)f

(j−1)
k (z)

= gk(z) +

∞∑
n=max(2,j)

n−1∑
m=j+1

(m− 1)j
(n−m)(n−m+ 1)

amz
n−j

= gk(z) +

∞∑
m=j+1

(m− 1)jamz
m−j

∞∑
n=m+1

1

(n−m)(n−m+ 1)
zn−m

= gk(z) + za(z)
( d

dz

)j ∞∑
m=j

amz
m−1 = gk(z) + za(z)f

(j)
k (z), (3.7)

where a(z) :=
∑∞

n=1 z
n/(n(n + 1)) for z ∈ D. Since z(1 − a(z)) = (1 − z)L(z), the

differential equation (3.7) can be rewritten in the form (3.2). For j > 1 the only solution
of (3.2) being continuous at 0 (and for j = 1 the only solution of (3.2) with fk(0) = 0)
is given by (3.3). Since g1(z) = z/(1 − z), (3.3) reduces for j := k1 := 1 to the first
equation in (3.4), in agreement with [12, Lemma 3.1, Eq. (3.3)]). Noting that g(1,1)(z) =

f ′(0,1)(z) + f ′(1,0)(z) = 2f ′1(z) = 2z/((1− z)2L(z)), the formula for f ′(1,1)(z) in (3.4) follows
by choosing j := 2 and k1 := k2 := 1 in (3.3).
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Corollary 3.2. (Exact formula for E(τn,1τn,2))
Fix n ∈ {2, 3, . . .}. For the Bolthausen–Sznitman coalescent,

E(τn,1τn,2) =
2

(n− 1)!

n−1∑
k=1

2k − 1

k2
s(n− 2, k − 1), (3.8)

where the s(n, k) denote the absolute Stirling numbers of the first kind.

Remark 3.3. Together with the exact formula E(τn,1) = ((n− 1)!)−1
∑n−1

k=1 s(n− 1, k)/k

for the mean of τn,1 (see, for example, Proposition 1.2 of [12]) it can be checked that
Cov(τn,1, τn,2) = E(τn,1τn,2)− (E(τn,1))2 > 0 for all n ≥ 2. Thus, for all n ≥ 2, τn,1 and τn,2
are positively correlated. We have used the exact formulas for E(τn,1) and E(τn,1τn,2) to
compute the entries of the following table.

n E(τn,1) E(τn,1τn,2) Cov(τn,1, τn,2)

2 1 2 1

3 0.75 0.75 0.1875

4 0.638889 0.509259 0.101080

5 0.572917 0.397569 0.069336

10 0.431647 0.215119 0.028800

100 0.228368 0.057067 0.004915

Table 2: Covariance of τn,1 and τn,2 for the Bolthausen–Sznitman coalescent

Proof of Corollary 3.2. We write f := f(1,1) for convenience. The substitution u = L(t) =

− log(1− t) below the second integral in (3.4) yields

f ′(z) =
2

L(z)

∫ L(z)

0

e2u − eu

u
du

=
2

L(z)

∫ L(z)

0

1

u

( ∞∑
k=0

(2u)k

k!
−
∞∑
k=0

uk

k!

)
du

=
2

L(z)

∞∑
k=1

2k − 1

k!

∫ L(z)

0

uk−1 du

=
2

L(z)

∞∑
k=1

2k − 1

k!

(L(z))k

k

= 2

∞∑
k=1

2k − 1

kk!
(L(z))k−1.

From (see [1, p. 824]) (L(z))k/k! =
∑∞

i=k z
i/i!s(i, k) we conclude that

f ′(z) = 2

∞∑
k=1

2k − 1

k2

∞∑
i=k−1

zi

i!
s(i, k − 1) = 2

∞∑
i=0

zi

i!

i+1∑
k=1

2k − 1

k2
s(i, k − 1).

For a power series g(z) =
∑∞

n=0 gnz
n we denote in the following with [zn]g(z) := gn the

coefficient in front of zn in the series expansion of g. Using this notation we obtain

(i+ 1)E(τi+2,1τi+2,2) = [zi]f ′(z) =
2

i!

i+1∑
k=1

2k − 1

k2
s(i, k − 1).

It remains to divide by i+ 1 and to substitute n = i+ 2.
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4 Proofs of Theorem 1.5, Corollary 1.7, and Corollary 1.8

Proof of Theorem 1.5. Let us verify (1.6) by induction on the degree d := k1 + · · · + kj .
Obviously (1.6) holds for d = 0, i.e. for all j ∈ N and k1 = · · · = kj = 0. In order to
verify (1.6) for d = 1 it suffices to show that an := µn(1) ∼ 1/ log n as n → ∞ since
µn(k) = µn(1) for all k = (k1, . . . , kj) ∈ Nj

0 satisfying k1 + · · · + kj = 1. By (3.4) and de
l’Hospital’s rule

f1(z) =

∫ z

0

t

(1− t)2L(t)
dt ∼ 1

(1− z)L(z)
, z ↗ 1.

Since an = E(τn,1) is non-increasing in n, Karamata’s Tauberian theorem for power
series [4, p. 40, Corollary 1.7.3], applied with c := ρ := 1 and l(x) := 1/ log x, yields
an ∼ l(n) = 1/ log n. Thus, (1.6) holds for d = 1.

In order to verify the induction step from d − 1 to d > 1 fix k = (k1, . . . , kj) ∈ Nj
0

with d := k1 + · · · + kj > 1. We can and do assume without loss of generality that
k = (k1, . . . , kj) ∈ Nj . By the induction hypothesis

bn :=

j∑
i=1

kiµn(k − ei) ∼
j∑

i=1

ki
k1! · · · (ki − 1)! · · · kj !

logd−1 n
∼ jk1! · · · kj !

logd−1 n
, n→∞.

Since bn is non-increasing in n, the same Tauberian theorem as used above for d = 1,
but now applied with c := jk1! · · · kj !, ρ := 1 and l(x) := 1/ logd−1 x, yields

b(z) :=

∞∑
n=max(2,j)

bnz
n−1 ∼ jk1! · · · kj !

(1− z)(L(z))d−1
, z ↗ 1.

Note that b(z) =
∑j

i=1 kifk−ei(z). Applying de l’Hospital’s rule (j − 1)-times yields

gk(z) =

j∑
i=1

kif
(j−1)
k−ei (z) = b(j−1)(z) ∼ j!k1! · · · kj !

(1− z)j(L(z))d−1
, z ↗ 1.

Thus, by (3.3) and by one further application of de l’Hospital’s rule,

f
(j−1)
k (z) =

1

(L(z))j−1

∫ z

0

(L(t))j−2

1− t
gk(t) dt ∼ (j − 1)!k1! · · · kj !

(1− z)j(L(z))d
, z ↗ 1.

Using again de l’Hospital’s rule (j − 1)-times it follows that

fk(z) ∼ k1! · · · kj !
(1− z)(L(z))d

, z ↗ 1.

Since an := µn(k) is non-increasing in n, again Karamata’s Tauberian theorem for
power series, now applied with c := k1! · · · kj !, ρ := 1 and l(x) := 1/ logd x, yields
an ∼ k1! · · · kj !/ logd n.

Proof of Corollary 1.7. Theorem 1.5 clearly implies that, for j ∈ N and k1, . . . , kj ∈ N0,

E((τn,1 log n)k1 · · · (τn,j log n)kj ) = (log n)k1+···+kjµn(k1, . . . , kj)

→ k1! · · · kj ! = E(τk1
1 · · · τ

kj

j )

as n→∞. For all i ∈ {1, . . . , j} and all 0 ≤ θ < 1 we have
∑∞

r=0(θr/r!)E(τ ri ) =
∑∞

r=0 θ
r =

1/(1−θ) <∞. Therefore (see [2], Theorems 30.1 and 30.2 for the one-dimensional case
and Problem 30.6 on p. 398 for the multi-dimensional case) the above convergence of
moments implies the convergence (log n)(τn,1, . . . , τn,j) → (τ1, . . . , τj) in distribution as
n → ∞ for each j ∈ N. The convergence of all these j-dimensional distributions is
already equivalent (see Billingsley [3, p. 19]) to the convergence of the full processes
(log n)(τn,1, . . . , τn,n, 0, 0, . . .)→ (τ1, τ2, . . .) in distribution as n→∞.
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Proof of Corollary 1.8. The external branch length Lexternal
n satisfies (see [22, p. 2165])

E((Lexternal
n )k) =

k∑
j=1

(
n

j

) ∑
k1,...,kj∈N

k1+···+kj=k

k!

k1! · · · kj !
µn(k1, . . . , kj), n ∈ {2, 3, . . .}, k ∈ N.

By Theorem 1.5, µn(k1, . . . , kj) ∼ k1! · · · kj !/ logk n as n → ∞. Therefore, asymptotically
the summand with index j = k dominates the others, so asymptotically all the sum-
mands with indices j < k can be disregarded. Thus, E((Lexternal

n )k) ∼
(
n
k

)
k!/ logk n ∼

nk/ logk n. This convergence of all moments E(( logn
n Lexternal

n )k) → 1 as n → ∞ im-

plies the convergence logn
n Lexternal

n → 1 in distribution (and hence in probability) as
n→∞.
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