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Abstract

We construct explicitly a bridge process whose distribution, in its own filtration, is
the same as the difference of two independent Poisson processes with the same in-
tensity and its time 1 value satisfies a specific constraint. This construction allows
us to show the existence of Glosten-Milgrom equilibrium and its associated optimal
trading strategy for the insider. In the equilibrium the insider employs a mixed strat-
egy to randomly submit two types of orders: one type trades in the same direction
as noise trades while the other cancels some of the noise trades by submitting oppo-
site orders when noise trades arrive. The construction also allows us to prove that
Glosten-Milgrom equilibria converge weakly to Kyle-Back equilibrium, without the
additional assumptions imposed in K. Back and S. Baruch, Econometrica, 72 (2004),
pp. 433-465, when the common intensity of the Poisson processes tends to infinity.
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1 Introduction

In this paper we perform an explicit construction of a particular bridge process
associated to a point process that arises in the solution of Glosten-Milgrom type insider
trading models from Market Microstructure Theory. Our starting point is the work of
Back and Baruch [4] who studies a class of equilibrium models of insider trading (of
Glosten-Milgrom type) and their convergence to Kyle model.

In Glosten-Milgrom type insider trading models, there exists an insider who pos-
sesses the knowledge of the time 1 value of the asset given by the random variable ṽ.
There is also another class of traders, collectively known as noise traders, who trade
without this insider knowledge. Their trades are of the same size and arrive at Poisson
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Point process bridges

times which are assumed to be independent of ṽ. The insider trades using her extra
information in order to maximise her expected wealth at time 1 but taking into account
that her trades move the prices to her disadvantage since the price is an increasing
function of the total demand for the asset. Moreover, in order to hide her trades, and
thus her private information, she will also submit orders that are of the same size as
noise trades. The price of the asset in this market is determined by a market maker in
the equilibrium whose precise definition is given in Section 2.

In the specific model that we will study (and also studied in [4]) ṽ takes values in
{0, 1}. Since the noise buy and sell orders arrive at Poisson times and are of the same
size, the net Z of cumulative buy and sell noise trades, after normalization, is given by
the difference of two independent Poisson processes. Writing Y = Z + X for the total
demand for the asset, where X denotes the trading strategy of the insider, we will see
in Theorem 3.4 that a Glosten-Milgrom equilibrium exists if

(i) Y in its own filtration has the same distribution as Z,

(ii) [Y1 ≥ y] = [ṽ = 1] almost surely for some y to be determined.

The second condition above implies that in the equilibrium the insider drives the pro-
cess Y so that the event whether Y1 is larger than y is predetermined at time 0 from
the point of view of the insider, since the set [ṽ = 1] is at the disposal of the insider
already at time 0. Given this characteristic of Y , it can be called (with a slight abuse of
terminology) a point process bridge.

In Section 4, we explicitly construct a pure jump process X whose jump size is the
same as that of Z and Y = X + Z satisfies aforementioned conditions. From the point
of view of filtering theory X can be considered as the unobserved ‘drift’ added to the
martingale Z. The specific choice of X used in the bridge construction ensures that this
drift disappears when we consider Y in its own filtration.

To the best of our knowledge such a bridge construction has not been studied in
the literature before. On the other hand, the analogy with the enlargement of filtration
theory for Brownian motion is obvious. Indeed, if Z is instead a Brownian motion and
we consider the problem of finding a stochastic process X so that Y = Z + X is a
Brownian motion in its own filtration and [ṽ = 1] = [Y1 ≥ y] almost surely for some
y ∈ R to be determined, the solution follows easily from the enlargement of filtration
theory. The recipe is the following: Find the Doob-Meyer decomposition of Z when its
natural filtration is initially enlarged with the random variable [Z1 ≥ y]. Then, in the
finite variation part of this decomposition, replace Z with Y and [Z1 ≥ y] with [ṽ = 1] to
find X. This recipe gives

X = I[ṽ=1]

∫ ·
0

∂y log p0(Ys, s) ds+ I[ṽ=0]

∫ ·
0

∂y log(1− p0(Ys, s)) ds, (1.1)

where p0 is the function given in (5.1). From the insider trading point of view, X defined
by (1.1) is the insider’s optimal trading strategy in a Kyle model, see Remark 5.2 in this
respect. The counterpart of these arguments in the theory of enlargement of filtrations
for jump processes also exists in the literature, see [13].

Yet the above recipe does not work when Z is the difference of independent Pois-
son processes. The problem is that the enlargement of filtration technique gives us
the decomposition of Z as a sum of a martingale and an absolutely continuous process.
This is clearly not useful for the construction that we are after, since we want to write
Y as sum of Z and X which changes only by jumps. The desired jump process X is
constructed explicitly in Section 4 using [ṽ = 1] and a sequences of iid uniformly dis-
tributed random variables independent of everything else. This amounts to say that the
insider uses her private information and some additional randomness from uniformly
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Point process bridges

distributed random variables to construct her optimal strategy. Moreover, we will see
in Section 5 that, after an appropriate rescaling, these jump processes converge weakly
to X given by (1.1) as the intensity of the Poisson processes that constitute Z increases
to infinity. Note the process X given in (1.1) does not need any extra randomness other
than the set [ṽ = 1]. This brings fore the question whether the bridge process defined
in Section 4 can alternatively be constructed without the aid of the extra randomness.
We believe this would be a quite interesting avenue for further research.

The construction of the point process bridge Y allows us to prove the existence of
Glosten-Milgrom equilibrium (see Theorem 5.1) which was demonstrated in [4] via a
numeric computation. In such an equilibrium the insider uses a mixed strategy to ran-
domly submit two types of orders: one type trades in the same direction as noise trades
while the other cancels noise trades by submitting opposite orders when noise trades
arrive. Observing noise trades, the insider uses the uniformly distributed random vari-
ables to construct her strategy inductively. On the other hand, the construction of Y
invites a natural application of weak convergence theory to show Glosten-Milgrom equi-
libria converge weakly to Kyle equilibrium when the intensity of Z increases to infinity.
This convergence was first proved in [4] under strong assumption on the convergence
of value functions. Utilising the theory of weak convergence, we are able to prove
the result of Back and Baruch on convergence without the additional assumptions; see
Theorem 5.3.

The outline of the paper is as follows. In Sections 2 and 3 we describe the Glosten-
Milgrom model and characterise its equilibrium which is the motivation of this paper.
Section 4 discusses the construction of the aforementioned point process bridge. In
Section 5 we apply the results of Section 4 to show the existence of Glosten-Milgrom
equilibria and discuss their weak convergence.

2 The model

We consider a market in continuous-time for a risky asset whose fundamental value
is given by ṽ. The investors in this market can also trade a riskless asset at an interest
rate normalised to 0 for simplicity. Following [4] we assume that ṽ has two states: high
and low, which correspond to two numeric representations respectively, 1 and 0. This
fundamental value will be revealed to the market participants at time 1 at which point
we assume the market for the risky asset will terminate1.

The microstructure of the market, and the interaction of market participants, is
modelled similarly as in [4]. There are three types of agents: noisy/liquidity traders,
an informed trader (insider), and a market maker, all of whom are risk neutral. All
the processes and random variables in this section are defined on a filtered probability
space (Ω,F , (Ft)t∈[0,1],P) satisfying the usual conditions. We assume that ṽ is indeed
random, i.e. P(ṽ = 0) ∈ (0, 1).

• Noisy/liquidity traders trade for liquidity reasons, and their total demand is given
by the difference of two pure jump processes ZB and ZS , which represent their
cumulative buy and sell orders, respectively. As such, the net order flow of the
noise traders are given by Z := ZB − ZS . Noise traders only submit orders of
fixed size δ every time they trade. As in [4], ZB/δ and ZS/δ are assumed to
be independent Poisson processes with constant intensity β. Moreover, they are
independent of ṽ.

1[4] assumes that the market has a random horizon defined by an independent exponential random vari-
able. However, one can see that this distinction is not relevant by comparing our results to those of Back and
Baruch.
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Point process bridges

• The informed trader observes the market price process and is given the value of
ṽ at time 0. The net order of the insider is denoted by X := XB −XS where XB

(resp. XS) denotes the cumulative buy (resp. sell) orders of the insider.

• A competitive market maker observes only the total net demand process Yt =

Xt + Zt and sets the price based solely on this information. This in particular
implies that the market maker’s filtration is (FYt ), the minimal filtration generated
by Y satisfying the usual conditions. We assume that the market maker is risk
neutral and, thus, the competitiveness means that he sets the price at E[ṽ|FYt ] in
the equilibrium.

Although the noise traders trade for liquidity reasons exogenous to this model, the
insider has the objective to maximise her expected profit out of trading. This strate-
gic behaviour of the insider and the pricing mechanism set by the market maker as
described above results in the price being determined in an equilibrium. In order to
define precisely what we mean by an equilibrium between the market maker and the
insider, we first need to establish the class of admissible actions available to both.

Definition 2.1. A function p : δZ× [0, 1]→ [0, 1] is a pricing rule if

i) y 7→ p(y, t) is strictly increasing for each t ∈ [0, 1);

ii) t 7→ p(y, t) is continuously differentiable for each y ∈ δZ.

This Markov assumption on the pricing functional is standard in the literature (see,
e.g., [2], [6] or [8]). Given the pricing rule, the market maker sets the price to be
p(Yt, t). It would be irrational for the market maker to price the asset at some value
larger than 1 or less than 0 since everybody knows that the true value of the asset is
0 or 1. As we mentioned above the market maker is competitive so that in equilibrium
the price equals E[ṽ | FYt ]. Hence, p is typically [0, 1]-valued. The monotonicity of p(·, t)
implies that an increase in demand has a positive feedback on the asset price. More-
over, this leads the insider to fully observe the noise trades, Z, by simply inverting the
price process and subtracting her own trades from it. Consequently, the insider’s filtra-
tion, denoted with FI , contains the filtration generated by Z and ṽ. We shall assume
FI satisfies the usual conditions. However, we refrain from setting FI equal to the fil-
tration generated by Z and initially enlarged with ṽ since we will only be able to show
the existence of equilibrium if the insider also possess a sequence of independent ran-
dom variables, which she will use in order to construct her mixed strategy. Admissible
strategy of the insider is defined as follows.

Definition 2.2. The strategy (XB , XS ;FI) is admissible, if

i) FI is a filtration satisfying the usual conditions such that FIt = σ(v,FZt ,Ht), where
H is a filtration independent of v and FZ .

ii) XB and XS , with XB
0 = XS

0 = 0, are FI -adapted and integrable2 increasing point
processes with jump size δ;

iii) the (FI ,P)-dual predictable projections3 of XB and XS are absolutely continuous
functions of time.

The first assumption on FI makes the insider’s filtration part of the equilibrium.
This is to allow mixed strategies which will be determined in equilibrium. Note that the
additional information can only come from a source that is independent of Z. This im-
plies in particular that the insider does not have any extra information about the future

2That is, E[XB
1 ] and E[XS

1 ] are both finite.
3These are simply the predictable compensators of the increasing processes XB and XS . See, e.g. [11]

for a precise definition.
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demand of the noise traders. Although we allow this additional source of information
to vary in time, in the form of filtration H, in the equilibrium that we will compute,
Ht = H0 for all t ∈ [0, 1].

We assume that the insider can only trade δ-shares of the asset in every trade like the
noise traders. This is one of the underlying assumptions of the Glosten-Milgrom model,
which we keep in this paper as well. One intuitive reason for this is that a rational
insider will never submit an order of a different size, since this will immediately reveal
her identity and make, at least a part of, her private information public causing to
lose her comparative advantage. Moreover, in order to make this argument rigorous
one needs to make assumptions on the pricing rule as to how to handle the orders of
sizes which are multiples of δ. One can do the pricing uniformly, i.e. every little bit
of the order is priced the same, or different parts of the order is priced differently
as one walks up or down in an order book (see [5] for a discussion of such issues).
However, this requires different techniques for the analysis of optimal strategies given
this complicated nature of pricing; thus, we leave such analysis to a future investigation.

The third assumption on the dual predictable projections implies that XB and XS

admit FI -intensities θB and θS such that XB −
∫ ·
0
θBs ds and XS −

∫ ·
0
θSs ds are FI -

martingales (see [12, Chapter 1, Theorem 3.15]). This assumption is technical and
to ensure tractability.

Given that the insider submits orders of size δ and the assumption that the market
maker observes only the net demand, we see that when the insider submits an order
at the same as when an uninformed order arrives, but in the opposite direction (i.e. a
trade between the informed and uninformed occurs without needing a market maker)
this transaction goes unnoticed by the market maker. Thus, what we are effectively
assuming is that the market maker only becomes aware of the transaction when there
is a need for him. The assumption that the market maker only observes net demand
is a common assumption in market microstructure literature. In particular, it is always
assumed in Kyle type models (see, e.g. [3]). Henceforth, when the insider makes a trade
at the same with an uninformed trader but in an opposite direction, we will say that the
insider cancels the noise trades.

Although we allow the insider to trade at the same time with the noise traders in
the same direction, we will see that in the equilibrium the insider will not carry such
trades. This is intuitive. does not trade in the same direction at the same time as
the uniformed trades, but she does randomly cancel part of uninformed orders. Both
actions are required to hide her identity from the market maker. Indeed, when two
buy orders arrive at the same time the market maker will know that one of them is
an informed trade. Therefore it would be to the advantage of the insider to hide her
trades by submitting randomly, but of the same size, among the uninformed trades. On
the other hand, since the market maker is not aware of the transactions which consist
in canceling noise trades, submitting an order at the same time with the noise traders
but in the opposite direction is not necessarily suboptimal. We will in fact see that the
insider does randomly cancel some trades that are placed by the noise traders in the
equilibrium.

As discussed in the last paragraphs, the insider’s buy orders XB consist of three
components: we denote by XB,B the cumulative buy orders which arrive at different
time than those of ZB, by XB,T the cumulative buy orders which arrive at the same time
as some orders of ZB, and by XB,S the cumulative buy orders which cancel some sell
orders of ZS . As such, the jump time of XB,T (resp. XB,S) are contained in the set of
jump times of ZB (resp. ZS). Sell orders XS,S , XS,T , and XS,B are defined analogously.
Therefore XB = XB,B +XB,T +XB,S and XS = XS,S +XS,T +XS,B.

As mentioned earlier, the insider aims to maximise her expected profit. Given an
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admissible trading strategy (XB , XS) the associated profit at time 1 of the insider is
given by ∫ 1

0

Xt− dp(Yt, t) + (ṽ − p(Y1, 1))X1.

The last term appears due to a potential discrepancy between the market price and the
liquidation value. Since X is of finite variation, an application of integration by parts
rewrites the above as∫ 1

0

(ṽ − p(Yt, t)) dXB
t −

∫ 1

0

(ṽ − p(Yt, t)) dXS
t

=

∫ 1

0

(ṽ − p(Yt− + δ, t)) dXB,B
t +

∫ 1

0

(ṽ − p(Yt− + 2δ, t)) dXB,T
t +

∫ 1

0

(ṽ − p(Yt−, t)) dXB,S
t

−
∫ 1

0

(ṽ − p(Yt− − δ, t)) dXS,S
t −

∫ 1

0

(ṽ − p(Yt− − 2δ, t)) dXS,T
t −

∫ 1

0

(ṽ − p(Yt−, t)) dXS,B
t ,

where the last line is due to the fact that Y increases by δ when XB,B jumps, increases
by 2δ when XB,T jumps, and is unchanged when XB,S and ZS jump at the same time
but different directions. Similar situation goes for negative jumps of Y . As seen from
the above formula, the profit is zero when the insider place two opposite orders as the
same time, we then assume without loss of generality that insider does not do so.

Let’s define

a(y, t) := p(y + δ, t) and b(y, t) = p(y − δ, t).

Then, the expected profit of the insider conditional on her information equals

EP

[∫ 1

0

(ṽ − a(Yt−, t)) dX
B,B
t +

∫ 1

0

(ṽ − a(Yt− + δ, t)) dXB,T
t +

∫ 1

0

(ṽ − p(Yt−, t)) dXB,S
t

−
∫ 1

0

(ṽ − b(Yt−, t)) dXS,S
t −

∫ 1

0

(ṽ − p(Yt− − δ, t)) dXS,T
t −

∫ 1

0

(ṽ − p(Yt−, t)) dXS,B

∣∣∣∣ ṽ] .
(2.1)

Note that the assumption E[XB
1 ] < ∞ implies E[XB

1 |ṽ] < ∞ as well since E[XB
1 ] =

E[XB
1 |ṽ = 1]P[ṽ = 1] + E[XB

1 |ṽ = 0]P[ṽ = 0], and P[ṽ = 0] ∈ (0, 1). Similarly, E[XS
1 |ṽ] <

∞, too. Thus, the above expectation will be finite as soon as we assume that the pricing
rule is rational in the sense that it assigns a price to the asset between 0 and 1. This
will be part of the definition of equilibrium, which will be made precise below. As seen
from the above formulation, when price moves, one buys (resp. sells) at a price a(y, t)

(resp. b(y, t)), where y is the cumulative order right before such trade. Thus, a(y, t)

(resp. b(y, t)) can be viewed as the ask (resp. bid) price.

Our goal is to find an equilibrium between the market maker and the insider in the
following fashion:

Definition 2.3. A Glosten-Milgrom equilibrium is a quadruplet (p,XB , XS ,FI) such
that

i) given (XB , XS ;FI), p is a rational pricing rule, i.e., p(Yt, t) = E[ṽ | FYt ] for t ∈ [0, 1];

ii) given p, (XB , XS ;FI) is an admissible strategy maximising (2.1).

Recall that ṽ takes only two values by assumption. In view of this specification we
will often call the insider in the sequel of high type when ṽ = 1 and low type when
ṽ = 0.
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3 Characterisation of equilibrium

Before we give a characterisation of equilibrium, we will provide some heuristics.
Due to the Markov structure of the pricing rule, we will define the informed trader’s
value function and derive, via a heuristic argument, the associated HJB equation. Def-
inition 2.2 ii) implies that the FI -dual predictable projection of Xi,j , i ∈ {B,S} and
j ∈ {B,S, T}, is of the form δ

∫ ·
0
θi,js ds so that Xi,j−δ

∫ ·
0
θi,js ds defines an FI -martingale.

Observe that since the set of jumps times of XB,S and XS,T (resp. XS,B and XB,T )
is contained in the set of jump times of ZS (resp. ZB), we necessarily have θB,S +

θS,T ≤ β (resp. θS,B + θB,T ≤ β). Moreover, Definition 2.3 i) implies that p takes val-
ues in [0, 1], hence both bid and ask prices are [0, 1]-valued by definition. Therefore,∫ ·
0
(ṽ − a(Yu−, u))(dXB,B

u − δθB,Bu du) is an FI -martingale (see [7, Chapter 1, T6]). Ar-
guing similarly with the other terms, the expected profit (2.1) can then be expressed
as

δEP

[∫ 1

0

(ṽ − p(Yu− + δ, u))θB,Bu du+

∫ 1

0

(ṽ − p(Yu− + 2δ, u))θB,Tu du+

∫ 1

0

(ṽ − p(Yu−, u))θB,Su du

−
∫ 1

0

(ṽ − p(Yu− − δ, u))θS,Su du−
∫ 1

0

(ṽ − p(Yu− − 2δ, u))θS,Tu du−
∫ 1

0

(ṽ − p(Yu−, u))θS,Bu du

∣∣∣∣ ṽ] .
This motivates us to define the following value function for the informed trader:

V (ṽ, y, t) = sup
θi,j ; i∈{B,S},j∈{B,S,T}

δEP

[∫ 1

t

(ṽ − p(Yu− + δ, u))θB,Bu du+

∫ 1

t

(ṽ − p(Yu− + 2δ, u))θB,Tu +

∫ 1

t

(ṽ − p(Yu−, u))θB,Su du

−
∫ 1

t

(ṽ − p(Yu− − δ, u))θS,Su du−
∫ 1

t

(ṽ − p(Yu− − 2δ, u))θS,Tu du−
∫ 1

t

(ṽ − p(Yu−, u))θS,Bu du

∣∣∣∣Yt = y, ṽ

]
,

for ṽ ∈ {0, 1}, t ∈ [0, 1), and y ∈ δZ. The terminal value of V at 1 can be defined via the
left limit V (ṽ, y, 1) := limt↑1 V (ṽ, y, t). As we will see in Remark 3.3 below, V (ṽ, y, 1) is
not always zero.

Recall that Y = X + Z so that if one defines Y B = XB,B + XB,T + ZB − XS,B and
Y S = XS,S+XS,T +ZS−XB,S , then it is easy to see that (Y Bt −δ

∫ t
0
(β−θB,Ts −θS,Bs ) ds−

δ
∫ t
0
θB,Bs ds−2δ

∫ t
0
θB,Ts ds) and (Y St −δ

∫ t
0
(β−θS,Ts −θB,S) ds−δ

∫ t
0
θS,Ss ds−2δ

∫ t
0
θS,Ts ds) are

FI -martingales. Thus, applying Ito’s formula to V (ṽ, Yt, t) yields the following formal
HJB equation (the variable ṽ is omitted in V for simplicity of notation) in view of the
standard dynamic programming arguments:

0 = Vt + (V (y + δ, t)− 2V (y, t) + V (y − δ, t))β
+ sup
θB,B≥0

[V (y + δ, t)− V (y, t) + (ṽ − p(y + δ, t)) δ] θB,B

+ sup
θB,T≥0

[V (y + 2δ, t)− V (y + δ, t) + δ(ṽ − p(y + 2δ, t))] θB,T

+ sup
θB,S≥0

[V (y, t)− V (y − δ, t) + (ṽ − p(y, t))δ] θB,S

+ sup
θS,S≥0

[V (y − δ, t)− V (y, t)− (ṽ − p(y − δ, t)) δ] θS,S

+ sup
θS,T≥0

[V (y − 2δ, t)− V (y − δ, t)− δ(ṽ − p(y − 2δ, t))] θS,T

+ sup
θS,B≥0

[V (y, t)− V (y + δ, t)− (ṽ − p(y, t))δ] θS,B , (y, t) ∈ δZ× [0, 1).

(3.1)

The optimiser (θi,j ; i ∈ {B,S} and j ∈ {B,S, T}) in the previous equation is expected
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to be the FI -intensities of the insider’s optimal strategy (Xi,j) when the order size is
normalised to 1.

Notice that all maximisations in (3.1) are linear in θ. Therefore (3.1) reduces to the
following system:

Vt + (V (y + δ, t)− 2V (y, t) + V (y − δ, t))β = 0,

V (y + δ, t)− V (y, t) + (ṽ − p(y + δ, t))δ ≤ 0,

V (y − δ, t)− V (y, t)− (ṽ − p(y − δ, t))δ ≤ 0, (y, t) ∈ δZ× [0, 1).

(3.2)

Here the first inequality corresponds to the maximisation in θB,j; while the second
inequality corresponds to the maximisation in θS,j , j ∈ {B,S, T}. Let’s denote the
optimisers in (3.1) with (θi,j(y, t); (y, t) ∈ δZ × [0, 1)), i ∈ {B,S} and j ∈ {B,S, T}.
Observe that the first inequality in (3.2) can be strict only if θB,B(y, t) = θB,S(y + δ, t) =

θB,T (y − δ, t) = 0. Similarly, the second inequality can be strict only if θS,S(y, t) =

θS,B(y − δ, t) = θS,T (y + δ, t) = 0. We will see later that the optimal θB,B and θB,S are
never 0 for the high type insider meanwhile θS,S and θS,B are never 0 for the low type.
Therefore the first inequality in (3.2) is actually an equality when ṽ = 1 and the second
inequality is an equality when ṽ = 0. Economically speaking, these equalities imply
that at every instant of time there is a non-zero probability that a high type insider
will make a buy order by either contributing to uninformed buy orders or canceling
uninformed sell orders, and the low type insider will do the opposite. Such actions
are certainly reasonable for the insider. Indeed, a high type insider will reveal her
information gradually and keep the market price strictly less than 1. Recall that p is a
martingale bounded by 1, so once it hits 1, it will be stopped at that level. Therefore,
since there is always a strictly positive difference between the true price, which is 1

in this case, and the market price, the insider will always want to take advantage of
this discrepancy and buy with positive probability since the asset is undervalued by the
market. The situation for the low type is similar.

In view of the previous discussion, let’s consider the following system:

V Ht +
(
V H(y + δ, t)− 2V H(y, t) + V H(y − δ, t)

)
β = 0,

V H(y + δ, t)− V H(y, t) + (1− p(y + δ, t))δ = 0;
(HJB-H)

V Lt +
(
V L(y + δ, t)− 2V L(y, t) + V L(y − δ, t)

)
β = 0,

V L(y − δ, t)− V L(y, t) + p(y − δ, t)δ = 0,
(HJB-L)

for (y, t) ∈ δZ × [0, 1). We expect that V H(y, t) = V (1, y, t) and V L(y, t) = V (0, y, t). The
next lemma will construct solutions to the above system and will be useful in solving
the insider’s optimisation problem. However, before the statement and the proof of this
lemma we need to introduce a class of functions satisfying certain boundary conditions
and differential equations. We will nevertheless denote them with p since, as we shall
see later, they will appear in the equilibrium as pricing rules for the market maker.

To this end, for each z ∈ δZ, let

P z(y) :=

{
0, y < z

1, y ≥ z , (3.3)

and define

pz(y, t) := EP[P z(Z1) |Zt = y]. (3.4)

Observe that Z/δ is the difference of two independent Poisson processes. The Markov
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property implies4 that pz satisfies

pzt + (pz(y + δ, t)− 2pz(y, t) + pz(y − δ, t))β = 0, (y, t) ∈ δZ× [0, 1),

pz(y, 1) = P z(y), y ∈ δZ.
(3.5)

Lemma 3.1. Let pz be defined by (3.4) for some fixed z ∈ δZ and define

H(y, 1) := δ

z−δ
δ∑

j= y
δ

(1−A(δj)), L(y, 1) := δ

y
δ∑

j= z
δ

B(δj), y ∈ δZ,

where A(y) := P z(y + δ), B(y) := P z(y − δ), and
∑n
j=m αj = −

∑m
j=n αj by convention

whenever m > n. Then, both H(·, 1) and L(·, 1) are nonnegative and the following
equivalences hold:

H(y, 1) = 0⇐⇒ A(y) = 1⇐⇒ y ≥ z − δ, L(y, 1) = 0⇐⇒ B(y) = 0⇐⇒ y < z + δ.

Moreover,

H(y, t) := H(y, 1) + δβ

∫ 1

t

(pz(y + δ, u)− pz(y, u)) du and (3.6)

L(y, t) := L(y, 1) + δβ

∫ 1

t

(pz(y, u)− pz(y − δ, u)) du (3.7)

solve (HJB-H) and (HJB-L) respectively.

Proof. Statements regarding H(y, 1) and L(y, 1) directly follow from the definitions. We
will next show that H satsifies (HJB-H). Analogous statement for L can be proven
similarly. First observe that

H(y + δ, 1)−H(y, 1) = −δ + δA(y) = −δ + δP z(y + δ).

Thus,

H(y + δ, t)−H(y, t) = H(y + δ, 1)−H(y, 1) + δβ

∫ 1

t

(pz(y + 2δ, u)− 2pz(y + δ, u) + pz(y, u)) du

= δ (pz(y + δ, t)− 1) , (3.8)

where (3.5) is used to obtain the last line. This proves the second equation in (HJB-H).
Next, it follows from the definition of H that

Ht(y, t) + δβ (pz(y + δ, t)− pz(y, t)) = 0.

However, iterating (3.8) yields

H(y + δ, t) +H(y − δ, t)− 2H(y, t) = H(y + δ, t)−H(y, t)− (H(y, t)−H(y − δ, t))
= δ (pz(y + δ, t)− pz(y, t)) ,

and, hence, the claim.

Given a pricing rule, let us describe insider’s optimal strategies.

Proposition 3.2. Suppose that the market maker chooses pz as a pricing rule, where
z is fixed and pz is as defined in (3.4). Then, the following holds:

4The Markov property of Z implies thatP(Z1 = z̃ |Zt = y) satisfies pt+(p(y+δ, t)−2p(y, t)+p(y−δ, t))β =
0. Therefore summing up the previous equation for different z induces that

∑
δZ3z̃≥z ∂tP(Z1 = z̃ |Zt = y)

is finite. Hence Fubini’s theorem implies that the previous sum is exactly ∂tpz and pz solves (3.5).
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i) When ṽ = 1, (XB , XS ;FI) is an optimal strategy if and only if Y1 ≥ z − δ and
XS,j = 0, j = {B,S, T}.

ii) When ṽ = 0, (XB , XS ;FI) is an optimal strategy if and only if Y1 < z + δ and
XB,j = 0, j = {B,S, T}.

When the previous condition holds for ṽ = 1 (resp. ṽ = 0), v(1, y, t) = H(y, t) (resp.
v(0, y, t) = L(y, t)) for (y, t) ∈ δZ× [0, 1].

Remark 3.3. Recall that V (ṽ, y, 1) := limt↑1 V (ṽ, y, t). Lemma 3.1 and Proposition 3.2
combined implies that V (ṽ, y, 1) ≥ 0. It is only zero when A(y) = 1 for the high type and
B(y) = 0 for the low type.

Proof. The statements for ṽ = 1 case will be proved. Similar arguments can be applied
in order to prove the statement regarding ṽ = 0. Fix (y, t) ∈ δZ × [0, 1). For any
admissible trading strategy (Xi,j ; i ∈ {B,S}) and j ∈ {B,S, T} with associated FI -
intensities (δθi,j ; i ∈ {B,S} and j ∈ {B,S, T}), applying Ito’s formula to H(Y·, ·) and
utilizing Lemma 3.1, we obtain

H(Y1, 1)

= H(y, t) +

∫ 1

t

Ht(Yu−, u)du

+

∫ 1

t

(H(Yu− + δ, u)−H(Yu−, u)) (β − θB,Tu − θS,Bu ) du+

∫ 1

t

(H(Yu− + δ, u)−H(Yu−, u)) θB,Bu du

+

∫ 1

t

(H(Yu− + 2δ, t)−H(Yu−, u)) θB,Tu du

+

∫ 1

t

(H(Yu− − δ, u)−H(Yu−, u)) (β − θS,T − θB,Su ) du+

∫ 1

t

(H(Yu− − δ, u)−H(Yu−, u)) θS,Su du

+

∫ 1

t

(H(Yu− − 2δ, u)−H(Yu−, u)) θS,Tu du+M1 −Mt

= H(y, t)

−
∫ 1

t

(H(Yu− + δ, u)−H(Yu−, u)) θS,Bu du+

∫ 1

t

(H(Yu− + δ, u)−H(Yu−, u)) θB,Bu du

+

∫ 1

t

(H(Yu− + 2δ, t)−H(Yu− + δ, u)) θB,Tu du

−
∫ 1

t

(H(Yu− − δ, u)−H(Yu−, u)) θB,Su du+

∫ 1

t

(H(Yu− − δ, u)−H(Yu−, u)) θS,Su du

+

∫ 1

t

(H(Yu− − 2δ, u)−H(Yu− − δ, u)) θS,Tu du+M1 −Mt

= H(y, t) + δ

∫ 1

t

(p(Yu− + δ, u)− 1) θB,Bu du+ δ

∫ 1

t

(1− p(Yu−, u)) θS,Su du

−δ
∫ 1

t

(p(Yu− + δ, u)− 1) θS,Bu du− δ
∫ 1

t

(1− p(Yu−, u)) θB,Su du

−δ
∫ 1

t

(1− p(Yu− + 2δ, u)) θB,Tu du+ δ

∫ 1

t

(1− p(Yu− − δ, u)) θS,Tu du+M1 −Mt.

Here M contains
∫ ·
0
(p(Yu− + δ, u) − 1)(dXB,B

u − δθB,Bu du) and similar processes, which
are all FI -martingales due to the bounded integrand and the martingale property of
Xi,j − δ

∫ ·
0
θi,ju du for i ∈ {B,S} and j ∈ {B,S, T} (see [7, Chapter 1, T6]). Thus, on
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[ṽ = 1]

δ

∫ 1

t

(1− p(Yu− + δ, u)) θB,Bu du+ δ

∫ 1

t

(1− p(Yu−, u)) θB,Su du+ δ

∫ 1

t

(1− p(Yu− + 2δ, u))θB,Tu du

−δ
∫ 1

t

(1− p(Yu− − δ, u)) θS,Su du− δ
∫ 1

t

(1− p(Yu−, u)) θS,Bu du− δ
∫ 1

t

(1− p(Yu− − 2δ, u)) θS,Tu du

= M1 −Mt −H(Y1, 1) +H(y, t)

−δ
∫ 1

t

(p(Yu−, u)− p(Yu− − δ, u)) θS,Su du− δ
∫ 1

t

(p(Yu− + δ, u)− p(Yu−, u)) θS,Bu du

−δ
∫ 1

t

(p(Yu− − δ, u)− p(Yu− − 2δ, u)) θS,Tu du.

Observe that the left side of the above equality is the wealth of the insider. Moreover,
since H ≥ 0 and p is strictly increasing in y, the expected wealth, conditioned on FIt , is
maximised when H(Y1, 1) = 0 P-a.s., θS,S , θS,T , and θS,B are identically zero. However,
in view of Lemma 3.1, H(Y1, 1) = 0 if and only if Y1 ≥ z − δ.

We are now ready to state the conditions for equilibrium.

Theorem 3.4. (p,XB , XS ,FI) is a Glosten-Milgrom equilibrium if there exists a yδ ∈ δZ
such that

i) [Y1 ≥ yδ] = [ṽ = 1] P-a.s.;

ii) p = pyδ which is defined by (3.4);

iii) (XB , XS ;FI) is an admissible strategy such that Y = Z + XB − XS = Y B −
Y S where Y B/δ and Y S/δ are independent, FY -adapted Poisson processes with
common intensity β, and XS ≡ 0 (resp. XB ≡ 0) on [ṽ = 1] (resp. [ṽ = 0]).

Proof. Given the pricing rule p = pyδ , Proposition 3.2 implies that (XB , XS ;FI) is op-
timal because [Y1 ≥ yδ] = [ṽ = 1] P-a.s. and XS ≡ 0 (resp. XB ≡ 0) on [ṽ = 1] (resp.
[ṽ = 0]). Thus it remans to show pyδ is a rational pricing rule given (XB , XS ;FI). In-
deed, since Y and Z have the same distribution, it follows from (3.4) and the Markov
property of Y that EP[ṽ|FYt ] = P[Y1 ≥ yδ|FYt ] = pyδ(Yt, t) for t ∈ [0, 1].

Remark 3.5. Theorem 3.4 iii) necessarily requires that XB,T ≡ 0 (resp. XS,T ≡ 0) on
[ṽ = 1] (resp. [ṽ = 0]) since it implies that the jumps occur with magnitude δ only. Recall
from the proof of Proposition 3.2 that this is not a requirement for optimality from the
point of view of the insider. Rather, the insider chooses not to trade at the same time
and in the same direction with the noise traders in order to make it possible that there
is a rational pricing rule that the market maker can choose.

The equilibrium given in the above theorem is another manifestation of inconspicu-
ous trade theorem commonly observed in the insider trading literature (see, e.g., [14],
[2], [6], etc.). Indeed, when the insider is trading optimally in the above equilibrium, the
distribution of the net order process is the same as that of the net orders of the noise
traders, i.e. the insider is able to hide her trades among the noise trades. However, the
private information is fully, albeit gradually, revealed to the public since ṽ ∈ FY1 . We will
construct an admissible strategy satisfying conditions above and show the existence of
Glosten-Milgrom equilibrium in the following section.

Remark 3.6. Proposition 3.2 and Theorem 3.4 indicate that ‘bluffing’ strategies selling
for the high-type and buying for the low-type are sub-optimal. This is in contrast to
the results in [4], which use numeric computations to suggest such bluffing might be
optimal.
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4 Construction of a point process bridge

As seen in Theorem 3.4 we are interested in the construction of a process Y =

Z + XB − XS such that, in its natural filtration, Y = Y B − Y S such that Y B/δ and
Y S/δ are independent Poisson processes with intensity β. To this end, we will construct
explicitly a process Y on some (Ω,F , (Ft)t∈[0,1],P) such that

Y = ZB − ZS +XB II −XS IIc , (4.1)

where I ∈ F0 with specified probability, XB and XS are two point processes and Z/δ

is F -adapted and is the difference of two independent Poisson processes with intensity
β. In particular, I is independent of Z since Z has independent increments and Z0 = 0.
The set I is to be associated with the set [ṽ = 1]. In order to comply with the conditions
of the equilibrium described in the last section, we will further require [Y1 ≥ yδ] = I

P-a.s. for a given suitable yδ. Since Y is expected to have the same distribution as Z,
the previous condition necessitates P(I) = P(Z1 ≥ yδ). During the construction of the
probability space and the process Y , we will take δ = 1 without loss of generality since
all the processes can be scaled by δ to construct the process we are after.

In order to construct such a process we first need to determine its intensity. Since
Y would behave like Z in its own filtration, we can view, in the sense of equality in
distributions, the decomposition in (4.1) as that of Z when its own filtration is initially
enlarged with the random variable I[Z1≥y1]. Thus, the intensity of Y will be that of Z in
this enlarged filtration.

Let (D([0, 1],Z),F1, (F1
t )t∈[0,1],P

1) be the canonical space where D([0, 1],Z) is Z-
valued càdlàg functions, P1 is a probability measure under which ZB and ZS are inde-
pendent Poisson processes with intensities β, (F1

t )t∈[0,1] is the minimal filtration gener-
ated by ZB and ZS satisfying the usual conditions, and F1 =

∨
t∈[0,1] F1

t . Let’s denote

with (G1t )t∈[0,1] the filtration (F1
t )t∈[0,1] enlarged with the random variable I[Z1≥y1].

In order to find the G1-intensity of Z, we will use a standard enlargement of filtration
argument which can be found, e.g., in [15]. To this end, let h : [0, 1] × Z 7→ [0, 1] be the
function defined by

h(z, t) := P1[Z1 ≥ y1 |Zt = z]. (4.2)

Note that h is strictly positive on [0, 1) × Z. Moreover since (h(Zt, t))t∈[0,1] is an F1-
martingale, Ito’s formula yields

ht(z, t) + β (h(z + 1, t) + h(z − 1, t)− 2h(z, t)) = 0, (t, z) ∈ [0, 1)×Z. (4.3)

Lemma 4.1. The G1-intensities of ZB and ZS at t ∈ [0, 1) are given by

I[Z1≥y1]β
h(Zt− + 1, t)

h(Zt−, t)
+ I[Z1<y1]β

1− h(Zt− + 1, t)

1− h(Zt−, t)
,

I[Z1≥y1]β
h(Zt− − 1, t)

h(Zt−, t)
+ I[Z1<y1]β

1− h(Zt− − 1, t)

1− h(Zt−, t)
,

respectively.

Proof. We will only calculate the intensity for ZB. The intensity of ZS can be obtained
similarly. All expectations are taken under P1 throughout this proof. For s ≤ t < 1,
take an arbitrary E ∈ F1

s and denote MB
t := ZBt − βt. The definition of h and the
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F -martingale property of MB imply

E
[
(MB

t −MB
s )IEI[Z1≥y1]

]
= E

[
(MB

t −MB
s )IEh(Zt, t)

]
= E

[
IE
(
〈MB , h(Z·, ·)〉t − 〈MB , h(Z·, ·)〉s

)]
= E

[
IE

∫ t

s

(h(Zr− + 1, r)− h(Zr−, r))β dr

]
= E

[
IE

∫ t

s

I[Z1≥y1]
h(Zr− + 1, r)− h(Zr−, r)

h(Zr−, r)
β dr

]
.

Since P1(Z1 < δ |Zt = z) = 1− h(z, t), similar computations yield

E
[
(MB

t −MB
s )IEI[Z1<y1]

]
= E

[
IE

∫ t

s

I[Z1<y1]
h(Zr−, r)− h(Zr− + 1, r)

1− h(Zr−, r)
β dr

]
.

These computations imply that

MB −
∫ ·
0

I[Z1≥y1]
h(Zr− + 1, r)− h(Zr−, r)

h(Zr−, r)
β dr −

∫ ·
0

I[Z1<y1]
h(Zr−, r)− h(Zr− + 1, r)

1− h(Zr−, r)
β dr

defines a G1-martingale. Therefore the G1-intensity of ZB follows from ZBt = MB
t +

βt.

In what follows, given I ∈ F0 and h as in (4.2) such that P(I) = h(0, 0), XB on I

and XS on Ic will be constructed so that Y matches the intensities given in the above
lemma. As a result, Proposition 4.4 ensures I = [Y1 ≥ y1] P-a.s., which is what we are
after. We will focus on the construction of XB on I in what follows. By symmetry, XS

on Ic can be constructed by the same method but applied to −Z and −y1.
Recall that one of the goals of the process XB on I is to make sure that Y1 ends up

at a value larger than or equal to y1. In order to achieve this goal XB will have to add
some jumps in addition to the jumps coming from ZB. However, this by itself won’t be
enough since ZS will make Y jump downward. Thus, XB will also need to cancel some
of downwards jumps coming from ZS . Of course, there are many ways in which XB

achieves this goal. However, Y is required to have the same distribution as Z. We will
see in Proposition 4.4 that this distribution requirement will also be satisfied once Y

has the correct intensity given by Lemma 4.1.
As described above XB will consist of two components XB,B and XB,S , where XB,B

complements jumps of ZB and XB,S cancels some jumps of ZS . Let’s denote by (τi)i≥1
the sequence of jump times for the Y process we wish to construct. These stopping
times will be constructed inductively as follows. Given τi−1 < 1, τi is the minimum of
the following three random times:

i) the next jump of ZB,

ii) the next jump of XB,B,

iii) the next jump of ZS which is not cancelled by a jump of XB,S .

Here XB,B and XB,S are constructed so that Y B = ZB + XB,B and Y S = ZS − XB,S

have the required F -intensities on I. To achieve all these aims simultaneously, when
the (i− 1)th jump of Y happens before time 1, we will generate random variables νi and
another sequence of Bernoulli random variables (ξj,i)j≥1 to determine the next jump of
Y . In the context of the informed trader trying to make a decision, construction of XB

corresponds to the following pattern: place a buy order at time νi unless the next buy
order from the uninformed trader arrives before νi and also buy at every sell order of
the uninformed trader until ξj,i = 1 for the first time.
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We will now make this intuitive construction rigorous. In order to perform the subse-
quent construction, we must assume that the filtered probability space (Ω,F , (Ft)t∈[0,1],P)

is large enough so that there exist I ∈ F0 with P(I) = h(0, 0) and two independent
sequences of iid F -measurable random variables (ηi)i≥1 and (ζi)i≥1 with uniform distri-
bution on [0, 1], moreover (ηi)i≥1 and (ζi)i≥1 are independent of both Z and I. These
requirements can be easily satisfied by extending F0 and F if necessary. The sequences
(ηi)i≥1 and (ζi)i≥1 will be used to construct νi and (ξj,i)j≥1 in the last paragraph. As
for the filtration (Ft)t∈[0,1], we require that Z/δ, as the difference of two independent
Poisson processes with intensity β, is adapted to (Ft)t∈[0,1]. Since Z has independent
increments and Z0 = 0, Z is independent of I. We will make one more assumption on
the filtration later during the construction.

Denote by (σ+
i )i≥1 and (σ−j )j≥1 jump times of ZB and ZS , respectively. We set σ±i =

∞ when σ±i > 1, since we are only interested in processes before time 1. In what
follows, we will inductively define two sequences of [0, 1]∪{∞}-valued random variables
(τ+i )i≥1 and (τ−i )i≥1 on I. τ+i+1 (resp. τ−i+1) will denote the first potential upward (resp.
downward) jump of Y after time τi starting with τ0 = 0. The process Y on I thus jumps
at each τi := τ+i ∧ τ

−
i . In particular, when τ+i < τ−i , ∆Yτi = ∆Y Bτi = 1; when τ−i < τ+i ,

∆Yτi = −∆Y Sτi = −1.
Let’s start with the construction until the first jump of Y . Recall that, in view of

Lemma 4.1, we want to construct Y B (resp. Y S) so that its intensity until its first jump
is given by

β
h(1, t)

h(0, t)

(
resp. β

h(−1, t)

h(0, t)

)
.

Hence τ1 is constructed to match this intensity.
To define τ+1 , set

f1(t) := 1− exp

(
β

∫ t

0

h(0, u)− h(1, u)

h(0, u)
du

)
, t ∈ [0, 1).

Since z 7→ h(z, t) is strictly increasing, f1 is strictly increasing. We consider the inverse
function f−11 (y) := inf{t ∈ [0, 1) : f(t) > y}, where the value is ∞ if the indicated set is
empty. Now define

ν1 := f−11 (η1) and τ+1 := ν1 ∧ σ+
1 on I.

Then τ+1 is potentially the first jump time of Y B. It follows from the definition of ν1 that
P(τ+1 < 1) > 0. Such τ+1 is constructed to match the intensity of Y B before the first
jump of Y . On the other hand, in order to define τ−1 , consider

ξj,1 := I[
ζj≤

h(−1,σ
−
j

)

h(0,σ
−
j

)
, σ−
j <1

] + I[σ−
j ≥1]

for j ≥ 1. (4.4)

This indicator random variable determines whether the jth jump of ZS will be cancelled
by an opposite jump of XB,S . When ξj,1 = 0, which only happens when the jth jump
of ZS happens before 1, this jump of ZS will be cancelled by a jump of XB,S . Such
cancelation is performed at a rate h(−1, σ−j )/h(0, σ−j ) so as to match the intensity of Y S

before the first jump of Y . Therefore, τ−1 , which is potentially the first negative jump, is
the first jump time σ−j of ZS which is not cancelled. That is,

τ−1 := min{σ−j : ξj,1 = 1}.

Consequently, we define the first jump time of Y on I as

τ1 := τ+1 ∧ τ
−
1 .

EJP 18 (2013), paper 26.
Page 14/24

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v18-2039
http://ejp.ejpecp.org/


Point process bridges

This construction yields P(τ1 < 1) > 0. On [t ≤ τ1, I] with t ≤ 1, we define XB,B and
XB,S as

XB,B
t := I[ν1<σ+

1 ]I[τ+
1 ≤t]

and XB,S
t :=

∞∑
j=1

(1− ξj,1) I[σ−
j ≤t]

.

Now suppose that τi−1 with P(τi−1 < 1) > 0 and Yt for t ≤ τi−1∧1 have been defined.
We will define in this paragraph τi and Yt for t ∈ (τi−1 ∧ 1, τi ∧ 1]. To this end, when
τi−1 < 1, consider the random function

fi(t) := 1− exp

(
λ

∫ t

τi−1

h(Yu−, u)− h(Yu− + 1, u)

h(Yu−, u)
du

)
, t ∈ [τi−1, 1).

Since fi is strictly increasing, the inverse function f−1i (y) := inf{t ∈ [τi−1, 1) : f(t) > y}
is well-defined. When τi−1 ≥ 1, set f−1i (y) =∞. Now define

νi := f−1i (ηi) and τ+i := νi ∧ σ+
ZBτi−1

+1
on I.

To ease notation, we denote σ̃+
i := σ+

ZBτi−1
+1

, where ZBτi−1
counts the number of ZB jumps

until τi−1. Hence σ̃+
i indicates which jumps of ZB could be the next jump of Y B after

τi−1. Similarly, define

ξj,i := I[
ζj≤

h(Yτi−1
−1,σ

−
j

)

h(Yτi−1
,σ

−
j

)
, τi−1≤σ−

j <1

] + I[σ−
j ≥1]

,

and set
τ−i := min{σ−j > τi−1 : ξj,i = 1}.

The i-th jump of Y on I is then defined as

τi := τ+i ∧ τ
−
i .

Since P(τi−1 < 1) > 0, the above construction yields P(τi < 1) > 0. The increment of
XB,B and XB,S on (τi−1 ∧ 1, τi ∧ 1] are defined as

XB,B
t −XB,B

τi−1
= I[σ̃+

i >νi]
I[τ+

i ≤t]
and XB,S

t −XB,S
τi−1

=

∞∑
j=1

(1− ξj,i) I[τi−1≤σ−
j ≤t]

,

for t ∈ (τi−1 ∧ 1, τi ∧ 1].
This completes the construction of XB since XB = XB,B + XB,S and we thus ob-

tain the decomposition (4.1) on I for t ∈ [0, 1 ∧ limi→∞ τi]. As mentioned earlier, the
construction on Ic can be performed analogously.

Remark 4.2. A natural question on whether τ := limi→∞ τi ≥ 1 or not arises at this
point. Observe that since ZB and ZS are finite processes, P(τ < 1, I) > 0 implies
that there are infinitely many jumps in XB,B so that limi→∞ Y Bτi = ∞, in which case
we define Y B = ∞ after τ . A similar explosion on Ic will result in Y becoming −∞.
However, we will see in Proposition 4.4 that Y is P-a.s. a finite process and, thus, τ ≥ 1,
P-a.s..

In order to be able to perform the construction above on (Ω,F , (Ft)t∈[0,1],P), in addi-
tion to the assumptions already imposed on the filtration, we add one more assumption
that (Ft)t∈[0,1] is right continuous and complete such that XB and XS are F -adapted
and (τ+i )i≥1, (τ

−
i )i≥1 and (νi)i≥1 are F -stopping times. This completes our assumptions

on (Ω,F , (Ft)t∈[0,1],P). We now return to verify that the process Y just constructed
satisfies
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i) [Y1 ≥ y1] = I, P-a.s., and

ii) In its own filtration Y = Y B − Y S where Y B and Y S are FY -adapted independent
Poisson processes with intensity β.

We first establish that the F -intensity of Y is of the same form as the G1-intensity of Z
computed in Lemma 4.1.

Lemma 4.3. The F -intensities of Y B and Y S at t ∈ [0, 1) are given by

IIβ
h(Yt− + 1, t)

h(Yt−, t)
+ IIcβ

1− h(Yt− + 1, t)

1− h(Yt−, t)
and IIβ

h(Yt− − 1, t)

h(Yt−, t)
+ IIcβ

1− h(Yt− − 1, t)

1− h(Yt−, t)
.

Proof. We will calculate the F -intensities of Y B and Y S on I. Their intensities on Ic

can be similarly verified. First, observe that the construction of νi implies that on I and
[τi−1 < 1]

P
(
νi > t ∨ τi−1 | Fτi−1

)
= P

(
ηi > fi(t ∨ τi−1) | Fτi−1

)
= exp

(
β

∫ t∨τi−1

τi−1

h(Yu−, u)− h(Yu− + 1, u)

h(Yu−, u)
du

)
, for t ∈ [0, 1).

(4.5)

We will make repeated use of (4.5) in order to obtain the F -intensity of Y B on I. To this
end, note that [τ+i > t ≥ τi−1, I] = [σ̃+

i > t, νi > t, t ≥ τi−1, I]. Therefore we have on
[t ≥ τi−1, I] that

P(τ+i > t | Fτi−1
) = P(σ̃+

i > t | Fτi−1
)P(νi > t | Fτi−1

)

= P(Zt = Zτi−1
| Fτi−1

) exp

(
β

∫ t

τi−1

h(Yu−, u)− h(Yu− + 1, u)

h(Yu−, u)
du

)

= exp(−β(t− τi−1)) exp

(
β

∫ t

τi−1

h(Yu−, u)− h(Yu− + 1, u)

h(Yu−, u)
du

)
,

(4.6)

where the first line is due to the independence of ZB and νi and the last line follows
from the strong Markov property of ZB and the fact that τi−1 is an F -stopping time.

It is well-known (see, e.g. Proposition 3.1 in [11]) that the F -intensity of Y B on I is
given by

P(τ+i ∈ dt | Fτi−1
)

P(τ+i > t | Fτi−1)dt
, t ∈ (τi−1, τi].

Utilising (4.3) and (4.6), it follows from direct calculations and the observation that Yt−
is constant in (τi−1, τi] that the above intensity is indeed

β
h(Yt− + 1, t)

h(Yt−, t)
on I for t ∈ (τi−1, τi].

To calculate the intensity of Y S on I and in the time interval (τi−1, τi], we will treat
the evolution of Y S as that of a marked point process with points (σ−j ∨ τi−1)j≥1 and

marks (ξj,i)j≥1. Let σ̃−i := σ−
ZSτi−1

+1
and ξ̃i be the associated mark. Define Gi(dt, 1) =

P
(
σ̃−i ∈ dt, ξ̃i = 1 | Fτi−1

)
and Hi(dt) = P(σ̃−i ∈ dt | Fτi−1

). It then follows from Proposi-
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tion 3.1 in [11] that the intensity of Y S at t ∈ (τi−1, τi] is

Gi(dt, 1)

Hi([t,∞])dt
=
EP

[
I[σ̃−

i ∈dt]
P(ξ̃i = 1 | Fσ̃−

i
)
∣∣Fτi−1

]
P(σ̃−i > t | Fτi−1)dt

=
h(Yt− − 1, t)

h(Yt−, t)

P(σ̃−i ∈ dt | Fτi−1)

P(σ̃−i > t | Fτi−1)dt

=
h(Yt− − 1, t)

h(Yt−, t)
β,

due to the strong Markov property of ZS . This verifies the intensity of Y S on I.

We are now ready to prove that our construction as desired.

Proposition 4.4. The process (Yt; t ∈ [0, 1]) as constructed above satisfies the following
properties:

i) [Y1 ≥ y1] = I, P-a.s.;

ii) Y B and Y S are independent Poisson processes with intensity β with respect to the
natural filtration (FYt )t∈[0,1] of Y . In particular, Y is finite P-a.s. over [0, 1].

iii) E[XB
1 ] and E[XS

1 ] are finite. Hence the constructed strategy (XB , XS ;FI) is ad-
missible.

Proof. To verify that Y satisfies the desired properties, let us introduce an auxiliary
process (`t)t∈[0,1) via

`t := II
h(0, 0)

h(Yt, t)
+ IIc

1− h(0, 0)

1− h(Yt, t)
, t ∈ [0, 1).

The construction of Y S on I (resp. Y B on Ic) implies that there are only a finite number
of jumps before a fixed time t < 1. Therefore Yt > −∞ on I (resp. Yt < ∞ on Ic)
for t ∈ [0, 1), which implies h(Yt, t) > 0 on I (resp. h(Yt, t) < 1 on Ic) for t ∈ [0, 1).
As a result, (`t)t∈[0,1) is a well-defined positive process with `0 = 1. To prove the first
statement, we first show that ` is a positive F -local martingale on [0, 1). To this end,
Ito’s formula yields that

d`t = II`t−

[
h(Yt−, t)− h(Yt− + 1, t)

h(Yt− + 1, t)
dMB

t +
h(Yt−, t)− h(Yt− − 1, t)

h(Yt− − 1, t)
dMS

t

]
+IIc`t−

[
h(Yt− + 1, t)− h(Yt−, t)

1− h(Yt− + 1, t)
dMB,c

t +
h(Yt− − 1, t)− h(Yt−, t)

1− h(Yt− − 1, t)
dMS,c

t

]
, t ∈ [0, 1).

Here

MB = IIY
B − IIβ

∫ ·
0

h(Yu− + 1, u)

h(Yu−, u)
du, MS = IIY

S − IIβ
∫ ·
0

h(Yu− − 1, u)

h(Yu−, u)
du,

MB,c = IIcY
B − IIcβ

∫ ·
0

1− h(Yu− + 1, u)

1− h(Yu−, u)
du, MS,c = IIcY

S − IIcβ
∫ ·
0

1− h(Yu− − 1, u)

1− h(Yu−, u)
du

are all F -local martingales. Define ζ+n = inf{t ∈ [0, 1] : Yt = n} and ζ−n = inf{t ∈ [0, 1] :

Yt = −n}. Consider the sequence of stopping times (ηn)n≥1, where

ηn :=
(
IIζ
−
n + IIcζ

+
n

)
∧ (1− 1/n).

It follows from the definition of h that h(Yt, t) on I (resp. 1 − h(Yt, t) on Ic) is bounded
away from zero uniformly in t ∈ [0, ηn]. This implies that `ηn is bounded, hence `ηn is
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a F -martingale. The construction of Y S on I (resp. Y B on Ic) yields limn→∞ ηn = 1.
Therefore, ` is a positive F -local martingale, hence also a supermartingale, on [0, 1).

Define `1 := limt→1 `t, which exists and is finite due to Doob’s supermartingale con-
vergence theorem. This implies h(Y1−, 1) > 0 on I (resp. 1 − h(Y1−, 1) > 0 on Ic).
Recall that Y S on I (resp. Y B on Ic) does not jump at time 1 almost surely. Therefore
h(Y1, 1) > 0 on I (resp. 1 − h(Y1, 1) > 0 on Ic), which yields Y1 ≥ y1 on I (resp. Y1 < y1
on Ic).

Let us now prove the second statement for Y B. The statement for Y S can be shown
similarly. In view of the F -intensity of Y B calculated in Lemma 4.3, one has that, for
each i ≥ 1

Y B·∧τi∧1 − β
(
II

∫ ·∧τi∧1
0

h(Yu− + 1, u)

h(Yu−, u)
du+ IIc

∫ ·∧τi∧1
0

1− h(Yu− + 1, u)

1− h(Yu−, u)
du

)
is an F -martingale. We will show in the next paragraph that, when stopped at τi∧1, Y B

is a Poisson process in FY by showing that (Y Bt∧τi − β(t ∧ τi))t∈[0,1] is a FY -martingale–
recall that τi is an FY -stopping time. This in turn will imply that Y B is a Poisson process
with intensity β on [0, τ ∧ 1) where τ = limi→∞ τi is the explosion time. Since Poisson
process does not explode, this will further imply Y Bτ∧1 <∞ and, therefore, τ ≥ 1, P-a.s.
in view of Remark 4.2.

We proceed by projecting the above martingale into FY to see that

Y B − β
∫ ·
0

[
P(I | FYu )

h(Yu− + 1, u)

h(Yu−, u)
+ P(Ic | FYu )

1− h(Yu− + 1, u)

1− h(Yu−, u)

]
du

is a FY -martingale when stopped at τi∧1. Therefore, it remains to show that, for almost
all t ∈ [0, 1), on [t ≤ τi]

P(I | FYt )
h(Yt− + 1, t)

h(Yt−, t)
+ P(Ic | FYt )

1− h(Yt− + 1, t)

1− h(Yt−, t)
= 1.

In the remaining of the proof, we will show that on [t ≤ τi]

P(I | FYt ) = h(Yt, t) and P(Ic | FYt ) = 1− h(Yt, t), for t ∈ [0, 1). (4.7)

The statement then follows since Yt 6= Yt− only for countably many times.
We have seen that (`u∧τi)u∈[0,t] is a strictly positive F -martingale for each i. Define a

probability measure Qi ∼ P on Ft via dQi/dP|Ft = `τi∧t. It follows from a simple appli-
cation of Girsanov’s theorem that (Y B· ) and (Y S· ) are Poisson processes when stopped
at τi ∧ t and with intensity β under Qi. Therefore, they are independent from I under
Qi. Then, for t < 1 we obtain from Bayes’ formula that

I[u≤τi∧t]P(I | FYu ) = I{u≤τi∧t}
EQi

[
II`
−1
u | FYu

]
EQi

[
`−1u | FYu

]
= I[u≤τi∧t]

EQi
[
II
h(Yu,u)
h(0,0) | F

Y
u

]
EQi

[
II
h(Yu,u)
h(0,0) + IIc

1−h(Yu,u)
1−h(0,0) | FYu

]
= I[u≤τi∧t]h(Yu, u),

(4.8)

where the third identity follows from the aforementioned independence of Y and I

under Qi along with the fact that Qi does not change the probability of F0 measurable
events, so that Qi(I) = P(I) = h(0, 0). As a result, (4.7) follows from (4.8) after sending
i→∞.
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Finally, since Y B and Y S are Poisson processes in FY and they do not jump si-
multaneously by their construction, they are independent (see [9, Proposition 5.3]).
Since Y B and Y S are independent Poisson processes, it also follows E[XB

1 ] < ∞.
Indeed, since XB

1 IIc = 0, we have E[XB
1 ] = E[XB

1 II ] = E[(Y B1 − ZB1 + XB,S)II ] ≤
E[Y B1 ] +E[ZB1 ] +E[ZS1 ] <∞. Similar arguments also show that E[XS

1 ] <∞. Hence, the
constructed strategy (XB , XS ;FI) is admissible.

5 Existence and convergence of Glosten-Milgrom equilibria

In view of the results of Section 4, we can now show that a Glosten-Milgrom equilib-
rium exists for the market model under consideration.

Theorem 5.1. Suppose that (ηi)i≥1 and (ζi)i≥1 are two sequences of independent F -
measurable random variables uniformly distributed over [0, 1] that are independent
from each other, Z and ṽ. If there exists a yδ such that

P(Z1 ≥ yδ) = P(ṽ = 1),

and FI is the right continuous augmentation of (σ(ṽ, Zs, ηi, ζi; s ≤ t, i ≥ 1))t∈[0,1] with
the P-null sets, then there exists a Glosten-Milgrom equilibrium.

Proof. In view of Theorem 3.4, an equilibrium exists if Y satisfies the conditions stated
in Theorem 3.4 and the high type (resp. low type) insider never sells (resp. buys).
However, the insider can use the uniform random variables available in her filtration to
perform the construction described in Section 4 so that Y satisfies the desired proper-
ties, due to Proposition 4.4, without having to sell (resp. buy) when high type (resp. low
type).

In the remainder of this section we will analyse what happens when the trade size
becomes small (δ → 0) and the noise trades arrive more frequently (β →∞). A similar
convergence has also been studied by Back and Baruch in [4] who have established
that the limiting economy can be described by a Kyle-Back equilibrium. We would like
to mention at this point that Back and Baruch have proved their convergence results
under some extra hypotheses on the convergence of value functions which may be hard
to verify. As we shall see below, we will verify the convergence via a weak conver-
gence approach and we do not need any extra assumptions in addition to the ones
which have already been assumed. Before performing a weak convergence analysis
of Glosten-Milgrom equilibria, whose existence is justified by Theorem 5.1, let’s first
briefly describe what we mean by a Kyle-Back equilibrium.

The continuous-time model of Kyle [14], which was later extended by Back [2], stud-
ies the equilibrium pricing of a risky asset whose liquidation value at time 1 is given
by ṽ. In this model, the cumulative noise trades is modelled by a Brownian motion,
denoted with W , independent of ṽ. The risk neutral insider knows the true liquidation
value from the beginning and competition among the risk neutral market makers forces
them to quote prices as conditional expectations of ṽ based on their information. The
price is again set in a Markovian manner, i.e. there exists a function p0 : R 7→ [0, 1] so
that the market price is given by p0(Yt, t) at time t where Y is, as before, the cumulative
demand at time t.

Let Ω0 = D([0, 1],R) be the space of R-valued càdlàg functions on [0, 1] with the
coordinate process Y 0 and P0 be the Wiener measure. In view of the results of [2] and
[8], the equilibrium price of the risky asset in this economy is given by

p0(y, t) := P0
y

[
Y 0
1−t ≥ y0

]
, (5.1)
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where
y0 := Φ−1(1− P(ṽ = 1)),

and Φ(·) =
∫ ·
−∞

1√
2π
e−x

2/2dx. The equilibrium demand satisfies the SDE

Y = W + I[ṽ=1]

∫ ·
0

∂y log p0(Ys, s) ds+ I[ṽ=0]

∫ ·
0

∂y log(1− p0(Ys, s)) ds. (5.2)

Remark 5.2. Strictly speaking, the equilibrium price (5.1) and demand (5.2) in this
economy do not follow directly from the results of [2] and [8] since in their framework ṽ
has a continuous distribution. However, if one follows the arguments for the description
of equilibrium given in [8], it follows that in equilibrium the insider trades so that ṽ =

p0(Y1, 1) and Y is a Brownian motion in its own filtration. This immediately gives (5.1) as
the equilibrium price, since the price follows a martingale with respect to the filtration
of the market maker, which is the same as the filtration generated by Y . Moreover, the
same characterisation gives that the SDE satisfied by Y with respect to the filtration of
the insider is the same as the SDE satisfied by a standard Brownian motion when its
natural filtration is initially enlarged with the random variable corresponding to its time
1 value being larger than y0. The standard arguments contained in, e.g. Section 1.3 of
[15], gives (5.2).

In view of the well-known results on the weak convergence of a sequence of differ-
ence of Poisson processes to Brownian motion (see, e.g., Theorem 5.4 in Chapter 6 of
[10]), it is easy to see that the cumulative demand of noise traders in a Kyle-Back model
can be considered as the weak limit of noise demands in a sequence of Glosten-Milgrom
models. Based on this observation it is natural to ask whether the Kyle-Back equilibrium
is the weak limit of Glosten-Milgrom equilibria.

We now return to give an affirmative answer to this question. More precisely, we
consider the convergence of Glosten-Milgrom equilibria to the Kyle-Back equilibrium
described by (5.1) and (5.2). In what follows, the superscript δ ≥ 0 indicates the trade
size associated to different processes, probabilities, random variables, and functions.

Let (Ωδ,Fδ, (Fδt )t∈[0,1],P
δ)δ≥0 be a sequence of probability spaces on which the Glosten-

Milgrom models of different order sizes are defined. When δ > 0, Ωδ = D([0, 1], δZ) is the
space of δZ-valued càdlàg functions on [0, 1] with the coordinate process Y δ, (Fδt )t∈[0,1]
is the minimal right continuous and complete filtration generated by Y δ, and Pδ for
δ > 0 is the probability measure under which Y δ is the difference of two independent
Poisson processes with the same intensity βδ. P0 is the Wiener measure as mentioned
in the earlier paragraphs.

To construct a sequence of pricing rules in Glosten-Milgrom equilibria which con-
verges to the Kyle-Back equilibrium, set

yδ := inf{y ∈ δZ, Pδ(Y δ1 ≤ y) ≥ 1− P(ṽ = 1)}, for δ > 0,

and denote pyδ , defined in (3.4), by pδ for simplicity. To ensure the existence of Glosten-
Milgrom equilibria with pricing rules (pδ)δ>0, we introduce a sequence of Bernoulli
random variables (ṽδ)δ>0 whose distribution is

P(ṽδ = 1) = Pδ(Y δ1 ≥ yδ). (5.3)

These (ṽδ)δ>0 will be the liquidation values of the risky asset in the sequence of Glosten-
Milgrom models which converges to the Kyle-Back model.

Theorem 5.3. For any ṽ satisfying P(ṽ = 1) ∈ (0, 1), there exists a sequence of admis-
sible strategies (XB,δ, XS,δ)δ>0 such that, for each δ > 0, (pδ, XB,δ, XS,δ) is a Glosten-
Milgrom equilibrium whose fundamental value of the risky asset is ṽδ.
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When the intensity of Poisson process is given by βδ = (2δ2)−1 in the Glosten-
Milgrom model, as δ → 0, the sequence of Glosten-Milgrom equilibria converge to the
Kyle-Back equilibrium in the following sense:

i) The bid and ask prices in these Glosten-Milgrom equilibria converge to the price in
the Kyle-Back equilibrium. That is, limδ↓0 a

δ(y, t) = limδ↓0 b
δ(y, t) = limδ↓0 p

δ(y, t) =

p0(y, t) for (y, t) ∈ R × [0, 1). Moreover, the corresponding market depths in the
Glosten-Milgrom equilibria converges to the market depth in the Kyle-Back equi-
librium:

lim
δ↓0

1

δ

(
aδ(y, t)− pδ(y, t)

)
= lim

δ↓0

1

δ

(
pδ(y, t)− bδ(y, t)

)
= ∂yp

0(y, t), for (y, t) ∈ R×[0, 1).

ii) Let Y 0,H and Y 0,L be the solutions to the following two SDEs, respectively,

dYt =
∂yp

0(Yt, t)

p0(Yt, t)
dt+ dWt and dYt = − ∂yp

0(Yt, t)

1− p0(Yt, t)
dt+ dWt, t ∈ [0, 1),

where W is a Brownian motion under (Ω,F0, (F0
t )t∈[0,1],P

0). Define

B0
· =

∫ ·
0

∂yp
0(Y 0,H

t , t)

p0(Y 0,H
t , t)

dt and S0
· =

∫ ·
0

∂yp
0(Y 0,L

t , t)

1− p0(Y 0,L
t , t)

dt.

Then,

• When ṽ = 1, XB,δ L→ B0;
• When ṽ = 0, XS,δ L→ S0,

where
L→ represents the convergence in law.

iii) (p0, Y 0) satisfies (5.1) and (5.2) where

Y 0 = I[v=1]Y
0,H + I[v=0]Y

0,L.

As such, p0 and Y 0 are the equilibrium price and demand in the Kyle-Back equilib-
rium, respectively.

The above theorem tells us that Kyle-Back model with Bernoulli distributed ṽ can be
approximated by a sequence of Glosten-Milgrom models whose risky asset fundamental
price converges to ṽ in distribution. Since there is no bid-ask spread in the Kyle-Back
equilibrium, the above convergence results in particular tell us that the bid-ask spread
gets smaller and vanish in the limit as the frequency of noise trades increase. Moreover
the rate the convergence is O(δ).

To show the desired convergence results contained in the theorem above, let us first
prove the convergence in law of the cumulative order processes as seen in the filtration,

say Fδ, with respect to which Xδ and Zδ are adapted and ṽ ∈ Fδ0. Note that this
filtration is smaller than the filtration that is assumed to be contained in the insider’s
filtration in Theorem 5.1, however, it contains all the relevant processes and random
variables describing insider’s strategy and the informational advantage. Moreover, it
will be enough to limit ourselves to these filtrations in order to prove Theorem 5.3.
Recall from Section 4 that, for each δ > 0, the distribution of the cumulative order
process in Fδ is the same as the distribution of Y δ conditioned on Y δ1 ≥ yδ or Y δ1 < yδ.
Here Y δ/δ is the difference of two Poisson processes in its own filtration.

Lemma 5.4. Let βδ = (2δ2)−1. We have

Law(Y δ |Y δ1 ≥ yδ)⇒ Law(Y 0,H) and Law(Y δ |Y δ1 < yδ)⇒ Law(Y 0,L), as δ → 0,

where Y 0,H and Y 0,L are defined in Theorem 5.3 ii) and⇒ represents the weak conver-
gence of probability measures.
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Proof. The first convergence will be proved. The second convergence can be shown
similarly. Since βδ = (2δ2)−1, it follows from [10, Theorem 5.4 in Chapter 6] that Pδ ⇒
P0 and, in particular, Law(Y δ1 ) ⇒ Law(Y 0

1 ). Observe that yδ is the (1 − P(ṽ = 1))th

quantile of the distribution for Y δ1 and the distribution of Y 0
1 is continuous. It then

follows

lim
δ↓0

yδ = y0. (5.4)

Meanwhile the conditional distribution Law(Y δ |Y δ1 ≥ yδ) is defined via

Pδ,H(A) :=
Pδ(A, Y δ1 ≥ yδ)
Pδ(Y δ1 ≥ yδ)

, for A ∈ Fδ. (5.5)

We will show Pδ,H ⇒ P0,H as δ ↓ 0. This statement will follow once we show the
finite dimensional distributions of Y δ converge weakly to the finite dimensional distri-
butions of Y 0, and (Pδ,H)δ>0 is tight (see e.g. [12, VI.3.20]). We will prove both of these
conditions using the already observed convergence of Pδ to P0.

To this end, we will first establish the the convergence of Pδ(Y δ1 ≥ yδ) to P0(Y 0
1 ≥ y0).

Indeed, due to (5.4), there exists a sufficiently small δε such that yδ ≥ y0 − ε for δ ≤ δε.
Thus,

Pδ(Y δ1 ≥ yδ) ≤ Pδ(Y δ1 ≥ y0 − ε)→ P0(Y 0
1 ≥ y0 − ε), as δ ↓ 0,

where the convergence follows from Law(Y δ1 )⇒ Law(Y 0
1 ) and the fact that the distribu-

tion of Y 0
1 is continuous at y0− ε. Then the previous inequality yields lim supδ↓0P

δ(Y δ1 ≥
yδ) ≤ P0(Y 0

1 ≥ y0) since the choice of ε is arbitrary. Combining the previous inequality
with lim infδ↓0P

δ(Y δ1 ≥ yδ) ≥ P0(Y 0
1 ≥ y0), which can be similarly proved, we obtain

lim
δ↓0
Pδ(Y δ1 ≥ yδ) = P0(Y 0

1 ≥ y0) = P(ṽ = 1) > 0. (5.6)

In order to prove the convergence of the finite dimensional distributions of Y δ, we
are first going to show

lim
δ↓0
EP

δ,H [
f(Y δt1 , · · · , Y

δ
tn)
]

= EP
0,H [

f(Y 0
t1 , · · · , Y

0
tn)
]
,

for arbitrary bounded continuous function f : Rn → R and 0 ≤ t1 ≤ · · · < tn ≤ 1.
However, similar arguments as those employed in the last paragraph yield

lim
δ↓0
EP

δ
[
f(Y δt1 , · · · , Y

δ
tn) I[Y δ1 ≥yδ]

]
= EP

0
[
f(Y 0

t1 , · · · , Y
0
tn) I[Y 0

1 ≥δ0]

]
.

The claim then follows from combining the previous convergence with (5.5) and (5.6).
To verify the tightness of (Pδ,H)δ>0, it is equivalent to prove the following two con-

ditions (see [12, Theorem VI.3.21]):

1. for any ε > 0, there exist δε and K ∈ R with

Pδ,H
(

sup
0≤t≤1

|Y δt | > K

)
≤ ε, for all δ ≤ δε;

2. for any ε > 0 and η > 0, there exists δε,η and θε,η such that

Pδ,H
(
w′1(Y δ, θε,η) ≥ η

)
≤ ε, for all δ ≤ δε,η.

We refer reader to [12, Chapter VI, Section 1a] for the definition of w′1.
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Observe that, since Pδ ⇒ P0, (Pδ)δ>0 is tight which implies that the two conditions
above hold whenPδ,H is replaced byPδ. Moreover, ifA stands for the event [sup0≤t≤1 |Y δt | >
K] or [w′1(Y δ, θε,η) ≥ η], (5.5) along with (5.6) yields

Pδ,H(A) =
Pδ(A, Y δ1 ≥ yδ)
Pδ(Y δ1 ≥ yδ)

≤ Pδ(A)

Pδ(Y δ1 ≥ yδ)
≤ ε

Pδ(Y δ1 ≥ yδ)
≤ 2ε

P0(Y 0
1 ≥ y0)

for sufficiently small δ,

which confirms the aforementioned conditions for Pδ,H .
Finally, it remains to verify that P0,H is the law of Y 0,H . To this end, note that P0,H

is the law of a Brownian motion conditioned on its time 1 value being larger than y0.
A standard calculation using the well-known h-transform technique gives the following
semimartingale decomposition of Y 0 under P0,H :

Y 0
t =

∫ t

0

∂yp
0(Y 0

u , u)

p0(Y 0
u , u)

du+ W̃t, t ∈ [0, 1),

where W̃ is a P0,H -Brownian motion. Since ∂yp
0/p0 is locally Lipschitz, the previous

SDE has a unique solution in law, therefore P0,H must be the law of Y 0,H .

We are now ready to prove the convergence results.

Proof of Theorem 5.3. The existence of Glosten-Milgrom equilibria follows from (5.3)
and Theorem 5.1 directly. We will prove the statements on convergence in what follows.

i) First note that limδ↓0 p
δ(y, t) = p0(y, t) follows from the argument which leads to

(5.6). Moreover, this immediately implies the convergence of bid and ask prices
as given in i) since aδ(y, t) = pδ(y + δ, t) and bδ(y, t) = pδ(y − δ, t). To verify the
convergence of the market depth, observe that

aδ(y, t)− pδ(y, t) = Pδy+δ[Y
δ
1−t ≥ yδ]− Pδy[Y δ1−t ≥ yδ] = Pδ0[Y δ1−t = yδ − y − δ]

= P

[
Y 1−t =

yδ − y − δ
δ

]
,

where Y 1−t is the difference of two independent Poisson random variables with
the common parameter (1 − t)β = (1 − t)(2δ2)−1 under P. Recall that the differ-
ence of two independent Poissons has the so-called Skellam distribution (see [16]).
Thus, P(Y 1−t = k) = e−2µI|k|(2µ), where I|k|(·) is the modified Bessel function of
the second kind and µ = (1− t)(2δ2)−1. As a result

1

δ
(aδ(y, t)− pδ(y, t)) =

1

δ
P

[
Y 1−t =

yδ − y − δ
δ

]
=

1

δ
exp

(
−1− t

δ2

)
I∣∣∣ yδ−y−δδ

∣∣∣
(

1− t
δ2

)
→ 1√

2π(1− t)
exp

(
− (y0 − y)2

2(1− t)

)
, as δ ↓ 0.

Here the convergence follows from (5.4) and [1, Theorem 2], which states that the
density of the Skellam distribution converges to the density of the normal after
appropriate rescaling. Similar argument shows that (pδ(y, t)−bδ(y, t))/δ converges
to the same function. This establishes the convergence of market depths given in
i) since ∂yp0(y, t) is exactly the normal density above.

ii) Recall from Section 4 and the discussion preceding Lemma 5.4 that, for each δ > 0,

the distribution of the cumulative order process in Fδ on the set [ṽ = 1] (resp. [ṽ =
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0]) is the same as the distribution of Y δ conditioned on Y δ1 ≥ yδ (resp. Y δ1 < yδ).
However, Lemma 5.4 has already shown that Law(Y δ |Y δ1 ≥ yδ) ⇒ Law(Y 0,H),
where Y 0,H = B0 + W . Since Law(Zδ) ⇒ Law(W ) as δ ↓ 0, it follows from [12,
Proposition VI.1.23] that Law(XB,δ) ⇒ Law(B0) as δ ↓ 0. The convergence of
Law(XS,δ) can be similarly proved.

iii) This now follows from Remark 5.2.
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