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Abstract

A stationary random graph is a random rooted graph whose distribution is invariant
under re-rooting along the simple random walk. We adapt the entropy technique
developed for Cayley graphs and show in particular that stationary random graphs
of subexponential growth are almost surely Liouville, that is, admit no non constant
bounded harmonic functions. Applications include the uniform infinite planar quad-
rangulation and long-range percolation clusters.
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1 Introduction

A stationary random graph (G, ρ) is a random rooted graph whose distribution is
invariant under re-rooting along a simple random walk started at the root ρ (see Section
1.1 for a precise definition). The entropy technique and characterization of the Liouville
property for groups, homogeneous graphs or random walk in random environment [24,
25, 26, 27, 29, 30] are adapted to this context. In particular we have

Theorem 1.1. Let (G, ρ) be a stationary random graph of subexponential growth in the
sense that

n−1E
[

log
(
#BG(ρ, n)

)]
−→
n→∞

0, (1.1)

where #BG(ρ, n) is the number of vertices within distance n from the root ρ, then (G, ρ)

is almost surely Liouville.

Recall that a function from the vertices of a graph to R is harmonic if and only if
the value of the function at a vertex is the average of the value over its neighbors, for
all vertices of the graph. We call graphs admitting no non constant bounded harmonic
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Ergodic theory on stationary random graphs

functions Liouville. In the case of graphs of bounded degree we show in Proposition 3.6
that stationary non-Liouville random graphs are ballistic.

One of the motivation of this work lies in the study of the Uniform Infinite Pla-
nar Quadrangulation (abbreviated by UIPQ) introduced in [32] (following the pioneer
work of [4]). The UIPQ is a stationary random infinite planar graph whose faces are all
squares. This object is very natural and of special interest for understanding two dimen-
sional quantum gravity and has triggered a lot of work, see e.g. [3, 4, 14, 15, 33, 36].
One of the fundamental questions regarding the UIPQ, is to prove recurrence or tran-
sience of simple random walk on this graph. Unfortunately, the degrees in the UIPQ
are not bounded thus the techniques of [10] fail to apply. Nevertheless it has been con-
jectured in [4] that the UIPQ is a.s. recurrent. As an application of Theorem 1.1, we
deduce a step in this direction,

Corollary 1.2. The Uniform Infinite Planar Quadrangulation is almost surely Liouville.

See also the very recent work of Steffen Rohde and James T. Gill [19] proving that
the conformal type of the Riemann surface associated to the UIPQ is parabolic. Another
application concerns a question of Berger [11] and consists in proving that certain long
range percolation clusters are Liouville (see Section 5.2).

The notion of stationary random graph generalizes the concepts of Cayley and tran-
sitive graph where the homogeneity of the graph is replaced by stationarity along
the simple random walk. This notion is very closely related to the ergodic theory
notions of unimodular random graphs of [2] and measured equivalence relations see
e.g. [25, 26, 28, 37]. Roughly speaking, unimodular random graphs correspond, after
biasing by the degree of the root, to stationary and reversible random graphs (see Def-
inition 1.3). We then reinterpret ideas from measured equivalence relations theory to
prove (Theorem 4.4) that if a stationary random graph of bounded degree (G, ρ) is non
reversible then the simple random walk on G is ballistic, thus improving Theorem A of
[37] and extending [38] in the case of transitive graphs.

In [7] the authors also use the notions of stationary and unimodular random graph in
order to show that the simple random walk on Zd indexed by T∞, the critical geometric
Galton-Watson tree conditioned to survive [31], is recurrent if and only if d ≤ 4.

The goal of this paper is not to prove striking new results, indeed much of the gen-
eral results stated in this work are adaptations or variants of known results in the
context of measured equivalence relations. Rather, we present them in a new and clear
probabilistic framework which is of independent interest. We thus chose to focus on
the Liouville property for graphs and its application to the UIPQ as main direction.
However it is believable that larger parts of the theory of equivalence relations can be
adapted to the random graph setting. In the last section, we also construct (Proposition
5.4) a stationary and reversible random graph of subexponential growth which is planar
and transient. This indicates that the theory of local limits of random planar graphs of
bounded degree developped in [10] can not be extended to the unbounded degree case
in a straightforward manner.

The paper is organized as follows. The remainder of this section is devoted to a
formal definition of stationary and reversible random graphs. Section 2 recalls the
links between these concepts, unimodular random graphs and measured equivalence
relations. The entropy technique is developed in Section 3. In Section 4 we explore
under which conditions a stationary random graph is not reversible. The last section is
devoted to applications and open problems.
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Ergodic theory on stationary random graphs

Added in proof: After the completion of this work, Gurel-Gurevich and Nachmias [21]
proved that the UIPQ (and the UIPT) is recurrent which implies Corollary 1.2.

1.1 Definitions

A graph G = (V(G),E(G)) is a pair of sets, V(G) representing the set of vertices
and E(G) the set of (unoriented) edges. In the following, all the graphs considered are
countable, connected and locally finite. We also restrict ourself to simple graphs, that
is, without loops nor multiple edges. Two vertices x, y ∈ V(G) linked by an edge are
called neighbors in G and we write x ∼ y. The degree deg(x) of x is the number of
neighbors of x in G. For any pair x, y ∈ G, the graph distance dGgr(x, y) is the minimal
length of a path joining x and y in G. For every r ∈ Z+, the ball of radius r around x in
G is the subgraph of G spanned by the vertices at distance less than or equal to r from
x in G, it is denoted by BG(x, r).

A rooted graph is a pair (G, ρ) where ρ ∈ V(G) is called the root vertex. An isomor-
phism between two rooted graphs is a graph isomorphism that maps the roots of the
graphs. Let G• be the set of isomorphism classes of locally finite rooted graphs (G, ρ),
endowed with the distance dloc defined by

dloc

(
(G1, ρ1), (G2, ρ2)

)
= inf

{
1

r + 1
: r ≥ 0 and (BG1

(ρ1, r), ρ1) ' (BG2
(ρ2, r), ρ2)

}
,

where ' stands for the rooted graph equivalence. With this topology, G• is a Polish
space (see [10]). Similarly, we define G•• (resp. ~G) to be the set of isomorphism classes
of bi-rooted graphs (G, x, y) that are graphs with two distinguished ordered points
(resp. graphs (G, (xn)n≥0) with a semi-infinite path), where the isomorphisms consid-
ered have to map the two distinguished points (resp. the path). These two sets are
equipped with variants of the distance dloc and are Polish with the induced topologies.
Formally elements of G•,G•• and ~G are equivalence classes of graphs, but we will not
distinguish between graphs and their equivalence classes and we use the same termi-
nology and notation. One way to bypass this identification is to choose once for all a
canonical representative in each class, see [2, Section 2].

Let (G, ρ) be a rooted graph. For x ∈ V(G) we denote the law of the simple random
walk (Xn)n≥0 on G starting from x by PGx and its expectation by EGx . Formally this
makes no sense since (G, ρ) is an equivalence class of graphs, however it is easy to
check that the distribution of (G, (Xn)n≥0) ∈ ~G when (Xn) starts from ρ is well-defined,
that is does not depend on the representative chosen for (G, ρ). We speak of “the simple
random walk of law PGρ conditionally on (G, ρ)”. It is easy to check that all the quantities
we will use in the paper do not depend of a choice of a representative of (G, ρ).

A random rooted graph (G, ρ) is a random variable taking values in G•. In this work
we will use P and E for the probability and expectation referring to the underlying
random graph. If conditionally on (G, ρ), (Xn)n≥0 is the simple random walk started at ρ,
we denote the distribution of (G, (Xn)n≥0) ∈ ~G by P, and the corresponding expectation
by E. The following concept is quite standard.

Definition 1.3. Let (G, ρ) be a random rooted graph. Conditionally on (G, ρ), let
(Xn)n≥0 be the simple random walk on G starting from ρ. The graph (G, ρ) is called
stationary if

(G, ρ) = (G,Xn) in distribution, for all n ≥ 1, (1.2)

or equivalently for n = 1. In words a stationary random graph is a random rooted
graph whose distribution is invariant under re-rooting along a simple random walk on
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G. Furthermore, (G, ρ) is called reversible if

(G,X0, X1) = (G,X1, X0) in distribution. (1.3)

Clearly any reversible random graph is stationary. Note that our reversibility condi-
tion is different from the usual notion for Markov processes.

Example 1.4. Any Cayley graph rooted at any vertex is stationary and reversible. Any
transitive graph G (i.e. whose isomorphism group is transitive on V(G)) is stationary.
For examples of transitive graphs which are not reversible, see [8, Examples 3.1 and
3.2]. E.g. the “grandfather” graph (see Fig. below) is a transitive (hence stationary)
graph which is not reversible.

If conditionally on (G, ρ), (Xn)n!0 is the simple random walk started at ρ, we denote the
distribution of (G, (Xn)n!0) ∈ "G by P, and by E the respective expectation.

Definition 1.3. Let (G, ρ) be a random rooted graph. Conditionally on (G, ρ), let (Xn)n!0 be
the simple random walk on G starting from ρ. The graph (G, ρ) is called stationary if

(G, ρ) = (G,Xn) in distribution, for all n ! 1, (2)

or equivalently for n = 1. In words a stationary random graph is a random rooted graph whose
distribution is invariant under re-rooting along a simple random walk on G. Furthermore, (G, ρ)
is called reversible if

(G,X0,X1) = (G,X1,X0) in distribution. (3)

Clearly any reversible random graph is stationary.

Example 1. Any Cayley graph rooted at any vertex is stationary and reversible. Any transitive
graph G (i.e. whose isomorphism group is transitive on V(G)) is stationary. For examples of
transitive graphs which are not reversible, see [6, Examples 3.1 and 3.2]. E.g. the “grandfather”
graph (see Fig. below) is a transitive (hence stationary) graph which is not reversible.

∞

Fig.: The “grandfather” graph is obtained from the 3-regular tree by choosing a point at
Infinity that orientates the graph and adding all the edges from grand sons to grand-father.

Example 2. [8, Section 3.2] Let G be a finite connected graph. Pick a vertex ρ ∈ V(G) with a
probability proportional to its degree (normalized by

∑
u∈V(G) deg(u)). Then (G, ρ) is a reversible

random graph.

Example 3 (Augmented Galton-Watson tree). Consider two independent Galton-Watson trees
with offspring distribution (pk)k!0. Link the roots vertices of the two trees by an edge and root
the obtained graph at the root of the first tree. The resulting random rooted graph is stationary
and reversible, see [22, 23, 16].

2 Connections with other notions

As we will see, the concept of stationary random graph can be linked to various notions. In the
context of bounded degree, stationary random graphs generalize unimodular random graphs [1].
Stationary random graphs are closely related to graphed equivalence relation with an harmonic
measure, see [25]. We however think that the probabilistic Definition 1.3 is more natural and
shed some additional light on the concept.

3

Fig.: The “grandfather” graph is obtained from the 3-regular tree by choosing a point
at infinity that orientates the graph and adding all the edges from grandsons to

grandfathers.

Example 1.5. [10, Section 3.2] Let G be a finite connected graph. Pick a vertex ρ ∈
V(G) with a probability proportional to its degree (normalized by

∑
u∈V(G) deg(u)). Then

(G, ρ) is a reversible random graph.

Example 1.6 (Augmented Galton-Watson tree). Consider two independent Galton-Watson
trees with offspring distribution (pk)k≥0. Link the root vertices of the two trees by an
edge and root the obtained graph at the root of the first tree. The resulting random
rooted graph is stationary and reversible, see [28, 34, 35].

2 Connections with other notions

As we will see, the concept of stationary random graph can be linked to various
notions. In the context of bounded degree, stationary random graphs generalize uni-
modular random graphs [2]. Stationary random graphs are closely related to graphed
equivalence relations with a harmonic measure, see [26, 37]. We however think that
the probabilistic Definition 1.3 is more natural for our applications.

2.1 Ergodic theory

We formulate the notion of stationary random graphs in terms of ergodic theory.
We can define the shift operator θ on ~G by θ

(
(G, (xn)n≥0)

)
=
(
G, (xn+1)n≥0

)
, and the

projection π : ~G → G• by π
(
(G, (xn)n≥0)

)
= (G, x0).

Recall from the last section that if P is the law of (G, ρ) we write P for the distri-
bution of (G, (Xn)n≥0) where (Xn)n≥0 is the simple random walk on G starting at ρ.
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The following proposition is a straightforward translation of the notion of a stationary
random graph into that of a θ-invariant probability measure on ~G.

Proposition 2.1. Let P a probability measure on G• and P the associated probability
measure on ~G. Then P is stationary if and only if P is invariant under θ.

As usual, we will say that P (and by extension P or directly (G, ρ)) is ergodic if P is
ergodic for θ. Proposition 2.1 enables us to use all the powerful machinery of ergodic
theory in the context of stationary random graphs. For instance, the classical theorems
on the range and speed of a random walk on a group are valid:

Theorem 2.2. Let (G, ρ) be a stationary and ergodic random graph. Conditionally
on (G, ρ) denote (Xn)n≥0 the simple random walk on G starting from ρ. Set Rn =

#{X0, . . . , Xn} and Dn = dGgr(X0, Xn) for the range and distance from the root of the
random walk at time n. There exists a constant s ≥ 0 such that we have the following
almost sure and L1 convergences for P,

Rn
n

a.s. L1

−→
n→∞

P


⋂

i≥1
{Xi 6= ρ}


 , (2.1)

Dn

n

a.s. L1

−→
n→∞

s. (2.2)

Remark 2.3. In particular a stationary and ergodic random graph is transient if and
only if the range of the simple random walk on it grows linearly.

Proof. The two statements are straightforward adaptations of [16]. See also [2, Propo-
sition 4.8].

2.2 Unimodular random graphs

The Mass-Transport Principle has been introduced by Häggström in [22] to study
percolation and was further developed in [8]. A random rooted graph (G, ρ) obeys
the Mass-Transport principle (abbreviated by MTP) if for every Borel positive function
F : G•• → R+ we have

E


 ∑

x∈V(G)

F (G, ρ, x)


 = E


 ∑

x∈V(G)

F (G, x, ρ)


 . (2.3)

The name comes from the interpretation of F as an amount of mass sent from ρ to x in
G: the mean amount of mass that ρ receives is equal to the mean quantity it sends. The
MTP holds for a great variety of random graphs, see [2] where the MTP is extensively
studied.

Definition 2.4. [2, Definition 2.1] If (G, ρ) satisfies (2.3) it is called unimodular (See
[2] for explanation of the terminology).

Let us explain the link between unimodular random graphs and reversible random
graphs. Suppose that F : G•• → R+ is a Borel positive function such that F is supported
by the subset of G•• determined by the condition that the roots are neighbors, that is

F (G, x, y) = F (G, x, y)1x∼y. (2.4)

Applying the MTP to a unimodular random graph (G, ρ) with the function F we get

E

[∑

x∼ρ
F (G, ρ, x)

]
= E

[∑

x∼ρ
F (G, x, ρ)

]
,
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or equivalently

E

[
deg(ρ)

1

deg(ρ)

∑

x∼ρ
F (G, ρ, x)

]
= E

[
deg(ρ)

1

deg(ρ)

∑

x∼ρ
F (G, x, ρ)

]
.

Let (G̃, ρ̃) be distributed according to (G, ρ) biased by deg(ρ) (assuming that E [deg(ρ)] <

∞), that is for any Borel f : G• → R+ we have E[f(G̃, ρ̃)] = E[deg(ρ)]−1E[f(G, ρ)deg(ρ)].
Conditionally on (G̃, ρ̃), let X1 be a one-step simple random walk starting on ρ̃ in G̃.
Then the last display is equivalent to

(G̃, ρ̃,X1)
(d)
= (G̃,X1, ρ̃). (2.5)

The graph (G̃, ρ̃) is thus reversible hence stationary. Reciprocally, if (G̃, ρ̃) is reversible
we deduce that the graph (G, ρ) obtained after biasing by deg(ρ)−1 obeys the MTP with
functions of the form F (G, x, y)1x∼y. By [2, Proposition 2.2] this is sufficient to imply
the full mass transport principle. Let us sum-up.

Proposition 2.5. There is a correspondence between unimodular random graphs such
that the expectation of the degree of the root is finite and reversible random graphs:

(G, ρ) unimodular and E[deg(ρ)] <∞
bias by deg(ρ)

�
bias by deg(ρ)−1

(G, ρ) reversible.

2.3 Measured equivalence relations

In this section we recall the notion of measured graphed equivalence relation. This
concept will not be used in the rest of the paper.

Let (B,µ) be a standard Borel space with a probability measure µ and let E ⊂ B2 be
a symmetric Borel set. We denote the smallest equivalence relation containing E by R.
Under mild assumptions the triplet (B,µ,E) is called a measured graphed equivalence
relation (MGER). The set E induces a graph structure on B by setting x ∼ y ∈ B if
(x, y) ∈ E. For x ∈ B, one can interpret the equivalence class of x as a graph with the
edge set given by E, which we root at the point x. If x is sampled according to µ, any
measured graphed equivalence relation can be seen as a random rooted graph. See
[2, 25, 26, 28, 37].

Reciprocally, the Polish space G• can be equipped with a symmetric Borel set E
where ((G, ρ), (G′, ρ′)) ∈ E if (G, ρ) and (G′, ρ′) represent the same isomorphism class of
non-rooted graphs but are rooted at two different neighboring vertices. Denote R the
smallest equivalence relation on G• that contains E. Thus a random rooted graph (G, ρ)

of distribution P gives rise to (G•,P, E) which, under mild assumptions on (G, ρ) is a
measured graphed equivalence relation.

Remark however that the measured graphed equivalence relation we obtain with
this procedure can have a graph structure on equivalence classes very different from
what we could expect : Consider for example the (random) graph Z2 rooted at (0, 0).
Since Z2 is a transitive graph, the measure obtained on G• by the above procedure is
concentrated on the singleton corresponding to the isomorphism class of (Z2, (0, 0)).
Hence the random graph associated to this MGER is the rooted graph with one point,
which is quite different from the graph Z2 we could expect!

There are two ways to bypass this difficulty: considering rigid graphs (that are
graphs without non trivial isomorphisms see [28, Section 1E]) or add independent uni-
form labels ∈ [0, 1] on the graphs (see [2, Example 9.9]). Both procedures yield a MGER
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whose graph structure is that of (G, ρ).

In particular we have the following correspondence between the notions of harmonic
MGER and stationary random graph, totally invariant MGER and reversible random
graph, measure preserving MGER or and unimodular random graph, see [2, 18, 25, 26,
37]. Also, the entropy theory has been developed in the context of random walks on
equivalence relations, see [1, 13, 25, 26]. In the next section we will develop it, from
scractch, in the context of stationary random graphs.

3 The Liouville property

In this section, we extend a well-known result on groups first proved in [5] relating
Poisson boundary to entropy of a group. Here we adapt the proof which was given
in [29, Theorem 1] in the case of groups (see also [30] in the case of homogeneous
graphs). We basically follow the argument of [29] using expectation of entropy. The
stationarity of the underlying random graph together with the Markov property of the
simple random walk will replace homogeneity of the graph. We introduce the mean
entropy of the random walk and prove some useful lemmas. Then we derive the main
results of this section.

In the following (G, ρ) is a stationary random graph. Recall that conditionally on
(G, ρ), PGx is the law of the simple random walk (Xn)n≥0 on G starting from x ∈ V(G).
For every integer 0 ≤ a ≤ b < +∞, the entropy of the simple random walk started at
x ∈ V(G) between times a and b is

Hb
a(G, x) =

∑

xa,xa+1,...,xb

ϕ
(
PGx (Xa = xa, . . . , Xb = xb)

)
,

where ϕ(t) = −t log(t). To simplify notation we write Ha(G, x) = Ha
a (G, x). Recalling

that (G, ρ) is a random graph we set

hba = E
[
Hb
a(G, ρ)

]
and ha = E [Ha(G, ρ)] .

Proposition 3.1. If (G, ρ) is a stationary random graph then (hn)n≥0 is a subadditive
sequence.

Proof. Let n,m ≥ 0. We have

Hn+m(G, ρ) =
∑

xn+m

ϕ
(
PGρ (Xn+m = xn+m)

)
.

Applying the Markov property at time n, we get

Hn+m(G, ρ) =
∑

xn+m

ϕ

(∑

xn

PGρ (Xn = xn)PGxn(Xm = xn+m)

)
.

Since ϕ is concave and ϕ(0) = 0 we have ϕ(x+y) ≤ ϕ(x)+ϕ(y),for every x, y ≥ 0. Hence
we obtain

Hn+m(G, ρ) ≤
∑

xn+m

∑

xn

ϕ
(
PGρ (Xn = xn)PGxn(Xm = xn+m)

)

= Hn(G, ρ) +
∑

xn

PGρ (Xn = xn)Hm(G, xn).
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Taking expectations and using (1.2) one has

hn+m ≤ hn + E

[∑

xn

PGρ (Xn = xn)Hm(G, xn)

]

= hn + E [Hm(G,Xn)] = hn + hm.

The subadditive lemma then implies that

hn
n
−→
n→∞

h ≥ 0. (3.1)

This limit is called the mean entropy of the stationary random graph (G, ρ). It plays
the role of the (deterministic) entropy of a random walk on a group. In the rest of the
paper, we will assume that h is finite. The following theorem generalizes the well-known
connection between the Liouville property and the entropy.

Theorem 3.2. Let (G, ρ) be a stationary random graph. The following conditions are
equivalent:

• the tail σ-algebra associated to the simple random walk on G started from ρ is
almost surely trivial (in particular it implies that (G, ρ) is almost surely Liouville),

• the mean entropy h of (G, ρ) is null.

Before doing the proof, we start with a few lemmas.

Lemma 3.3. For every 0 ≤ a ≤ b < ∞ we have hba = ha + (b − a)h1. In particular for
k ≥ 1 we have hk1 = kh1.

Proof. Let 0 ≤ a ≤ b <∞. An application of the Markov property at time a leads to

Hb
a(G, ρ) = −

∑

xa,...,xb

PGρ (Xa = xa, . . . , Xb = xb) log
(
PGρ (Xa = xa, . . . , Xb = xb)

)

= −
∑

xa

PGρ (Xa = xa) log
(
PGρ (Xa = xa)

)
+
∑

xa

PGρ (Xa = xa)Hb−a
1 (G, xa).

Taking expectations we get hba = ha + hb−a1 . An iteration of the argument proves the
lemma.

If (G, ρ) is a fixed rooted graph and (Xn)n≥0 is distributed according to PGρ , we
introduce the following σ-algebra:

Fn(G, ρ) = σ(X1, . . . , Xn),

Fn(G, ρ) = σ(Xn, . . .),

F∞(G, ρ) =
⋂

n≥0
Fn(G, ρ).

The elements of the last σ-algebra are called tail events. By classical results of
entropy theory, for all k ≥ 0, the conditional entropy H(Fk(G, ρ) | Fn(G, ρ)) increases
as n→∞ and converges to H(Fk(G, ρ) | F∞(G, ρ)). Furthermore, we have

H(Fk(G, ρ) | F∞(G, ρ)) ≤ H(Fk(G, ρ)),

with equality if and only if Fk(G, ρ) and F∞(G, ρ) are independent.
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Lemma 3.4. For 1 ≤ k ≤ n ≤ m < +∞ we have E [H(X1, . . . , Xk | Xn, . . . , Xm)] =

kh1 + hn−k − hn.

Proof. We have by definition

H(X1, . . . , Xk | Xn, . . . , Xm)

= −
∑

x1,...,xk
xn,...,xm

PGρ (Xi = xi, 1 ≤ i ≤ k and n ≤ i ≤ m) log

(
PGρ (Xi = xi, 1 ≤ i ≤ k and n ≤ i ≤ m)

PGρ (Xi = xi, n ≤ i ≤ m)

)
.

Applying the Markov property at time k one gets

= Hk
1 (G, ρ)−Hm

n (G, ρ) +
∑

xk

PGρ (Xk = xk)Hm−k
n−k (G, xk),

and taking expectations using (1.2), the right-hand side becomes hk1 − hmn + hm−kn−k . An
application of Lemma 3.3 completes the proof.

In particular we see that the expected value of H(X1, . . . , Xk | Xn, . . . , Xm) does not
depend upon m (this is also true without taking expectation and follows from Markov
property at time n). If we let m → ∞ in the statement of the last lemma, we get by
monotonicity of conditional entropy and monotone convergence

E [H(Fk(G, ρ) | Fn(G, ρ))] = kh1 + hn−k − hn. (3.2)

Proof of Theorem 3.2. Using again the monotonicity of conditional entropy

H(F1(G, ρ) | Fn(G, ρ)) ≤ H(F1(G, ρ) | Fn+1(G, ρ))

and the equality (3.2) for k = 1, we deduce that (hn+1 − hn)n≥0 is decreasing and
converges towards h̃ ≥ 0. By (3.1) and Cesaro’s Theorem, we deduce that h̃ = h. Thus
letting n→∞ in (3.2) we get by monotone convergence

E [H(Fk(G, ρ) | F∞(G, ρ))] = k(h1 − h).

Comparing the last display with Lemma 3.3 (note that H(Fk(G, ρ)) = Hk
1 (G, ρ)), it fol-

lows that h = 0 if and only if almost surely, for all k ≥ 0, F∞(G, ρ) is independent
of Fk(G, ρ). Since there are no non-trivial events independent of all the coordinate σ-
algebra we deduce that F∞(G, ρ) is almost surely trivial, in particular (G, ρ) is Liouville.
This completes the proof of Theorem 3.2.

Proof of Theorem 1.1. Let (G, ρ) be a stationary random graph of subexponential growth
that is E[log(#BG(ρ, n))] = o(n), as n → ∞. Thanks to Theorem 3.2, we only have
to prove that the mean entropy of G is zero. But by a classical inequality we have
Hn(G, ρ) ≤ log(#BG(ρ, n)), taking expectations and using (3.1) yields the result.

In the preceding theorem we saw that subexponential growth plays a crucial role.
In the case of transitive or Cayley graphs, all the graphs considered have at most an
exponential growth. But there are stationary graphs with superexponential growth,
here is an example.

Example 3.5. Let (G, ρ) be an augmented Galton-Watson tree (see Example 1.6) with
offspring distribution (pk)k≥1 such that

∑
k≥1 kpk =∞. We have

lim inf
n→∞

E[log (BG(ρ, n))]

n
=∞.
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We can also extend the “fundamental inequality” for groups [20] or homogeneous
graphs [30]. The proof is mutatis-mutandis the same as in the group case

Proposition 3.6. Let (G, ρ) be a stationary and ergodic random graph of degree almost
surely bounded by M > 0. Conditionally on (G, ρ), let (Xn)n≥0 be the simple random
walk on G starting from ρ. We denote the speed of the random walk by s and the
exponential volume growth of G by v, namely

s = lim sup
n→∞

n−1E
[
dGgr(X0, Xn)

]
,

v = lim sup
n→∞

n−1E [log(#BG(ρ, n))] .

Then the mean entropy h of (G, ρ) satisfies

s2

2
≤ h ≤ vs.

In particular h = 0 ⇐⇒ s = 0 and if s or v is null then (G, ρ) is almost surely Liouville.

Proof. Since (G, ρ) is ergodic, we know from Theorem 2.2(2.2) that n−1 dGgr(X0, Xn) con-
verges almost surely and in L1(P) towards s ≥ 0. In particular if s > 0, for every ε ∈]0, s[

we have

P
(
(s− ε)n ≤ dGgr(X0, Xn) ≤ (s+ ε)n

)
−→
n→∞

1. (3.3)

Lower bound. We suppose s > 0 otherwise the lower bound is trivial. We have

Hn(G, ρ) ≥
∑

xn
dGgr(ρ,xn)≥(s−ε)n

ϕ(PGρ (Xn = xn))

= −
∑

xn
dGgr(ρ,xn)≥(s−ε)n

PGρ (Xn = xn) log
(
PGρ (Xn = xn)

)

At this point we use the Varopoulos-Carne estimates (see [35, Theorem 12.1]), for the
probability inside the logarithm. Hence,

Hn(G, ρ) ≥ −
∑

xn
dGgr(ρ,xn)≥(s−ε)n

PGρ (Xn = xn) log

(
2
√
M exp

(
− (s− ε)2n

2

))

= log

(
2
√
M exp

(
− (s− ε)2n

2

))
PGρ
(

dGgr(X0, Xn) ≥ (s− ε)n
)
. (3.4)

Now, we take expectation with respect to E, divide by n and let n→∞. Using (3.3) and

(3.1) we have h ≥ (s−ε)2
2 .

Upper bound. Fix ε > 0. To simplify notation, we write Bs for BG(ρ, (s+ ε)n) and Bcs for
BG(ρ, n)\BG(ρ, (s+ ε)n). We decompose the entropy Hn(G, ρ) as follows

Hn(G, ρ) =
∑

xn∈Bs
ϕ(PGρ (Xn = xn)) +

∑

xn∈Bcs

ϕ(PGρ (Xn = xn))

≤
( ∑

xn∈Bs
PGρ (Xn = xn)

)
log

(
#Bs∑

xn∈Bs PGρ (Xn = xn)

)

+


 ∑

xn∈Bcs

PGρ (Xn = xn)


 log

(
#(Bcs)∑

xn∈Bcs PGρ (Xn = xn)

)
.
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We used the concavity of ϕ for the inequalities on the sums of the right-hand side. Using
the uniform bound on the degree, we get the crude upper bound #(Bcs) ≤ #BG(ρ, n) ≤
Mn. Taking expectation we obtain (using the easy fact that for x ∈ [0, 1] one has
−x log(x) ≤ e−1)

hn ≤ 2e−1 + E [log (#BG(ρ, (s+ ε)n))] + P
(

dGgr(X0, Xn) ≥ (s+ ε)n
)
n log(M).

Divide the last quantities by n and let n → ∞, then (3.1) and (3.3) show that h ≤
(s+ ε)v.

Remark 3.7. A natural question (raised by the referee) in this setting is whether h = 0

is actually equivalent to the Liouville property. Also it would be nice to have a Shannon
type convergence for the mean entropy, see [29]. We did not pursue these goals herein.

4 The Radon-Nikodym Cocycle

In this part we borrow and reinterpret in probabilistic terms a notion coming from
the measured equivalence relation theory, the Radon-Nikodym cocycle (see [17]), in
order to deduce several properties of stationary non reversible graphs, (see e.g. [28]
for another application). This notion plays the role of the modular function in transitive
graphs, see [38]. The results of this section are very close to known results in measured
equivalence relation theory (see [25, 37]). Our emphasis being on the probabilistic
interpretation of the Radon-Nikodym cocycle rather than on the results themselves.

In the remainder of this section, (G, ρ) is a stationary random graph whose degree
is almost surely bounded by a constant M > 0.

Conditionally on (G, ρ) of law P, let (Xn)n≥0 be a simple random walk of law PGρ . Let
µ→ and µ← be the two probability measures on G•• such that µ→ is the law of (G,X0, X1)

and µ← that of (G,X1, X0). It is easy to see that the two probability measures µ→ and
µ← are mutually absolutely continuous. To be precise, for any Borel set A ⊂ G••, since
(G, ρ) is a stationary random graph (1.2) we have

P ((G,X0, X1) ∈ A) = P ((G,X1, X2) ∈ A)

≥ P ((G,X1, X0) ∈ A , X2 = X0)

≥ M−1P ((G,X1, X0) ∈ A) .

Thus the Radon-Nikodym derivative of (G,X1, X0) with respect to (G,X0, X1), given for
any (g, x, y) ∈ G•• such that x ∼ y by

∆(g, x, y) :=
dµ←
dµ→

(g, x, y),

can be chosen such that

M−1 ≤ ∆(g, x, y) ≤M. (4.1)

Note that the function ∆ is defined up to a set of µ→-measure zero, and in the following
we fix an arbitrary representative satisfying (4.1) and we keep the notation ∆ for this
function. Since ∆ is a Radon-Nikodym derivative we obviously have E[∆(G,X0, X1)] = 1

and Jensen’s inequality yields

E
[

log
(
∆(G,X0, X1)

)]
≤ 0, (4.2)

with equality if and only if ∆(G,X0, X1) = 1 almost surely. In this latter case the two
random variables (G,X0, X1) and (G,X1, X0) have the same law, that is (G, ρ) is re-
versible.
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Lemma 4.1. With the above notation, let A be a Borel subset of G•• of µ→-measure
zero. Then for P-almost every rooted graph (g, ρ) and every x, y ∈ V(g) such that x ∼ y

we have (g, x, y) /∈ A.

Proof. By stationarity, for any n ≥ 0 the variable (G,Xn, Xn+1) has the same distribution
as (G,X0, X1). Thus we have

0 =
∑

n≥0
P ((G,Xn, Xn+1) ∈ A) = E


∑

n≥0
1(G,Xn,Xn+1)∈A




= E


 ∑

x∼y∈G
1(G,x,y)∈A


∑

n≥0
PGρ (Xn = x,Xn+1 = y)




 .

Let x ∼ y in G. Since G is connected, there exists values of n such that the probabil-
ity that Xn = x and Xn+1 = y is positive. Thus the sum between parentheses in the last
display is positive. This proves the lemma.

Note that the function (g, x, y) → ∆(g, y, x) is also a version of the Radon-Nikodym
derivative dµ→

dµ←
, hence we have ∆(g, x, y) = ∆(g, y, x)−1 for µ→-almost every bi-rooted

graphs in G••. By the above lemma we also have ∆(g, x, y) = ∆(g, y, x)−1 for P-almost
every rooted graph (g, ρ) and every vertices x, y ∈ V(g) such that x ∼ y.

Lemma 4.2. For P-almost every (g, ρ), and every cycle ρ = x0 ∼ x1 ∼ . . . ∼ xn = ρ in g
we have

n−1∏

i=0

∆(g, xi, xi+1) = 1. (4.3)

Proof. By a standard calculation on the simple random walk, conditionally on (G, ρ) and
on {ρ = X0 = Xn}, the path (X0, X1, . . . , Xn−1, Xn) has the same distribution as the
reversed one (Xn, Xn−1, . . . , X1, X0). In other words, for any positive Borel function
F : R+ → R+ we have

E

[
F

(
n−1∏

i=0

∆(G,Xi, Xi+1)

)
1Xn=X0

]
= E

[
F

(
n−1∏

i=0

∆(G,Xi+1, Xi)

)
1Xn=X0

]

= E

[
F

(
n−1∏

i=0

∆(G,Xi, Xi+1)−1
)
1Xn=X0

]
.

Where we used the fact that for P-almost every (g, ρ) and for any neighboring vertices
x, y ∈ V(g), we have ∆(g, x, y) = ∆(g, y, x)−1. Since for every (g, ρ) ∈ G• and any cycle
ρ = x0 ∼ x1 ∼ . . . ∼ xn = ρ we have PGρ (X0 = x0, X1 = x1, . . . , Xn = xn) > 0 the desired
result easily follows.

Suppose that the above lemma hold, then we can extend the definition of ∆ to an
arbitrary (isomorphism class of) bi-rooted graph (g, x, y) without assuming x ∼ y (com-
pared with [37, Proof of ThŐorŔme 1.15 ]). If x, y ∈ g, let x = x0 ∼ x1 ∼ . . . ∼ xn = y be
a path in g between x and y, and set

∆(g, x, y) :=

n−1∏

i=0

∆(g, xi, xi+1), (4.4)
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and by convention ∆(g, x, x) = 1. This definition does not depend on the path chosen
from x to y by the last lemma and is well founded for P-almost every graph (g, ρ) and
every x, y ∈ V(g). We can now prove (compare with [37]):

Theorem 4.3. Let (G, ρ) be a stationary ergodic random graph. Assume that (G, ρ) is
not reversible. Then almost surely the function

x ∈ V(G) 7→ ∆(G, ρ, x),

is positive harmonic and non constant. In particular (G, ρ) is almost surely transient.

Proof. We follow the proof of [37]. By the stationarity of (G, ρ), for any Borel function
F : G• → R+ we have

E [F (G,X0)] = E [F (G,X1)] = E [F (G,X0)∆(G,X0, X1)] .

We thus get deg(ρ)−1
∑
ρ∼x ∆(G, ρ, x) = 1 almost surely. It follows from Lemma 4.1, that

almost surely, for any x ∈ V(G) we have

1

deg(x)

∑

x∼y
∆(G, x, y) = 1.

One gets from the previous display and the definition of ∆, that x 7→ ∆(G, ρ, x) is almost
surely harmonic. Notice that if x 7→ ∆(G, ρ, x) is constant then this constant is 1. Also,
the event {∆(G, ., .) is constant} is an event which is invariant by the shift under P,
more precisely if ∆(G, ., .) is constant over (G, ρ) it is also constant over (G,X1). Thus,
by ergodicity if x 7→ ∆(G, ρ, x) has a positive probability to be constant then it is almost
surely constant, and this constant equals 1. This case is excluded because (G, ρ) is not
reversible. By standard properties of random walk on graphs, the existence of a non
constant positive harmonic function implies transience.

With the hypotheses of the preceding theorem, we have in fact much more than
transience of almost every graph (G, ρ): The simple random walk is ballistic! This
phenomenon has been known for long in the context of foliations, see [23].

Theorem 4.4. Let (G, ρ) be a stationary and ergodic random graph of degree almost
surely bounded by M > 0. If (G, ρ) is non reversible, then the speed s (see (2.2)) of the
simple random walk on (G, ρ) is positive.

Proof. The idea is to consider the rate of growth of the Radon-Nikodym cocycle along
sample paths as in [25, Corollary 1 of Theorem 2.4.2]. We consider the random process
(log(∆(G,X0, Xn)))n≥0. By Proposition 4.2 we almost surely have for all n ≥ 0

log
(
∆(G,X0, Xn)

)
=

n−1∑

i=0

log
(
∆(G,Xi, Xi+1)

)
. (4.5)

By (4.1) we have E[| log(∆(G,X0, X1))|] < ∞ and the ergodic theorem implies the fol-
lowing almost sure and L1 convergence with respect to P

log
(
∆(G,X0, Xn)

)

n
−→
n→∞

E[log(∆(G,X0, X1))]. (4.6)

By computing ∆(G,X0, Xn) as in (4.4) along a geodesic path from X0 to Xn in G and
using (4.1) we deduce that a.s. for every n ≥ 0

| log(∆(G,X0, Xn))| ≤ log(M) dGgr(X0, Xn).
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If (G, ρ) is not reversible, we already noticed that the inequality (4.2) is strict. Thus
combining (2.2),(4.6) and the last display we get s ≥ |E[log(∆(G,X0, X1))]| log(M)−1 >
0, which is the desired result.

Remark 4.5. By Corollary 3.6, subexponential growth in the sense of (1.1) implies
s = 0 for stationary and ergodic random graphs of bounded degree, so in particular
such random graphs are reversible (known in the case of foliations, see [23]). This fact
also holds without the bounded degree assumption (Russell Lyons, personal communi-
cation).

5 Applications

5.1 The Uniform planar quadrangulation

A planar map is an embedding of a planar graph into the two-dimensional sphere
seen up to continuous deformations. A quadrangulation is a planar map whose faces
all have degree four. The Uniform Infinite Planar Quadrangulation (UIPQ) introduced
by Krikun in [32] is the weak local limit (in a sense related to dloc) of uniform quad-
rangulations with n faces with a distinguished oriented edge (see Angel and Schramm
[4] for previous work on triangulations). We will not discuss the subtleties of planar
maps nor the details of the construction of the UIPQ and refer the interested reader to
[32, 33, 36].

The UIPQ is a random infinite graph Q∞ (which is viewed as embedded in the plane)
given with a distinguished oriented edge ~e. We will forget the planar structure of the
UIPQ and get a random rooted graph (Q∞, ρ), which is rooted at the origin ρ of ~e. This
graph is stationary and reversible, see [15]. One of the main open questions about
this random infinite graph is its conformal type, namely is it (almost surely) recurrent
or transient? It has been conjectured in [4] (for the related Uniform Infinite Planar
Triangulation) thatQ∞ is almost surely recurrent. Although we know that the conformal
type of the Riemann surface obtained from the UIPQ by gluing squares along edges is
parabolic [19] (see [4] for related result on the Circle Packing), yet the absence of the
bounded degree property prevents one from using the results of [10] to get recurrence
of the simple random walk on the UIPQ. Corollary 1.2 may be seen as providing a first
step towards the recurrence proof.

Proof of Corollary 1.2. The random rooted graph (Q∞, ρ) is a stationary and reversible
random graph. A proof of this fact can be found in [15]. By virtue of Theorem 1.1, we
just have to show that (Q∞, ρ) is of subexponential growth. To be completely accurate,
we have to note that the graph (Q∞, ρ) is not simple, that is contains loops and multiple
edges. However, it is easy to check that Theorem 1.1 still holds in this more general
setting. Thanks to [36], we know that the random infinite quadrangulation investigated
in [14] has the same distribution as the UIPQ. Hence, the volume estimate of [14] can
be translated into

E [#BQ∞(ρ, n)] = Θ(n4). (5.1)

Hence Jensen’s inequality proves that the UIPQ is of subexponential growth in the sense
of (1.1) which finishes the proof of the corollary.

This corollary does not use the planar structure of UIPQ but only the invariance with
respect to SRW and the subexponential growth. We believe that the result of Corollary
1.2 also holds for the UIPT. A detailed proof could be given along the preceding lines
but would require an extension of the estimates (5.1) (Angel [3] provides almost sure
estimates that are closely related to (5.1) for the UIPT).
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5.2 Long range percolation clusters

Consider the graph obtained from Zd by adding an edge between each pair of dis-
tinct vertices x, y ∈ Zd with probability px,y independently of the other pairs. Assume
that

px,y = β|x− y|−s,
for some β > 0 and s > 0. This model is called long range percolation. Berger [11]
proved in dimensions d = 1 or d = 2 that if d < s < 2d, then conditionally on 0 being
in an infinite cluster, this cluster is almost surely transient. In the same paper the
following question [11, (6.3)] is addressed:
Question : Are there nontrivial harmonic functions on the infinite cluster of long range
percolation with d < s < 2d ? We answer negatively this question for bounded harmonic
functions.

Proof. First we remark that by a general result (see [2, Example 9.4]), conditionally on
the event that 0 belongs to an infinite cluster C∞, the random rooted graph (C∞, 0) is a
unimodular random graph. Furthermore, since s > d the expected degree of 0 is finite.
Hence, by Proposition 2.5, the random graph (C̃∞, 0̃) obtained by biasing (C∞, 0) with
the degree of 0 is stationary. By Theorem 1.1 it suffices to show that the graph C̃∞ is
of subexponential growth in the sense of (1.1). For that purpose, we use the estimates
given in [12, Theorem 3.1]. For x ∈ C∞, denote the graph distance from 0 to x in C∞
by dC∞gr (0, x). Then for each s′ ∈ (d, s) there are constants c1, c2 ∈ (0,+∞) such that, for
δ′ = 1/ log2(2d/s′),

P
(

dC∞gr (0, x) ≤ n
)
≤ c1

(
ec2n

1/δ′

|x|

)s′
.

In particular, we deduce that

E [#BC∞(0, n)] ≤ κ1 exp
(
κ2n

1/δ′
)
, (5.2)

where κ1 and κ2 are positive constants. Remark that δ′ > 1. Thus we have, if deg(0)

denotes the degree of 0 in C∞,

E
[

log(#BC̃∞(0̃, n))
]

=
1

E[deg(0)]
E
[

deg(0) log(#BC∞(0, n))
]

≤ 1

E[deg(0)]

√
E[deg(0)2]E[log2(#BC∞(0, n))], (5.3)

by the Cauchy-Schwarz inequality. Since s > d it is easy to check that the second
moment of deg(0) is finite. Furthermore, the function x 7→ log2(x) is concave on ]e,∞[

so by Jensen’s inequality we have

E
[
log2(#BC∞(0, n))

]
≤ log2 (E [#BC∞(0, n)] + 2) .

Hence, combining the last display with (5.2) and (5.3) we deduce that (C̃∞, 0) is of
subexponential growth in the sense of (1.1).

Remark 5.1. It is also possible to derive this corollary from [24, Theorem 4], however
we preferred to stick to the context of unimodular random graphs.

Note that by similar considerations, clusters of any invariant percolation on a group,
in which the clusters have subexponential volume growth are Liouville, see [8] for many
examples. This holds in particular for Bernoulli percolation on Cayley graphs of subex-
ponential growth, e.g. on Zd.
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5.3 Planarity

Simply connected planar Riemannian surfaces are conformally equivalent either to
the Euclidean or to the hyperbolic plane. Thus they are either recurrent for Brownian
motion or admit non constant bounded harmonic functions. The same alternative holds
for planar graphs of bounded degree. They are either recurrent for the simple random
walk or admit non constant bounded harmonic functions [9]. Combining Theorem 1.1
with these results related to planarity yields:

Corollary 5.2. Let (G, ρ) be a stationary random graph with subexponential growth
in the sense of (1.1). Suppose furthermore that almost surely (G, ρ) is planar and has
bounded degree. Then (G, ρ) is almost surely recurrent.

Proof. We already know by Theorem 1.1 that (G, ρ) is almost surely Liouville. In [9] it is
shown that a transient planar graph with bounded degree admits non constant bounded
harmonic functions. Therefore G must be recurrent almost surely.

Note that without the bounded degree assumption it is easy to construct planar tran-
sient Liouville graphs, see [9]. However these graphs are not stationary. The following
construction shows that the bounded degree assumption is needed in the last corollary:
We construct a stationary and reversible random graph that is of subexponential growth
but transient (see Proposition 5.4).

The example. We consider the sequence ε1, ..., εn, ... ∈ {1, 2} defined recursively as
follows. Start with ε1 = 1, if ε1, ..., εk are constructed we let ξk =

∏k
i=1 εk, and set

εk+1 = 1 if ξk > k4 and εk+1 = 2 otherwise. Clearly there exist constants 0 < c < C <∞
such that ck4 ≤ ξk ≤ Ck4 for every k ≥ 1. We now consider the tree Tn of height n,
starting from an initial ancestor at height 0 such that each vertex at height 0 ≤ k ≤ n−1

has εn−k children. Hence the tree Tn has only simple or binary branchings. The depth
D(u) of a vertex u in Tn is n minus its height. For example, the leaves of Tn have depth
0. The depth of an edge is the maximal depth of its ends.

ε′1 = 1

ε′2 = 2

ε′3 = 1

ε′4 = 1

ε′5 = 2

ε′6 = 2

ε′7 = 1

Depth

1

2

3

4

5

6

7

Figure 1: Construction of the tree T ′7 with a sample sequence (ε′k)k≥1
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We also introduce the infinite “canopy" tree T∞ (the limit of the Tn’s seen from the
top) which is a tree of infinite depth such that each vertex at depth k is linked to εk
vertices at depth k − 1 for k ≥ 1.

Lemma 5.3. There exists a constant C > 0 such that for every u ∈ T∞ and r ≥ 0 we
have

#BT∞(u, r) ≤ Cr4.

Proof. Fix r ∈ {0, 1, 2, ...}. Let u ∈ T∞ and let d ≥ 0 be its depth. We suppose that d > r.
We denote by v the ancestor of u at depth r + d. Clearly the ball of radius r around u in
T∞ is contained in the subset of T∞ made of the vertices that are descendants of v and
whose depth is in between d+ r and d− r. This set has a cardinal equal to

1 + εd+r + εd+rεd+r−1 + ...+ εd+r−1εd+r−1...εd−r−1 = ξd+r

(
d+r∑

i=d−r
ξ−1i

)
.

Recall that we have ξr = Θ(r4) as r → ∞. Henceforth, when d ≤ 2r, the last display
is bounded from above by κ(3r)4

∑∞
1 ξ−1k and when d ≥ 2r we use the upper bound

κ′2r((r + d)/(r − d))4, where κ, κ′ > 0 are two positive constants independent of d and
r. In both cases we have #BT∞(u, r) = O(r4). The case r ≥ d is similar and is left to the
reader.

Now we consider the graphs TRn and TR∞ obtained from Tn and T∞ by replacing each
edge at depth k by k2 parallel edges. The graph TR∞ is obviously a tree with multiple
edges that has only one end. We claim that this tree is transient, indeed its type is
equivalent to that of a single spine with k2 parallel edges at level k (we can chop of
the finite trees attached to the spine to study recurrence or transience). Since the
conductance of the last spine is

∑
k≥1 k

−2 <∞ it is transient so is the tree TR∞, see [35].

Figure 2: Muplication of edges.

We transform these deterministic graphs into random ones. The root ρn is chosen
among all vertices of TRn proportionally to the degree. This boils down to picking an
oriented edge uniformly at random in TRn and consider its starting point ρn.

Proposition 5.4. We have the convergence in distribution for dloc

(TRn , ρn) −→
n→∞

(TR∞, ρ), (5.4)
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for a particular choice of a random root ρ ∈ TR∞. In particular (TR∞, ρ) is a planar
transient stationary and reversible random graph of subexponential growth.

Proof. It is enough to show that D(ρn) converges in distribution to a non degenerate
random variable denoted by D as n → ∞. Indeed if we choose a random root ρ ∈ TR∞
with depth given by D, since the r-neighborhood of a vertex at depth k in TRn and in
TR∞ are the same when n ≥ r + k, we easily deduce the weak convergence of (TRn , ρn)

to (TR∞, ρ) for dloc. Furthermore since the random rooted graphs (TRn , ρn) are stationary
and reversible (see Example 1.5), the same holds for (TR∞, ρ) as weak limit of stationary
and reversible graphs in the sense of dloc.
Let k ≥ 0. The probability that D(ρn) = k is exactly the proportion of oriented edges
whose origin is a vertex of depth k. Thus with the convention ξ0, ξ−1 = 1 we have

P(D(ρn) = k) =

(
k2

ξn
ξk−1

+ (k + 1)2
ξn
ξk

)(
2ξn

n−1∑

i=0

(i+ 1)2

ξi

)−1
.

Since ξk ≥ ck4, clearly the series
∑
i2ξ−1i converges. Hence, the probabilities in the last

display converge when n → ∞, thus proving the convergence in distribution of D(ρn).
Furthermore, by Lemma 5.3, TR∞ is of subexponential growth.

Questions.

1. • In the preceding construction, the degree of ρ in TR∞ has a polynomial tail. Is it
possible to construct a planar stationary and reversible graph of subexponential
growth such that the degree of the root vertex has an exponential tail for which
the SRW is transient?

2. • Let (G, ρ) be a limit in distribution of finite planar stationary graphs for dloc (see
[10]). Is it the case that (G, ρ) is almost surely Liouville1? Does SRW on (G, ρ)

have zero speed?

3. • In [6] a generalization of limits of finite planar graphs to graphs associated
to sphere packings in Rd was studied. Extend the preceding questions to these
graphs.

Acknowledgments. We are grateful to Pierre Pansu, Frederic Paulin, Damien Gaboriau
and Russell Lyons for many stimulating lessons on measured equivalence relations. We
thank Jean-François Le Gall for a careful reading of a first version of this paper. We are
also indebted to Omer Angel for a discussion that led to Proposition 5.4. Thanks also go
to an anonymous referee for precious comments and references.

References

[1] F. Alcalde Cuesta and M. P. Fernández de Córdoba. Nombre de branchement d’un pseu-
dogroupe. Monatsh. Math., 163(4):389–414, 2011. MR-2820370

[2] D. Aldous and R. Lyons. Processes on unimodular random networks. Electron. J. Probab.,
12:no. 54, 1454–1508 (electronic), 2007. MR-2354165

[3] O. Angel. Growth and percolation on the uniform infinite planar triangulation. Geom. Funct.
Anal., 13(5):935–974, 2003. MR-2024412

[4] O. Angel and O. Schramm. Uniform infinite planar triangulation. Comm. Math. Phys., 241(2-
3):191–213, 2003. MR-2013797

1There are local limits of finite planar graphs with exponential growth. For example local limit of full binary
trees up to level n with the root picked according to the degree

EJP 17 (2012), paper 93.
Page 18/20

ejp.ejpecp.org

http://www.ams.org/mathscinet-getitem?mr=2820370
http://www.ams.org/mathscinet-getitem?mr=2354165
http://www.ams.org/mathscinet-getitem?mr=2024412
http://www.ams.org/mathscinet-getitem?mr=2013797
http://dx.doi.org/10.1214/EJP.v17-2401
http://ejp.ejpecp.org/


Ergodic theory on stationary random graphs

[5] A. Avez. Théorème de Choquet-Deny pour les groupes à croissance non exponentielle. C. R.
Acad. Sci. Paris Sér. A, 279:25–28, 1974. MR-0353405

[6] I. Benjamini and N. Curien. On limits of graphs sphere packed in Euclidean space and
applications. Electron. J. Combin., 32:975–984, 2011. MR-2825530

[7] I. Benjamini and N. Curien. Recurrence of the Zd-valued infinite snake via unimodularity.
Electron. Commun. Probab., 17:1–10, 2012. MR-2872570

[8] I. Benjamini, R. Lyons, Y. Peres, and O. Schramm. Group-invariant percolation on graphs.
Geom. Funct. Anal., 9(1):29–66, 1999. MR-1675890

[9] I. Benjamini and O. Schramm. Harmonic functions on planar and almost planar graphs and
manifolds, via circle packings. Invent. Math., 126(3):565–587, 1996. MR-1419007

[10] I. Benjamini and O. Schramm. Recurrence of distributional limits of finite planar graphs.
Electron. J. Probab., 6:1–13, 2001. MR-1873300

[11] N. Berger. Transience, recurrence and critical behavior for long-range percolation. Comm.
Math. Phys., 226(3):531–558, 2002. MR-1896880

[12] M. Biskup. Graph diameter in long-range percolation. Rand. Struct. Algo., 39(2):210–227,
2011 MR-2850269

[13] L. Bowen. Random walks on coset spaces with applications to Furstenberg entropy. preprint
available on arxiv.

[14] P. Chassaing and B. Durhuus. Local limit of labeled trees and expected volume growth in a
random quadrangulation. Ann. Probab., 34(3):879–917, 2006. MR-2243873

[15] N. Curien, L. Ménard, and G. Miermont. A view from infinity of the uniform infinite planar
quadrangulation. arXiv:1201.1052.

[16] Y. Derriennic. Quelques applications du théorème ergodique sous-additif. In Conference on
Random Walks (Kleebach, 1979) (French), volume 74 of Astérisque, pages 183–201, 4. Soc.
Math. France, Paris, 1980. MR-0588163

[17] J. Feldman and C. C. Moore. Ergodic equivalence relations, cohomology, and von Neumann
algebras. I. Trans. Amer. Math. Soc., 234(2):289–324, 1977. MR-0578656

[18] D. Gaboriau. Invariant percolation and harmonic Dirichlet functions. Geom. Funct. Anal.,
15(5):1004–1051, 2005. MR-2221157

[19] J. T. Gill and S. Rohde. On the Riemann surface type of random planar maps.
arXiv:1101.1320.

[20] Y. Guivarc’h. Sur la loi des grands nombres et le rayon spectral d’une marche aléatoire. In
Conference on Random Walks (Kleebach, 1979) (French), volume 74 of Astérisque, pages
47–98, 3. Soc. Math. France, Paris, 1980. MR-0588157

[21] O. Gurel-Gurevich and A. Nachmias. Recurrence of planar graph limits. Ann. Maths (to
appear), 2012.

[22] O. Häggström. Infinite clusters in dependent automorphism invariant percolation on trees.
Ann. Probab., 25(3):1423–1436, 1997. MR-1457624

[23] V. A. Kăımanovich. Brownian motion on foliations: entropy, invariant measures, mixing.
Funktsional. Anal. i Prilozhen., 22(4):82–83, 1988. MR-0977003

[24] V. A. Kaimanovich. Boundary and entropy of random walks in random environment. In Prob-
ability theory and mathematical statistics, Vol. I (Vilnius, 1989), pages 573–579. “Mokslas”,
Vilnius, 1990. MR-1153846

[25] V. A. Kaimanovich. Hausdorff dimension of the harmonic measure on trees. Ergodic Theory
Dynam. Systems, 18(3):631–660, 1998. MR-1631732

[26] V. A. Kaimanovich. Random walks on Sierpiński graphs: hyperbolicity and stochastic ho-
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