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Abstract

We are interested in the evolving genealogy of a birth and death process with trait
structure and ecological interactions. Traits are hereditarily transmitted from a par-
ent to its offspring unless a mutation occurs. The dynamics may depend on the trait
of the ancestors and on its past and allows interactions between individuals through
their lineages. We define an interacting historical particle process describing the ge-
nealogies of the living individuals; it takes values in the space of point measures
on an infinite dimensional càdlàg path space. This individual-based process can
be approximated by a nonlinear historical superprocess, under the assumptions of
large populations, small individuals and allometric demographies. Because of the
interactions, the branching property fails and we use martingale problems and fine
couplings between our population and independent branching particles. Our conver-
gence theorem is illustrated by two examples of current interest in biology. The first
one relates the biodiversity history of a population and its phylogeny, while the sec-
ond treats a spatial model where individuals compete through their past trajectories.
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1 Introduction

The evolution of genealogies in population dynamics is a major problem, which moti-
vated an abundant literature and has applications to evolution and population genetics.
Our purpose here is to generalize the existing models by emphasizing the ecological
interactions, namely the competition between individuals for limited resources. In this
paper, we construct a structured birth and death process with mutation and competi-
tion, whose dynamics depends on the past. Each individual is characterized by a vector
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Historical superprocess approximations with past dependence

trait x ∈ Rd, which remains constant during the individual’s life and is transmitted
hereditarily unless a mutation occurs. The birth and death rates of an individual can
depend on the traits of its ancestors or on the trait’s age in the lineage. Moreover indi-
viduals interact with each other.
Here, we are interested in keeping track of the genealogies of individuals with small
weights, in large populations with allometric demographies (i.e. short individual lives
and reproduction times). At a given time t, we associate to each individual its lineage
until t defined as a function which associates to each s ≤ t the trait of its ancestor
living at s (see Fig. 1). Since each individual keeps a constant trait during its life,
these lineages are càdlàg piecewise constant paths. The population is described by a
point measure on the lineage space. To reflect allometric demographies, we introduce
a parameter n which scales the size of the population. The individuals are weighted by
1/n to keep the total biomass of constant order when n varies. Moreover, lifetimes and
gestation lengths are proportional to this weight. Hence birth and death rates are of
order n and preserve the demographic balance. Mutation steps are assumed to have a
variance of order 1/n. The trait evolution is driven by mutations and competition be-
tween individuals.
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Figure 1: Example of a path constituted with ancestral traits.

We study the convergence of these processes in large populations, when n tends to infin-
ity. We proceed with tightness-uniqueness arguments inspired by Dawson and Perkins
[15] for the historical super-Brownian process (without interaction). In our model, there
is no branching property, impeding the use of Laplace’s transform arguments. We intro-
duce a new infinite dimensional martingale problem and use fine comparisons between
our population and independent branching particles. Moreover, the measure-valued
processes on path space that we study are discontinuous, which makes it necessary to
define a new class of test functions. In the limit, we obtain a nonlinear historical su-
perprocess, generalizing the work of Perkins [37]. In particular, past dependence and
competition can be taken into account in the lineages. Examples are given, suggesting
that the historical processes may open the way to models of evolution without the as-
sumption of rare mutations and time scale separations. Let us remark that our model
allows the description of both genealogies and population densities in the forward phys-
ical time, with variable population size including extinction phenomena. This can be a
first step to reconstruct the past biodiversity from the phylogenies of living species with
ecological interactions.
From this convergence result, we study the dynamics of the distribution of genealo-
gies. We show that it can be seen as the dynamics of a diffusive particle system re-
sampled in such a way that individuals with larger allometric (diffusive) coefficient or
with higher growth rate are more likely to be chosen. A particular case is when these
two rates are constant. Then, the intensity of the distribution of the genealogies cor-
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Historical superprocess approximations with past dependence

responds to a Fleming-Viot process with genealogies, similar to the one introduced in
Greven-Pfaffelhuber-Winter [24]. In the case without interaction or with logistic com-
petition without past or trait dependence, one can also obtain Feynman-Kac’s formulas
for the mass process renormalized by its expectation. This formula can help in getting
easier simulation schemes for certain demographic quantities. Let us note that more
generally, in absence of interaction, coalescent processes provide another modeling of
genealogies (see Berestycki [5] and references therein for a survey). Depperschmidt,
Greven, Pfaffelhuber and Winter [16, 24] represent genealogical trees (for instance Λ-
coalescents) as marked ultra-metric spaces and the absence of interaction allow them
to study genealogical distances by using Laplace transforms. In a recent work, Barton,
Etheridge and Véber [4] study the genealogies of a spatial version of Λ-Fleming-Viot
processes and of their various limits. All these models allow the incorporation of selec-
tion and mutation (see also e.g. [32, 3, 20]) but not of competition between individuals,
which is the main aim of our work.

In Section 2, we construct the historical particle system whose dynamics depends on
the past. The diffusive limit in large population is obtained in Section 3 under large
population and allometric demography assumptions. We prove tightness of the laws of
the historical particle processes with new arguments and test functions accounting for
interactions and jumps. We then identify the limiting values as solutions of a nonlinear
martingale problem for which uniqueness is stated. The distribution of genealogies is
studied in Section 4 and examples are carried in Section 5. The first example deals
with an evolution model of adaptive dynamics with local (see [17]) competition. The
historical superprocess dynamics shows that for a range of parameters, the population
separates into groups concentrated around some trait values. This cannot be observed
by the unique information on the (classical) superprocess as noticed in Figure 2. This
example suggests that the historical processes may allow one to understand evolution
without the assumption of rare mutations and time scale separation. For example, our
model could be a basis to reconstruct the past biodiversity from the actual molecular
phylogenies. Until now the models which have been used do not take into account
the interaction between individuals (see Morlon et al. [35]). The second example is
a spatial model (see [1] or [37, p.50]): particles consume resources where they are
locating. Therefore, the offspring arriving in previously habited regions are penalized.
We will see that this tends to separate the cloud of particles in several distinct families
whose common ancestor is very old.

Notation: For a given metric space E, we denote by DE = D(R+, E) the space of
càdlàg functions from R+ to E. For E = R, we will use the more simple notation
D = D(R+,R). These spaces are embedded with the Skorohod topology which makes
them Polish spaces. (e.g. [6, 29, 30], see also (B.1) in appendix).
For a function x ∈ DE and t > 0, we denote by xt the stopped function defined by
xt(s) = x(s ∧ t) and by xt− the function defined by xt−(s) = limr↑t x

r(s). We will also
often write xt = x(t) for the value of the function at time t. For y, w ∈ DE and t ∈ R+,
we denote by (y|t|w) ∈ DE the following path:

(y|t|w) =

{
yu if u < t

wu−t if u ≥ t. (1.1)

For constant path w with ∀u ∈ R+, wu = x, we will write (y|t|x) with a notational abuse.
We denote by MF (E) (resp. Mn

P (E), P(E)) the set of finite measures on E (resp.
of point measures renormalized by 1/n, of probability measures). These spaces are
embedded with the topology of weak convergence.
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2 The historical particle system

In this section, we construct the finite interacting historical particle system that we
will study. Trait-structured particle systems without dependence on the past have been
considered in Fournier and Méléard [23] or Champagnat et al. [10]. For populations
with age-structure, we refer to Jagers [27, 26, 28] and Méléard and Tran [33, 40] for
instance. Here, we are inspired by these works and propose a birth and death particle
system where the lineage of each particle, i.e. the traits of its ancestors, is encoded
into a path of DRd .

2.1 Lineage

We consider a discrete population in continuous time where the individuals repro-
duce asexually and die with rates that depend on a hereditary trait and on their past.
Each individual is associated with a quantitative trait transmitted from its parent ex-
cept when a mutation occurs. The rates may express through the traits carried by the
ancestors of the individual. One purpose is for example to take into account the accu-
mulation of beneficial and deleterious mutations through generations.

Individuals are characterized by a trait x ∈ Rd. The lineage or past history of an indi-
vidual is defined by the succession of ancestral traits with their appearance times and
by the succession of ancestral reproduction times (birth of new individuals). To an in-
dividual of trait x born at time Sm, having m − 1 ancestors born after t = 0 at times
S1 = 0 < S2 < · · · < Sm−1, with Sm−1 < Sm, and of traits (x1, x2, . . . xm−1), we associate
the path

yt =

m−1∑
j=1

xj1Sj≤t<Sj+1
+ x1Sm≤t. (2.1)

This path is called the lineage of the individual. We denote by L the set of possible
lineages of the form (2.1). Since a path in L is entirely characterized by the integer m
and the sequence (0, x1, . . . , sm−1, xm−1, sm, x) of jump times and traits, it is possible to
describe each element of L by an element of N ×

⋃
m∈N(R+ × Rd)m embedded with a

natural lexicographical order.

2.2 Population dynamics

Let us introduce a parameter n ∈ N∗ = {1, 2, . . .} scaling the carrying capacity, when
the total amount of resources is fixed. To keep the total biomass constant, individuals
are attributed a weight 1/n. The population is represented by the point measure

Xn
t :=

1

n

Nnt∑
i=1

δyi.∧t ∈ M
n
P (L) ⊂Mn

P (DRd), (2.2)

where Nn
t = n 〈Xn

t , 1〉 is the number of individuals alive at time t.

The reproduction is asexual and the offsprings inherit the trait of the ancestor except
when a mutation occurs. Death can be due to the background of each individual or
to competition with the other individuals. We consider allometric demographies where
lifetimes and gestation lengths of individuals are proportional to the biomass. Thus,
birth and death rates are of order n, but respect the constraint of preservation of the
demographic balance. Also, the mutation steps are rescaled by 1/n.
Let us now define the population dynamics. For n ∈ N∗, we consider an individual char-
acterized at time t by the lineage y ∈ DRd in a population Xn ∈ DMn

P (D
Rd

).
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Reproduction: The birth rate at time t is bn(t, y), where

bn(t, y) = n r(t, y) + b(t, y).

The function b is a continuous nonnegative real function on R+ × DRd . For instance, b
can be chosen in the form:

b(t, y) =B
(∫ t

0

yt−sνb(ds)
)

(2.3)

where B is a continuous function bounded by B̄ and νb is a Radon measure on R+. The
allometric function r is given by:

r(t, y) = R
(∫ t

0

yt−sνr(ds)
)

(2.4)

where R is continuous and bounded below and above by R > 0 and R̄ > 0, and where
νr is a Radon measure on R+. We also assume that R is Lipschitz continuous, implying
that R1/2 is also Lipschitz.

When an individual with trait yt− gives birth at time t, the new offspring is either a
mutant or a clone. With probability 1 − p ∈ [0, 1], the new individual is a clone of its
parent, with same trait yt− and same lineage y. With probability p ∈ [0, 1], the offspring
is a mutant of trait yt− +h, where h is drawn in the distribution kn(h) dh. To this mutant
is associated the lineage (y|t|yt− + h). For the sake of simplicity, the mutation density
kn(h) is assumed to be a Gaussian density with mean 0 and covariance matrix σ2 Id/n.
However the model could be generalized for instance to mutation densities kn(yt− , h)

with dependence on the parent’s trait. Let us introduce the notation:

Kn(dh) = pkn(h)dh+ (1− p)δ0(dh). (2.5)

Example 2.1. (i) If νb(ds) = δ0(ds), then
∫ t

0
yt−sνb(ds) = yt is the trait of the individual

of the lineage y living at time t.
(ii) If νb(ds) = e−αsds, with α > 0, then

∫ t
0
yt−sνb(ds) =

∫ t
0
e−α(t−s)ysds. This means

that the traits of recent ancestors have a higher contribution in the birth rate of the
individual alive at time t. Such rates may be useful to model social interactions, for
instance cooperative breeding where the ancestors contribute to protect and raise their
descendants. When ancestors have advantageous traits, they may help their offspring
to reproduce in more favorable conditions and increase their birth rates. 2

Death: To define the death rate, let us consider a bounded continuous interaction
kernel U ∈ Cb(R+×D2

Rd
,R), a bounded continuous function D on R+×DRd and a Radon

measure νd weighting the influence of the past population on the present individual y
at time t. The death rate is

dn(t, y,Xn) = n r(t, y) + d(t, y,Xn),

where for a process X ∈ DMF (D
Rd

),

d(t, y,X) =D(t, y) +

∫ t

0

∫
D
Rd

U(t, y, y′)Xt−s(dy
′)νd(ds). (2.6)

The first term with function r allows us to preserve the demographic balance. The term
D(t, y) is the natural death rate, while U(t, y, y′) represents the competition exerted at
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time t on the individual of lineage y, by an individual of lineage y′ alive in its past. We
assume that:

∃D̄ > 0, ∀y ∈ D, ∀t ∈ R+, 0 ≤ D(t, y) < D̄,

∃U, Ū > 0, ∀y, y′ ∈ D, ∀t ∈ R+, 0 < U(t, y, y′) < Ū. (2.7)

Example 2.2. Model with asymmetrical competition: if we choose D = 0, νd(ds) =

δ0(ds) and the asymmetric competition kernel proposed by Kisdi [31]

U(t, y, y′) =
2

K

(
1− 1

1 + αe−β(yt−y′t)

)
, (2.8)

then, the death rate becomes:

d(t, y,X) =
2

K

∫
D
Rd

(
1− 1

1 + αe−β(yt−y′t)

)
Xt(dy

′). (2.9)

Remark 2.3. A generalization to physical age structure as considered in [34] is possi-
ble, provided we extend the trait space by giving a color to each individual. The colors
are independent uniform [0, 1]-valued random variables drawn at each birth. The lin-
eage of colors of an individual is a path c ∈ D(R+, [0, 1]) and allows the definition of the
birth date of an individual alive at time t,

τc,t = inf{s ≤ t, cs = ct} = sup{s ≤ t, cs 6= ct} (2.10)

The age of the latter individual at time t is given by

a(t) := t− τc,t. (2.11)

It is a càdlàg function, discontinuous at the birth times. 2

2.3 Construction of the historical particle process

Following the work of Fournier and Méléard [23], the population process is obtained
as a solution of a stochastic differential equation (SDE) driven by a Poisson Point Mea-
sure (PPM), describing the dynamics of (Xn

t )t∈R+
, for any n ∈ N∗. The measure rep-

resenting the population evolves through the occurrences of births and deaths. Since
the rates may vary with time, acceptance-rejection techniques are used to obtain these
events’ occurrences by mean of PPMs. According to birth and death events, Dirac
masses are added or removed. This construction provides an exact simulation algo-
rithm that is extensively used in Section 2.4.

Remark 2.4. As in Fournier and Méléard [23], the map Y = (Y i)i∈N∗ from
⋃
n∈N∗Mn

P (L)

in L is defined for n and N in N∗ by

Y j

(
1

n

N∑
i=1

δyi

)
=

{
yj , if j ≤ N
0 otherwise,

where the individuals are sorted by the lexicographical order. This will be useful to
extract a particular individual from the population. When there is no ambiguity, we will
write Y i instead of Y i(X) for a point measure X. 2
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Definition 2.5. Let us consider on the probability space (Ω,F ,P):

1. a random variable Xn
0 ∈ Mn

P (DRd) satisfying E (〈Xn
0 , 1〉) < +∞ and such that the

support of Xn
0 contains a.s. only constant functions,

2. a PPM Q(ds, di, dh, dθ) on R+ × E := R+ ×N∗ × Rd × R+ with intensity measure
ds ⊗ n(di) ⊗ dh ⊗ dθ and independent from Xn

0 , n(di) being the counting measure
on N∗ and ds, dh and dθ the Lebesgue measures on R+, Rd and R+ respectively.

We denote by (Fnt )t∈R+ the canonical filtration associated with Xn
0 and Q, and consider

the following SDE with values inMn
P (DRd):

Xn
t = Xn

0 +
1

n

∫ t

0

∫
E

1{i≤n〈Xns− ,1〉}

[
δ(Y i|s|Y is−+h)1lθ≤mn1 (i,s,h) + δY i1lmn1 (i,s,h)<θ≤mn2 (i,s,h)

− δY i1lmn2 (i,s,h)<θ≤mn3 (i,s,h,Xn,s− )

]
Q(ds, di, dh, dθ), (2.12)

where

mn
1 (i, s, h) = p bn(s, Y i(Xn

s−))kn(h),

mn
2 (i, s, h) = mn

1 (i, s, h) + (1− p) bn(s, Y i(Xn
s−))kn(h)

mn
3 (i, s, h,Xn,s−) = mn

2 (i, s, h) + dn(s, Y i(Xn
s−), Xn,s−)kn(h). (2.13)

Existence and uniqueness of the solution (Xn
t )t∈R+ of SDE (2.12) are obtained for every

n ∈ N∗, from a direct adaptation of [23], as well as the next proposition concerning
moment estimates and martingale properties.

Proposition 2.6. Let us assume that

sup
n∈N∗

E
(
〈Xn

0 , 1〉3
)
< +∞. (2.14)

Then,
(i) For all T > 0,

sup
n∈N∗

E
(

sup
t∈[0,T ]

〈Xn
t , 1〉3

)
< +∞. (2.15)

(ii) For a bounded and measurable function ϕ,

〈Xn
t , ϕ〉 = 〈Xn

0 , ϕ〉+M
n,ϕ
t +

∫ t

0

ds

∫
D
Rd

Xn
s (dy)

[
nr(s, y)

(∫
Rd
ϕ(y|s|ys + h)Kn(ys, dh)− ϕ(y)

)
+b(s, y)

∫
Rd
ϕ(y|s|ys + h)Kn(ys, dh)− d(s, y, (Xn)s)ϕ(y)

]
(2.16)

where Mn,ϕ is a square integrable martingale starting from 0 with quadratic variation

〈Mn,ϕ〉t =
1

n

∫ t

0

∫
D
Rd

[(
nr(s, y) + b(s, y)

) ∫
Rd
ϕ2(y|s|ys + h)Kn(ys, dh)

+
(
nr(s, y) + d(s, y, (Xn)s)

)
ϕ2(y)

]
Xn
s (dy) ds. (2.17)

2.4 Examples

We now give two examples of applications of historical processes in biology.
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2.4.1 A model with competition for resources

We first introduce a model of adaptation with competition for resources that has been
considered by Roughgarden [38], Dieckmann and Doebeli [17], Champagnat and Méléard
[12].

(a)

(b)

Figure 2: Dieckmann-Doebeli model. σ = 0.4, σb = 0.4, x0 = 4, p = 0.5, n = 300. The 300

particles are started with the trait 1.5. (a) σU = 0.3 ; (b) σU = 0.45. When σb > σU , we observe

in the historical superprocess a separation of the population into subgroups concentrated around

different trait values and attached to the MRCA by a single branch. This genealogical separation

of the population into a small number of families (2 in (a)) cannot be seen on the superprocesses

(left column). When σb < σU , then the families are less distinct and the population has a shorter

persistence.

In this model, the trait x ∈ [0, 4] can be thought as being a (beak) size. The birth and
death rates are chosen as

r(t, y) = 1, b(t, y) = exp
(
− (yt − 2)2

2σ2
b

)
, d(t, y,X) =

∫
D

exp
(
− (yt − y′t)2

2σ2
U

)
X(dy′).

Here, there is no dependence on the past and γ(s, y, X̄s) = γ(ys, X̄s). Non-historical
superprocess renormalizations in such models have been investigated for instance by
Champagnat et al. [11]. The birth rate is maximal at x∗ = 2 and there is a local com-
petition with neighbors of close traits. A flat competition kernel (σU = +∞) will make
evolution favoring individuals with maximal growth rate x∗. For σU < +∞, Champagnat
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and Méléard [12] proved that, depending whether σb < σU or σb > σU , either evolution
concentrates on individuals with trait 2 or favours several groups concentrated around
different trait values.

In Figure 2, we represent the dynamics of the population process including the extinct
branches and the historical particle process. These two representations complement
each other. The population process gives the evolution of the number density of individ-
uals, while the historical particle process reveals the evolving phylogenies and provides
the ancestral paths of living particles. The simulations are obtained for a large n and
show two different behaviors. It is known that the limit of the population process is a
superprocess (left pictures). Our aim is to understand the limit of the historical particle
process (right pictures), i.e. the nonlinear historical superprocess.
In the superprocess, the individual dimension is lost and ancestral paths can not be
read from the sole information of the support of the measure. The latter represents the
dynamics of the population’s biodiversity. The interest of the historical superprocess is
to provide genealogical information. Indeed, one can stress that the historical process
at time t restricted to paths up to time t− ε has finite support, as observed in Figure 2.
This result is known for the historical super Brownian motion [15, Section 3].

In the simulations of Figure 2, we see that when σb > σU , two families appear, in the
sense that in the genealogical tree (on the right) the most recent common ancestor
(MRCA) is separated from the next branching events by a number of generations of
order n. Intuitively, the range of the competition kernel being smaller than the one of
the mutations, the population fragments into small patches that have few interactions
with each other. When σb < σU , the distinction of subfamilies in the genealogical tree
is not so clear. The competition kernel has a large range and prevents the new mutants
from escaping the competition created by the other individuals in the population.

2.4.2 A variant of Adler’s fattened goats: a spatial model

0.0 0.5 1.0 1.5

0
1

2
3

4

Time

Tr
ai

t

0.0 0.5 1.0 1.5

0
1

2
3

4

Time

Tr
ai

t

Figure 3: Simulation for Adler’s fattened goats. α = 10, ε = 0.8, b = 0.75, σ = 1, p = 1, K = 50

and n = 50. The 100 initial particles are started at location 1.5.

In many models, trait or space play a similar role. Spatial models have been exten-
sively studied as toy models for evolution (see Bolker and Pacala [8, 9] or Dieckmann
and Law [18]). Here we consider a spatial model where the competition exerted by past
ancestors is softened. This model is a variant of Adler’s fattened goats (e.g. [1, 37]), but
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with an interaction in the drift term and not in the growth rate term). It corresponds to
the choice of D = 0, νd(ds) = e−αsds with α > 0, r(t, y) = 1, b(t, y) = b and

d(t, y,X) =

∫ t

0

∫
Rd

Kε

(
y′(s)− y(t)

)
K

Xs(dy
′, dc′) e−α(t−s)ds, (2.18)

where, Kε is a symmetric smooth kernel with maximum at 0, for instance the density
function of a centered Gaussian distribution with variance ε. The death rate corre-
sponds to the choice of U(t, y, y′) = Kε

(
yt − y′t

)
. From the definition of the processes

(see (2.1)), if y′ belongs to the support of Xs(dy
′) then almost surely (a.s.) y′ is a path

stopped at s and for all t ≥ s, y′t = y′s.
The goat-like particles consume resources at their location. When they arrive in a
region previously grazed by the population, their death rate increases. The parameter
α describes the speed at which the environment replenishes itself. The kernel Kε is the
density function of a centered Gaussian distribution with variance ε. The parameter K
scales the carrying capacity and controls the mass of X̄s.
Due to the form of the interaction, the goats spread quickly in the whole space and
separate into families with very old MRCAs, as observed in Fig. 3 . The families become
quickly disjoint and geographically isolated.

3 The nonlinear historical superprocess limit

We now investigate a diffusive limit for the sequence of processes Xn defined by
(2.12). Let us firstly introduce a class of test functions which will be used to define the
limiting process.

Definition 3.1. For real C2
b -functions g on R+ ×Rd and G on R respectively, we define

the continuous function Gg on the path space DRd by

Gg(y) = G
(∫ T

0

g(s, ys)ds
)
. (3.1)

Let us remark that the class generated by finite linear combinations of such functions
is stable under addition and separates the points, as proven in Lemma A.1 in Appendix
A. Notice that if y is a càdlàg path stopped at t ∈ [0, T ] then

Gg(y) = G
(∫ t

0

g(s, ys)ds+

∫ T

t

g(s, yt)ds
)
.

Also, in the sequel, the following quantity will appear for t ∈ [0, T ] and y ∈ DRd :

D2Gg(t, y) = G′
(∫ T

0

g(s, ys)ds
)∫ T

t

∆xg(s, yt)ds

+G′′
(∫ T

0

g(s, ys)ds
) d∑
i=1

(∫ T

t

∂xig(s, yt)ds
)2

. (3.2)

This quantity generalizes the Laplacian operator to an infinite-dimensional setting. For
instance, if G(x) = x and if g(s, y) = g(y) does not depend on time, we get D2Gg(t, y) =

(T − t)∆g(yt).

Note that Dawson ([13], p. 203) and Etheridge ([19], p. 24) introduce another class of
test functions of the form

ϕ(y) =

m∏
j=1

gj(ytj ), (3.3)
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for m ∈ N∗, 0 ≤ t1 < · · · < tm and ∀j ∈ {1, . . . ,m}, gj ∈ C2
b (Rd,R). This class is not

convenient when dealing with càdlàg processes since the function ϕ is not continuous
for the Skorohod topology. However, these test functions will be used when y is a con-
tinuous path.
If y is a continuous path stopped at t then ϕ(y) =

∏m
j=1 gj(ytj∧t). For a path y ∈

C(R+,R
d), a time t > 0, we define

∆̃ϕ(t, y) =

m−1∑
k=0

1l[tk,tk+1[(t)
( k∏
j=1

gj(ytj )∆
( m∏
j=k+1

gj
)
(yt)

)
, (3.4)

where t0 = 0.
The following lemma links the test functions (3.1) and (3.3). It is proved in Appendix A

Lemma 3.2. Let ϕ be a test function of the form (3.3). Then there exists test functions
(ϕq) of the form (3.1) such that for every y ∈ C(R+,R

d) and t ∈ [0, T ], the sequences
(ϕq(y))q∈N∗ and (D2ϕq(t, y))q∈N∗ are bounded uniformly in q, t and y and converge re-

spectively to ϕ(y) and ∆̃ϕ(t, y).

3.1 Main convergence result

Let us assume that the initial conditions converge:

∃X0 ∈MF (DRd), lim
n→+∞

Xn
0 = X̄0 for the weak convergence. (3.5)

The main theorem of this section states the convergence of the sequence (Xn
t )n∈N∗ :

Theorem 3.3. Assume (3.5) and (2.14). Then the sequence (Xn)n∈N∗ converges in law
inD(R+,MF (DRd)) to the superprocess X̄ ∈ C(R+,MF (DRd)) characterized as follows,
for test functions Gg of the form (3.1):

M
Gg
t = 〈X̄t, Gg〉 − 〈X̄0, Gg〉 −

∫ t

0

∫
D
Rd

(
p r(s, y)

σ2

2
D2Gg(s, y)

+ γ(s, y, X̄s)Gg(y)
)
X̄s(dy) ds (3.6)

is a square integrable martingale with quadratic variation:

〈MGg 〉t =

∫ t

0

∫
D
Rd

2 r(s, y)G2
g(y)X̄s(dy) ds, (3.7)

where D2Gg(t, y) has been defined in (3.2) and γ(t, y, X̄t) defines the growth rate of
individuals y at time t in the population X̄:

γ(t, y, X̄t) = b(t, y)− d(t, y, X̄t). (3.8)

2

For the proof of Theorem 3.3, we proceed in a compactness-uniqueness manner. Firstly,
we establish the tightness of the sequence (Xn)n∈N∗ (Section 3.2) then use Prohorov’s
theorem and identify the limiting values as unique solution of the infinite-dimensional
martingale problem (3.6), (3.7). The main difficulties in the proof are due to the inter-
action between the individual genealogies, implying the nonlinearity in the limit given
by the term d(t, y, X̄t).
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3.2 Tightness of (Xn)n∈N∗

In this subsection, we shall prove that:

Proposition 3.4. The sequence (L(Xn))n∈N∗ is tight on P(D(R+,MF (DRd))).

To do that, we use the following criterion characterizing the uniform tightness of measure-
valued càdlàg processes by the compactness of the support of the measures and the
uniform tightness of their masses. Moreover, a tricky coupling will allow us here to
deal with the nonlinearity.

Lemma 3.5. The sequence of laws of (Xn)n∈N∗ is tight in P(D(R+,MF (DRd))) if
(i) ∀T > 0, ∀ε > 0, ∃K ⊂ DRd compact,

sup
n∈N∗

P (∃t ∈ [0, T ], Xn
t (Kc

T ) > ε) ≤ ε,

where Kc
T is the complement set of

KT =
{
yt, yt− | y ∈ K, t ∈ [0, T ]

}
⊂ DRd . (3.9)

(ii) ∀ Gg of the form (3.1), the family of laws ((〈Xn, Gg〉))n∈N∗ is uniformly tight in
P(DR+

).

Sketch of proof. Recall that DRd embedded with the Skorohod topology is a Polish
space. By Lemma 7.6 in Dawson and Perkins [15], the set KT is compact in DRd . Let
(Kk,T )k∈N∗ be the family of compact sets such that

sup
n∈N∗

P
(
∃t ∈ [0, T ], Xn

t (Kc
k,T ) >

ε

2k

)
≤ ε

2k
,

Then, the set

K =
⋂
k∈N∗

{
µ ∈MF (DRd) | µ(Kc

k,T ) ≤ ε

2k

}
is then relatively compact inMF (DRd) by the Prohorov theorem, since it corresponds to
a tight family of measures. We can then rewrite Point (i) of Lemma 3.5 in ∀T > 0, ∀ε >
0, ∃K ⊂MF (DRd) relatively compact,

sup
n∈N∗

P (∃t ∈ [0, T ], Xn
t /∈ K) ≤ ε.

Moreover the class of functions Gg separates the point and is closed under addition.
Thus Points (i) and (ii) of Lemma 3.5 allow us to apply the tightness result of Jakubowski
(Theorem 4.6 [29]) and ensure that the sequence of the laws of (Xn)n∈N∗ is uniformly
tight in P(D(R+,MF (DRd))).

Proof of Proposition 3.4. We divide the proof into several steps.

Step 1 Firstly, we prove Point (ii) of Lemma 3.5. Let T > 0 and Gg be of the form (3.1).
For every t ∈ [0, T ] and every A > 0

P(|〈Xn
t , Gg〉| > A) ≤

‖G‖∞ supn∈N∗ E(〈Xn
t , 1〉)

A
, (3.10)

which tends to 0 when A tends to infinity thanks to (2.15). This proves the uniform
tightness of the family of marginal laws 〈Xn

t , Gg〉 for n ∈ N∗ and t fixed. Then, the
Aldous and Rebolledo criteria (e.g. [30]) allow to prove the tightness of the process
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〈Xn, Gg〉. For ε > 0 and η > 0, let us show that there exist n0 ∈ N∗ and δ > 0 such that
for all n > n0 and all stopping times Sn < Tn < (Sn + δ) ∧ T ,

P(|An,GgTn
−An,GgSn

| > η) ≤ ε and P(|〈Mn,Gg 〉Tn − 〈Mn,Gg 〉Sn | > η) ≤ ε (3.11)

where An,Gg denotes the finite variation process in the r.h.s. of (2.16).

Let us begin with some estimates. We fix t ∈ [0, T ], h ∈ Rd and a path y ∈ DRd stopped
at t. Using the Taylor-Lagrange formula, there exists θy,t,h ∈ (0, 1) such that

Gg(y|t|yt− + h)−Gg(y) = G
(∫ T

0

g(s, (y|t|yt− + h)s)ds
)
−G

(∫ T

0

g(s, ys)ds
)

= G′
(∫ T

0

g(s, ys)ds
)

Λ(y, t, h) +
1

2
G′′
(∫ T

0

g(s, ys)ds+ θy,t,hΛ(y, t, h)
)

Λ(y, t, h)2 (3.12)

where

Λ(y, t, h) =

∫ T

t

(
g(s, yt− + h)− g(s, yt−)

)
ds (3.13)

converges to zero when h tends to zero. Another use of the Taylor-Lagrange formula
for the integrand in Λ(y, t, h), shows the existence a family ηy,t,h,s ∈ (0, 1) such that

Λ(y, t, h) =

∫ T

t

(
h · ∇xg(s, yt−) +

1

2
th [Hess g(s, yt− + ηy,t,h,sh)] h

)
ds. (3.14)

Using (3.12) and (3.14), we integrate Gg(y|t|yt− + h) − Gg(y) with respect to Kn(dh).
Since kn(h) is the density of the Gaussian distribution of mean 0 and covariance σ2Id/n,
integrals of odd powers and cross-products of the components of h vanish. Thus:∫

Rd

(
Gg(y|t|yt− + h)−Gg(y)

)
Kn(dh)

=G′
(∫ T

0

g(s, ys)ds
)σ2p

2n

∫ T

t

∆xg(s, yt− + ηt,y,h,sh)ds

+
pσ2

2n
G′′
(∫ T

0

g(s, ys)ds+ θy,t,hΛ(y, t, h)
) d∑
i=1

(∫ T

0

∂xig(s, yt−)ds
)2

+
C

n2

where C is a constant depending on G, g, σ2 and p but not on n. Therefore

lim
n→+∞

n
∣∣∣ ∫
Rd

(
Gg(y|u|yu + h)−Gg(y)

)
Kn(dh)− σ2p

2n
D2Gg(u, y)

∣∣∣ = 0. (3.15)

Noting that for G and g in C2
b , D2Gg is bounded from the definition (3.1), we obtain the

following upper bound:

E(|An,GgTn
−An,GgSn

|) ≤ δ
[(
R̄
pσ2

2

(
‖D2Gg‖∞ + 1

)
+ (B̄ + D̄)‖G‖∞

)
sup
n∈N∗

E( sup
t∈[0,T ]

〈Xn
t , 1〉)

+ ‖G‖∞Ū νd[0, T ] sup
n∈N∗

E( sup
t∈[0,T ]

〈Xn
t , 1〉2)

]
. (3.16)

For the quadratic variation process,

E(|〈Mn,Gg 〉Tn − 〈Mn,Gg 〉Sn |)

≤‖G‖2∞δ
[(

2r̄ +
b̄+ d̄

n

)
sup
n∈N∗

E( sup
t∈[0,T ]

〈Xn
t , 1〉) +

Ū νd[0, T ]

n
sup
n∈N∗

E( sup
t∈[0,T ]

〈Xn
t , 1〉2)

]
.

(3.17)
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We thus obtain (3.11) by applying the Markov inequality and using the moment esti-
mates of Proposition 2.6.

Step 2 Let us now check that Point (i) of Lemma 3.5 is satisfied. We follow here ideas
introduced by Dawson and Perkins [15] who proved the tightness of a system of inde-
pendent historical branching Brownian particles. Here, we have interacting particles,
which makes the proof much harder.

Let T ∈ R+ and ε > 0 and K be a compact set of DRd . We denote by Kt = {yt | y ∈ K} ⊂
DRd the set of the paths of K stopped at time t. Recall that KT defined in (3.9) is the
set of the paths of K and of their left-limited paths stopped at any time before time T .
Let us define the stopping time

Snε = inf{t ∈ R+ |Xn
t (Kc

T ) > ε}. (3.18)

From this definition,

P
(
∃t ∈ [0, T ], Xn

t (Kc
T ) > ε

)
= P(Snε < T ). (3.19)

Our purpose is to prove that it is possible to choose K and n0 such that supn≥n0
P(Snε <

T ) ≤ ε. We decompose (3.19) by considering the more tractable Xn
T ((KT )c) and write

P(Snε < T ) =P
(
Snε < T, Xn

T ((KT )c) >
ε

2

)
+ P

(
Snε < T, Xn

T ((KT )c) ≤ ε

2

)
≤2

ε
E
(
Xn
T ((KT )c)

)
+ P

(
Snε < T, Xn

T ((KT )c) ≤ ε

2

)
(3.20)

by using the Markov inequality. We will show in Steps 3 to 5 that there exists η ∈ (0, 1)

such that for n large enough,

P
(
Snε < T, Xn

T ((KT )c) ≤ ε

2

)
≤ P(Snε < T )(1− η). (3.21)

Together with (3.20), this entails that

P(Snε < T ) ≤
2E
(
Xn
T ((KT )c)

)
εη

. (3.22)

In Step 6, we will also prove that the compact set K can be chosen such that

E
(
Xn
T ((KT )c)

)
<
ε2η

2
. (3.23)

This will conclude the proof.

Step 3 Let us prove (3.21). Heuristically, the event {Snε < T, Xn
T ((KT )c) ≤ ε

2} means
that more than half the trajectories that exited K before Snε have died at time T . On the
set {Snε < T}, ySnε /∈ KSnε implies yT /∈ KT . Indeed, if a path stopped at time Snε does
not belong to K, then it is also true when it is stopped at T > Snε . Thus on {Snε < T}:

Xn
T ((KT )c) ≥ Xn

T ({yS
n
ε /∈ KSnε }). (3.24)

Hence:

P
(
Snε < T, Xn

T ((KT )c) ≤ ε

2

)
≤P
(
Snε < T, Xn

T ({yS
n
ε /∈ KSnε }) ≤ ε

2

)
=E
(

1lSnε <TP
(
Xn
Snε +(T−Snε )({y

Snε /∈ KSnε }) ≤ ε/2 | FSnε
))
.

(3.25)
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Figure 4: The compact K is the region between the two lines. The paths which are drawn

correspond to the support of Xn
T . Xn

T ((K
T )c) counts the trajectories that do not belong to K

between 0 and T : here we have y1, y2, y4, y5 and y6. The quantity Xn
T ({yS

n
ε /∈ KSnε }) counts

the trajectories, at time T , that don’t belong to K between 0 and Sn
ε . Here, we have y1, y4, y5

and y6 ; although y2 does not belong to K between time 0 and T , it belongs to K between 0 and

Sn
ε . To obtain the trajectories accounting for Xn

T ({yS
n
ε /∈ KSnε }), we count the descendants of the

3 points at time Sn
ε corresponding to trajectories yS

n
ε /∈ KSnε . We can also check that relation

(3.24) is satisfied.

Our purpose is to obtain an upper bound of the form (1 − η) with η ∈ (0, 1) for the
probability under the expectation in the r.h.s. of (3.25). This term is the probability
that the population issued from particles which at time Snε satisfy yS

n
ε /∈ KSnε , has a size

smaller than ε/2. In view of (3.25), we will work on the set {Snε < T} until the end of
the proof.
Using (2.15) and Markov’s inequality, it is possible, for any η > 0, to choose N > 0 large
enough such that

P
(

sup
Snε ≤s≤T

〈Xn
s , 1〉 > N | FSnε

)
< η. (3.26)

We need to introduce some coupling with independent trajectories. Let us define the
process (Znt (dy))t∈R+

as follows. The independent particles of Zn are started at time
Snε with the trajectories of Xn

Snε
such that {ySnε /∈ KSnε } and the initial condition is

ZnSnε (dy) = 1lySnε /∈KSnε X
n
Snε

(dy). (3.27)

Their birth and death rates are nr(t, y) and nr(t, y) + D̄+ ŪN . By a coupling argument,
we have

P
(
Xn
T ({yS

n
ε /∈ KSnε }) ≤ ε/2 | FSnε

)
≤P
(
〈ZnT , 1〉 ≤

ε

2
; sup
Snε ≤s≤T

〈Xn
s , 1〉 ≤ N | FSnε

)
+ P

(
sup

Snε ≤s≤T
〈Xn

s , 1〉 > N | FSnε
)

≤1− P
(

inf
s∈[Snε ,T ]

〈Zns , 1〉 >
ε

2
| FSnε

)
+ η.

(3.28)

If we can exhibit η > 0 such that for n large enough

E
(

1lSnε <T P
(

inf
s∈[Snε ,T ]

〈Zns , 1〉 >
ε

2
| FSnε

))
> 2ηP(Snε < T ), (3.29)
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then from (3.25) and (3.28), the r.h.s. of (3.25) is strictly smaller than (1−2η+η)P(Snε <

T ) = (1− η)P(Snε < T ), and (3.21) will be proved.

Step 4 Let us prove (3.29). Notice that on the set {Snε < T},

〈ZnSnε , 1〉 = Xn
Snε

({yS
n
ε /∈ KSnε }) ≥ Xn

Snε
({yS

n
ε /∈ KSnε

}) ≥ Xn
Snε

({yS
n
ε /∈ KT }) = Xn

Snε
(Kc

T ) > ε.

By coupling arguments (using deletions of particles in the initial condition ZnSnε ), and
since we are considering a lower bound with an infimum in (3.29), we can consider
without restriction that 〈ZnSnε , 1〉 = ([nε] + 1)/n, where [x] denotes the integer part of x.
Let us establish a diffusion approximation of 〈ZnSnε +., 1〉 when n is large. We know that
for any t ≥ 0, the process

〈ZnSnε +t, 1〉 = 〈ZnSnε , 1〉 −
(
D̄ + ŪN

) ∫ t

0

〈ZnSnε +s, 1〉ds+Mn,Z
t (3.30)

where Mn,Z is a square integrable martingale such that for all s ≤ t,

2R

∫ t

s

〈ZnSnε +u, 1〉du ≤ 〈Mn,Z〉t − 〈Mn,Z〉s =

∫ t

s

〈
ZnSnε +u, 2r(S

n
ε + u, .) +

D̄ + ŪN

n

〉
du

≤
(
2R̄+

D̄ + ŪN

n

) ∫ t

s

〈ZnSnε +u, 1〉du. (3.31)

Proposition 2.6 and adaptations of (3.16) and (3.17) allow us to establish that the laws
of (〈ZnSnε +., 1〉, 〈Mn,Z〉.) are uniformly tight in P(D(R+,R

2
+)). As a consequence, there

exists a subsequence, denoted again by (〈ZnSnε +., 1〉, 〈Mn,Z〉.)n∈N∗ for simplicity, that con-
verges in distribution to a limit, say (Z,A) where Z and A are necessarily continuous.
Let us define on the canonical space

Nt = Zt − ε+

∫ t

0

(D̄ + ŪN)Zsds, (3.32)

and prove that it is a martingale. Let 0 ≤ s1 ≤ · · · ≤ sk < s < t and let φ1, · · ·φk be
bounded measurable functions on R+. We define

Ψ(Z) = φ1(Zs1) · · ·φk(Zsk)
{
Zt −Zs +

∫ t

s

(D̄ + ŪN)Zu du
}
. (3.33)

From (3.30), E(Ψ(〈ZnSnε +., 1〉)) = 0. Similarly to Prop. 2.6 (ii), we can prove from the

SDE (3.30) that E(supt∈[0,T ]〈ZnSnε +t, 1〉3) < +∞ for any T > 0. Then (Ψ(〈ZnSnε +., 1〉))n∈N∗
is uniformly integrable and by the continuity of Ψ, limn→+∞E

(
Ψ(〈ZnSnε +., 1〉

)
= E(Ψ(Z)).

Then we deduce that E(Ψ(Z)) = 0. Hence, N is a continuous square integrable mar-
tingale, and Theorem 6.1 p. 341 in Jacod and Shiryaev [25] implies that its quadratic
variation process is 〈N〉 = A.
Moreover, using the Skorokhod representation theorem (see e.g. [7] Th. 25.6 p.333),
there exist a random sequence (Z̃n, Ãn)n∈N∗ and a random couple (Z̃, Ã) defined on the
same probability space, distributed respectively as (〈ZnSnε +., 1〉, 〈Mn,Z〉.)n∈N∗ and (Z,A),
and such that

lim
n→+∞

(Z̃n, Ãn) = (Z̃, Ã) a.s.. (3.34)

Then, from (3.31), we have a.s. that for all 0 ≤ s ≤ t,

2R

∫ t

s

Z̃u du ≤ Ãt − Ãs ≤ 2R̄

∫ t

s

Z̃u du. (3.35)
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This implies (see e.g. Rudin [39, Chapter 8]) that Ã is a.s. an absolutely continuous
function and that there exists a random Ft-measurable function ρ(u) such that ∀u ∈
R+, 2R ≤ ρ(u) ≤ 2R̄ and

Ãt =

∫ t

0

ρ(u)Z̃u du a.s.. (3.36)

Therefore, there exists a standard Brownian motion (Bt)t∈R+
such that almost surely:

Ñt = Z̃t − ε+

∫ t

0

(D̄ + ŪN)Z̃sds =

∫ t

0

√
ρ(u)Z̃udBu. (3.37)

Now that the diffusive limit for 〈ZnSnε +., 1〉 has been obtained, let us return to (3.29):

P
(

inf
s∈[Snε ,T ]

〈Zns , 1〉 >
ε

2
| FSnε

)
1lSnε <T = P

(
inf

u∈[0,T−Snε ]
〈ZnSnε +u, 1〉 >

ε

2
| FSnε

)
1lSnε <T

≥ P
(

inf
u∈[0,T ]

(y|s|Z̃n)s+u >
ε

2

)∣∣∣
y=〈Zn

.∧Snε
,1〉, s=Snε

1lSnε <T . (3.38)

Notice that for all y and s,

lim
n→+∞

P
(

inf
u∈[0,T ]

(y|s|Z̃n)s+u >
ε

2

)
=P
(

inf
u∈[0,T ]

(y|s|Z̃)s+u ≥
ε

2

)
= Py,s

(
inf

u∈[0,T ]
Z̃u ≥

ε

2

)
,

(3.39)

where the notation Py,s reminds that the distribution of Z̃ depends on ρ which may itself
depend on (y, s). We need some uniformity of the convergence in (3.39), with respect
to y and s.
For ζ > 0 and (z, r) ∈ D × [0, T ], we denote by B((z, r), ζ) the open ball centered at
(z, r) with radius ζ. There exists ζ > 0 small enough such that for all (y, s) ∈ B((z, r), ζ)

and Z ∈ D, dSk

(
(y|s|Z), (z|r|Z)

)
< ε/4 where dSk is the Skorokhod distance on D (see

Proposition B.1 in appendix). As a consequence, for this choice of ζ and all n ∈ N∗,

P
(

inf
u∈[0,T ]

(z|r|Z̃n)r+u >
3ε

4

)
≤ P

(
inf

u∈[0,T ]
(y|s|Z̃n)s+u >

ε

2

)
. (3.40)

Let ξ > 0 be a small positive number. Since the sequence of laws of 〈Zn. , 1〉 is uniformly
tight, there exists a compact set Kξ of DRd such that for n large enough, P

(
〈Zn. , 1〉 /∈

Kξ

)
< ξ. Since Kξ × [0, T ] is compact, there exists a finite sequence (zi, ri)1≤i≤M with

M = M(ξ) ∈ N∗ such that

Kξ × [0, T ] ⊂
M(ξ)⋃
i=1

B
(
(zi, ri), ζ

)
.

With an argument similar to (3.39), there exists for each i ∈ {1, . . . ,M}, an integer ni
such that for all n ≥ ni,

P
(

inf
u∈[0,T ]

(zi|ri|Z̃n)ri+u >
3ε

4

)
>

1

2
Pzi,ri

(
inf

u∈[0,T ]
Z̃u ≥

3ε

4

)
. (3.41)

Hence, thanks to (3.40), we obtain that for all (y, s) ∈ Kξ×[0, T ] and n ≥ max1≤i≤M(ξ) ni,

P
(

inf
u∈[0,T ]

(y|s|Z̃n)s+u ≥
ε

2

)
≥ min

1≤i≤M
P
(

inf
u∈[0,T ]

(zi|ri|Z̃n)ri+u >
3ε

4

)
> min

1≤i≤M(ξ)

1

2
Pzi,ri

(
inf

u∈[0,T ]
Z̃u ≥

3ε

4

)
=: 2η(ξ). (3.42)
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Then, from (3.38) and (3.42), the left hand side of (3.29) has the lower bound:

E
(

1lSnε <T P
(

inf
s∈[Snε ,T ]

〈Zns , 1〉 >
ε

2
| FSnε

))
≥E
(
P
(

inf
u∈[0,T ]

(y|s|Z̃n)s+u >
ε

2

)∣∣∣
y=〈Zn

.∧Snε
,1〉, s=Snε

1lSnε <T 1l〈Zn. ,1〉∈Kξ

)
≥ 2η(ξ) P

(
Snε < T, 〈Zn. , 1〉 ∈ Kξ

)
.

(3.43)

The term P
(
Snε < T, 〈Zn. , 1〉 ∈ Kξ

)
in the right hand side converges to P(Snε < T ) when

ξ tends to zero, and there exists ξ0 > 0 small enough such that this term is larger than
P(Snε < T )/2 for every ξ < ξ0. (In case P(Snε < T ) = 0, the proof is done and this
is also true). Thus, for 0 < ξ < ξ0, the left hand side in (3.43) is lower bounded by
η(ξ)P(Snε < T ). This proves (3.29) provided η is positive, which we shall establish in
Step 5.

Step 5 Let us prove that η defined in (3.42) is positive. Since it is a minimum over a
finite number of terms, let us consider one of the latter. For this, we consider (z, r) ∈
DRd and our purpose is to prove that

Pz,r

(
inf

u∈[0,T ]
Z̃u ≥

3ε

4

)
> 0.

For M > 0, let us define the stopping time ςM = inf{t ≥ 0, Z̃ ≥M} and let us introduce

τε/2 = inf
{
t ≥ 0, Z̃t ≤

ε

2

}
(3.44)

such that Pz,r(infs∈[0,T ] Z̃s > ε/2) = Pz,r(τε/2 > T ). Our purpose is to prove that the
latter quantity is positive. We will change the law of the process to be able to compare
this quantity to the one defined with a Brownian motion. Let λ > 0. From Itô’s formula:

eλZ̃t∧ςM =eλε +

∫ t∧ςM

0

(
λ2R̄− λ(D̄ + ŪN)

)
Z̃seZ̃sds+

∫ t∧ςM

0

λ

√
ρ(s)Z̃seZ̃sdBs.

Taking the expectation and choosing N sufficiently large (N > (λR̄ − D̄)/Ū ), we obtain
that E

(
exp(λZ̃t∧ςM )

)
≤ exp(λε). From (3.37) and since 2R ≤ ρ(u) ≤ 2R̄, we can classi-

cally show that E
(

supt∈[0,T ] Z̃2
t

)
< +∞, from which we deduce that limM→+∞ ςM = +∞

a.s. Moreover, it follows by Fatou’s lemma that for any t ∈ [0, T ], E
(

exp(λZ̃t)
)
≤ exp(λε)

and by Jensen’s inequality and Fubini’s theorem, we get

E
(
e
∫ T
0

(D̄+ŪN)2

2ρ(s)
Z̃sds

)
≤ 1

T

∫ T

0

E
(
e

(D̄+ŪN)2T
2R Z̃s)ds ≤ e (D̄+ŪN)2Tε

2R < +∞. (3.45)

Novikov’s criterion is satisfied and Girsanov’s Theorem applied to (3.37) tells us that
under the probability M defined by

dM

dPz,r

∣∣∣
Ft

= exp
(
−
∫ t

0

(D̄ + ŪN)

√
Z̃u√

ρ(u)
dBu −

1

2

∫ t

0

(D̄ + ŪN)2Z̃u
ρ(u)

du
)
, (3.46)

Z̃ is a Brownian motion started at ε. Then we have

M(τε/2 ≤ T ) +M(τε/2 > T ) = 1

EM
(
Z̃T∧τε/2

)
=
ε

2
M(τε/2 ≤ T ) + EM

(
Z̃T 1lτε/2>T

)
= ε.
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If M(τε/2 ≤ T ) = 1, this yields thus a contradiction since we would obtain ε/2 = ε for
the second equation. Thus, M(τε/2 ≤ T ) < 1 and Pz,r(τε/2 ≤ T ) < 1. This shows that
η > 0.

Step 6 It now remains to prove (3.23). We follow Dawson and Perkins [15, Lemma
7.3]. For n ∈ N∗, we can exhibit, by a coupling argument, a process X̃n constituted of
independent particles with birth rate nr(t, y) + b(t, y) and death rate nr(t, y), started at
Xn

0 and which dominates Xn. In particular, for T > 0 and for any compact set K ⊂ DRd ,
E(Xn

T ((KT )c)) ≤ E(X̃n
T ((KT )c)).

The tree underlying X̃n can be obtained by pruning a Yule tree with traits in Rd, where
a particle of lineage y at time t gives two offspring at rate 2nr(t, y) + b(t, y). One has
lineage y and the other has lineage (y|t|y + h) where h is distributed following Kn(dh).
Using Harris-Ulam-Neveu’s notation to label the particles (see e.g. Dawson [13]), we
denote by Y n,α for α ∈ I =

⋃+∞
m=0{0, 1}m+1 the lineage of the particle with label α.

Particles are exchangeable and the common distribution of the process Y n,α is the one
of a pure jump process of Rd, where the jumps occur at rate 2nr(t, y)+ b(t, y) and where
the jump sizes are distributed according to the probability measure 1

2δ0(ds) + 1
2K

n(dh).
We denote by Pnx its distribution starting from x ∈ Rd. It is standard to prove that the
family of laws (Pnx , n ∈ N∗, x ∈ C) is tight as soon as C is a compact set of Rd.
At each node of the Yule tree, an independent pruning is made: the offspring are kept
with probability (nr(t, y) + b(t, y))/(2nr(t, y) + b(t, y)) and are erased with probability
nr(t, y)/(2nr(t, y) + b(t, y)). Let us denote by Vt the set of individuals alive at time t and
write α � i to say that the individual α is a descendant of the individual i:

E
(
X̃n
T ((KT )c)

)
=E

 1

n

Nn0∑
i=1

∑
α�i

E
(

1lY n,α /∈KT 1lα∈VT

)
=E

 1

n

Nn0∑
i=1

PnXi0

(
(KT )c

)
E
(∑
α�i

1lα∈VT

)
≤E

 1

n

Nn0∑
i=1

PnXi0

(
(KT )c

)
eB̄T

 = eB̄T
∫
D
Rd

Xn
0 (dy)Pny0

(
(KT )c

)
.

The bound eB̄T is an upper bound of the mean population size at T that descends from
a single initial individual, when the growth rate is bounded above by B̄. For each ε > 0

there exists a compact set C of Rd and a compact set K of DRd such that

sup
n∈N∗

Xn
0 (Cc) ≤ ε and sup

n∈N∗
sup
y0∈C

Pny0

(
(KT )c

)
≤ ε,

which concludes the proof.

3.3 Identification of the limiting values

Let us denote by X̄ ∈ C(R+,MF (D)) a limit point of (X̄n)n∈N∗ . Our purpose here is
to characterize the limiting value via the martingale problem that appears in Theorem
3.3.
Notice that the limiting process X̄ is necessarily almost surely continuous as

sup
t∈R+

sup
ϕ, ‖ϕ‖∞≤1

|〈X̄n
t , ϕ〉 − 〈X̄n

t− , ϕ〉| ≤
1

n
. (3.47)

For the proof of Theorem 3.3, we will need the following Proposition, which establishes
the uniqueness of the solution of (3.6)-(3.7). Since the limiting process takes its values
in C([0, T ],MF (C(R+,R

d))), we will use the test functions in (3.3) instead of (3.1).
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Proposition 3.6. (i) The solutions of the martingale problem (3.6)-(3.7) also solve the
following martingale problem, where ϕ is a test function of the form (3.3) and ∆̃ has
been defined in (3.4):

Mϕ
t = 〈X̄t, ϕ〉 − 〈X̄0, ϕ〉 −

∫ t

0

∫
D
Rd

(
p r(s, y)

σ2

2
∆̃ϕ(s, y) + γ(s, y, X̄s)ϕ(y)

)
X̄s(dy) ds

(3.48)

is a square integrable martingale with quadratic variation

〈Mϕ〉t =

∫ t

0

∫
D
Rd

2 r(s, y)ϕ2(y)X̄s(dy) ds. (3.49)

(ii) There exists a unique solution to the martingale problem (3.48)-(3.49).
(iii) There exists a unique solution to the martingale problem (3.6)-(3.7).

In the course of the proof, we will need the following lemma, whose proof uses standard
arguments with r(t, y) depending on all the trajectory (see (2.4)).

Lemma 3.7. Let us consider the following stochastic differential equation on Rd driven
by a standard Brownian motion B:

Yt = Y0 +

∫ t

0

√
σ2p r(s, Y s)dBs. (3.50)

There exists a unique solution to (3.50).

Proof of Proposition 3.6. It is clear that (iii) follows from (i) and (ii).
Let us begin with the proof of (i). We consider a function ϕ of the form (3.3) and
we assume without restriction that the functions gj ’s are positive. Firstly, let us show
that (3.48) defines a martingale. Proceeding as in the proof of Theorem 5.6 in [23],
for k ∈ N∗, 0 ≤ s1 ≤ . . . sk < s < t and φ1, . . . φk bounded measurable functions on
MF (DRd), we define for X ∈ D(R+,MF (DRd)) the function

Ψ(X) = φ1(Xs1) . . . φk(Xsk)
{
〈Xt, ϕ〉 − 〈Xs, ϕ〉 −

∫ t

s

∫
D
Rd

(
pr(u, y)

σ2

2
∆̃ϕ(y)

+ γ(u, y, X̄u)
)
ϕ(y)

)
X̄u(dy) du

}
. (3.51)

Let us prove that E(Ψ(X̄)) = 0. We consider, for q ∈ N∗, the test functions ϕq(y) =

Ggq (y) with G(x) = exp(x) and gq(s, x) =
∑m
j=1 log(gj(x))kq(tj − s) where kq(x) is the

density of the Gaussian distribution with mean 0 and variance 1/q. From (3.6)-(3.7) and
(2.15), the process

M
ϕq
t = 〈X̄t, ϕq〉 − 〈X̄0, ϕq〉 −

∫ t

0

∫
D
Rd

(
p r(s, y)

σ2

2
D2ϕq(s, y)

+ γ(s, y, X̄s)ϕq(y)
)
X̄s(dy) ds (3.52)

is a square integrable martingale, hence uniformly integrable. The latter property to-
gether with Lemma 3.2 implies that φ1(Xs1) . . . φk(Xsk)(M

ϕq
t −M

ϕq
s ) converges to Ψ(X̄)

in L1 and that E(Ψ(X̄)) = 0.
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Let us show that the bracket of Mϕ is given by (3.49). By a similar argument as previ-
ously, we firstly check that the process

〈X̄t, ϕ〉2 − 〈X̄0, ϕ〉2 −
∫ t

0

∫
D

2r(s, y)ϕ2(y)X̄s(dy)ds−
∫ t

0

2〈X̄s, ϕ〉
∫
D

(
pr(s, y)

σ2

2
∆̃ϕ(y)

+ γ(s, y, X̄s)ϕ(y)
)
X̄s(dy) ds (3.53)

is a martingale. In another way, using Itô’s formula and (3.48),

〈X̄t, ϕ〉2 − 〈X̄0, ϕ〉2 − 〈Mϕ〉t −
∫ t

0

2〈X̄s, ϕ〉
∫
D

(
pr(s, y)

σ2

2
∆̃ϕ(y)

+ γ(s, y, X̄s)ϕ(y)
)
X̄s(dy) ds (3.54)

is a martingale. Comparing (3.53) and (3.54), we obtain (3.49).

Let us now prove (ii). Let P be a solution of the martingale problem (3.6)-(3.7) and let X̄
be the canonical process on C(R+,MF (DRd)). We first use Dawson-Girsanov’s theorem
(see [14, Section 5], [21, Theorem 2.3]) to get rid of the non-linearities. This theorem
can be applied since

E
(∫ T

0

∫
D
Rd

γ2(s, y, X̄s)X̄s(dy) ds
)
< +∞.

Indeed, γ is bounded and E
(

supt∈[0,T ]〈X̄t, 1〉2
)
< +∞ by taking (2.15) to the limit.

Hence, there exists a probability measure Q on C(R+,MF (DRd)) equivalent to P such
that under Q, and for every test function ϕ of the form (3.3), the process

M̃ϕ
t = 〈X̄t, ϕ〉 − 〈X̄0, ϕ〉 −

∫ t

0

∫
D
Rd

pr(s, y)σ2

2
∆̃ϕ(s, y)X̄s(dy)ds (3.55)

is a martingale with quadratic variation (3.7). Thus, if there is uniqueness of the prob-
ability measure Q which solves the martingale problem (3.55)-(3.7) we will deduce the
uniqueness of the solution of the martingale problem (3.6)-(3.7).

Let us now prove that the Laplace transform of X̄ under Q is uniquely characterized
using the solution Y of the stochastic differential equation (3.50). We associate with Y
its path-process W ∈ C(R+, C(R+,R

d)) defined by

Wt = (Yt∧s)s∈R+
. (3.56)

The path-process W is not homogeneous but it is however a strong Markov process with
semigroup defined for all s ≤ t and all ϕ ∈ Cb(C(R+,R

d),R) by

Ss,tϕ(y) = EQ
(
ϕ(Wt) |Ws = ys

)
. (3.57)

Moreover, the infinitesimal generator Ã of W at time t is defined for all ϕ as in (3.3) by

Ãϕ(t, y) =
pσ2

2
r(t, y)∆̃ϕ(t, y). (3.58)

Then it can be shown that the log-Laplace functional of X̄t under the probability Q,
L(s, t, y, ϕ) = EQ

(
exp(−〈X̄t, ϕ〉) | X̄s = δys

)
satisfies

L(s, t, y, ϕ) = e−Vs,tϕ(y), (3.59)
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where Vs,tϕ(y) solves:

Vs,tϕ(y) =E
(
ϕ(Wt)−

∫ t

s

pσ2

2
r(u,Wu)

(
Vu,tϕ(Wu)

)2
du |Ws = ys

)
=Ss,tϕ(y)−

∫ t

s

pσ2

2
Ss,u

(
r(u, .)

(
Vu,tϕ(.)

)2)
(y)du. (3.60)

Adapting Theorem 12.3.1.1 of [13, p.207], there exists a unique solution to (3.60). In-
deed, let V 1 and V 2 be two solutions. From (3.60), we see that for i ∈ {1, 2},

sup
s,t,y
|V is,tϕ(y)| ≤ sup

y
|ϕ(y)| = ‖ϕ‖∞. (3.61)

We have

|V 2
s,tϕ(y)− V 1

s,tϕ(y)| =
∣∣∣pσ2

2

∫ t

s

Ss,u

(
r(u, .)

(
(V 2
u,tϕ(.))2 − (V 1

u,tϕ(.))2
))

(y)du
∣∣∣

≤pσ
2

2

∫ t

s

Ss,u

(
r(u, .)2‖ϕ‖∞

∣∣V 2
u,tϕ(.)− V 1

u,tϕ(.)
∣∣)(y)du

≤pσ2‖ϕ‖∞R̄
∫ t

s

Ss,u

(∣∣V 2
u,tϕ− V 1

u,tϕ
∣∣)(y)du.

Uniqueness follows from the Dynkin’s generalized Gronwall inequality (see e.g. [13,
Lemma 4.3.1]).
In conclusion, the Laplace transform of X̄t is uniquely characterized for every t > 0 by
EX̄0

(
exp(−〈X̄t, ϕ〉)

)
= exp(−〈X̄0, V0,tϕ〉). Thus, the one-marginal distributions of the

martingale problem (3.55)-(3.7) are uniquely determined and thus, there exists a unique
solution to (3.55)-(3.7).

It is now time to turn to the

Proof of Theorem 3.3. Let X̄ ∈ C(R+,MF (DRd)) be a limiting process of the sequence
(X̄n)n∈N∗ and let us denote again by (X̄n)n∈N∗ the subsequence that converges in law to
X̄. Since the limiting process is continuous, the convergence holds in D(R+,MF (DRd))

embedded with the Skorohod topology, but also with the uniform topology for all T > 0

(e.g. [6]).
The aim is to identify the martingale problem solved by the limiting value X̄. We will
see that it satisfies (3.6)-(3.7) which admits a unique solution by Proposition 3.6. This
will conclude the proof.
Firstly, we show that (3.6) defines a martingale. For k ∈ N∗, let 0 ≤ s1 ≤ . . . sk < s < t

and let φ1, . . . φk be bounded measurable functions on MF (DRd). Let G ∈ C2
b (R,R),

g ∈ C0,2
b (R+×Rd,R) andGg be functions as in (3.1). We define forX ∈ D(R+,MF (DRd))

the function

Φ(X) = φ1(Xs1) . . . φk(Xsk)
{
〈Xt, Gg〉 − 〈Xs, Gg〉 −

∫ t

s

∫
D
Rd

(
pr(u, y)

σ2

2
D2Gg(u, y)

+ γ(u, y,Xu)Gg(y)
)
Xu(dy) du

}
. (3.62)

Let us prove that E(Φ(X̄)) = 0. From (3.6),

0 =E
(
φ1(X̄n

s1) . . . φk(X̄n
sk

)
(
M

n,Gg
t −Mn,Gg

s

))
=E
(
Φ(X̄n)

)
+ E

(
φ1(X̄n

s1) . . . φk(X̄n
sk

)
(
An +Bn

))
, (3.63)
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where

An =

∫ t

s

∫
D
Rd

r(u, y)
{
n
(∫

Rd
Gg(y|u|yu + h)Kn(dh)−Gg(y)

)
(3.64)

− pσ2

2
D2Gg(u, y)

}
X̄n
u (dy) du

Bn =

∫ t

s

∫
D
Rd

b(u, y)

∫
Rd

(
Gg(y|u|yu + h)−Gg(y)

)
Kn(dh) X̄n

u (dy) du.

As X̄ is continuous, Φ is a.s. continuous at X̄. Moreover, from |Φ(X)| ≤ C
(

sups≤t〈Xs, 1〉+
sups≤t〈Xs, 1〉2

)
and Prop. 2.6, we deduce that (Φ(X̄n))n∈N∗ is a uniformly integrable se-

quence such that

lim
n→+∞

E
(
Φ(X̄n)

)
= E

(
Φ(X̄)

)
. (3.65)

Estimates (2.15) and (3.15) imply that An and Bn defined in (3.64) converge in L1 to
zero. Hence (3.63) and (3.65) entail the desired result. The computation of the bracket
of the martingale MGg is standard (see for instance [23]).
The proof of Theorem 3.3 is now complete.

4 Distributions of the genealogies

An important question is to gather information on the lineages of individuals alive in
the population.

Firstly, remark in Proposition 3.6 we obtain a martingale problem introduced by Perkins
[37, Th. 5.1 p.64] and leading to the following representation result: under Q, (X̄t)t∈R+

has the same distribution as the historical superprocess (Kt)t∈R+ which is the unique
solution of

Yt(y) = Y0(y) +

∫ t

0

√
σ2pr(s, Y s(y))dys (4.1)

K0 = X̄0, 〈Kt, ϕ〉 =

∫
D
Rd

ϕ(Y (y)t)Ht(dy) (4.2)

where (Ht(dy))t∈R+
is under Q a historical Brownian superprocess (see [15]), and for

ϕ in a sufficiently large class of test functions, of the form (3.3) for instance. The
stochastic integral

∫ t
0

√
σ2pr(s, Y s(y))dys is the H-historical integral constructed in [37,

Th. 2.12].

4.1 Lineages drawn at random

For t > 0, X̄t is a random measure on DRd and its restriction to D([0, t],Rd) correctly
renormalized gives the distribution of the lineage of an individual chosen at random at
time t. Let us define µt(dy) = X̄t(dy)/〈X̄t, 1〉 such that for any measurable test function
ϕ on DRd :

〈µt, ϕ〉 =
〈X̄t, ϕ〉
〈X̄t, 1〉

. (4.3)

For instance, choosing ϕ(y) = 1lA(y) for a measurable subset A ⊂ DRd , we obtain the
proportion of paths belonging to A under the random probability measure µt. Study-
ing such random probability measure remains unfortunately a difficult task and we will
also consider its intensity probability measure Eµt defined for any test function ϕ as
〈Eµt, ϕ〉 = E(〈µt, ϕ〉). This approach has been used in cases where the branching prop-
erty holds (for instance in [2]). The hope is to identify the infinitesimal generator of
Markov processes that will give us the average distribution of a path chosen at random.
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Proposition 4.1. For t > 0, a test function ϕ as in (3.3) and µt defined in (4.3):

E
(
〈µt, ϕ〉

)
=E
(
〈µ0, ϕ〉

)
+ E

(∫ t

0

〈
µs,

pr(s, .)σ2

2
∆̃ϕ(s, .)

〉
ds
)

+E
(∫ t

0

(
〈µs, γ(s, ., X̄s)ϕ(.)〉 − 〈µs, ϕ〉〈µs, γ(s, ., X̄s)〉

)
ds
)

+E
(∫ t

0

2

〈X̄s, 1〉
(
〈µs, ϕ〉〈µs, r(s, .)〉 − 〈µs, r(s, .)ϕ(.)〉

)
ds
)

(4.4)

Remark that the moment equation (4.4) cannot be closed due to the nonlinearity.

Proof. We consider (3.6)-(3.7) and Itô’s formula:

E
(
〈µt, ϕ〉

)
= 〈µ0, ϕ〉+ E

(∫ t

0

∫
D
Rd

1
2pr(s, y)σ2∆̃ϕ(s, y) + γ(s, y, X̄s)ϕ(y)

〈X̄s, 1〉
X̄s(dy) ds

)
−E
(∫ t

0

∫
D
Rd

〈X̄s, ϕ〉
〈X̄s, 1〉2

γ(s, y, X̄s)X̄s(dy) ds
)

+E
(1

2

[ ∫ t

0

∫
D
Rd

2〈X̄s, ϕ〉
〈X̄s, 1〉3

2r(s, y)X̄s(dy) ds− 2

∫ t

0

∫
D
Rd

1

〈X̄s, 1〉2
2r(s, y)ϕ(y)X̄s(dy) ds

])
=E
(
〈µ0, ϕ〉

)
+ E

(∫ t

0

〈
µs,

1

2
pr(s, .)σ2∆̃ϕ(s, .) + γ(s, ., X̄s)ϕ(.)

〉
ds
)

+E
(∫ t

0

〈µs, ϕ〉〈µs, γ(s, ., X̄s)〉ds
)

+ E
(∫ t

0

〈µs, ϕ〉〈µs, 2r(s, .)〉
〈X̄s, 1〉

ds−
∫ t

0

〈µs, 2r(s, .)ϕ〉
〈X̄s, 1〉

ds
)

This ends the proof.

In (4.4), we recognize two covariance terms under the probability measure µs:

Covµs(γ(s, ., X̄s), ϕ) = 〈µs, γ(s, ., X̄s)ϕ(.)〉 − 〈µs, ϕ〉〈µs, γ(s, ., X̄s)〉
Covµs(r(s, .), ϕ) = 〈µs, r(s, .)ϕ(.)〉 − 〈µs, ϕ〉〈µs, r(s, .)〉. (4.5)

The covariance terms (4.5) can be viewed as the generators of jump terms. For example,

Covµs(γ(s, ., X̄s), ϕ) = 〈µs, γ(s, ., X̄s)〉
∫
D
Rd

(∫
D
Rd

ϕ(z)
γ(s, z, X̄s)µs(dz)

〈µs, γ(s, ., X̄s)〉
− ϕ(y)

)
µs(dy).

Heuristically, the distribution of the path of a particle chosen at random at time t is
the following. Let us consider diffusive particles with generator pr(s, .)σ2∆̃. At rate
2〈µs, r(s, .)〉/〈X̄s, 1〉, the particles are resampled in the distribution µs biased by the
function r(s, .) where individuals with larger allometric coefficients r(s, .) are more
likely to be chosen. At rate 〈µs, γ(s, y, X̄s)〉, particles are resampled in the distribu-
tion µs biased by the function γ(s, ., X̄s) which gives more weight to particles having
higher growth rate.

4.2 Case of constant allometric function and growth rate

A particular case is when the allometric function r(s, y) and the growth rate γ(s, y, X̄s)

are constant and equal to R̄ and γ̄ respectively. In particular, a null growth rate γ̄ = 0

models the “neutral”case. In that case, we will show that the process of interest corre-
sponds to a Fleming-Viot process with genealogies similar to the one introduced in [24].
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Notice that this bears similarities with the connections established between superpro-
cesses and (classical) Fleming-Viot processes (e.g. Perkins [36]).
Let us introduce the notation

〈µt ⊗ µt, χ(t, ., .)〉 =

∫
D
Rd

∫
D
Rd

χ(t, y, z)µt(dy)µt(dz). (4.6)

This quantity can help to describe the most recent commun ancestor (MRCA) of two
individuals chosen at random in the population.

Proposition 4.2. If r(s, y) = R̄ and γ(s, y,X) = γ̄, then
(i)Covµs(r(s, .), ϕ) = 0 and Covµs(γ(s, ., X̄s), ϕ) = 0.
(ii) The lineage distributions under E(µt) are Brownian motions.
(iii) Let χ(y, z) be a function of two variables such that y 7→ χ(y, z) and z 7→ χ(y, z) are of
the form (3.3). For test functions φ(µ) = 〈µ⊗ µ, χ〉/〈µ, 1〉2, the generator of X̄ becomes

LFV φ(X) =
pR̄σ2

2

〈 X

〈X, 1〉
⊗ X

〈X, 1〉
, ∆̃(2)χ

〉
+

2R̄

〈X, 1〉

(∫
D
Rd

χ(y, y)
X(dy)

〈X, 1〉
− 〈 X

〈X, 1〉
⊗ X

〈X, 1〉
, χ〉
)
,

where ∆̃(2)χ(y, z) = ∆̃(y 7→ χ(y, z)) + ∆̃(z 7→ χ(y, z)).

In the expression of the generator LFV , we recognize a resampling operator, where the
resampling occurs nonlinearly at the rate 2R̄/〈X, 1〉.

Proof of Proposition 4.2. The proof of (i) is obvious. To prove (ii), let us remark that for
any test function ϕ of the form (3.3), (4.4) yields

〈E(µt), ϕ〉 = 〈E(µ0), ϕ〉+

∫ t

0

〈E(µs), pR̄σ
2∆̃ϕ(s, .)〉ds.

Therefore, under E(µt), the lineages have the same finite-dimensional distributions as
Brownian motions with diffusion coefficient pR̄σ2.
Let us now prove (iii). Let ϕ and ψ be two functions of the form (3.3). Using Itô’s
formula,

〈µt, ϕ〉〈µt, ψ〉 = 〈µ0, ϕ〉〈µ0, ψ〉+Mϕ,ψ
t

+

∫ t

0

(pR̄σ2

2
〈µs ⊗ µs, ∆̃(ϕψ)(s, .)〉+ 2R̄

∫
R

(ϕ(y)− 〈µs, ϕ〉)(ψ(y)− 〈µs, ψ〉)
〈X̄s, 1〉

µs(dy)
)
ds,

(4.7)

where Mϕ,ψ is a square integrable martingale.
For a function χ(y, z) =

∑K
k=1 λkϕk(y)ψk(z) with K ∈ N and λk ∈ R, we can generalize

(4.7) by noting that

〈µt ⊗ µt, χ〉 =

K∑
k=1

λk〈µt, ϕk〉〈µt, ψk〉,

∆̃(2)χ(y, z) =

K∑
k=1

λk∆̃ϕk(y)ψk(z) +

K∑
k=1

λkϕk(y)∆̃ψk(z).

Since every function χ as in (iii) can be approximated by functions of the previous form
for the bounded pointwise topology, the proposition is proved.
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4.3 Feynman-Kac formula in the case without interaction

Following the approaches of [2, 22] in the case without interaction, it is more con-
venient to renormalize (4.3) by E(〈X̄t, 1〉) instead of 〈X̄t, 1〉. Let us define the random
measure νt for a measurable function ϕ on DRd by:

〈νt, ϕ〉 =
〈X̄t, ϕ〉
E(〈X̄t, 1〉)

. (4.8)

Contrarily to µt, the measure νt is not a probability measure, but its intensity measure
Eνt is.

Proposition 4.3. Assume that pσ2 r(s, y) = 1 for the sake of simplicity. In the case
without interaction, that is if γ(s, y, X̄s) = γ(s, y), then we have the following Feynman-
Kac representation for any test function ϕ as in (3.3):

〈Eνt, ϕ〉 =
E
(
〈X̄t, ϕ〉

)
E
(
〈X̄t, 1〉

) =
E
(
ϕ(Wt)e

∫ t
0
γ(s,Ws)ds

)
E
(
e
∫ t
0
γ(s,Ws)ds

) , (4.9)

where (Wt)t∈R+
is a standard historical Brownian process, with values in C(R+,R

d).

Proof. Let us denote by Mt the probability measure defined by the right hand side
of (4.9). Using Itô’s formula, we check that both (Eνt)t∈R+ and (Mt)t∈R+ solve the
following evolution equation in (mt)t∈R+ : for any test function ϕ as in (3.3),

〈mt, ϕ〉 = 〈m0, ϕ〉+
1

2

∫ t

0

〈ms, ∆̃ϕ(s, .)〉ds+

∫ t

0

(
〈ms, ϕγ(s, .)〉 − 〈ms, ϕ〉〈ms, γ(s, .)〉

)
ds,

which admits a unique solution.

In the general case for r(s, y), p and σ2, the standard historical Brownian motion has
to be replaced with the path-process W introduced in (3.56) and associated with the
diffusion (3.50).
The Feynman-Kac formula, in the case where there is no interaction but still possible
dependence of the dynamics on the past, allows for instance easier simulation schemes
for approximating quantities that can express in terms of Eνt. The right hand side of
4.9 can be approximated by Monte-Carlo methods without branching mechanism.

4.4 Feynman-Kac formula in the logistic case

Let us now establish a Feynman-Kac formula for the logistic case without past or
trait dependence.

Proposition 4.4. Assume that r(s, y) = R̄ with pσ2R̄ = 1 and γ(s, y,X) = α − η〈X, 1〉,
where α, η > 0. For any test function ϕ as in (3.3),

〈Eνt, ϕ〉 =
E
(
ϕ(Wt)e

∫ t
0

(αNs−ηN2
s )ds

)
E
(
e
∫ t
0

(αNs−ηN2
s )ds

) , (4.10)

where (Wt)t∈R+
is a standard historical Brownian process and N is the solution of the

following equation:

Nt = 〈X̄0, 1〉+

∫ t

0

(
2R̄+ αNs − ηN2

s

)
ds+

∫ t

0

√
2R̄Ns dBt, (4.11)

B being a standard Brownian motion independent of W .
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Proof. Let ϕ be a test function of the form (3.3) and g ∈ C2
b (R+,R). From (3.48), we get

that the process N̄t = 〈X̄t, 1〉 satisfies the following martingale problem:

M1
t =N̄t − N̄0 −

∫ t

0

(
αN̄s − ηN̄2

s

)
ds (4.12)

is a square integrable martingale with quadratic variation 〈M1〉t =
∫ t

0
2R̄N̄s ds. Taking

the expectation leads to:

E(N̄t) =E(N̄0) +

∫ t

0

E
(
αN̄s − ηN̄2

s

)
ds. (4.13)

Using Itô’s formula with (3.48), (4.12), (4.13) and taking the expectation,

E
( 〈X̄t, ϕ〉g(N̄t)

E(N̄t)

)
= E

( 〈X̄0, ϕ〉g(N̄0)

E(N̄0)

)
+

∫ t

0

[
E
( g(N̄s)

E(N̄s)
〈X̄s,

1

2
∆̃ϕ〉

)
+E
(g(N̄s)(αN̄s − ηN̄2

s )

E(N̄s)
〈X̄s, ϕ〉

)
− 1

E(N̄s)2
E
(
g(N̄s)〈X̄s, ϕ〉

)
E
(
αN̄s − ηN̄2

s

)
+E
( 〈X̄s, ϕ〉
E(N̄s)

g′(N̄s)
(
αN̄s − ηN̄2

s

))
+

1

2
E
( 〈X̄s, ϕ〉
E(N̄s)

g′′(N̄s)
(
2R̄N̄s

))
+

2

2
E
(g′(N̄s)
E(N̄s)

2R̄〈X̄s, ϕ〉
)]
ds.

If we define the measure ν̄t on C(R+,R
d)×R+ by

〈ν̄t, ϕ⊗ g〉 = E
( 〈X̄t, ϕ〉g(N̄t)

E(N̄t)

)
,

then (ν̄t)t∈R+
solves the following equation

〈ν̄t, ϕ⊗ g〉 =〈ν̄0, ϕ⊗ g〉+

∫ t

0

[〈
ν̄s,

1

2
∆̃ϕ⊗ g + ϕ⊗ (g(n)(αn− ηn2))

+ ϕ⊗ g′(n)(αn− ηn2) +
1

2
ϕ⊗ 2R̄g′′(n)n+ ϕ⊗ 2R̄g′

〉
− 〈ν̄s, ϕ⊗ g〉〈ν̄s, 1⊗ (αn− ηn2)〉

]
ds. (4.14)

Let Yt = exp
( ∫ t

0
(αNs − ηN2

s )ds
)
. Using Itô’s formula with the processes (Wt)t∈R+ and

(Nt)t∈R+ , we get

E
(ϕ(Wt)g(Nt)Yt

E(Yt)

)
= E

(
ϕ(W0)g(N0)

)
+

∫ t

0

[
E
(1

2
∆̃ϕ(Ws)

g(Ns)Ys
E(Ys)

)
+ E

(g(Ns)

E(Ys)
ϕ(Ws)

(
αNs − ηN2

s

)
Ys

)
− 1

E(Ns)2
E
(
ϕ(Ws)g(Ns)Ys

)
E
(
αNs − ηN2

s

)
+ E

(ϕ(Ws)g
′(Ns)Ys

E(Ys)

(
2R̄+ αNs − ηN2

s

))
+ E

(1

2

ϕ(Ws)g
′′(Ns)Ys

E(Ys)
2R̄Ns

)]
ds.

The measure ν̃t on C(R+,R
d)×R+ defined by

〈ν̃t, ϕ⊗ g〉 = E
(ϕ(Wt)g(Nt)Yt

E(Yt)

)
is hence another solution of (4.14). The uniqueness of the solution of this equation
provides the announced result.

EJP 17 (2012), paper 47.
Page 27/32

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v17-2093
http://ejp.ejpecp.org/


Historical superprocess approximations with past dependence

A Properties of the test functions (3.1) and (3.3)

We begin with a lemma that will be useful to link the classes of test functions (3.1)
and (3.3). This lemma also shows that the class of test functions (3.1) separates points.

Lemma A.1. For q ∈ N∗, recall that we denote by kq(u) the density of the Gaussian
distribution with mean 0 and variance 1/q. Let g ∈ Cb(Rd,R). For G(x) = x and
gq(s, x) = kq(t − s)g(x), we have for all y ∈ DRd and all t ∈ [0, T ] at which y is con-
tinuous that:

lim
q→+∞

Ggq (y) = g(yt).

Proof. First notice that all the Ggq are bounded by ‖g‖∞. Let ε > 0. Since y is con-
tinuous at t, so is g ◦ y and there exists α > 0 sufficiently small so that for every
s ∈ (t − α, t + α), |g(ys) − g(yt)| ≤ ε/2. We can then choose q sufficiently large such
that ∫

|t−s|>α
kq(t− s)ds < ε

4‖g‖∞
.

Then:

|Ggq (y)− g(yt)| =
∣∣∣ ∫ T

0

kq(t− s)
(
g(ys)− g(yt)

)
ds
∣∣∣

≤2‖g‖∞ε
∫
|s−t|≥α

kq(t− s)ds+
ε

2

∫
|s−t|<α

kq(t− s)ds ≤ ε.

We are now in position to give the:

Proof of Lemma 3.2. We can assume without restriction that the functions gj in the
definition of ϕ (3.5) are positive. Let us define for y ∈ C(R+,R

d):

ϕq(y) = exp
(∫ T

0

m∑
j=1

log gj(ys)k
q(tj − s)ds

)
.

By Lemma A.1, the term in the integral is bounded uniformly in q and y and converges
when q tends to infinity to

∑m
j=1 log gj(ytj ). As a consequence, for every y ∈ C(R+,R

d),
the sequence (ϕq(y))n∈N∗ is bounded and converges to

exp
( m∑
j=1

log gj(ytj )
)

=

m∏
j=1

gj(ytj ) = ϕ(y)

when q tends to infinity. Moreover,

D2ϕq(t, y) = exp
(∫ T

0

m∑
j=1

log gj(ys)k
q(tj − s)ds

)

×
(∫ T

t

m∑
j=1

∆x(log gj)(yt)k
q(tj − s)ds+

d∑
i=1

(∫ T

t

m∑
j=1

∂xi(log gj)(yt)k
q(tj − s)ds

)2)
.
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When q tends to infinity, we have by Lemma A.1:

lim
q→+∞

D2ϕq(t, y)

=

m∏
j=1

gj(ytj )
( ∑
j | tj>t

∆xgj(yt)

gj(yt)
−

d∑
i=1

(
∂xigj(yt)

)2
g2
j (yt)

+

d∑
i=1

( ∑
j | tj>t

∂xigj(yt)

gj(yt)

)2)

=

m∏
j=1

gj(ytj )
( ∑
j | tj>t

∆xgj(yt)

gj(yt)
+ 2

d∑
i=1

∑
j 6=k

tj ,tk>t

∂xigj(yt)∂xigk(yt)

gj(yt)gk(yt)

)

=

m∏
j=1

gj(ytj )
∆x

(∏
j | tj>t gj

)
(yt)∏

j | tj>t gj(yt)
= ∆̃

( m∏
j=1

gj

)
(t, y).

This concludes the proof.

B Technical result on concatenated paths

Let H be the set of increasing bijections from [0, T ] to [0, T ], where T > 0. We recall
that the Skorokhod distance is defined for y, z ∈ D by:

dSk(y, z) = inf
λ∈H

max

{
‖y ◦ λ− z‖∞, sup

t,s<T

∣∣∣ log
(λ(t)− λ(s)

t− s

)∣∣∣} . (B.1)

In the sequel, we consider y, z ∈ D and s, r ∈ [0, T ]. Without loss of generality, we
can assume that s < r.

Proposition B.1. If dSk(y, z) < ε and if s and r are sufficiently close so that:

0 ≤ max
{

log
r

s
, log

T − s
T − r

}
≤ ε. (B.2)

Then for all w ∈ D, dSk((y|s|w), (z|r|w)) < 3ε.

In the proof, we will need the following change of time λ0 ∈ H:

λ0(u) =
r

s
u1lu≤s +

(
r +

T − r
T − s

(u− s)
)

1lu>s. (B.3)

The bijection λ0 depends on r and s. For u and v ∈ [0, T ], we have:∣∣∣ log
(λ0(u)− λ0(v)

u− v

)∣∣∣ ≤ max
{

log
(r
s

)
, log

(T − s
T − r

)}
. (B.4)

The right hand side converges to 0 when r/s converges to 1, and is upper bounded by ε
under the Assumptions (B.2) of Proposition B.1.

Lemma B.2. For all w ∈ D. If (B.2) is satisfied, then dSk(w ◦ λ0, w) ≤ ε.

Proof. The infimum in (B.1) can be upper bounded by choosing λ = λ−1
0 , which is the

inverse bijection of λ0:

λ−1
0 (u) =

s

r
u1lu≤r +

(
s+

T − s
T − r

(u− r)
)

1lu>r. (B.5)

For such choice, we have:

dSk(w ◦ λ0, w) ≤max
{

0,max
(

log
r

s
, log

T − s
T − r

)}
≤ ε.
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Let us now prove Proposition B.1:

Proof. By the triangular inequality:

dSk((y|s|w), (z|r|w)) ≤ A+B, where (B.6)

A = d((y|s|w), (y ◦ λ0|r|w ◦ λ0))

B = d((y ◦ λ0|r|w ◦ λ0), (z|r|w)).

By Lemma B.2, A ≤ ε. For the second term, using Lemma B.2 again:

B ≤dSk(y ◦ λ0, z) + d(w ◦ λ0, w) ≤ dSk(y ◦ λ0, z) + ε. (B.7)

Now, since dSk(y, z) ≤ ε, there exists λ ∈ H such that ‖y ◦ λ− z‖∞ ≤ 2ε and

sup
u,v≤T

∣∣∣ log
λ(u)− λ(v)

u− v

∣∣∣ ≤ 2ε.

Then, considering the change of time λ−1
0 ◦ λ:

dSk(y ◦ λ0, z) ≤ max
{
‖y ◦ λ0 ◦ λ−1

0 ◦ λ− z‖∞, sup
u,v≤T

∣∣∣ log
λ−1

0 ◦ λ(u)− λ−1
0 ◦ λ(v)

u− v

∣∣∣}
≤max

{
‖y ◦ λ− z‖∞, sup

u,v≤T

∣∣∣ log
λ−1

0 ◦ λ(u)− λ−1
0 ◦ λ(v)

λ(u)− λ(v)

∣∣∣+ sup
u,v≤T

∣∣∣ log
λ(u)− λ(v)

u− v

∣∣∣}
≤max

(
ε, 3ε

)
.
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