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Large deviations for self-intersection
local times in subcritical dimensions
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Abstract

Let (Xt, t ≥ 0) be a simple symmetric random walk on Zd and for any x ∈ Zd, let
lt(x) be its local time at site x. For any p > 1, we denote by It =

∑
x∈Zd

lt(x)
p the

p-fold self-intersection local times (SILT). Becker and König [6] recently proved a
large deviations principle for It for all p > 1 such that p(d − 2/p) < 2. We extend
these results to a broader scale of deviations and to the whole subcritical domain
p(d − 2) < d. Moreover, we unify the proofs of the large deviations principle using a
method introduced by Castell [9] for the critical case p(d− 2) = d.
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1 Introduction and main results

Let (Xt, t ≥ 0) be a simple random walk in Zd started from the origin. We denote by
∆ its generator given by

∆f(x) =
∑
y∼x

(f(y)− f(x)),

where the sum is over the nearest neighbors of x. Let P be the underlying probability
measure and E the corresponding expectation.

For any x ∈ Zd, we denote by lt(x) the local time at state x of the random walk:

∀x ∈ Zd,∀t > 0, lt(x) =

∫ t

0

δx(Xs)ds,

where δx is the Kronecker symbol. In this article we are interested in the self-intersection
local times (SILT):

∀p > 1,∀t > 0, It =
∑
x∈Zd

lt(x)p.

When p is an integer it is easy to see that the SILT measures how much the random
walk intersects itself since the SILT can be rewritten as
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Large deviations for self-intersection local times in subcritical dimensions

It =
∑
x∈Zd

lpt (x) =
∑
x∈Zd

(∫ t

0

δx(Xs)ds

)p
=

∫ t

0

· · ·
∫ t

0

1I
{
Xs1 = · · · = Xsp

}
ds1 · · · dsp.

1.1 Motivations

Processes’ intersections are studied since the fifties with works of Erdős, Dvoret-
zki and Kakutani on various quantities characterizing processes’ intersections like the
range of a random walk [19] or the multiple points of a Brownian motion [20]. After
1975 and the major work of Donsker and Varadhan [18] on the Wiener sausage, these
questions have raised constant interest. During the eighties, Le Gall accomplished
a great amount of studies on intersections of random walks [27] and intersections of
Brownian motions [26].

Questions about processes’ intersections are motivated by physical models and math-
ematical questions. In 1965, Edwards [21] introduced the following continuous polymer
model. A polymer is modeled by a continuous process as a Brownian motion B(t). The
idea is to penalize the polymer’s intersections which are physically forbidden, and to
introduce a measure ν whose density with respect to the Wiener measure µ is given for
any a > 0 by

dν

dµ
=

exp (−aβ(1))

E [exp (−aβ(1))]
,

where β(1) is the SILT of a Brownian motion up to time 1. As we will see later, this
quantity is not always defined but let’s write it for now. The discrete analogous model
is the so-called Domb-Joyce [17] model where the Brownian motion is replaced by a
random walk. Interested readers can refer to the survey of van der Hofstad and König
[33].

The SILT is also linked with mathematical questions. In 1979, Kesten and Spitzer
[24] and Borodin [7], [8] simultaneously introduced the model of random walks in ran-
dom sceneries. Their goal was to build some new self-similar processes. The model is
the following. We consider our symmetric random walk (Xt, t ≥ 0) moving on a random
field (Yz, z ∈ Zd) independent of the random walk. We consider the process

Zt =

∫ t

0

Y (Xs)ds =
∑
z∈Zd

Y (z)lt(z).

The SILT (for p = 2) is the variance of the conditional law of (Zt, t ≥ 0) given the random
walk. Interested lectors can find in [3] a short survey of large deviations questions for
this model. Note that this model was also considered by geophysicists Matheron and
de Marsily in [30] for studying anomalous dispersion in layered random flows.

1.2 About the SILT

We present now what is known about the SILT of random walks. For simplicity,
let us consider a simple symmetric random walk. In dimension one the random walk
is recurrent and it intersects itself a lot. Its typical value is t(p+1)/2 and we have the
following limit theorem:

1

t(p+1)/2

∑
x∈Z

lt(x)p
d−→ β(1),

where

β(1) =

∫
R

L1(x)pdx
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Large deviations for self-intersection local times in subcritical dimensions

where L1(x) is the local time of the Brownian motion at state x up to time 1. This
theorem can be seen as a consequence of results of Jain and Pruitt [23], Le Gall [27]
and Chen and Li [14].

In dimension 2, the random walk is still recurrent but the typical value of the SILT is
of order t(log t)p+1, which is smaller than in dimension 1. Černy proved in [10] a strong
Law of Large Numbers. We have also the following Central Limit Theorem:

1

t
(It − E[It])

d−→ β(1),

where β(1) is the renormalized SILT of the Brownian motion (see the work of Varadhan
[34]). This theorem summarizes the results obtained in different kind of generality by
Le Gall [27] and Rosen [31].

For dimensions larger than 3, the random walk is transient, it typically spends one
unit of time in each visited site, thus It ∼ t. Becker and König recently proved a strong
Law of Large Numbers [5] to which we can add the following Central Limit Theorem:
for d = 3 and p = 2,

1√
t log t

(It − E[It])
d−→ λ1U,

for d ≥ 4 and p = 2,
1√
t

(It − E[It])
d−→ λ2U,

where U is a standard Gaussian variable and λ1 and λ2 some constants. Refer to Le Gall
[27], Chen [12] and Asselah [2].

1.3 Large deviations

Once the Law of Large Numbers and Central Limit Theorem are established, it is
natural to be interested in the large deviations for the SILT. In this article, we wonder
how It can exceed its mean, i.e. we want to compute the asymptotics of the probability
P (It ≥ tprpt ) where tprpt � E[It]. We consider three types of deviations, very large
deviations (tprpt � E[It]), large deviations (tprpt ∼ E[It]) and moderate deviations (P (It−
E[It] ≥ tprpt ) for tprpt ≥

√
Var(It)). Heuristically, it is interesting to ask how the random

walk can realize this kind of atypical events for a minimal cost. We propose to the
random walk some strategies to realize large deviations of its SILT.

To increase the intersections of the random walk, a solution is to localize it in a ball
of radius R up to time τ ≤ t. On one hand, the walk goes out of the ball in R2 units of
time, and the probability of this localization is of order exp(− τ

R2 ). On the other hand,
the random walk spends about τ

Rd
units of time on each site of the ball, so It increases

to
(
τ
Rd

)p
Rd = τpRd(1−p). We recall that we want It = tprpt , which gives the value of τ :

τ = trtR
d(p−1)
p . Thus, the probability of the localization is of order

exp
(
− τ

R2

)
= exp

(
−trtR

d(p−1)
p −2

)
.

To optimize the probability of the localization, we maximize this quantity over R which
gives us three cases:

1. d(p−1)
p − 2 > 0⇔ p(d− 2) > d (supercritical case): in this case, the optimal choice

for R is 1. A good strategy to realize large deviations is to spend a time of order
trt in a ball of radius 1, thus:

P (It ≥ ttrpt ) ∼ exp(−trt).
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2. d(p−1)
p − 2 = 0 ⇔ p(d − 2) = d (critical case): here the choice of R doesn’t matter.

Every strategy consisting in spending a time of order trtR2 in a ball of radius R
such that 1 ≤ R� 1/

√
rt could be a good strategy, and

P (It ≥ tprpt ) ∼ exp(−trt).

3. d(p−1)
p − 2 < 0 ⇔ p(d − 2) < d (subcritical case): a good strategy is to stay up to

time t in a ball of maximal radius, i.e. r
− p
d(p−1)

t , thus

P (It ≥ trt) ∼ exp

(
−tr

2p
d(p−1)

t

)
.

The question of large deviations for the SILT has been studied in detail during the
last decade. Let’s have a brief review of the results obtained so far.

1. Let us consider first the subcritical case p(d − 2) < d which is the most studied.
First, Chen and Li in [14] proved a very large deviations principle for all p > 1,
but only in the one dimensional case. They use the Central Limit Theorem given
previously to obtain the large deviations principle for the SILT of the random walk
from the large deviations principle for the SILT of the limit process.

Then, Chen in [11] obtained the same kind of result for the mutual intersections
of p independent random walks. There are also two moderate deviations results.
The first one is due to Bass, Chen and Rosen [4] who proved a moderate deviations
principle in dimension 2. Then, Chen in [13] proved the same result in dimension
3. These results are obtained for all the scales of deviations, but they only cover
the case of the double intersections (p = 2). In their proofs, they successfully use
the triangular decomposition introduced by Varadhan in [34] to renormalize the
SILT of the Brownian motion in dimension 2.

Recently, Becker and König [6] obtained a very large deviations principle in the
subcritical case with two restrictions. On one hand, they obtain the principle only
for p(d − 2/p) < d, and on the other hand, the principle is obtained for scales of
deviations exceeding the mean by a polynomial factor. As we will see later, the
final constant is expressed in term of the best constant in a Gagliardo-Nirenberg
inequality.

2. In the critical case p(d−2) = d, Castell [9] proved a very large deviations principle
using a version of Dynkin isomorphism theorem settled by Eisenbaum (theorem
2.3), which links the law of the local time with the law of a Gaussian process. The
constant of large deviations is expressed in terms of the best constant in a Sobolev
inequality.

3. In the supercritical case p(d − 2) > d, Chen and Mörters [16] proved a large
deviations principle for integer value of p, computing large moments of the SILT.
Asselah [1] obtained a large deviations principle but only for p = 2. Finally, we
proved in [25] a large deviations principle for all p > 1 and for α-stable random
walk with p(d− α) ≥ d, using Dynkin isomorphism theorem.

A recent monograph of Chen [13] summarizes these results. Interested readers can
refer to it for an exhaustive treatment of the subject.

In this paper, we extend the result of Chen and Li [14] and improve the results of
Becker and König [6] in two directions. We prove a very large deviations principle and
we cancel their condition p(d− 2/p) < d. Furthermore, we unify the proofs of the large
deviations principle in the three different cases, showing that the method based on the
Dynkin isomorphism theorem also works in the subcritical case.
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1.4 Main results

Let us introduce some notations to state our results. We denote by ∇ and by ‖·‖p the

gradient and the Lp-norm of functions defined on Rd, by H1(Rd) the classical Sobolev
space and by q the conjugate of p.

Theorem 1.1. Let

χd,p := inf

{
1

2
‖∇g‖22 , g ∈ H

1(Rd) such that ‖g‖2 = ‖g‖2p = 1

}
.

Assume that p(d− 2) < d and that
- in dimension d = 1, 1

t1/2q
� rt � 1

- in dimension d = 2,
(

log t
t

)1/q
� rt � 1

- in dimension d ≥ 3, 1
t1/q
� rt � 1

then we have

lim
t→+∞

1

tr
2q/d
t

logP (It ≥ tprpt ) = −χd,p.

Remark 1.2 (About scales of deviations). Note that in Theorem 1.1, our conditions on
rt are equivalent to tprpt � E[It], thus we didn’t succeed to reach the order of the mean.
In our approach, the SILT is represented by the norm of a Gaussian process Z. To obtain
the right constant of deviations, we introduce a median of the Gaussian process. The
control of this median reduces our results to scales of very large deviations. A better
understanding of the behavior of this median could allow us to improve scales in our
results.

Note that the question of moderate deviations is still open with the exception of
dimensions 2 and 3 for p = 2 in the subcritical case p(d− 2) < d (see the monograph of
Chen [13]). In the case where the dimension is larger than 5 and for p = 2 (supercritical
case p(d− 2) > d), Asselah [1] succeeded to obtain the constant of deviations up to the
scale of the mean.

Remark 1.3 (χd,p is non degenerate). We prove that constant χd,p is non degenerate,
linking it to the best constant in the Gagliardo-Nirenberg inequality. We recall that
Gagliardo-Niremberg constant Kd,p is defined by

Kd,p = sup
g∈H1(Rd)

{
‖g‖2p

‖∇g‖d/2q2 ‖g‖1−d/2q2

}
,

and is a non degenerate constant in the subcritical case p(d − 2) < d (see for example
Lemma 2 in [15]). This expression being invariant under the transformation gβ(·) =

βd/2pg(β·), we take the supremum over ‖g‖2 = 1 to obtain

Kd,p = sup
g∈H1(Rd)

{
‖g‖2p
‖∇g‖d/2q2

, ‖g‖2 = 1

}
.

Again, we remark that this expression is invariant under the transformation gβ(·) =

βd/2g(β·). So we can take the supremum over ‖g‖2p = 1 then

Kd,p = sup
g∈H1(Rd)

{
‖∇g‖−d/2q2 , ‖g‖2 = ‖g‖2p = 1

}
.

So χd,p = 1
2K
−4q/d
d,p .
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1.5 Sketch of proof

The proof of the lower bound of the large deviations principle (Section 3) is quite
classical. Let

Lt =
αdt
t
lt(bαtxc)

be a rescaled version of lt. Gantert, König and Shi (Lemma 3.1 in [22]) proved that for
any R > 0, under the sub-probability measure P (·, supp(Lt) ⊂ [−R,R]d), Lt satisfies a
large deviations principle on

F =
{
µ ∈M1(Rd) such that dµ = ψ2dx and supp(ψ) ⊂ [−R,R]d

}
endowed with the weak topology, with speed tα−2t , whose rate function is given by

I : M1(Rd)→R

µ→

{
1
2 ‖∇ψ‖

2
2 , if dµ = ψ2dx,

+∞ else.

Let ‖·‖p,R be the Lp-norm of functions defined on [−R,R]d. The function

µ ∈ F →
∥∥∥∥dµdx

∥∥∥∥
p,R

= sup

{∫
[−R,R]d

φ(x)dµ(x), ‖φ‖q,R = 1

}

being lower semi-continuous in the weak topology, we can apply a contraction principle
to transfer the large deviations lower bound from Lt to the SILT. Taking αt = r

−q/d
t we

have the desired result.
For the upper bound, we cannot proceed in the same way as It is only a lower

semi-continuous function of Lt. Various methods have been developed to overcome
this difficulty. In this paper, we use the same method as Castell [9] and Laurent [25]
using Dynkin-Eisenbaum isomorphism theorem (Theorem 2.3). Let us describe this
method. We first compare the SILT of the random walk with the SILT of the random
walk projected on the discrete torus TRαt of radius Rαt, and stopped at an exponential
time τ of parameter λt independent of the random walk (Lemma 2.2). On one hand, the
projection of the random walk leads to an increase of the SILT which is not a problem
for the upper bound, but on the other hand, we have to make a good choice of λt to
compensate the stopping of the random walk.

Then, we apply Dynkin-Eisenbaum’s theorem (Theorem 2.3). Roughly speaking, this
theorem says that the law of the SILT is the same as the law of the 2p-norm of a centered
Gaussian process (Zx, x ∈ TRαt) whose covariance is given by

GRαt,λt(x, y) = Ex

[∫ τ

0

δx(XRαt
s )ds

]
(Lemma 2.4) where (XRαt

s , s ≥ 0) is the random walk projected on TRαt .
Gaussian concentration inequalities lead to a first upper bound ρ1(a,R, t) given by a

variational formula expressed in a discrete space:

ρ1(a,R, t) = inf

{
λtN

2
2,Rαt(h) +

1

2
N2

2,Rαt(∇̃h), h ∈ L2p(TRαt) such that N2p,Rαt(h) = 1

}
,

(1.1)
where Np(·) is the lp-norm of functions defined on Zd, Np,A(·) the lp-norm of A-periodic
functions defined on Zd, and ∇̃ is the discrete gradient defined by

∀x ∈ Zd,∀i ∈ {1, ..., d} , ∇̃if(x) = f(x+ ei)− f(x),
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where (e1, ..., ed) is the canonical base of Rd.
The main work is then to take the limit in (1.1) over time and space and to prove the

following proposition:

Proposition 1.4. Let

ρ(a) = inf

{
a ‖h‖22 +

1

2
‖∇h‖22 , h ∈ H

1(Rd) such that ‖h‖2p = 1

}
.

Assume that αt = r
−q/d
t and λt = aα−2t = ar

2q/d
t . If p(d− 2) < d, then

lim inf
R→+∞

lim inf
t→+∞

r
1−2q/d
t ρ1(a,R, t) ≥ ρ(a).

The proof of Proposition 1.4 is inspired by the proof of Lemma 2.1 of Becker and
König [6]. The main difficulty is to pass from the variational formula ρ1(a,R, t) expressed
in a discrete space, to the variational formula ρ(a) expressed in a continuous space.
First, we take a sequence hn of functions defined on Zd that approaches the infimum in
the definition of ρ1(a,R, t). Then, we extend these functions on Rd to build a sequence
gn of continuous functions defined on Rd. The sequence gn is our candidate to approach
the infimum in the definition of ρ(a). Functions gn are built as following. We split Zd

into unit cubes and we split each cubes in d! tetrahedra. Functions hn are defined on
each vertex of each cubes. We extend them linearly on each tetrahedra. Thus, we have
a linear interpolation of hn.

We finally prove that the upper and the lower bound are equal with the following
proposition:

Proposition 1.5.
inf {a− ρ(a), a > 0} = −χd,p.

2 Proof of the upper bound of Theorem 1.1

Let us begin with a lemma. We denote by pRαts (·, ·) the probability transition of the
random walk (XRαt

s , s ≥ 0).

Lemma 2.1. Behavior of GRαt,λt(0, 0).
For any a > 0 we set λt = aα−2t . If αt → +∞, then for any R > 0,

1. for d = 1, GRαt,λt(0, 0) = O(αt).
2. for d = 2, GRαt,λt(0, 0) = O(logαt).
3. for d ≥ 3, GRαt,λt(0, 0) = O(1).

Proof. Applying theorems 3.3.15 and 2.3.1 in [32], we know by Nash inequalities that

∃C > 0 such that ∀s > 0,

∣∣∣∣pRαts (0, 0)− 1

(Rαt)d

∣∣∣∣ ≤ C

sd/2
.

So

GRαt,λt(0, 0)

=

∫ +∞

0

exp(−sλt)pRαts (0, 0)ds

≤1 +

∫ +∞

1

exp(−sλt)
(Rαt)d

ds+

∫ +∞

1

exp(−sλt)
C

sd/2
ds

≤1 +
1

λt(Rαt)d
+

∫ 1/λt

1

C

sd/2
ds+

∫ +∞

1/λt

Cλ
d/2
t exp(−sλt)ds

≤1 +
1

λt(Rαt)d
+

∫ 1/λt

1

C

sd/2
ds+ Cλ

d/2−1
t .
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Remember that λt = aα−2t and that αt → +∞, then we have the result in the three
cases.

2.1 Step 1: comparison with the SILT of the random walk on the torus stopped
at an exponential time

Lemma 2.2. Let τ be an exponential time of parameter λt independent of the random
walk (Xt, t ≥ 0) and

lRαt,τ (x) =

∫ τ

0

δx(XRαt
s ) ds.

Then for all R,αt > 0:

P [Np(lt) ≥ trt] ≤ etλtP [Np,Rαt(lRαt,τ ) ≥ trt] .

Proof. It follows by convexity that

Np
p (lt) =

∑
x∈Zd

lpt (x) =
∑

x∈TRαt

∑
k∈Zd

lpt (x+ kRαt)

≤
∑

x∈TRαt

∑
k∈Zd

lt(x+ kRαt)

p

=
∑

x∈TRαt

lpRαt,t(x) = Np
p,Rαt

(lRαt,t).

Then, using the fact that τ ∼ E(λt) is independent of (Xs, s ≥ 0) we get:

P [Np(lt) ≥ trt] exp (−tλt) ≤ P [Np,Rαt(lRαt,t) ≥ trt]P (τ ≥ t)
= P [Np,Rαt(lRαt,t) ≥ trt, τ ≥ t]
≤ P [Np,Rαt(lRαt,τ ) ≥ trt] .

Finally, P [Np(lt) ≥ trt] ≤ etλtP [Np,Rαt(lRαt,τ ) ≥ trt].

2.2 Step 2: the Eisenbaum isomorphism theorem

Theorem 2.3. (Eisenbaum, see for instance Corollary 8.1.2 page 364 in [29]). Let τ be
as in Lemma 2.2 and let (Zx, x ∈ TRαt) be a centered Gaussian process with covariance
matrix

GRαt,λt = Ex

[∫ τ

0

δx(XRαt
s )ds

]
independent of τ and of the random walk (Xs, s ≥ 0). For s 6= 0, consider the process

Sx := lRαt,τ (x) +
1

2
(Zx + s)2,

then for all measurable and bounded function F : RTRαt 7→ R:

E [F ((Sx;x ∈ TRαt))] = E

[
F

(
(
1

2
(Zx + s)2;x ∈ TRαt)

) (
1 +

Z0

s

)]
.

2.3 Step 3: Comparison between Np,Rαt(lRαt,τ ) and N2p,Rαt(Z)

Lemma 2.4. Let τ and (Zx, x ∈ TRαt) be defined as in Theorem 2.3. For all ε > 0, there
exists a constant C(ε) such that for all a,R, αt, rt > 0:

P (Np,Rαt(lRαt,τ ) ≥ trt) ≤C(ε)

(
1 +

(Rαt)
d/2p

ε
√

2εtrtλt

)
P
(
N2p,Rαt(Z) ≥

√
2trt(1 + ◦(ε))

)1/(1+ε)
P (N2p,Rαt(Z) ≥ (1 + ε)

√
2trtε)

.
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Proof.

Sx := lRαt,τ (x) +
1

2
(Zx + s)2 ⇒ Spx ≥ l

p
Rαt,τ

(x) +

(
1

2
(Zx + s)2

)p
⇒ Np

p,Rαt
(S) ≥ Np

p,Rαt
(lRαt,τ ) +

1

2p
N2p

2p,Rαt
(Z + s).

By independence of (Zx, x ∈ TRαt) with the random walk (Xs, s ≥ 0) and the exponential
time τ , we have for all ε > 0,

P
(
Np
p,Rαt

(lRαt,τ ) ≥ tprpt
)
P

(
1

2p
N2p

2p,Rαt
(Z + s) ≥ tprpt εp

)
=P

(
Np
p,Rαt

(lRαt,τ ) ≥ tprpt ,
1

2p
N2p

2p,Rαt
(Z + s) ≥ tprpt εp

)
≤P

(
Np
p,Rαt

(lRαt,τ ) +
1

2p
N2p

2p,Rαt
(Z + s) ≥ tprpt (1 + εp)

)
≤P

(
Np
p,Rαt

(S) ≥ tprpt (1 + εp)
)

=E

[(
1 +

Z0

s

)
;

1

2p
N2p

2p,Rαt
(Z + s) ≥ tprpt (1 + εp)

]
, (2.1)

where the last equality comes from Theorem 2.3. Moreover, by Hölder’s inequality, for
all ε > 0,

E

[(
1 +

Z0

s

)
;

1

2p
N2p

2p,Rαt
(Z + s) ≥ tprpt (1 + εp)

]

≤E

[∣∣∣∣1 +
Z0

s

∣∣∣∣1+1/ε
]ε/(1+ε)

P
(
N2p

2p,Rαt
(Z + s) ≥ 2ptprpt (1 + εp)

)1/(1+ε)
. (2.2)

Combining (2.1) and (2.2) we obtain that for all a, ε > 0,

P (Np,Rαt(lRαt,τ ) ≥ trt)

≤E

[∣∣∣∣1 +
Z0

s

∣∣∣∣1+1/ε
]ε/(1+ε)

P
(
N2p,Rαt(Z + s) ≥

√
2trt(1 + ◦(ε))

)1/(1+ε)
P (N2p,Rαt(Z + s) ≥

√
2trtε)

. (2.3)

Then using the fact that V ar(Z0) = GRαt,λt(0, 0) ≤ E[τ ] = 1
λt

,

P (Np,Rαt(lRαt,τ ) ≥ trt)

≤C(ε)

(
1 +

1

s
√
λt

)
P
(
N2p,Rαt(Z + s) ≥

√
2trt(1 + ◦(ε))

)1/(1+ε)
P (N2p,Rαt(Z + s) ≥

√
2trtε)

. (2.4)

Choosing

s =
ε
√

2trtε

(Rαt)
d
2p

,

using triangle inequality and the fact that N2p,Rαt(s) = s(Rαt)
d
2p , we have:

P (Np,Rαt(lRαt,τ ) ≥ trt) ≤C(ε)

(
1 +

(Rαt)
d/2p

ε
√

2εtrtλt

)
P
(
N2p,Rαt(Z) ≥

√
2trt(1 + ◦(ε))

)1/(1+ε)
P (N2p,Rαt(Z) ≥ (1 + ε)

√
2trtε)

.
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Large deviations for self-intersection local times in subcritical dimensions

2.4 Step 4: Large deviations for N2p,R(Z)

Lemma 2.5. Let τ and (Zx, x ∈ TRαt) be defined as in Theorem 2.3, and ρ1(a,R, t) be
defined by (1.1). Under assumptions of Proposition 1.4 and Theorem 1.1,

1. ∀a,R, t > 0, λt ≤ ρ1(a,R, t) ≤ aRd/qαd/q−2t .

2. ∀a, ε, R, t > 0,

P
[
N2p,Rαt(Z) ≥

√
trtε
]
≥ 1√

2πtrtερ1(a,R, t)

(
1− 1

trtερ1(a,R, t)

)
exp

(
−1

2
trtερ1(a,R, t)

)
.

3. ∀a, ε, R, t > 0,

P
(
N2p,Rαt(Z) ≥

√
2trt(1 + ◦(ε))

)
≤

√
2

(
√

2trt(1 + ◦(ε)) + ◦(
√
trt))

√
πρ1(a,R, t)

exp

(
−
ρ1(a,R, t)

(√
2trt(1 + ◦(ε)) + ◦(

√
trt)
)2

2

)
.

Proof. 1. For the upper bound, it suffices to take f = (Rαt)
−d/2p to obtain the re-

sult. For the lower bound, we remark that N2p,Rαt(h) = 1 implies that for all
x ∈ TRαt , |h(x)| ≤ 1, and then N2p

2p,Rαt
(h) ≤ N2

2,Rαt
(h). Therefore ρ1(a,R, t) ≥ λt.

2. By Hölder’s inequality, for any f such that ‖f‖(2p)′,Rαt = 1,

P
[
N2p,Rαt(Z) ≥

√
trtε
]
≥ P

 ∑
x∈TRαt

fxZx ≥
√
trtε

 .
Since

∑
x∈TRαt

fxZx is a real centered Gaussian variable with variance

σ2
a,R,t(f) =

∑
x,y∈TRαt

GRαt,λt(x, y)fxfy ,

we have:

P
[
‖Z‖2p,Rαt ≥

√
trtε
]
≥ σa,R,t(f)√

2π
√
trtε

(
1−

σ2
a,R,t(f)

trtε

)
exp

(
− trtε

2σ2
a,R,t(f)

)

≥ σa,R,t(f)√
2π
√
trtε

(
1− ρ2(a,R, t)

trtε

)
exp

(
− trtε

2σ2
a,R,t(f)

)
,

where

ρ2(a,R, t) = sup
{
σ2
a,R,t(f), N(2p)′,Rαt(f) = 1

}
.

Taking the supremum over f we obtain that ∀a,R, t, ε > 0,

P
[
N2p,Rαt(Z) ≥

√
trtε
]
≥
√
ρ2(a,R, t)√

2πtrtε

(
1− ρ2(a,R, t)

trtε

)
exp

(
− trtε

2ρ2(a,R, t)

)
.

Then it suffices to prove that ρ2(a,R, t) = 1
ρ1(a,R,t)

to obtain the result.

We denote by < ·, · >Rαt the scalar product on l2(TRαt). On one hand, by Hölder
inequality,

< f,GRαt,λtf >Rαt≤ N2p,Rαt(GRαt,λtf), ∀f such that N(2p)′,Rαt(f) = 1.

EJP 17 (2012), paper 21.
Page 10/20

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v17-1874
http://ejp.ejpecp.org/


Large deviations for self-intersection local times in subcritical dimensions

Since G−1Rαt,λt = λt −∆,

< f,GRαt,λtf >Rαt =< G−1Rαt,λtGRαt,λtf,GRαt,λtf >Rαt

= λtN
2
2,Rαt(GRαt,λtf) +

1

2
N2

2,Rαt(∇GRαt,λtf)

≥ ρ1(a,R, t)N2
2p,Rαt(GRαt,λtf).

Therefore, for all f such that N(2p)′,Rαt(f) = 1,

< f,GRαt,λtf >
2
Rαt≤

< f,GRαt,λtf >Rαt
ρ1(a,R, t)

.

Then, taking the supremum over f , ρ2(a,R, t) ≤ 1/ρ1(a,R, t).

On the other hand, let f0 achieving the infimum in the definition of ρ1(a,R, t).

ρ2(a,R, t) = sup
N(2p)′,Rαt (f)=1

{< f,GRαt,λtf >Rαt}

≥
< G−1Rαt,λtf0, f0 >Rαt

N2
(2p)′,Rαt

(G−1Rαt,λtf0)
=

ρ1(a,R, t)

N(2p)′,Rαt(G
−1
Rαt,λt

f0)
.

Furthermore, using the Lagrange multipliers method, we know that

N2
(2p)′,Rαt

(G−1Rαt,λth0) = ρ1(a,R, t).

Hence ρ2(a,R, t) ≥ 1/ρ1(a,R, t), and then ρ2(a,R, t) = 1/ρ1(a,R, t).
3. Let M be a median of N2p,Rαt(Z). We can easily see that

P
(
N2p,Rαt(Z) ≥

√
2trt(1 + ◦(ε))

)
≤P

(
|N2p,Rαt(Z)−M | ≥

√
2trt(1 + ◦(ε))−M

)
. (2.5)

Using concentration inequalities for norms of Gaussian processes (see for instance
Lemma 3.1 in [28]), ∀u > 0,

P [|N2p,Rαt(Z)−M | ≥
√
u] ≤ 2P (Y ≥

√
u

ρ2(a,R,t)
) where Y ∼ N(0, 1). Then for

trt �M2,

P
(
|N2p,Rαt(Z)−M | ≥

√
2trt(1 + ◦(ε))−M

)
≤2P

(
Y ≥

√
2trt(1 + ◦(ε))−M√

ρ2(a,R, t)

)

≤
2
√
ρ2(a,R, t)

(
√

2trt(1 + ◦(ε))−M)
√

2π
exp

(
−
(√

2trt(1 + ◦(ε))−M
)2

2ρ2(a,R, t)

)
. (2.6)

Let us now prove that under our assumptions we have trt � M2. Since M =

(median(
∑

x∈TRαt
Z2p
x ))1/2p and that for any random variable X ≥ 0, median(X) ≤

2E[X], we get:

M2 = (median(
∑

x∈TRαt

Z2p
x ))1/p

≤ (2E[
∑

x∈TRαt

Z2p
x ])1/p

≤ C(p)(
∑

x∈TRαt

GRαt,λt(0, 0)pE[Y 2p])1/p, where Y ∼ N(0, 1)

≤ C(p)(Rαt)
d/pGRαt,λt(0, 0)(E[Y 2p])1/p

≤ C(p)(Rαt)
d/pGRαt,λt(0, 0).
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Large deviations for self-intersection local times in subcritical dimensions

Recall that we have λt = aα−2t and αt = r
−q/d
t .

For d = 1, by Lemma 2.1, M2 = O
(
α
1+1/p
t

)
= O

(
r
− p+1
p−1

t

)
. Then as rt � 1

t1/2q
we

have M2 � trt.

For d = 2, by Lemma 2.1, M2 = O
(
α
2/p
t logαt

)
= O

(
r
−1/(p−1)
t log 1

rt

)
. Then as

rt �
(

log t
t

)1/q
we have M2 � trt.

For d ≥ 3, by Lemma 2.1, M2 ≤ Cα
d/p
t = Cr

−1/(p−1)
t . Then as rt � t−1/q, we have

M2 � trt.

2.5 End of proof of the upper bound in theorem 1.1

Combining Lemma 2.2 and Lemma 2.4 we have proved that: ∀ε, a,R, t > 0,

P (Np(lt) ≥ trt)

≤C(ε) exp(tλt)

(
1 +

(Rαt)
d
2p

ε
√

2εtrtλt

)
P
(
N2p,Rαt(Z) ≥

√
2trt(1 + ◦(ε))

)1/(1+ε)
P
(
N2p,R(Z) ≥ 2

√
2trtε

) . (2.7)

First we look for an upper bound for the numerator in (2.7). By 1 and 3 of Lemma 2.5,
we have that

lim sup
t

1

tr
2q/d
t

logP
(
N2p,Rαt(Z) ≥

√
2trt(1 + ◦(ε))

)1/(1+ε)
≤ − lim inf

t→+∞
r
1−2q/d
t ρ1(a,R, t)(1 + ◦(ε)). (2.8)

Now we work on the denominator in (2.7). Using 1 and 2 of Lemma 2.5, we obtain:

P
(
N2p,R(Z) ≥ 2

√
2trtε

)
≥ 1√

16πtrtερ1(a,R, t)

(
1− 1

8trtερ1(a,R, t)

)
exp (−4trtερ1(a,R, t))

≥ 1√
16πtaεRd/qr

2q/d
t

(
1− 1

8trtελt

)
exp

(
−4εatr

2q/d
t Rd/q

)
Therefore,

lim inf
t

1

tr
2q/d
t

logP
(
N2p,R(Z) ≥ 2

√
2trtε

)
≥ −4aεRd/q. (2.9)

Now we combine (2.7),(2.8),(2.9) to have:

lim sup
t

1

tr
2q/d
t

logP (Np(lt) ≥ trt) ≤ a− (1 + ◦(ε)) lim inf
t

r
1−2q/d
t ρ1(a,R, t) + 4aεRd/q−2.

Then we let ε→ 0:

lim sup
t

1

tr
2q/d
t

logP (Np(lt) ≥ trt) ≤ a− lim inf
t

r
1−2q/d
t ρ1(a,R, t).

Then we take the limit over R using Proposition 1.4:

lim sup
t

1

tr
2q/d
t

logP (Np(lt) ≥ trt) ≤ a− ρ(a).

We finish the proof taking the infimum over a > 0 and using Proposition 1.5.
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Large deviations for self-intersection local times in subcritical dimensions

3 Proof of the lower bound of Theorem 1.1

Proof. Let for all x in Rd,

Lt =
αdt
t
lt(bαtxc)

be the rescaled version of lt. Thanks to the work of Gantert, König and Shi (Lemma
3.1 in [22]) we know that for R > 0, under the sub-probability measure P (·, supp(Lt) ⊂
[−R,R]d), Lt satisfies a large deviations principle on

F =
{
µ ∈M1(Rd) such that dµ = ψ2dx and supp(ψ) ⊂ [−R,R]d

}
endowed with the weak topology, with speed tα−2t , whose rate function is given by

I : M1(Rd)→R

µ→

{
1
2 ‖∇ψ‖

2
2 , if dµ = ψ2dx,

+∞ else.

So, for rt = α
−d/q
t ,

P (Np(lt) ≥ trt) = P (‖Lt‖p ≥ 1)

≥ P (‖Lt‖p > 1, supp(Lt) ⊂ [−R,R]d).

Then, as

µ→ ‖µ‖p = sup


∫
Rd

f(x)dµ(x), ‖f‖q = 1


is a lower semi-continuous function in the weak topology, we have:

lim inf
t→+∞

1

tr
2q/d
t

logP (Np(lt) ≥ trt) ≥ − inf

{
1

2
‖∇ψ‖22 , ‖ψ‖2 = 1, ‖ψ‖2p > 1, supp(ψ) ⊂ [−R,R]d

}
.

Let R→ +∞,

lim inf
t→+∞

1

tr
2q/d
t

logP (Np(lt) ≥ trt) ≥ − inf

{
1

2
‖∇ψ‖22 , ‖ψ‖2 = 1, ‖ψ‖2p > 1

}
= − inf

{
1

2
‖∇ψ‖22 , ‖ψ‖2 = ‖ψ‖2p = 1

}
.

4 Proofs of Propositions 1.4 and 1.5

We denote by Sd the set of the permutations on {1, ..., d}, by b·c the integer part, by
B(s) the ball of radius s and by V ol(B(s)) its volume.

Proof of Proposition 1.4:
Let choose a sequence (Rn, tn, hn) such that Rn → +∞, tn → +∞, N2p,Rαtn (hn) = 1 and
such that

lim inf
R→+∞

lim inf
t→+∞

inf

{
a

α
d/q
t

N2
2,Rαt(h) +

1

2
α
2−d/q
t N2

2,Rαt(∇̃h), N2p,Rαt(h) = 1

}

≥ a

α
d/q
tn

N2
2,Rnαtn

(hn) +
1

2
α
2−d/q
tn N2

2,Rnαtn
(∇̃hn)− 1

n
.
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Large deviations for self-intersection local times in subcritical dimensions

hn is a sequence of functions defined on TRnαtn . Note that we can assume without loss
of generality that hn is non-negative. We want to extend these functions to Rd. In this
perspective, we split Zd into cubes

C(k) =

d⊗
i=1

[ki, ki + 1]

for any k ∈ Zd. Then, each cube C(k) is again splitted into d! tetrahedra Tσ(k), where
for any σ ∈ Sd, Tσ(k) is the convex hull of k, k + eσ(1), ..., k + eσ(1) + · · · + eσ(d). For
any y ∈ Rd we denote by σ(y) a permutation such that y ∈ Tσ(y)(byc). Note that this
permutation is not unique when y is at the boarder of two or more tetrahedra, but it
won’t be a problem. Set for any x ∈ Rd,

gn(x) = α
d/2p
tn hn(bαtnxc) + α

d/2p
tn

d∑
i=1

fn,σ(αtnx),i(αtnx), (4.1)

where ∀y ∈ Rd, ∀i ∈ {1, ..., d}, ∀σ ∈ Sd,

fn,σ,i(y) =
(
hn(byc+ eσ(1) + ...+ eσ(i))− hn(byc+ eσ(1) + ...+ eσ(i−1))

)
(yσ(i) − byσ(i)c).

Note that gn is well defined for any y in Rd, even for y at the boarder of two or more
tetrahedra because the value of gn is the same if we consider y living in one tetrahedra
or the other. Following the work of Becker and König, it can be proved that gn is
continuous and Rn-periodic.

Now, for ε ∈]0, 1[, we set ΨRn a truncation function that verify

ΨRn =

d⊗
i=1

ψRn : Rd → [0, 1],

where

ψRn =


0 outside [−Rn, Rn],

linear in [−Rn,−Rn +Rεn] and in [Rn −Rεn, Rn],

1 in [−Rn +Rεn, Rn −Rεn].

The function
gnΨRn

‖gnΨRn‖2p
is our candidate to realize the infimum in the definition of ρ(a). Therefore, we have to
bound from below N2

2,Rnαtn
(hn) by ‖(gnΨn)‖22 and N2

2,Rnαtn
(∇̃hn) by ‖∇(gnΨn)‖22.

First we prove the following:

∀δ > 0, α
−d/q
tn N2

2,Rnαtn
(hn) ≥ δ

δ + 1
‖gnΨRn‖

2
2 − δdα

−d/q
tn N2

2,Rnαtn
(∇̃hn). (4.2)

Using the definition (4.1) of gn and the triangle inequality, we have that

‖gn‖2,Rn ≤ α
−d/2q
tn N2,Rnαtn

(hn) + α
−d/2q
tn

∥∥∥∥∥
d∑
i=1

fn,σ(·),i(·)

∥∥∥∥∥
2,Rnαtn

. (4.3)

We bound from above now the norm of fn,σ(y),i(y) for any y ∈ Tσ(k):

|
d∑
i=1

fn,σ(y),i(y)|2 ≤ d
d∑
i=1

|hn(byc+ eσ(1) + · · ·+ eσ(i))− hn(byc+ eσ(1) + · · ·+ eσ(i−1))|2.
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Then,

∥∥∥∥∥
d∑
i=1

fn,σ,i

∥∥∥∥∥
2

2,Rαtn

≤ d
∑

k∈B(Rnαtn )

∑
σ∈S(d)

∫
y∈Tσ(k)

d∑
i=1

|∇̃σ(i)hn(k + eσ(1) + · · ·+ eσ(i−1))|2dy

=
d

d!

∑
σ∈S(d)

d∑
i=1

∑
k∈B(Rnαtn )

|∇̃σ(i)hn(k + eσ(1) + · · ·+ eσ(i−1))|2

= dN2
2,Rnαtn

(∇̃(hn)).

Moreover, thanks to the definition (4.1) of gn, it is easy to see that

‖∇gn‖22,Rn = α
2−d/q
tn N2

2,Rnαtn
(∇̃hn). (4.4)

Thus: ∥∥∥∥∥
d∑
i=1

fn,σ(·),i(·)

∥∥∥∥∥
2,Rnαtn

≤
√
dN2,Rnαtn

(∇̃hn) =

√
d

α
1−d/2q
tn

‖∇gn‖2,Rn . (4.5)

Combining (4.3) and (4.5) we have:

‖gn‖2,Rn ≤ α
−d/2q
tn N2,Rnαtn

(hn) +
√
dα−1tn ‖∇gn‖2,Rn . (4.6)

Taking the square in (4.6), we have that ∀δ > 0,

‖gn‖22,Rn ≤ (1 +
1

δ
)α
−d/q
tn N2

2,Rnαtn
(hn) + (1 + δ)dα−2tn ‖∇gn‖

2
2,Rn

.

So,

α
−d/q
tn N2

2,Rnαtn
(hn) ≥ δ

δ + 1
‖gn‖22,Rn − δdα

−2
tn ‖∇gn‖

2
2,Rn

≥ δ

δ + 1
‖gnΨRn‖

2
2 − δdα

−2
tn ‖∇gn‖

2
2,Rn

.

Therefore, we succeeded to prove (4.2):

∀δ > 0, α
−d/q
tn N2

2,Rnαtn
(hn) ≥ δ

δ + 1
‖gnΨRn‖

2
2 − δdα

−d/q
tn N2

2 (∇̃hn).

Now we want to prove that there exists C > 0 such that for n large enough

α
2−d/q
tn N2

2,Rnαtn
(∇̃hn) ≥

(
1− C

Rεn

)
‖∇(gnΨRn)‖22 −

C

α
d/q
tn Rεn

N2
2,Rnαtn

(hn). (4.7)

By the work of Becker and König, we know that

‖∇(gnΨRn)‖22 ≤
(

1 +
1

Rεn

)
‖∇gn‖22,Rn +

2

Rεn
‖gn‖22,Rn . (4.8)
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Putting together (4.4),(4.8) and (4.6), we have:

‖∇gn‖22,Rn ≥
Rεn

1 +Rεn
‖∇(gnΨRn)‖22 −

2

1 +Rεn

(
1

α
d/2q
tn

N2,Rnαtn
(hn) +

√
d

αtn
‖∇gn‖2,Rn

)2

≥ Rεn
1 +Rεn

‖∇(gnΨRn)‖22 −
2

1 +Rεn

(
1

α
d/q
tn

N2
2,Rnαtn

(hn) +
d

α2
tn

‖∇gn‖22,Rn

+
2
√
d

α
1+d/2q
tn

N2,Rnαtn
(hn) ‖∇gn‖2,Rn

)

≥ Rεn
1 +Rεn

‖∇(gnΨRn)‖22 −
2

1 +Rεn

(
1

α
d/q
tn

N2
2,Rnαtn

(hn) +
d

α2
tn

‖∇gn‖22

+

√
d

α
1+d/2q
tn

N2
2,Rnαtn

(hn) +

√
d

α
1+d/2q
tn

‖∇gn‖22,Rn

)
.

So,

‖∇gn‖22,Rn

(
1 +

2

1 +Rεn

(
d

α2
tn

+

√
d

α
1+d/q
tn

))

≥ Rεn
1 +Rεn

‖∇(gnΨRn)‖22 −
2

1 +Rεn

(
1

α
d/q
tn

+

√
d

α
1+d/2q
tn

)
N2

2,Rnαtn
(hn).

Then, using (4.4), the fact that αtn → +∞ and that 1 + d/2q > d/q, we obtain:

α
2−d/q
tn N2

2,Rnαtn
(∇̃hn) ≥ Rεn

1 +Rεn + 2

(
d
α2
tn

+
√
d

α
1+d/q
tn

) ‖∇(gnΨRn)‖22

− 2

1 +Rεn + 2

(
d2

α2
tn

+
√
d

α
1+d/q
tn

) ( 1

α
d/q
tn

+

√
d

α
1+d/2q
tn

)
N2

2,Rnαtn
(hn)

≥
(

1− C

Rεn

)
‖∇(gnΨRn)‖22 −

C

α
d/q
tn Rεn

N2
2,Rnαtn

(hn).

Thus, we succeeded to prove (4.7).
At this point of the proof, we have bounded from below N2

2 (∇̃hn) by ‖∇(gnΨRn)‖22 (4.7),
and N2

2 (hn) by ‖(gnΨRn)‖22 (4.2). Therefore, combining these two results, we have for n
large enough:

a

α
d/q
tn

N2
2,Rnαtn

(hn) +
1

2
α
2−d/q
tn N2

2,Rnαtn
(∇̃hn)

≥a
(

δ

δ + 1
‖gnΨRn‖

2
2 − δdα

−d/q
tn N2

2,Rnαtn
(∇̃hn)

)
+

1

2

(
1− C

Rεn

)
‖∇(gnΨRn)‖22

− C

α
d/q
tn Rεn

N2
2,Rnαtn

(hn)

≥min

(
δ

δ + 1
, 1− C

Rεn

)(
a ‖gnΨRn‖

2
2 +

1

2
‖∇(gnΨRn)‖22

)
− aδdα−d/qtn N2

2,Rnαtn
(∇̃hn)

− Cα−d/qtn R−εn N2
2,Rnαtn

(hn)

≥min

(
δ

δ + 1
, 1− C

Rεn

)
ρ(a) ‖gnΨRn‖

2
2p − aδdα

−d/q
tn N2

2,Rnαtn
(∇̃hn)

− Cα−d/qtn R−εn N2
2,Rnαtn

(hn). (4.9)
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It remains now to prove that ‖gnΨRn‖
2
2p is close to 1. First, we prove that without loss

of generality, we can assume that there exists C > 0 such that(
1− CRε−1n

)
‖gn‖22p,Rn ≤ ‖gnΨRn‖

2
2p . (4.10)

Indeed, for any a ∈ BRn let gn,a(x) = gn(x−a). By periodicity of gn, on one side we have∫
BRn

∫
BRn\BRn−Rεn

g2pn (x− a)dx da =

∫
BRn\BRn−Rεn

∫
BRn

g2pn (x− a)dx da

=

∫
BRn\BRn−Rεn

∫
BRn

g2pn (x)dx da

≤ CRd−1+εn ‖gn‖2p2p,Rn ,

and on the opposite side we have

∫
BRn

∫
BRn\BRn−Rεn

g2pn (x− a)dx da ≥ V ol(B(1))Rdn inf
a∈BRn


∫

BRn\BRn−Rεn

g2pn (x− a)dx da

 .

Therefore

inf
a∈BRn


∫

BRn\BRεn

g2pn (x− a)dx da

 ≤ CRε−1n ‖gn‖2p2p,Rn .

Remark that gn being periodic, for any a ∈ BRn , ‖gn‖2 = ‖gn,a‖ and ‖∇gn‖2 = ‖∇gn,a‖2 .
Hence, combining (4.9) and (4.10) we obtain that: ∃C > 0 such that ∀δ > 0,

a

α
d/q
tn

N2
2,Rnαtn

(hn) +
1

2
α
2−d/q
tn N2

2,Rnαtn
(∇̃hn)

≥min

(
δ

δ + 1
, 1− C

Rεn

)(
1− CRε−1n

)
ρ(a) ‖gn‖22p,Rn − aδdα

−d/q
tn N2

2,Rnαtn
(∇̃hn)

− Cα−d/qtn R−εn N2
2,Rnαtn

(hn).

It remains now to prove that ‖gn‖22p,Rn is close to 1. Using the definition (4.1) of gn and
the triangle inequality, we can prove that

‖gn‖2p,Rn ≥ 1− Cα−1tn ‖∇gn‖2p,Rn .

Therefore, for all γ > 0,

(1 + γ) ‖gn‖22p,Rn +
1 + γ

γ
Cα−2tn ‖∇gn‖

2
2p,Rn

≥ 1.

Finally, there exists C > 0 such that for all δ, γ > 0,

a

α
d/q
tn

N2
2,Rnαtn

(hn) +
1

2
α
2−d/q
tn N2

2,Rnαtn
(∇̃hn)

≥min

(
δ

δ + 1
, 1− C

Rεn

)(
1− CRε−1n

)( 1

1 + γ
− C

γα2
tn

‖∇gn‖22p,Rn

)
ρ(a)

− aδdα−d/qtn N2
2,Rnαtn

(∇̃hn)− Cα−d/qtn R−εn N2
2,Rnαtn

(hn).
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Remember that we have assumed that h is non-negative, thus, as ‖hn‖∞ ≤ 1 we have
that

‖∇gn‖2p,Rn = αtnN2p,Rnαtn
(∇̃hn) ≤ αtnN

1/p
2,Rnαtn

(∇̃hn).

It follows that there exists C > 0 such that for all δ, γ > 0,

a

α
d/q
tn

N2
2,Rnαtn

(hn) +
1

2
α
2−d/q
tn N2,Rnαtn (∇̃hn)

≥min

(
δ

δ + 1
, 1− C

Rεn

)(
1− CRε−1n

)( 1

1 + γ
− C

γ
N

2/p
2,Rnαtn

(∇̃hn)

)
ρ(a)

− aδdα−d/2qtn N2
2,Rnαtn

(∇̃hn)− Cα−d/qtn R−εn N2
2,Rnαtn

(hn).

We want now let n going to infinity. It’s easy to see that if α2−d/q
tn N2,Rnαtn

(∇̃hn) → +∞
or α−d/qtn N2

2,Rnαtn
(hn)→ +∞, then the result is obvious. Therefore, we can assume that

lim inf
n→+∞

a

α
d/q
tn

N2
2,Rnαtn

(hn) +
1

2
α
2−d/q
tn N2,Rnαtn

(∇̃hn) < +∞.

Thus, N2,Rnαtn
(∇̃hn) → 0 because 2 − d/q > 0 and α

−d/q
tn R−εn N2

2,Rnαtn
(hn) → 0. There-

fore, we have:

lim inf
n

a

α
d/q
tn

N2
2,Rnαtn

(hn) +
1

2
α
2−d/q
tn N2

2,Rnαtn
(∇̃hn) ≥ min

(
δ

δ + 1
, 1

)
1

1 + γ
ρ(a).

Then we let δ → +∞ and γ → 0 to obtain the result.

Proof of Proposition 1.5:
We recall that

ρ(a) = inf

{
a ‖h‖22 +

1

2
‖∇h‖22 , ‖h‖2p = 1

}
.

Set hβ(·) = βd/2ph(β·). We remark that ‖hβ‖2p = 1, ‖hβ‖2 = β−d/2q ‖h‖2 and ‖∇hβ‖2 =

β1−d/2q ‖∇h‖2. Then we minimize over β the function:

Φh(β) = aβ−d/q ‖h‖22 +
1

2
β2−d/q ‖∇h‖22 .

Picking the optimal value

β∗ =

√
2ad

2q − d
‖h‖2
‖∇h‖2

we have that

ρ(a) = a1−d/2q
(

2q

2q − d

)(
2q − d

2d

)d/2q
inf
{
‖h‖2−d/q2 ‖∇h‖d/q2 , ‖h‖2p = 1

}
.

Then optimizing over a > 0 the expression inf {a− ρ(a), a > 0} with the optimal value

a∗ =
2q − d

2d
inf
{
‖h‖4q/d−22 ‖∇h‖22 , ‖h‖2p = 1

}
we have that

inf {a− ρ(a), a > 0} = − inf

{
1

2
‖h‖4q/d−22 ‖∇h‖22 , ‖h‖2p = 1

}
.
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Note that the expression is invariant under the transformation hβ(·) = βd/2ph(β·), there-
fore we can freely add the condition ‖h‖2 = 1. Thus,

inf {a− ρ(a), a > 0} = − inf

{
1

2
‖∇h‖22 , ‖h‖2p = ‖h‖2 = 1

}
:= −χd,p.
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