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Abstract

We study the moments E[dα1,k] of the k-th nearest neighbor distance for independent identically
distributed points in ℜn. In the earlier literature, the case α > n has been analyzed by assuming
a bounded support for the underlying density. The boundedness assumption is removed by
assuming the multivariate Gaussian distribution. In this case, the nearest neighbor distances
show very different behavior in comparison to earlier results.
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1 Introduction

Consider a set of independent identically distributed (i.i.d.) random variables (X i)Mi=1 with a com-
mon density p(x) on ℜn. We study the moments of the nearest neighbor distance

E[dα1,k] (1)

in the limit M → ∞. The quantity (1) appears commonly in the literature on random geometric
graphs, where directed and undirected nearest neighbor graphs are analyzed as special cases of
more general frameworks [10, 11, 15]. In this paper, the nearest neighbor distance serves as the
quantity of interest with the hope that in the future the ideas can be represented in a more abstract
form.

The expectation (1) is also of interest in its own right and tends to appear under various scien-
tific contexts. A significant application is found in the nonparametric estimation of Rényi entropies,
where asymptotic analysis provides theoretically sound estimators [5, 7, 6, 9]. Moreover, nearest
neighbor distances and distributions play a major role in the understanding of nonparametric es-
timation in general [1, 4, 13]. Finally, it should be mentioned that quantities related to (1) are
encountered in physics, especially statistical mechanics and the theory of gases and liquids [3].

In the earlier literature, it has been shown that under general conditions (Γ denotes the Gamma
function)

Mα/nE[dα1,k]→ V−α/nn

Γ(k+α/n)
Γ(k)

∫

ℜn

p(x)1−α/nd x

in the limit M →∞ if 0 < α < n [14, 2]. However, the case α > n is quite different and usually a
boundedness condition must be imposed on the support of p(x). As the contribution of this paper,
we analyze what happens if α > n, while p(x) is unbounded. To simplify matters, we examine only
the multivariate Gaussian distribution p(x) = (2π)−n/2e−

1
2
‖x‖2 with the long term goal of extending

the results to more general classes of densities. It turns out that the asymptotic behavior is very
different to the case 0< α < n. We show that if α > n, then in the limit M →∞,

(M logα/2+1−n M)E[dα1,k]→
2n−α/2−1nVn

(k− 1)!

∫ ∞

0

g
�

1

y

�

d y ,

where the definition of g depends on n, k and α (see Section 3).

2 Definitions

We start with some basic definitions. Vn denotes the volume of the unit Euclidean ball in ℜn and
B(y, r) denotes the ball with center y and radius r. I(·) refers to the indicator function of a random
event. For a vector x ∈ ℜn, x ( j) denotes component j of that vector. The volume of a set A with
respect to the Lebesgue measure is denoted by λ(A). If g(r) is a function defined on an open subset
of ℜ, we denote the derivative of g by Dg.

(X i)Mi=1 is taken as an i.i.d. sample with X i ∈ ℜn. Each X i follows a common density p(x); our work
concerns the Gaussian case

p(x) = (2π)−n/2e−
1
2
‖x‖2 . (2)
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The first nearest neighbor of X i is defined by (in the Euclidean norm, other norms are not considered
in this paper)

N[i, 1] = argmin1≤ j≤M , j 6=i‖X j − X i‖

and by recursion, the k-th nearest neighbor is

N[i, k] = argmin1≤ j≤M , j /∈{i,N[i,1],...,N[i,k−1]}‖X j − X i‖.

The corresponding k-th nearest neighbor distance is di,k = ‖XN[i,k] − X i‖. The goal of the paper is
to analyze

E[dαi,k] (3)

in the limit M → ∞ with everything else fixed. Because the sample is independent identically
distributed (i.i.d), we set i = 1.

Throughout the paper there will be constants, which depend on some variables, but not on the oth-
ers. Such variables are denoted by c(. . .), where inside the parentheses we indicate the dependency.
Strictly speaking, c is a function of some variables, but in the standard convention, it will be called
a constant. During the course of our proofs, several different unknown constants will emerge. To
keep them separate, lower indices (in the form ci) are used.

General error terms, which can be bounded but not written in closed form, will be denoted by R (or
Ri with a lower index i). After the appearance of each such term, we write an equation of the form

|R| ≤ c(. . .) f (. . .),

where c is a constant and f is a function of M or some other variables. Inside proofs, the Big-Oh
notation will be invoked as another way to express unknown but negligible terms.

3 Main Results and Previous Work

The analysis of nearest neighbor distances can be viewed as part of the general framework of random
geometric graphs. In this field, results are established for quantities of the form ξ(X1, (X i)Mi=1), where
ξ has some locality properties. By imposing higher levels of abstraction, very general functions can
be analyzed as long as locality arguments are available. We refer to [10, 11, 15] as a starting point
to understand the issues arising in the field.

However, abstract theories do not directly give exact information about the asymptotic behavior of
the moments (3). The step towards concretizing the results concerning nearest neighbor graphs was
taken in [14, 12]. The following has been proven:

Theorem 1. Suppose that 0< α < n and p(x) is a density with
∫

ℜn

p(x)1−α/nd x <∞

and
∫

ℜn

‖x‖r p(x)d x <∞
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for some r > αn/(n−α). Then

Mα/nE[dα1,k]→ V−α/nn

Γ(k+α/n)
Γ(k)

∫

ℜn

p(x)1−α/nd x

in the limit M →∞. Γ(·) refers to the Gamma function. If α ≥ n, the limit holds if p(x) is bounded
from below and above on a bounded convex set X with p(x) = 0 when x /∈ X .

As a downside, Theorem 1 imposes the convexity requirement on X if α > n. Furthermore, it does
not provide a rate of convergence. These issues have been addressed by the concrete approach in
[2], where it was shown that if infx∈X p(x)> 0 and p(x) has a bounded gradient onX , then under
rather weak conditions on the space X , we have

Mα/nE[dα1,k] = V−α/nn

Γ(k+α/n)
Γ(k)

∫

X
p(x)1−α/nd x +O(M−1/n+ρ)

for any ρ > 0 removing the convexity requirement.

As a common factor between the results, observe that in the case α > n, two requirements must be
satisfied:

1. The set X must be bounded.

2. infx∈X p(x)> 0.

In this paper we ask, what happens when neither 1. nor 2. hold but α > n (the case α = n is not
addressed). The early works in random geometry took the uniform distributions as a case of special
interest. Analogously, we choose the Gaussian density (2) as our target of study.

It turns out that the behavior for α > n is very different to Theorem 1 for the Gaussian distribution.
As the main contribution of the paper, we prove the following.

Theorem 2. Suppose that p(x) is the multivariate Gaussian distribution (2) and α > n. Then

(M logα/2+1−n M)E[dα1,k]→
2n−α/2−1nVn

(k− 1)!

∫ ∞

0

g
�

1

y

�

d y (4)

in the limit M →∞ with

g(t) =

∫ ∞

0

ωk−1e−ω f −1(ωt)αdω,

where f −1 refers to the inverse function of

f (t) = tn

∫

B(0,1)
et y(1)d y.

Moreover, the function g(y−1) is integrable on (0,∞) and consequently the limit (4) is finite.

The main difference to Theorem 1 is that now E[dα1,k] is of order M−1(log M)n−α/2−1 instead of

M−α/n. Theorem 2 can be further developed by analyzing the rate of convergence. In fact, the
results suggest that even in the well studied case 0 < α < n the rates of convergence obtained for
example in [2, 8] do not hold in the unbounded case especially when α is close to n. The rather
deep questions related to the rates of convergence are left as an important topic of future research.

Another open question is the extension to a general density p, which the author believes is possible.
This could possibly unify the case with boundary effect [8] and the more general unbounded case.
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4 Outline of the Proof

We will use the small ball probability

ωx(r) =

∫

B(x ,r)
p(y)d y

due to its useful distribution free properties. In fact, [13, 2] shows that the distribution of the
quantity ωX1

(d1,k) does not depend on the density p and moreover, concentrates on values of order
M−1. Another useful fact is that conditioning on X1 does not change the distribution of ωX1

(d1,k).
We approximate

ωx(r) = (2π)
−n/2

∫

B(x ,r)
e−

1
2
‖y‖2 d y

= (2π)−n/2

∫

B(x ,r)
e−

1
2
‖x‖2−x T (y−x)− 1

2
‖y−x‖2 d y

≈ p(x)

∫

B(0,r)
e−x T y d y = p(x)rn

∫

B(0,1)
e−r x T y d y (5)

assuming that e−
1
2

r2
is close to 1. By a change of variables (rotation inside the last integral in (5))

we have

ωx(r)≈ p(x)rn

∫

B(0,1)
e−r‖x‖y(1)d y .

Now if we take f (t) = tn
∫

B(0,1)
e−t y(1)d y , then ‖x‖nωx(r)≈ p(x) f (‖x‖r) and we solve

r ≈
f −1
�

‖x‖nωx (r)
p(x)

�

‖x‖
.

f −1 refers to the inverse of f . By substituting d1,k in place of r and ‖X1‖ in place of ‖x‖, we get
conditionally on X1

E[dα1,k]≈ E









E









f −1
�

‖X1‖nωX1
(d1,k)

p(X1)

�α

‖X1‖α
|X1

















.

The argument for f −1 looks rather complicated. However, because the conditional distribution of
ωX1
(d1,k) does not depend on the density p(x) or X1, it would be sufficient to somehow control the

dependency on X1. Our strategy can be summarized as dividing ℜn into the three regions S1, S2 and
S3 together with decomposing

E[dα1,k] =

∫

S1

E[dα1,k|X1 = x]p(x)d x +

∫

S2

E[dα1,k|X1 = x]p(x)d x

+

∫

S3

E[dα1,k|X1 = x]p(x)d x .
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The three sets depend on a variable 0 < ε < 1 and the number of samples M . We think ε > 0
as a parameter, which at the end of the analysis is set to approach zero after first taking the limit
M →∞. As a sidenote, it should be clear at this point that the parameters (n, k,α) are assumed to
stay fixed all the time.

The motivation for S1 might be seen in the idea of performing a Taylor expansion of f −1(·)α at zero,
which might render the analysis into the well-known case [2]. Keeping in mind that ωX1

(d1,k) is of
order of magnitude M−1, we take (the definition applies for any n≥ 1)

S1 = {x ∈ ℜn : p(x)>
logn/2 M

εM
}

= {x ∈ ℜn : ‖x‖<
p

2 log M − n log log M + 2 logε− n log 2π}; (6)

then for large M , ‖X1‖= O(
p

log M) when X1 ∈ S1 and

‖X1‖nωX1
(d1,k)

p(X1)
= O(ε)

by substituting ωX1
(d1,k) =

1
M

to analyze the order of magnitude. If ε is small, then this shows that
the argument of f −1 is small suggesting that a Taylor expansion might be possible. However, during
the course of the proof, it turns out that points in S1 contribute little in comparison to the set

S2 = {x ∈ ℜn :
ε logn/2 M

M
≤ p(x)≤

logn/2 M

εM
}. (7)

In this case, a Taylor expansion does not seem possible. Fortunately, we are able to show that
conditionally on X1 ∈ S2, the variable

Y =
M p(X1)

logn/2 M
(8)

is approximately uniformly distributed on [ε,ε−1] and moreover, it is independent of ωX1
(d1,k).

This is useful, because for large M , ‖X1‖ ≈
p

2 log M and we get

E[dα1,k|X1 ∈ S2]≈ E











f −1
�

2n/2ωX1
(d1,k)

Y

�α

(2 log M)α/2
|X1 ∈ S2











. (9)

Because the probability P(X1 ∈ S2) turns out to admit a convenient asymptotic expression, it is
possible to use Equation (9) to estimate the quantity

∫

S2

E[dα1,k|X1 = x]p(x)d x = E[dα1,k|X1 ∈ S2]P(X1 ∈ S2).

In addition to S1 and S2, there is the set

S3 = {x ∈ ℜn : p(x)<
ε logn/2 M

M
}. (10)

However, similarly as S1, nearest neighbor distances corresponding to X1 ∈ S3 turn out to have a
negligible effect if ε is small.
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5 Auxiliary Results

In this section, we give some results and applications for ωX1
(d1,k), where

ωx(r) =

∫

B(x ,r)
p(x)d x .

The following result characterizes the distribution ofωX1
(d1,k), which conveniently does not depend

on X1 or the density p(x).

Lemma 1. Given X1, the conditional density of ωX1
(d1,k) is given by

pω(ω|X1) = pω(ω) = k
�

M − 1

k

�

ωk−1(1−ω)M−k−1. (11)

Moreover,

E[ωX1
(d1,k)

α|X1] =
Γ(k+α/n)Γ(M)
Γ(k)Γ(M +α/n)

. (12)

Proof. Equation (11) can be derived from the the cumulative distribution function in Equation
(4.35) of [2]. Some algebraic manipulation is needed to simplify the first derivative of the sum
of terms appearing in [2] in order to reach the simpler formula (11).

It is useful to observe that for any β > 0,

Γ(M + β)
Γ(M)

= Mβ +O(Mβ−1) (13)

to understand better the moments (12). The following lemma is useful for technical reasons.

Lemma 2. Assume that p(x) is the multivariate Gaussian distribution (2). Then for 0 < r < 1 and
x ∈ ℜn,

ωx(r)≥ cp(x)rn

for some constant c(n)> 0.

Proof. By a slight modification to Equation (5), we have

ωx(r)≥ p(x)e−
1
2

r2

∫

B(0,r)
e−x T y d y ≥

e−
1
2

2
Vnp(x)rn. (14)

The moments E[dα1,k|X1] do not get too large if ‖X1‖ stays close enough to the origin. The following

lemma can be proven for example by observing that dα1,k ≤
∑k+1

i=2 ‖X1− X i‖α:
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Lemma 3. Assume that p(x) is the multivariate Gaussian distribution (2). Then for x ∈ ℜn, M > 2k
and α > 0

E[dα1,k|X1 = x]≤ c(‖x‖α+ 1)

for some constant c(n, k,α).

Next we show that the α-moments are at most of order (p(x)M)−α/n if the quantity inside the
parentheses does not get too small. The result is an application of Lemmas 1-2. Without losing
generality, we prove the claim after some threshold M0, which is natural as in any case later the
limit M →∞ is taken. As a somewhat subtle detail, we will generally adopt this way of expressing
our statements in those cases, where proving the claim for all M > 0 is not an obvious task.

Lemma 4. Suppose that p(x) is the multivariate Gaussian distribution (2) and fix any δ > 0. Then if

p(x)> δ logn/2 M
M

, we find a threshold M0(n, k,α,δ) such that for all M > M0, we have

E[dα1,k|X1 = x]≤ c(p(x)M)−α/n

for some constant c(n, k,α).

Proof. We decompose

E[dα1,k|X1 = x] = E[dα1,k I(d1,k ≤ 1)|X1 = x] + E[dα1,k I(d1,k > 1)|X1 = x]. (15)

We consider next the first term in the right side. By Lemma 2,

dn
1,k

ωX1
(d1,k)

I(d1,k ≤ 1)≤
c1

p(X1)
(16)

(for some constant c1(n)) and using this we have by Lemma 1 together with Equations (13) and
(16),

E[dα1,k I(d1,k ≤ 1)|X1 = x]≤
cα/n1 E[ωX1

(d1,k)α/n|X1 = x]

p(x)α/n
≤

c2

(p(x)M)α/n
(17)

for some constant c2(n, k,α). We have proven the claim for the first term in (15). For the second
term, we apply Hölder’s inequality:

E[dα1,k I(d1,k > 1)|X1 = x]≤
p

P(d1,k > 1|X1 = x)
Æ

E[d2α
1,k|X1 = x]. (18)

ωx(r) is a strictly increasing function with respect to r and Equation (16) implies that ωx(1) ≥
c−1
1 p(x). Using this fact, integration by parts and the inequalities k

�M−1
k

�

≤ M k and 1−ω ≤ e−ω

together with Lemma 1 and a change of variables, we have

P(d1,k > 1|X1 = x) = P(ωX1
(d1,k)>ωX1

(1)|X1 = x)

≤
�

M

M − k− 1

�k ∫ M−k−1

c−1
1 (M−k−1)p(x)

ωk−1e−ωdω

≤ k!
�

M

M − k− 1

�k

(c−1
1 M p(x) + 1)ke−c−1

1 (M−k−1)p(x). (19)
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The second line in (19) can be easily calculated in closed form, but for our purposes it is convenient
to use the upper bound to simplify the notation. Assuming M > 2k+ 2, we have

P(d1,k > 1|X1 = x)≤ 2kk!(c−1
1 p(x)M + 1)ke−

1
2

c−1
1 p(x)M ≤ c3e−

1
4

c−1
1 p(x)M (20)

for some c3(n, k). By the assumption p(x)> δ logn/2 M
M

‖x‖ ≤
p

2 log M − n log log M − 2 logδ− n log(2π)≤
p

3 log M

after some threshold M0(n,δ) and for all M > M0. By Lemma 3 we then have

E[d2α
1,k|X1 = x]≤ c4 logα M (21)

for some constant c4(n, k,α) (assuming trivially M > 1). Equations (20) and (21) together with
(18) now imply

E[dα1,k I(d1,k > 1)|X1 = x]≤
p

c3c4e−
1
8

c−1
1 p(x)M logα/2 M . (22)

The assumption p(x)M ≥ δ logn/2 M implies that Equation (22) approaches zero faster than
(p(x)M)−α/n in the limit M →∞.

We formalize the argument in Section 4, which connects ωx(r) to the function f :

Lemma 5. Suppose that p(x) is the multivariate Gaussian distribution (2). Then

‖x‖nωx(r) = p(x) f (‖x‖r)− R

with

f (t) = tn

∫

B(0,1)
et y(1)d y

and 0 ≤ R ≤ p(x)r2 f (‖x‖r). f is defined and continuous on [0,∞) and it has the range [0,∞). It is
also strictly increasing implying the existence of an inverse function f −1 : [0,∞) 7→ [0,∞).

Proof. The proof involves extracting the error term and bounding it. By rearranging terms and a
change of variables (see also Equation (5))

‖x‖nωx(r) = (2π)
−n/2‖x‖n

∫

B(x ,r)
e−

1
2
‖y‖2 d y

= p(x)(‖x‖r)n
∫

B(0,1)
er x T y d y − A (23)

with

A= p(x)(‖x‖r)n
∫

B(0,1)
er x T y(1− e−

1
2

r2‖y‖2)d y . (24)

The main task is to bound A. This is achieved by the mean-value theorem: for ‖y‖ ≤ 1 and r > 0,

1− e−
1
2

r2‖y‖2 =
1

2
r2‖y‖2e−δ ≤ r2
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for some δ ∈ (0,∞). This inequality implies that

0≤ A≤ p(x)(‖x‖r)nr2

∫

B(0,1)
er x T y d y

≤ p(x)(‖x‖r)nr2

∫

B(0,1)
er‖x‖y(1)d y = p(x)r2 f (‖x‖r).

In the last inequality, the vectors have been conveniently rotated. The same rotation shows that in
(23), we have

p(x)(‖x‖r)n
∫

B(0,1)
er x T y d y = p(x) f (‖x‖r).

For t > 0, we define

g(t) =

∫ ∞

0

ωk−1e−ω f −1(ωt)αdω. (25)

The integral always exists because f −1 is a non-negative function. We show that g approaches zero
at least as fast as tα/n and grows at most logarithmically if t →∞. The same holds for f −1(t)α:

Lemma 6. The functions f (t) and g(t) are bounded by

0≤ g(t) + f −1(t)α ≤ c tα/n

on (0, 1] for some constant c(n, k,α). On (1,∞) we have

0≤ g(t) + f −1(t)α ≤ c(1+ logα t).

Proof. 1. Bounds on f −1

Consider t ∈ (0,1). For any z > 2V−1/n
n t1/n, we have

f (z)>
2t
∫

B(0,1)
ez y(1)d y

Vn
> t.

This implies that f −1(t)≤ 2V−1/n
n t1/n. Next assume that t > 1. Take z > 2 log t + A+ 1 with

A= λ(B(0,1)∩ {x ∈ ℜn : x (1) >
1

2
})−1.

Then

f (z)> A

∫

B(0,1)∩{x: x (1)> 1
2
}
e2y(1) log t d y > t.
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This means that f −1(t)≤ 2 log t+A+1. The outcome for f −1(t)α follows by recalling that (a+b)α ≤
2α(aα+ bα) for any a, b > 0.

2. The function g

Bounds for g can be established for example by using

g(t)≤
∞
∑

i=1

2i(k−1)e−2i−1
f −1(2i t).

When t ∈ (0,1) the proof can be established by examining the terms with 2i t < 1 and 2i t ≥ 1
separately, whereas for t > 1 a straightforward application of the logarithmic upper bound for f −1

gives the result.

6 Region S1

Recall that region S1 is defined by

S1 = {x ∈ ℜn : p(x)>
logn/2 M

εM
}

= {x ∈ ℜn : ‖x‖<
p

2 log M − n log log M + 2 logε− n log(2π)}. (26)

It may happen that S1 is an empty set; from now on we always assume that M is large enough in
comparison to ε−1 and n in order to ensure that S1 is non-empty with a positive volume. Similar
convention is adopted for the sets S2 and S3.

As stated in Section 4, 0 < ε < 1 is a fixed constant until the end, where the limit ε → 0 is taken
after the limit M →∞. We define (assuming that α > n)

i∗ = [log−1 2
n log log M

α− n
] + 1.

[·] refers to the integer part of the number inside the bracket. As our proof strategy, S1 is divided
into smaller subsets, which are easier to control with the tools we have available this far:

S̃1,i = {x ∈ ℜn : 2i logn/2 M

εM
< p(x)≤ 2i+1 logn/2 M

εM
}

= {x ∈ ℜn : ‖x‖ ∈ [ai , bi)} (27)

(0≤ i ≤ i∗) with

ai =
p

2 log M − n log log M − 2(i+ 1) log2+ 2 logε− n log(2π)

bi =
p

2 log M − n log log M − 2i log2+ 2 logε− n log(2π).

The remaining part is denoted by
S1,C = S1 \ ∪i∗

i=0S̃1,i .

The following bounds the nearest neighbor distance when X1 ∈ S̃1,i .
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Lemma 7. Assume that p(x) is the multivariate Gaussian distribution (2) and α > n. Then there exists
a threshold M0(n, k,α,ε)> 0 such that for all M > M0 and 0≤ i ≤ i∗,

∫

S̃1,i

E[dα1,k|X1 = x]p(x)d x ≤ 2i(1−α/n)cεα/n−1 logn−α/2−1 M

M

for some constant c(n, k,α).

Proof. By Lemma 4,
∫

S̃1,i

E[dα1,k|X1 = x]p(x)d x ≤ c1M−α/n
∫

S̃1,i

p(x)1−α/nd x

≤ 2i(1−α/n)c1ε
α/n−1 logn/2−α/2 M

M
λ(S̃1,i) (28)

for some constant c1(n, k,α) and M0(n, k,α,ε). We should now compute the volume λ(S̃1,i). The
set S̃1,i consists of points x ∈ ℜn with ‖x‖ in the interval [ai , bi) and the volume of the set is
λ(S̃1,i) = Vn(bn

i − an
i ). By a Taylor expansion,

an
i = 2n/2 logn/2 M

�

1−
n2 log log M + 2n(i+ 1) log2− 2n logε+ n2 log(2π)

4 log M

�

+ R1

bn
i = 2n/2 logn/2 M

�

1−
n2 log log M + 2ni log2− 2n logε+ n2 log(2π)

4 log M

�

+ R2 (29)

in the limit M →∞ with everything else fixed and

|R1|+ |R2| ≤ c2
log2 log M

log2−n/2 M

with c2(n, k,α,ε) independent of i. The Taylor expansions imply that λ(S̃1,i) = Vn(bn
i − an

i ) ≤
c3 logn/2−1 M for some constant c3(n, k,α,ε). By substitution into (28), we have

∫

S̃1,i

E[dα1,k|X1 = x]p(x)d x ≤ 2i(1−α/n)c1c3ε
α/n−1 logn−α/2−1 M

M
,

where the bound holds for 0≤ i ≤ i∗.

After removing the sets S̃1,i , we are left with S̃1,C . However, it does not pose problems.

Lemma 8. Assume that p(x) is the multivariate Gaussian distribution (2) and α > n. Then there exists
a threshold M0(n, k,α,ε) such that for any M > M0, we have

∫

S̃1,C

E[dα1,k|X1 = x]p(x)d x ≤ cεα/n−1 logn−α/2−1 M

M

for some constant c(n, k,α).
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Proof. By Lemma 4 and the definition of S̃1,C ,

∫

S̃1,C

E[dα1,k|X1 = x]p(x)d x ≤ c1M−α/n
∫

S̃1,C

p(x)1−α/nd x

≤ 2i∗(1−α/n)c1ε
α/n−1 logn/2−α/2 M

M
λ(S̃1,C) (30)

for some constant c1(n, k,α). It is a simple task to show that for all x ∈ S̃1,C we have ‖x‖ ≤
p

3 log M
once M exceeds some threshold M0(n, k,α,ε). This implies that

λ(S̃1,C)≤ 3n/2Vn logn/2 M . (31)

Substituting Equation (31) and the inequality 2i∗(1−α/n) ≤ log−1 M into (30) yields

∫

S̃1,C

E[dα1,k|X1 = x]p(x)d x ≤ 3n/2c1Vnε
α/n−1 logn−α/2−1 M

M
.

Lemmas 7 and 8 imply that for α > n and M > M0

∫

S1

E[dα1,k|X1 = x]p(x)d x ≤ cεα/n−1 logn−α/2−1 M

M
(1+

i∗
∑

i=0

2i(1−α/n)) (32)

for some constant c(n, k,α). We conclude

Lemma 9. Assume that p(x) is the multivariate Gaussian distribution (2) and α > n. Then there exists
a threshold M0(n, k,α,ε) such that for any M > M0, we have

∫

S1

E[dα1,k|X1 = x]p(x)d x ≤ cεα/n−1 logn−α/2−1 M

M

for some constant c(n, k,α).

7 Region S2

Region 2 is defined by

S2 = {x ∈ ℜn :
ε logn/2 M

M
≤ p(x)≤

logn/2 M

εM
}. (33)

Again, M is assumed to be large enough to ensure that S2 has a positive volume. It is necessary to
obtain an approximation to P(X1 ∈ S2). This can be done rather straightforwardly:
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Lemma 10. Assuming that p(x) is the multivariate Gaussian distribution (2), it holds that

P(X1 ∈ S2) =
2n/2−1nVn logn−1 M

εM
(1− ε2) + R,

where for some constant c(n,ε),

|R| ≤ c
log2 log M logn−2 M

M
.

Proof. S2 consists of points x ∈ ℜn with ‖x‖ ∈ [a, b] and

a =
p

2 log M − n log log M + 2 logε− n log(2π) (34)

b =
p

2 log M − n log log M − 2 logε− n log(2π). (35)

By some algebraic manipulation,

P(X1 ∈ S2) = (2π)
−n/2nVn

∫ b

a

xn−1e−
1
2

x2
d x = I1+ I2+ I3

with

I1 =
nVn logn/2 M

εM
an−1

∫ b

a

e−(x−a)ad x =
nVn logn/2 M

εM
an−2(1− e−(b−a)a)

I2 =
nVn logn/2 M

εM

∫ b

a

(xn−1− an−1)e−(x−a)a− 1
2
(x−a)2 d x

I3 =
nVn logn/2 M

εM
an−1

∫ b

a

(e−
1
2
(x−a)2 − 1)e−(x−a)ad x .

During the proof it is easiest to employ the Big-Oh notation. Such error terms depend here on n and
ε.

1. The term I1

By a Taylor expansion (see also Equation (29)), it can be shown that

b− a =

p
2 logε−1

p

log M
+O

�

log2 log M

log3/2 M

�

(36)

and for any β > 0,

aβ = 2β/2 logβ/2 M +O

�

log log M

log1−β/2 M

�

. (37)

Using (36) and (37) with β = 1, we have

1− e−(b−a)a = 1− e2 logε+O( log2 log M
log M ) = 1− ε2+O

�

log2 log M

log M

�

. (38)
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The remainder terms depend on n,ε and M . Using Equations (38) and (37) with β = n− 2 in the
expression for I1 yields

I1 =
2n/2−1nVn logn−1 M

εM
(1− ε2) +O

�

log2 log M logn−2 M

M

�

.

2. The term I2

By the mean value theorem, for some constant c1(n,ε) we have |xn−1 − an−1| ≤ c1 logn/2−3/2 M for
x ∈ [a, b]. Also, a−1 ≤ c2 log−1/2 M for some c2(n,ε). We have

I2 ≤
c1nVn logn−3/2 M

εM

∫ b

a

e−(x−a)ad x ≤
c1c2nVn logn−2 M

εM
.

3. The term I3

Now by e−
1
2
(x−a)2 ≥ e−

1
2
(b−a)2 (for x ∈ [a, b]), we have

|I3| ≤
nVn logn/2 M

εM
an−2(1− e−

1
2
(b−a)2). (39)

Moreover, by the expansion for b− a appearing in Equation (36),

1− e−
1
2
(b−a)2 =

1

2
(b− a)2+O((b− a)4)≤

c3

log M
(40)

for some constant c3(n,ε) Finally,
an−2 ≤ c4 logn/2−1 M . (41)

for some constant c4(n,ε). Substituting (40)-(41) into (39) yields

|I3| ≤
c3c4nVn logn−2 M

εM
.

The proof is finished since the terms I1,I2 and I3 have been addressed.

In general, to establish asymptotics, it is useful to truncate d1,k to avoid too large values. To this end,
we choose some L > 0 (recall that at this point, α, n, k and ε stay fixed) and define the indicator

IL = I(d1,k <
L

ε1/n
p

log M
).

The power for log M is chosen to ensure the correct order of magnitude with large L rendering the
event 1− IL negligible. The following lemma verifies this fact; the bound is designed to hold after
some threshold M0, which depends on L itself. However, after the threshold we get an upper bound
which goes exponentially to zero with respect to L.
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Lemma 11. Suppose that p(x) is the multivariate Gaussian distribution (2). Then for any L > 0,
there exists a threshold M0(n, k,α,ε, L) and a positive constant c(n, k,α,ε) such that for all M > M0,
it holds that

E[dα1,k(1− IL)|X1 ∈ S2]≤ ce−c−1 Ln
log−α/2 M.

Proof. The proof employs Hölder’s inequality:

E[dα1,k(1− IL)|X1 ∈ S2]≤

s

E[d2α
1,k|X1 ∈ S2]P(d1,k >

L

ε1/n
p

log M
|X1 ∈ S2). (42)

By Lemma 4 and the definition of S2, there exists M0(n, k,α,ε) such that

E[d2α
1,k|X1 ∈ S2]≤ c1E[(p(X1)M)

−2α/n|X1 ∈ S2]≤ c1ε
−2α/n log−α M (43)

for some constant c1(n, k,α) and all M > M0. We want to bound P(d1,k > Lε−1/n log−1/2 M |X1 ∈ S2)
in order to finish the proof. By Lemma 2, we have for 0< r < 1 and x ∈ S2,

ωx(r)≥ c2p(x)rn ≥
c2εrn logn/2 M

M
(44)

for some constant c2(n). Then because ωx(r) is strictly increasing with respect to r, using Lemma 1
we have

P(d1,k >
L

ε1/n
p

log M
|X1 ∈ S2) = P(ωX1

(d1,k)>ωX1





L

ε1/n
p

log M



 |X1 ∈ S2)

≤ P(ωX1
(d1,k)>

c2 Ln

M
|X1 ∈ S2) = k

�

M − 1

k

�
∫ 1

c2 Ln

M

ωk−1(1−ω)M−k−1dω

when c2 LnM−1 < 1 (which can be imposed by taking a sufficiently large threshold M0). We use
(1−ω)≤ e−ω and

�

M − 1

k

�

≤
M k

k!

to obtain for M > c2 Ln+ 4k,

k
�

M − 1

k

�
∫ 1

c2 LnM−1

ωk−1(1−ω)M−k−1dω≤ M k

∫ 1

c2 LnM−1

ωk−1e−
1
2

Mωdω.

The last integral can be bounded by integration by parts as in (19):

M k

∫ 1

c2 LnM−1

ωk−1e−
1
2

Mωdω≤ 2kk!(c2 Ln+ 1)ke−
1
2

c2 Ln
≤ 4kk!ck

2 Lnke−
1
2

c2 Ln

assuming without losing generality that c2 Ln ≥ 1. We conclude that

P(d1,k >
L

ε1/n
p

log M
|X1 = x)≤ 4kk!ck

2 Lnke−
1
2

c2 Ln
. (45)
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In light of (42), (43) and (45) we have arrived to the conclusion

E[dα1,k(1− IL)|X1 ∈ S2]≤ 2k
Æ

k!c1ck
2 Lnk/2ε−α/ne−

1
4

c2 Ln
log−α/2 M .

The term Lnk/2 can be dropped in the final conclusion, as it is negligible compared to the exponential
decay with respect to L.

The variable Y emerged in Equation (8). It was defined by

Y =
M p(X1)

logn/2 M
. (46)

A major idea behind our proofs is the asymptotic uniformity of Y as shown by

Lemma 12. Suppose that (2) holds. Let h(y) be a measurable function [ε,ε−1] 7→ [0, 1]. Then

E[h(Y )|X1 ∈ S2]→
ε

1− ε2

∫ ε−1

ε

h(y)d y.

in the limit M →∞.

Proof. The function

s(y) =
Me−

1
2

y2

(2π)n/2 logn/2 M
(47)

is strictly decreasing on y ∈ [a, b] with a and b defined in Equations (34) and (35). It has the
inverse s−1 : [ε,ε−1] 7→ [a, b]:

s−1(y) =
p

−2 log y − n log log M + 2 log M − n log2π

with the first derivative denoted by Ds−1. Conditionally on X1 ∈ S2, the variable ‖X1‖ has the
density

p‖X1‖(y) =
nVn

(2π)n/2P(X1 ∈ S2)
yn−1e−

1
2

y2

and Y has the density (on [ε,ε−1])

p‖X1‖(s
−1(y))|Ds−1(y)|=

nVn ys−1(y)n−1 logn/2 M

M P(X1 ∈ S2)
|Ds−1(y)|. (48)

Because y ∈ [ε,ε−1], we have in the limit M →∞ with everything else fixed,

s−1(y)n−1 = (2 log M)n/2−1/2
�

1+O
�

log log M

log M

��

(49)

and

|Ds−1(y)|=
1

y
p

2 log M

�

1+O
�

log log M

log M

��

. (50)
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By Equations (48)-(50) and Lemma 10 we have

p‖X1‖(s
−1(y))|Ds−1(y)|=

ε

1− ε2 +O

�

log2 log M

log M

�

. (51)

This approximation implies that

E[h(Y )|X1 ∈ S2] =
ε

1− ε2

∫ ε−1

ε

h(y)d y +O

�

log2 log M

log M

�

→
ε

1− ε2

∫ ε−1

ε

h(y)d y

in the limit M →∞.

Next we will find out the asymptotic behavior of E[dα1,k|X1 ∈ S2], which together with the approxi-
mation for P(X1 ∈ S2) takes care of region S2. The key to the analysis is Lemma 12. The following
represents the nearest neighbor distance in terms of the small ball probability and the variable Y .
We invoke the event IL to bound d1,k; L stays fixed in this considerations the idea being the limit
L→∞ after taking the limit M →∞.

Lemma 13. Assume that p(x) is the multivariate Gaussian distribution (2) and α > n. Then

E[dα1,k IL|X1 ∈ S2] =
E[ f −1

�

2n/2MωX1
(d1,k)

Y

�α

IL|X1 ∈ S2]

2α/2 logα/2 M
+ R1,

where Y is defined in Equation (46) and

|R1| ≤
c log log M

logα/2+1 M

for some constant c(n,α,ε, L).

Proof. We first collect a few useful facts. If x ∈ S2, then by Lemma 5

‖x‖nωx(r) = p(x) f (‖x‖r)− p(x)R1 (52)

or equivalently

r =
f −1
�

‖x‖nωx (r)
p(x) + R1

�

‖x‖
(53)

with 0≤ R1 ≤ r2 f (‖x‖r). x ∈ S2 implies

c−1
1

p

log M ≤ ‖x‖ ≤ c1

p

log M (54)

for some constant c1(n,ε). The indicator function IL ensures that we only need to consider

0< r <
L

ε1/n
p

log M
.
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Then by (54)

‖x‖r ≤
Lc1

ε1/n
. (55)

By a Taylor expansion, for any real number β ∈ ℜ and x ∈ S2,

|‖x‖β − (2 log M)β/2| ≤ c2 log log M logβ/2−1 M (56)

for some constant c2(n,ε,β). Moreover, f is an increasing continuous function allowing a bound on
R1:

R1 ≤ r2 f (‖x‖r)≤
L2 f ( Lc1

ε1/n )

ε2/n log M
≤

c3

log M
(57)

for c3 = L2ε−2/n f ( Lc1

ε1/n ). Having made the preliminary observations, we are ready for the first step
towards completing of the proof. We have for x ∈ S2 by Equation (53)

E[dα1,k IL|X1 = x] = E









f −1
�

‖X1‖nωX1
(d1,k)

p(X1)
+ R2

�α

‖X1‖α
IL|X1 = x









with
0≤ R2 ≤ c3 log−1 M (58)

(R2 is R1 with d1,k instead of r and multiplied by IL). The challenging part is to modify the argument
for f −1. We first tackle the easier task of replacing ‖X1‖α with a function of M . To this end, we
observe that

E[dα1,k IL|X1 = x] = E









f −1
�

‖X1‖nωX1
(d1,k)

p(X1)
+ R2

�α

2α/2 logα/2 M
IL|X1 = x









+ R3 (59)

with

R3 = E[ f −1

�

‖X1‖nωX1
(d1,k)

p(X1)
+ R2

�α

(‖X1‖−α− 2−α/2 log−α/2 M)IL|X1 = x].

By Lemma 5 and Equations (52), (55) and (57) we find a constant c4(n,ε, L) such that

‖x‖nωx(r)
p(x)

+
c3

log M
≤ f (‖x‖r) +

c3

log M
≤ f

�

Lc1

ε1/n

�

+
c3

log M
≤ c4 (60)

for x ∈ S2 and 0 < r < Lε−1/n log−1/2 M . Using the previous inequality and the fact that f −1 is an
increasing function together with Equation (56) allows us to bound

|R3| ≤
c2(n,ε,−α) f −1(c4) log log M

logα/2+1 M
. (61)

We move to the argument for f −1. Again, it would be useful to get rid of the norm ‖x‖n. This is
achieved by modifying the argument appearing in (59) (due to conditioning, we may use x instead
of X1 in the expressions):

‖x‖nωx(d1,k)

p(x)
IL =

2n/2ωx(d1,k) logn/2 M

p(x)
IL + R4,
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where by Equation (56) (to bound ωx(d1,k), we use Equations (60) and (54))

|R4|=
|‖x‖n− 2n/2 logn/2 M |ωx(d1,k)

p(x)
IL ≤

c5 log log M

log M
(62)

for some constant c5(n,ε, L).

In summary, this far we have shown that

E[dα1,k IL|X1 = x]

= E











f −1
�

2n/2ωX1
(d1,k) logn/2 M

p(X1)
+ R2+ R4

�α

2α/2 logα/2 M
IL|X1 = x











+ R3, (63)

where (58), (61) and (62) bound the three correction terms.

While the correction terms R2 and R4 are small, they appear inside the argument for f −1. The best
we can say about their effect is

E[| f −1

 

2n/2ωX1
(d1,k) logn/2 M

p(X1)
+ R2+ R4

!α

− f −1

 

2n/2ωX1
(d1,k) logn/2 M

p(X1)

!α

|IL|X1 = x]

≤ (R2+ R4) sup
t∈[0,2n/2+1c4]

|D( f −1(t)α)| (64)

assuming without losing generality that |R2 + R4| ≤ c4. So, we need to bound the derivative of the
function f −1(t)α on bounded intervals. We observe that

D( f −1(t)α) =
α f −1(t)α−1

D f ( f −1(t))
. (65)

Furthermore,

D f (t) = ntn−1

∫

B(0,1)
et y(1)d y + tn

∫

B(0,1)
y(1)et y(1)d y ≥

1

2
nVn tn−1, (66)

because
∫

B(0,1)
y(1)et y(1)d y =

∫ t

0

∫

B(0,1)
(y(1))2es y(1)d yds ≥ 0.

Using (66) in (65) together with the fact that f −1(t)α−n (α > n) is an increasing function yields

sup
t∈[0,2n/2+1c4]

|D( f −1(t)α)| ≤ sup
t∈[0,2n/2+1c4]

2α

nVn
f −1(t)α−n ≤

2α f −1(2n/2+1c4)α−n

nVn
.
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Using the upper bound in (64) shows that for x ∈ S2,

E











f −1
�

2n/2ωX1
(d1,k) logn/2 M

p(X1)
+ R2+ R4

�α

2α/2 logα/2 M
IL|X1 = x











= E











f −1
�

2n/2MωX1
(d1,k)

Y

�α

2α/2 logα/2 M
IL|X1 = x











+ R5

with |R5| ≤ c6 log log M log−α/2−1 M for some constant c6(n,α,ε, L). The proof is finished by recall-
ing the earlier observation (63).

In Lemma 13, we find the term Y , which has the asymptotic uniformity property as proven in Lemma
12. Connecting the two results mainly involves removing the truncation IL , but takes some technical
effort. The function g was defined in Equation (25).

Lemma 14. Assume that p(x) is the multivariate Gaussian distribution (2) and α > n. Then in the
limit M →∞

(2 log M)α/2E[dα1,k|X1 ∈ S2]→
ε

(k− 1)!(1− ε2)

∫ ε−1

ε

g

�

2n/2

y

�

d y.

Proof. By Lemma 13, we know that

(2 log M)α/2E[dα1,k IL|X1 ∈ S2]

− E[ f −1

 

2n/2MωX1
(d1,k)

Y

!α

IL|X1 ∈ S2]→ 0

in the limit M →∞ with (n, k,α,ε, L) fixed. We write

E[ f −1

 

2n/2MωX1
(d1,k)

Y

!α

IL|X1 ∈ S2]

=

∫

S2
E[ f −1

�

2n/2MωX1
(d1,k)

Y

�α

IL|X1 = x]p(x)d x

P(X1 ∈ S2)
.

Using Equation (47) and Lemma 1 (recall that Y depends only on X1),

E[ f −1

 

2n/2MωX1
(d1,k)

Y

!α

IL|X1 = x]

= k
�

M − 1

k

�
∫ ωx (Lε−1/n log−1/2 M)

0

ωk−1(1−ω)M−k−1 f −1

�

2n/2Mω

s(‖x‖)

�α

dω.
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Now

k
�

M − 1

k

�

=
(M − 1)!

(k− 1)!(M − 1− k)!
=

M k

(k− 1)!
+ R1 (67)

with |R1| ≤ c1M k−1 for some constant c1(k). Also, because ‖x‖ behaves asympotically as
p

2 log M

and p(x)> ε logn/2 M
M

on S2, Equation (60) shows that

ωx





L

ε1/n
p

log M



≤
c2

M
(68)

for some constant c2(n,ε, L). This implies that for ω<ωx(Lε−1/n log−1/2 M),

(1−ω)M−k−1 = e−Mω+ R2 (69)

with

|R2| ≤ |(1−ω)M−k−1− e−Mω|= e(M−k−1) log(1−ω)+Mω− 1≤
c3

M

for some constant c3(n, k,α,ε, L). By Equations (67)-(69) together with the fact that f −1 is an
increasing function,

k
�

M − 1

k

�
∫ ωx (Lε−1/n log−1/2 M)

0

ωk−1(1−ω)M−k−1 f −1

�

2n/2Mω

s(‖x‖)

�α

dω

=
M k

(k− 1)!

∫ ωx (Lε−1/n log−1/2 M)

0

ωk−1e−Mω f −1

�

2n/2Mω

s(‖x‖)

�α

dω

+ R3+ R4

with

|R3| ≤ |k
�

M − 1

k

�

−
M k

(k− 1)!
|
∫ ωx (Lε−1/n log−1/2 M)

0

ωk−1

× (1−ω)M−k−1 f −1

�

2n/2Mω

ε

�α

dω

≤ c1M k−1

∫ c2M−1

0

ωk−1 f −1

�

2n/2Mω

ε

�α

dω≤
c1ck

2 f −1(2n/2c2

ε
)α

kM

and

|R4| ≤
M k

(k− 1)!

∫ c2M−1

0

ωk−1|e−Mω− (1−ω)M−k−1| f −1

�

2n/2Mω

ε

�α

dω

≤
ck
2 c3 f −1

�

2n/2c2

ε

�α

M
.
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Observe that the bounds for R3 and R4 hold for any x ∈ S2. By a change of variables,

M k

(k− 1)!

∫ ωx (Lε−1/n log−1/2 M)

0

ωk−1e−Mω f −1

�

2n/2Mω

s(‖x‖)

�α

dω

=
1

(k− 1)!

∫ ∞

0

ωk−1e−ω f −1

�

2n/2ω

s(‖x‖)

�α

dω

−
1

(k− 1)!

∫ ∞

Mωx (Lε−1/n log−1/2 M)
ωk−1e−ω f −1

�

2n/2ω

s(‖x‖)

�α

dω

=
1

(k− 1)!
g

�

2n/2

s(‖x‖)

�

+ R5.

We would like to show that

lim
L→∞

lim sup
M→∞

sup
x∈S2

R5

= lim
L→∞

lim sup
M→∞

sup
x∈S2

∫ ∞

Mωx (Lε−1/n log−1/2 M)
ωk−1e−ω f −1

�

2n/2ω

s(‖x‖)

�α

dω= 0. (70)

To see that this is true, we observe that by Lemma 6, for some constant c4(n, k,α,ε) there is the
bound

ωk−1e−ω f −1

�

2n/2ω

s(‖x‖)

�α

≤ωk−1e−ω f −1

�

2n/2ω

ε

�α

≤ c4ω
k−1(1+ω)e−ω

with the upper bound integrable on [0,∞) and independent of x ∈ S2. Moreover, by Equation (44)
limL→∞ lim infM→∞ infx∈S2

Mωx(
L

ε1/n
p

log M
) =∞ showing that (70) indeed holds.

In summary, we have shown that

lim
L→∞

lim sup
M→∞

E[ f −1

 

2n/2MωX1
(d1,k)

Y

!α

IL|X1 ∈ S2]

= lim
L→∞

lim sup
M→∞

1
(k−1)!

∫

S2

∫∞
0
ωk−1e−ω f −1

�

2n/2ω
s(‖x‖)

�α
p(x)dωd x

P(X1 ∈ S2)

+

∫

S2
(R3+ R4+ R5)p(x)d x

P(X1 ∈ S2)
= lim sup

M→∞

1

(k− 1)!
E[g

�

2n/2

Y

�

|X1 ∈ S2]

and similarly with lim inf instead of lim sup. The last limit exists by Lemma 12, which shows that

E[g

�

2n/2

Y

�

|X1 ∈ S2]→
ε

1− ε2

∫ ε−1

ε

g

�

2n/2

y

�

d y

in the limit M →∞. On the other hand, Lemma 11 shows that

lim
L→∞

lim sup
M→∞

(2 log M)α/2|E[dα1,k IL|X1 ∈ S2]− E[dα1,k|X1 ∈ S2]|= 0

finalizing the proof.
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Now we are able to put everything together to conclude region S2:

Lemma 15. Assume that p(x) is the multivariate Gaussian distribution (2) and α > n. Then

lim
ε→0

lim
M→∞

M logα/2+1−n M

∫

S2

E[dα1,k|X1 = x]p(x)d x

=
2n−α/2−1nVn

(k− 1)!

∫ ∞

0

g
�

1

y

�

d y <∞.

Proof. The claim follows from Lemmas 10 and 14:

M logα/2+1−n M

∫

S2

E[dα1,k|X1 = x]p(x)d x

→
2n−α/2−1nVn

(k− 1)!(1− ε2)

∫ 2−n/2ε−1

2−n/2ε

g
�

1

y

�

d y

in the limit M →∞. To finish the proof, we would like the replace the integration limits by 0 and
∞ when ε→ 0, which amounts to showing that g(y−1) is an integrable function. Integrability can
be established using Lemma 6 to show that

∫ ∞

0

g
�

1

y

�

d y ≤ c

∫ 1

0

(1+ logα y−1)d y + c

∫ ∞

1

y−α/nd y

for some constant c(n, k,α). Both terms in the right side are finite (the second one because α >
n).

8 Region S3

S3 consists of points where the density p takes small values:

S3 = {x ∈ ℜn : p(x)<
ε logn/2 M

M
}.

To bound nearest neighbor distances on S3 we need similar tools as for S2, but only upper bounds
are needed providing some more flexibility. The sets S̃3,i are defined analogously to (27):

S̃3,i = {x ∈ ℜn : 2−i−1ε logn/2 M

M
≤ p(x)< 2−i ε logn/2 M

M
}

for 0≤ i ≤ i∗ with

i∗ = [
(α+ 1)

log2
log log M] + 1.

Moreover, S̃3,C = S3 \ ∪i∗
i=0S̃3,i . Then we have
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Lemma 16. Assume that p(x) is the multivariate Gaussian distribution (2). Then for some threshold
M0(n,ε) we have for M > M0 and 0≤ i ≤ i∗ that

P(X1 ∈ S̃3,i)≤ 2−ic
ε logn−1 M

M

for some constant c(n).

Proof. The set S̃3,i consists of points x ∈ ℜn with ‖x‖ ∈ [a, b] and

a =
p

2 log M − n log log M − 2 logε+ i log4− n log(2π)

b =
p

2 log M − n log log M − 2 logε+ (i+ 1) log 4− n log(2π). (71)

Using the mean value theorem for a and b we have for 0≤ i ≤ i∗,

b− a ≤
4

p

log M
(72)

after some threshold M0(n,ε). Also, we may take b ≤
p

3 log M for 0 ≤ i ≤ i∗ as the term 2 log M
inside the square root (71) grows faster than the other terms. Then

λ(S̃3,i) = nVn

∫ b

a

xn−1d x ≤ nVn bn−1(b− a)≤ 3n/2+3/2nVn logn/2−1 M . (73)

By Equation (73) and the fact p(x)≤ 2−iεM−1 logn/2 M on S̃3,i , we have

P(X1 ∈ S̃3,i)≤ 2−i3n/2+3/2nVn
ε logn−1 M

M
.

Assessing the contributions from S̃3,i is convenient by using the function f together with the small
ball probability. The proof idea is essentially similar to that used for S2 in Section 7, but because we
need only an upper bound the proof is easier.

Lemma 17. Suppose that p(x) is the multivariate Gaussian distribution (2) and α > n. Then for some
threshold M0(n,α, k,ε), we have for M > M0 and 0≤ i ≤ i∗ that

∫

S̃3,i

E[dα1,k|X1 = x]p(x)d x ≤ c2−iε(logα ε−1+ iα+ 1)
logn−α/2−1 M

M

for some constant c(n, k,α).

Proof. We decompose
∫

S̃3,i

E[dα1,k|X1 = x]p(x)d x = (I1+ I2)P(X1 ∈ S̃3,i)
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with

I1 = E[dα1,k I(d1,k ≤ 1)|X1 ∈ S̃3,i]

I2 = E[dα1,k I(d1,k > 1)|X1 ∈ S̃3,i].

P(X1 ∈ S̃3,i) was computed in Lemma 16.

1. The term I1

If 0< r < 1, we have

‖x‖nωx(r) = (2π)
−n/2‖x‖n

∫

B(x ,r)
e−

1
2
‖y‖2 d y

≥ e−
1
2 ‖x‖np(x)

∫

B(0,r)
e−x T y d y = e−

1
2 p(x) f (‖x‖r), (74)

where the function f was defined in Lemma 5. This implies that

d1,k ≤
f −1

�

e
1
2 ‖X1‖nωX1

(d1,k)

p(X1)

�

‖X1‖
. (75)

By taking M0 large enough, we may ensure that
p

log M ≤ ‖x‖ ≤
p

3 log M (76)

on x ∈ S̃3,i for 0≤ i ≤ i∗. Then by Lemma 6 and Equations (75)-(76),

E[dα1,k I(d1,k ≤ 1)|X1 = x]≤ c1E









1+ logα
�

1+
2i+n+2MωX1

(d1,k)

ε

�

logα/2 M
|X1 = x









for some constant c1(n,α). Using log(1+ z)≤ z for z ≥ 0, we have

log(1+ 2i+n+2ε−1MωX1
(d1,k))≤ (i+ n+ 2) log 2+ logε−1+MωX1

(d1,k)

recalling that 0 < ε < 1. The α-moment of the conditional expectation of the last expression is
bounded by c2(logα ε−1+ iα+ 1) for some constant c2(n, k,α) by Lemma 1 and Equation (13).

2. The term I2

By Hölder’s inequality, Lemma 3 and Equation (76),

I2 ≤ c3 logα/2 M
Æ

P(d1,k > 1|X1 ∈ S̃3,i)
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for some constant c3(n, k,α). Equation (19) can be applied here: for x ∈ S̃3,i ,

P(d1,k > 1|X1 = x)≤ c4(n, k)e−c4(n,k)−1Mωx (1)

for some constant c4(n, k). It would be sufficient to show that for any j > 0,

sup
0≤i≤i∗,x∈S̃3,i

ωx(1)M log− j M →∞ (77)

in the limit M →∞. By Equations (74) and (76) taking into account that on S̃3,i ,

p(x)≥ 2−i∗ ε logn/2 M

M
≥
ε logn/2−α−1 M

2M
,

we have

ωx(1)≥ e−
1
2

ε

4M logα+1−n/2 M

∫

B(0,1)
e
p

log M y(1)d y

≥ e−
1
2

ε

4M logα+1−n/2 M
λ(B(0,1)∩ {y ∈ ℜn : y(1) >

1

2
})e

1
2

p
log M .

The term e
1
2

p
log M approaches infinity faster than log j M for any j > 0. This shows (77) and we

conclude that for any j > 0, I2 approaches 0 faster than log− j M in the limit M →∞.

The region S̃3,C is easier, because by taking i∗ as a large number, we are able to control the probability
of this set.

Lemma 18. Suppose that p(x) is the multivariate Gaussian distribution (2) and α > n. Then there
exists a constant c(n, k,α) and a threshold M0(n, k,α,ε) such that for M > M0, we have

∫

S̃3,C

E[dα1,k|X1 = x]p(x)d x ≤ cε
logn−α/2−1 M

M
.

Proof. On S̃3,C we have

p(x)≤ 2−i∗ ε logn/2 M

M
≤
ε logn/2−α−1 M

M
.

We define
Ti = 2i+1S̃3,C \ 2i S̃3,C ,

where 2i S̃3,C = {x ∈ ℜn : 2−i x ∈ S̃3,C}. We may assume that ‖x‖ ≤ 4
p

log M on T0 and

consequently ‖x‖ ≤ 2i+2
p

log M on Ti for any i ≥ 0. λ(Ti) is roughly bounded by λ(Ti) ≤
2n(i+2)Vn logn/2 M . Now by Lemma 3,

∫

S̃3,C

E[dα1,k|X1 = x]p(x)d x ≤ c1

∞
∑

i=0

∫

Ti

(‖x‖α+ 1)p(x)d x

≤
∞
∑

i=0

2iαc2 logα/2 M

 

(2π)n/2ε logn/2−α−1 M

M

!22i

λ(Ti)

≤ c2Vnε
logn−α/2−1 M

M

∞
∑

i=0

2(n+α)i+2n

 

(2π)n/2ε logn/2−α−1 M

M

!22i−1

, (78)
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where c1(n) is some constant, and to be exact, c2 = 2(2π)−n/2c1. The factor 2 in c2 comes from the
fact that logα/2 M > 1 for M > 3 (which can be assumed without losing generality). Now it is rather
obvious that the sum does not pose problems.

Lemma 19. Assume that (2) holds, α > n and ε < 1/2 (only small values of ε matter in any case).
Then there exists a threshold M0(n, k,α,ε) such that for any M > M0(n, k,α,ε), we have

∫

S3

E[dα1,k|X1 = x]p(x)d x ≤ cε logε−1 logn−α/2−1 M

M

for some constant c(n, k,α).

Proof. We decompose

∫

S3

E[dα1,k|X1 = x]p(x)d x =
i∗
∑

i=0

∫

S̃3,i

E[dα1,k|X1 = x]p(x)d x

+

∫

S̃3,C

E[dα1,k|X1 = x]p(x)d x .

By Lemma 17,

i∗
∑

i=0

∫

S̃3,i

E[dα1,k|X1 = x]p(x)d x ≤ cε
logn−α/2−1 M

M

∞
∑

i=0

2−i(logα ε−1+ iα+ 1).

Lemma 18 finalizes the proof.

9 Proof of Theorem 2

Previously we have examined the regions S1, S2 and S3, which were defined in terms of ε and M .
We decompose

(M logα/2+1−n M)E[dα1,k] = I1,ε,M + I2,ε,M + I3,ε,M

with

Ii,ε,M = M logα/2+1−n M

∫

Si

E[dα1,k|X1 = x]p(x)d x (i = 1,2, 3).

Lemmas 9 and 19 show that limε→0 lim supM→∞ I1,ε,M + I3,ε,M = 0. Also by Lemma 15,

lim
ε→0

lim
M→∞

I2,ε,M =
2n−α/2−1nVn

(k− 1)!

∫ ∞

0

g
�

1

y

�

d y .

We conclude that

lim
M→∞

(M logα/2+1−n M)E[dα1,k] =
2n−α/2−1nVn

(k− 1)!

∫ ∞

0

g
�

1

y

�

d y .
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