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Abstract

In the present paper, we prove that under the assumption of the finite sixth moment for elements
of a Wigner matrix, the convergence rate of its empirical spectral distribution to the Wigner
semicircular law in probability is O(n−1/2) when the dimension n tends to infinity..
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1 Introduction and the result.

A Wigner matrix Wn = n−1/2
�

x i j

�n

i, j=1
is defined to be a Hermitian random matrix whose entries

on and above the diagonal are independent zero-mean random variables. It is an important model
for depicting heavy-nuclei atoms, which began with the seminal work of Wigner in 1955 ([16]).
Details in this area can be found in [13].

There are various mathematical tools in the study of Wigner matrices in the past half century (see
[1]). One of the most popular instruments is the limit theory of empirical spectral distribution
(ESD). Here, for any n× n matrix A with real eigenvalues, the ESD of A is defined by

FA(x) =
1

n

n
∑

i=1

I(λA
i ≤ x),

where λA
i denotes the i-th smallest eigenvalue of A and I(B) denotes the indicator function of an

event B. It is proved that, under assumptions of for all i, j, E|x i j|2 = σ2, the ESD FWn(x) converges
almost surely to a non-random distribution F(x) which has the destiny function

f (x) =
1

2πσ

p

4σ2− x2, x ∈ [−2σ, 2σ]. (1)

This is also known as the Wigner semicircular law (see [16], [6]).

The rate of convergence is important in establishing the central limit theorem for linear spectral
statistics of Wigner matrices ([7, 6]). There are some partial results in this area. In [2], Bai proved
that under the assumption of supn supi, jEx4

i j <∞, the rate of

∆n = ‖EFWn − F‖ := sup
x
|EFWn(x)− F(x)|

tending to 0 is O(n−1/4). Bai et al. in [4] obtained that the rate established in [2] was still valid in
probability for

∆p = ‖FWn − F‖ := sup
x
|FWn(x)− F(x)|

Under a stronger condition that supn supi, jEx8
i j <∞, Bai et al. in [5] showed that ∆n = O(n−1/2)

and ∆p = Op(n−2/5) (Bai and Silverstein improved this condition up to supn supi, jEx6
i j <∞ in their

book [6] ). Here and in the sequel, the notation Rn = Op(rn) means for any ε > 0, there exists
an C > 0 such that supnP(|Rn| ≥ C rn) < ε. Later, Götze et al. in [10] derived ∆n = O(n−1/2) as
well assuming fourth moment, and ∆p = Op(n−1/2) at the cost of the twelfth moment of the matrix
entries. There are some other results with some special assumptions on the matrix entries. If the
entries of Wn have a normal distribution, then the optimal order ∆n = O(n−1) was shown in [11].
When the distribution of the entries satisfies a Poincare inequality or a uniformly subexponential
decay, the order of ∆p can be improved to Op(n−2/3 log2 n) and Op(n−1 logC n) with some constant
C respectively. For which one can refer to [9, 8].

In this note we prove that the twelfth moment condition in [10] could be reduced to the sixth
moment assumption while still getting ∆p = Op(n−1/2). Our main result of this paper is as follows.

Theorem 1.1. Assume that
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• Ex i j = 0, for all 1≤ i ≤ j ≤ n,

• E|x2
ii|= σ

2 > 0,E|x i j|2 = 1, for all 1≤ i < j ≤ n,

• supn sup1≤i< j≤nE|x3
ii|,E|x i j|6 <∞.

Then we have

∆p := ‖FWn − F‖= Op(n
−1/2). (2)

Remark 1.2. It is not clear what the exact rate and the optimal conditions are in Theorem 1.1.

The rest of this paper is organized as follows. The main tool of proving the theorem is introduced
in Section 2. Theorem 1.1 is proved in Section 3 and some technical lemmas are given in Sec-
tion 4. Throughout this paper, constants appearing in inequalities are represented by C which are
nonrandom and may take different values from one appearance to another.

2 The main tool

For any function of bounded variation H on the real line, its Stieltjes transform is defined by

sH(z) =

∫

1

λ− z
dH(λ), z ∈ C+ ≡ {z ∈ C+ : ℑz > 0}.

Our main tool to prove the theorem is a Berry-Esseen type inequality which is proved in [2].

Lemma 2.1. (Bai inequality) Let F be a distribution function and let G be a function of bounded
variation satisfying

∫

|F(x) − G(x)|d x < ∞. Denote their Stieltjes transforms by sF (z) and sG(z)
respectively, where z = u+ iv ∈ C+. Then

‖F − G‖ ≤
1

π(1− ζ)(2ρ− 1)

 

∫ A

−A

|sF (z)− sG(z)|du

+ 2πv−1

∫

|x |>B

|F(x)− G(x)|d x

+v−1 sup
x

∫

|u|≤2vε

|G(x + u)− G(x)|du

!

,

where the constants A > B > 0, ζ and ε are restricted by ρ = 1
π

∫

|u|≤ε
1

u2+1
du > 1

2
, and ζ =

4B
π(A−B)(2ρ−1) ∈ (0, 1).

Here we should notice that we can use the same methods in [10] to prove our theorem. However,
Götze-Tikhomirov inequality (see Corollary 2.3 in [10]) involves the supremum of |sn(z)−Esn(z)|
over ℑz in some interval. This makes the proof rather complicated. Therefore in this paper, we use
Bai inequality instead of Götze-Tikhomirov inequality which could make the presentation simpler.
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3 The proof of Theorem 1.1.

We will firstly introduce a new technique which can handle the moment conditions efficiently. That
is given in Lemma 3.2. Then, by using this lemma and dividing the expression of E|sn −Esn|2, we
prove our theorem step by step.

Before proving the theorem, we introduce some notation. Denote In be the identity matrix of size
n and ai be the ith column of Wn with x ii removed. Define D(z) = n−1/2Wn − zIn, Di(z) = D(z)−
n−1aia

∗
i and sn = sn(z) = sFWn (z). Moreover write

βi =
�

n−1/2 x ii − z− n−1a∗i D
−1
i ai

�−1
, γi = a∗i D

−1
i ai − t rD−1

i

εi = n−1/2 x ii − n−1a∗i D
−1
i ai +Esn(z), γ̂i = a∗i D

−2
i ai − t rD−2

i

ξi = t rD−1− t rD−1
i , an = (z+Esn(z))

−1.

Throughout this section, we denote z = u+ iv, u ∈ [−16,16] and 1 ≥ v ≥ v0 = C0n−1/2 with an
appropriate constant C0. Let s = s(z) = sF (z), we know that (see (3.2) in [2] )

s(z) =−
1

2

�

z−
p

z2− 4
�

for all z ∈ C+.

Then we have
∫ 16

−16

1

|z+ 2s(z)|
du≤

∫ 16

−16

1
p

|z2− 4|
du≤

∫ 16

−16

1
p

|u2− 4|
du< 10. (3)

In addition, by Lemma 2.1 and Theorem 8.2 in [6], we have for some positive constant C ,

E‖FWn − F‖ ≤ C

∫ 16

−16

E|sn(z)−Esn(z)|du+O(n−1/2). (4)

Therefore, the rest of the proof is reduced to the lemma below.

Lemma 3.1. Under the assumptions in Theorem 1.1, for any 1 > v ≥ v0 = C0n−1/2 with sufficiently
large C0 > 0, we have

E
�

�sn(z)−Esn(z)
�

�

2 ≤
C

n|z+ 2s(z)|2
.

3.1 Known results and a preliminary lemma

Following the same truncation, centralization and rescaling steps in [6], in this section we may
assume the random variables satisfy the conditions as follows

|x i j| ≤ n1/4, Ex i j = 0, E|x i j|2 = 1 for all i, j.

Bai in [2] derived the equation

sn(z) =
1

n
t rD−1 =

1

n

n
∑

i=1

βi ,
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which together with the fact

βi =−an+ anβiεi , (5)

implies

sn(z) =−an+
an

n

n
∑

i=1

βiεi . (6)

For each i we have

|ℑβ−1
i |= |ℑ

�

z+ n−1a∗i D
−1
i ai

�

| ≥ v.

Thus we have

|βi| ≤ v−1. (7)

From the definition of εi it follows that

εi = n−1/2 x ii − n−1γi + n−1ξi − (sn−Esn), (8)

and

sn =−an+
an

n3/2

n
∑

i=1

βi x ii +
an

n2

n
∑

i=1

βiγi +
an

n2

n
∑

i=1

βiξi − an(sn−Esn)sn. (9)

Then, we have the the following lemma.

Lemma 3.2. Under the assumption in Theorem 1.1, we have for any v > v0

P
�

|βi|> 2
�

≤
C

n2v2 . (10)

Proof. From integration by parts and Theorem 1.1 in [10], we have for 1> v > v0,

|Esn(z)− s(z)|=

�

�

�

�

�

∫ ∞

−∞

d(EFWn(x)− F (x))
x − z

�

�

�

�

�

=

�

�

�

�

�

∫ ∞

−∞

EFWn(x)− F (x)
(x − z)2

d x

�

�

�

�

�

≤ C ,

which together with the fact that |s(z)| ≤ 1 ( see (3.3) in [2]) implies

|Esn(z)| ≤ C .

Then applying Lemma 4.2 and Lemma 4.3 we have for 1> v > v0,

E|sn(z)| ≤ C and
1

n
E|t rD−1

i | ≤ C .
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By Lemma 4.1 we can check that

E|γi|4 ≤ CE
�

�

t rD−1
i (D

−1
i )
∗
�2
+ n1/2 t r

�

D−1
i (D

−1
i )
∗
�2
�

≤ C
�

v−2E|t rD−1
i |

2+ n1/2v−3E|t rD−1
i |
�

≤
Cn2

v2 . (11)

Thus, from (8), Lemma 4.2 and Lemma 4.3 we have for v > v0,

E|εi|4 ≤
C

n2v2 . (12)

In addition, by the proof of Lemma 5.1 and (5.59) in [10], we can see that

|an| ≤ 1 for all v ≥ v0. (13)

Therefore from the equation (5) we can obtain

P
�

|βi|> 2
�

≤ P
�

|anεi|>
1

2

�

≤ 24E|εi|4 ≤
C

n2v2 ,

which complete the proof.

3.2 The proof of Lemma 3.1

Notice that in this subsection, we will use the equality (5) and (8) frequently. From (9), we have

E
�

�sn−Esn

�

�

2
= E(sn−Esn)(sn−Esn)

=E(sn−Esn)sn = an(S1+ S2+ S3+ S4),

where

S1 =
1

n3/2

n
∑

i=1

E(sn−Esn)x iiβi , S2 =−
1

n2

n
∑

i=1

E(sn−Esn)γiβi ,

S3 =
1

n2

n
∑

i=1

E(sn−Esn)ξiβi , S4 =−E|sn−Esn|2sn.

We first consider S1. From (5), we have

S1 =
1

n3/2

n
∑

i=1

E(sn−Esn)x iiβi

=
an

n3/2

n
∑

i=1

E
�

−(sn−Esn)x ii + anE(sn−Esn)x iiεi − an(sn−Esn)x iiβiε
2
i

�

=
an

n3/2

n
∑

i=1

E
�

−S11+ S12− S13
�

.
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By Lemma 4.2 we have

|ES11|=
�

�

�

�

1

n
Eξi x ii

�

�

�

�

≤
E|x ii|

nv
= O

�

1

nv

�

. (14)

From (12), (13), Hölder’s inequality and Lemma 4.3, we obtain

|ES12| ≤
�

E|sn−Esn|4E|εi|4(E|x ii|2)2
�1/4

≤
C

n3/2v2
. (15)

Next we consider the term S13. Using (12), (13), Lemma 3.2, Lemma 4.3 and the fact |βi| ≤ v−1 we
have

|ES13| ≤ 2
�

E|sn−Esn|4(E|εi|4)2E|x ii|4
�1/4

+ v−1
�

E|sn−Esn|4(E|εi|4)2
�1/4 �

E|x ii|2 I(|βi|> 2)
�1/2

≤
C

nv
. (16)

Therefore combining inequalities (13)-(16) we obtain

|S1|= O
�

1

n

�

. (17)

Furthermore, we have the following expression for S2,

S2 =−
1

n2

n
∑

i=1

E(sn−Esn)γiβi

=
an

n2

n
∑

i=1

E(sn−Esn)γi −
a2

n

n2

n
∑

i=1

E(sn−Esn)γiεiβi

= S21+ S22+ S23+ S24+ S25,

where

S21 =
an

n2

n
∑

i=1

E(sn− n−1 t rDi)γi , S22 =−
an

n5/2

n
∑

i=1

E(sn−Esn)x iiγiβi ,

S23 =
an

n3

n
∑

i=1

E(sn−Esn)βiγ
2
i , S24 =−

an

n3

n
∑

i=1

E(sn−Esn)γiβiξi ,

S25 =
an

n2

n
∑

i=1

E|sn−Esn|2γiβi .

Here we will use the method which we used to handle the bound of S1. Firstly, we express S21 as
follows

S21 =
an

n3

n
∑

i=1

E((1+ n−1a∗i D
−2
i ai)βi)γi

= S211+ S212,
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where

S211 =−
|an|2

n4

n
∑

i=1

E(γ̂i)γi S212 =
|an|2

n3

n
∑

i=1

E((1+ n−1a∗i D
−2
i ai)βiεi)γi .

From Lemma 4.1 and Hölder’s inequality we get

|S211| ≤
C

n4

n
∑

i=1

�

E|γ̂i|2E|γi|2
�1/2

≤
C

n2v2 .

Applying Lemma 4.2, Hölder’s inequality and (12), we obtain

S212 =
|an|2

n2

�

�

�

�

�

n
∑

i=1

E(sn− n−1 t rD−1
i εi)γi

�

�

�

�

�

≤
C

n3v

n
∑

i=1

�

E|εi|2E|γi|2
�1/2

≤
C

n2v2 .

From the last two inequalities we obtain

|S21|= O
�

1

n2v2

�

. (18)

For S22, we use Lemma 4.2 to get

|S22| ≤
C

n7/2

n
∑

i=1

E|t rD−1
i −Et rD−1

i ||x iiγiβi|+
C

n7/2v

n
∑

i=1

E|x iiγiβi|.

Notice that x ii and γi are independent. From Hölder’s inequality and Lemma 3.2 we have

E|x iiγiβi| ≤ CE|x iiγi|+
�

E|x iiγi|2E|βi I(|βi|> 2)|2
�1/2

= O(n1/2v−1/2).

Similarly we can get

E|t rD−1
i −Et rD−1

i ||x iiγiβi| ≤
�

E|t rD−1
i −Et rD−1

i |
4E|γi|4

�1/4
= O(n1/2v−2),

which implies

|S22| ≤
C

n2v2 . (19)

Now consider S23. Using Lemma 4.2 again we obtain

|S23| ≤
C

n3

n
∑

i=1

E|t rD−1
i −Et rD−1

i ||γ
2
i βi|+

C

n3v

n
∑

i=1

E|γ2
i βi|

≤
C

n3

n
∑

i=1

E|t rD−1
i −Et rD−1

i ||γ
2
i βi|+

C

n2v2 .

Applying Lemma 3.2 and Hölder’s inequality we obtain

E|t rD−1
i −Et rD−1

i ||γ
2
i βi| ≤ 2E|t rD−1

i −Et rD−1
i ||γ

2
i |

+
�

(E|t rD−1
i −Et rD−1

i |
2|γi|4)E|βi I(|βi|> 2)|2

�1/2

≤
�

E|t rD−1
i −Et rD−1

i |
2|γi|4

�1/2
.
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It follows from (11) that

E|t rD−1
i −Et rD−1

i |
2|γi|4

≤CE|t rD−1
i −Et rD−1

i |
2
�

v−2|t rD−1
i |

2+ n1/2v−3|t rD−1
i |
�

≤C v−2E|t rD−1
i −Et rD−1

i |
4+

Cn2

v2 E|t rD−1
i −Et rD−1

i |
2

≤
Cn2

v2 E|t rD−1
i −Et rD−1

i |
2+

C

v8

≤
Cn2

v2 E|t rD−1−Et rD−1|2+
C

v8 .

Then, we conclude that

|S23| ≤
C

nv

�

E
�

�sn−Esn

�

�

2
�1/2

+
C

n2v2 . (20)

From Lemma 3.2, Lemma 4.2, Lemma 4.3 and Hölder’s inequality, it is easy to check that

|S24| ≤
C

n2v

n
∑

i=1

�

E|sn−Esn|4E|γi|4
�1/4 �

E|βi|2 I(|βi|> 2)
�1/2

≤
C

n2v2 . (21)

For S25, we use (5) to represent it in the form

S25 =−
a2

n

n2

n
∑

i=1

E|sn−Esn|2γi +
a2

n

n2

n
∑

i=1

E|sn−Esn|2γiεiβi

=− S251+ S252.

Using Lemma 4.3 and Hölder’s inequality we obtain

|S251| ≤
C

n4

n
∑

i=1

E|ξi −Eξi|2|γi|+
C

n4

n
∑

i=1

E|ξi −Eξi||t rD−1
i −Et rD−1

i ||γi|

≤
C

n5/2v5/2
+

C

n5/2v3
= O

�

1

n2v2

�

. (22)

Similarly we can obtain that

E|sn−Esn|2γiεiβi ≤
�

E(|sn−Esn|8|γi|4)E|εi|4
�1/4 �

2+E|βi|2 I(|βi|> 2)
�1/2

≤
C

n1/2v1/2

�

E(|sn−Esn|8|γi|4)
�1/4

≤
C

n1/2v1/2

�

n−8E(|ξi −Eξi|8|γi|4) + n−8E(|t rD−1
i −Et rD−1

i |
8|γi|4)

�1/4

≤
C

n3v4 .

From the last inequality and (22) we obtain

|S25| ≤
C

n2v2 . (23)
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Combining inequalities (18)-(21) and (23), we conclude that, for v ≥ v0

|S2| ≤
C

nv

�

E
�

�sn−Esn

�

�

2
�1/2

+
C

n2v2 . (24)

From Lemma 3.2, Lemma 4.3 and Hölder’s inequality, we can check that

|S3| ≤
C

n2v

n
∑

i=1

�

E|sn−Esn|2(2+E|βi|2 I(|βi|> 2))
�1/2

≤
C

nv

�

E|sn−Esn|2
�1/2

. (25)

Therefore, it remians to get the bound of S4. Now we recall the equality (9), then we have

S4 = anE|sn−Esn|2− an(S41+ S42+ S43+ S44),

and

S4 =−EsnE|sn−Esn|2−E|sn−Esn|2(sn−Esn). (26)

Here

S41 =
1

n3/2

n
∑

i=1

E|sn−Esn|2 x iiβi , S42 =−
1

n2

n
∑

i=1

E|sn−Esn|2γiβi ,

S43 =
1

n2

n
∑

i=1

E|sn−Esn|2ξiβi ,

S44 =−EsnE|sn−Esn|2(sn−Esn)−E|sn−Esn|2(sn−Esn)
2.

Comparing (26) with S44, we obtain that

(1+ anEsn)E|sn−Esn|2(sn−Esn)

=− (an+Esn)E|sn−Esn|2

+ an(S41+ S42+ S43−E|sn−Esn|2(sn−Esn)
2),

which implies that

−E|sn−Esn|2(sn−Esn)

=bna−1
n (an+Esn)E|sn−Esn|2

− bn(S41+ S42+ S43−E|sn−Esn|2(sn−Esn)
2),

where bn = (z+ 2Esn(z))−1. Thus denoting δn = n−1
∑n

i=1Eβiεi , we conclude that

S4 =(−Esn+ bna−1
n (an+Esn))E|sn−Esn|2

− bn(S41+ S42+ S43−E|sn−Esn|2(sn−Esn)
2)

=(an−δn bnEsn)E|sn−Esn|2

− bn(S41+ S42+ S43−E|sn−Esn|2(sn−Esn)
2)

=(an+ anδn bn)E|sn−Esn|2

− bn(δ
2
nE|sn−Esn|2+ S41+ S42+ S43−E|sn−Esn|2(sn−Esn)

2).
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It is obvious that S42 and S25 have the same bound. Using Lemma 3.2, Lemma 4.2 and Lemma 4.3
we get the following three inequalities

|E|sn−Esn|2(sn−Esn)
2| ≤ E|sn−Esn|4 ≤

C

n4v6 ,

|S43| ≤
1

nv

�

E|sn−Esn|4
�1/2

≤
C

n3v4 ,

and

|E|sn−Esn|2 x iiβi| ≤ |E|sn−Esn|2 x iian|+ |E|sn−Esn|2 x iianεiβi|

≤
C

n2v3 +
�

E|sn−Esn|16E|x ii|8
�1/8 �

E|εi|4
�1/4 �

2+E|βi|2 I(|βi|> 2)
�1/2

= O
�

1

n2v3

�

.

Furthermore, from the definition of δn and (12), we have

|δn|=

�

�

�

�

�

n−1
n
∑

i=1

�

En−1D−1
i −Esn+Eβiε

2
i

�

�

�

�

�

�

≤
C

nv
.

Therefore, we obtain

S4 = anE|sn−Esn|2+O
� |bn|

n2v2

�

,

which combined with (17), (24) and (25) implies

|1− a2
n|E|sn−Esn|2 ≤

C1|an bn|
n

+
C2|an|p

n

�

E|sn−Esn|2
�1/2

.

Then, from (6.91) and (6.95) in [10] which are under the existing fourth moment assumption, for
1> v > v0,

|1− a2
n| ≥ |an(z+ 2s(z))| and |bn| ≤ 2|z+ 2s(z)|−1,

we obtain the following inequality

E|sn−Esn|2 ≤
C1

n|z+ 2s(z)|2
+

C2p
n|z+ 2s(z)|

�

E|sn−Esn|2
�1/2

.

Solving this inequality, we obtain

E|sn−Esn|2 ≤
C

n|z+ 2s(z)|2
,

which complete the proof of the Lemma.
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4 Basic lemmas

In this section we list some results which are needed in the proof.

Lemma 4.1. (Lemma B.26 of [6]) Let A be an n× n nonrandom matrix and X = (x1, . . . , xn)∗ be a
random vector of independent entries. Assume that Ex i = 0, E|x i|2 = 1, and E|x j|l ≤ νl . Then, for
any p ≥ 1,

E|X∗AX− t rA|p ≤ Cp

�

�

ν4 t r(AA∗)
�p/2+ ν2p t r(AA∗)p/2

�

,

where Cp is a constant depending on p only.

Lemma 4.2. (Lemma 2.6 of [14]). Let z ∈ C+ with v = ℑz, A and B n× n with B Hermitian, τ ∈R,
and q ∈ CN . Then

|t r((B− zI)−1− (B+τqq∗− zI)−1)A| ≤
‖A‖

v
.

Lemma 4.3. (Lemma 8.7 of [6]) Under the assumption in Theorem 1.1, we have for any l ≥ 1

E|sn(z)−Esn(z)|2l ≤
C

n2l v3l
. (27)
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